1
|
Zamani M, Melnychuk T, Eisenhauer A, Gäbler R, Schultz C. Investigating Past, Present, and Future Trends on Interface Between Marine and Medical Research and Development: A Bibliometric Review. Mar Drugs 2025; 23:34. [PMID: 39852536 PMCID: PMC11766621 DOI: 10.3390/md23010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
The convergence of marine sciences and medical studies has the potential for substantial advances in healthcare. This study uses bibliometric and topic modeling studies to map the progression of research themes from 2000 to 2023, with an emphasis on the interdisciplinary subject of marine and medical sciences. Building on the global publication output at the interface between marine and medical sciences and using the Hierarchical Dirichlet Process, we discovered dominating research topics during three periods, emphasizing shifts in research focus and development trends. Our data show a significant rise in publication output, indicating a growing interest in using marine bioresources for medical applications. The paper identifies two main areas of active research, "natural product biochemistry" and "trace substance and genetics", both with great therapeutic potential. We used social network analysis to map the collaborative networks and identify the prominent scholars and institutions driving this research and development progress. Our study indicates important paths for research policy and R&D management operating at the crossroads of healthcare innovation and marine sciences. It also underscores the significance of quantitative foresight methods and interdisciplinary teams in identifying and interpreting future scientific convergences and breakthroughs.
Collapse
Affiliation(s)
- Mehdi Zamani
- Kiel Institute for Responsible Innovation, Chair of Technology Management, Kiel University (Christian-Albrechts-Universität zu Kiel), 24118 Kiel, Germany; (M.Z.); (T.M.)
| | - Tetyana Melnychuk
- Kiel Institute for Responsible Innovation, Chair of Technology Management, Kiel University (Christian-Albrechts-Universität zu Kiel), 24118 Kiel, Germany; (M.Z.); (T.M.)
| | - Anton Eisenhauer
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24148 Kiel, Germany; (A.E.); (R.G.)
| | - Ralph Gäbler
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24148 Kiel, Germany; (A.E.); (R.G.)
| | - Carsten Schultz
- Kiel Institute for Responsible Innovation, Chair of Technology Management, Kiel University (Christian-Albrechts-Universität zu Kiel), 24118 Kiel, Germany; (M.Z.); (T.M.)
| |
Collapse
|
2
|
Ngo-Mback MNL, Zeuko’o Menkem E, Marco HG. Antifungal Compounds from Microbial Symbionts Associated with Aquatic Animals and Cellular Targets: A Review. Pathogens 2023; 12:617. [PMID: 37111503 PMCID: PMC10142389 DOI: 10.3390/pathogens12040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Fungal infections continue to be a serious public health problem, leading to an estimated 1.6 million deaths annually. It remains a major cause of mortality for people with a weak or affected immune system, such as those suffering from cancer under aggressive chemotherapies. On the other hand, pathogenic fungi are counted among the most destructive factors affecting crops, causing a third of all food crop losses annually and critically affecting the worldwide economy and food security. However, the limited number currently available and the cytotoxicity of the conventional antifungal drugs, which are not yet properly diversified in terms of mode of action, in addition to resistance phenomena, make the search for new antifungals imperative to improve both human health and food protection. Symbiosis has been a crucial alternative for drug discovery, through which many antimicrobials have been discovered. This review highlights some antifungal models of a defensive symbiosis of microbial symbiont natural products derived from interacting with aquatic animals as one of the best opportunities. Some recorded compounds with supposed novel cell targets such as apoptosis could lead to the development of a multitherapy involving the mutual treatment of fungal infections and other metabolic diseases involving apoptosis in their pathogenesis pathways.
Collapse
Affiliation(s)
| | | | - Heather G. Marco
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
3
|
Tiwari AK, Tiwari BS. Cyanotherapeutics: an emerging field for future drug discovery. APPLIED PHYCOLOGY 2020; 1:44-57. [DOI: 10.1080/26388081.2020.1744480] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/08/2020] [Indexed: 10/11/2024]
Affiliation(s)
- Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biological Sciences & Biotechnology, Institute of Advanced Research/IIAR, Gandhinagar, India
| | - Budhi Sagar Tiwari
- Plant Cell & Molecular Biology Laboratory Department of Biological Sciences & Biotechnology, Institute of Advanced Research/IIAR, Gandhinagar, India
| |
Collapse
|
4
|
R L Morlighem JÉ, Huang C, Liao Q, Braga Gomes P, Daniel Pérez C, de Brandão Prieto-da-Silva ÁR, Ming-Yuen Lee S, Rádis-Baptista G. The Holo-Transcriptome of the Zoantharian Protopalythoa variabilis (Cnidaria: Anthozoa): A Plentiful Source of Enzymes for Potential Application in Green Chemistry, Industrial and Pharmaceutical Biotechnology. Mar Drugs 2018; 16:E207. [PMID: 29899267 PMCID: PMC6025448 DOI: 10.3390/md16060207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 02/08/2023] Open
Abstract
Marine invertebrates, such as sponges, tunicates and cnidarians (zoantharians and scleractinian corals), form functional assemblages, known as holobionts, with numerous microbes. This type of species-specific symbiotic association can be a repository of myriad valuable low molecular weight organic compounds, bioactive peptides and enzymes. The zoantharian Protopalythoa variabilis (Cnidaria: Anthozoa) is one such example of a marine holobiont that inhabits the coastal reefs of the tropical Atlantic coast and is an interesting source of secondary metabolites and biologically active polypeptides. In the present study, we analyzed the entire holo-transcriptome of P. variabilis, looking for enzyme precursors expressed in the zoantharian-microbiota assemblage that are potentially useful as industrial biocatalysts and biopharmaceuticals. In addition to hundreds of predicted enzymes that fit into the classes of hydrolases, oxidoreductases and transferases that were found, novel enzyme precursors with multiple activities in single structures and enzymes with incomplete Enzyme Commission numbers were revealed. Our results indicated the predictive expression of thirteen multifunctional enzymes and 694 enzyme sequences with partially characterized activities, distributed in 23 sub-subclasses. These predicted enzyme structures and activities can prospectively be harnessed for applications in diverse areas of industrial and pharmaceutical biotechnology.
Collapse
Affiliation(s)
- Jean-Étienne R L Morlighem
- Northeast Biotechnology Network (RENORBIO), Post-Graduation Program in Biotechnology, Federal University of Ceará, Fortaleza 60440-900, Brazil.
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará, Fortaleza 60165-081, Brazil.
| | - Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 519020, China.
| | - Qiwen Liao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 519020, China.
| | - Paula Braga Gomes
- Department of Biology, Federal Rural University of Pernambuco, Recife 52171-900, Brazil.
| | - Carlos Daniel Pérez
- Academic Center in Vitória, Federal University of Pernambuco, Vitória de Santo Antão 50670-901, Pernambuco, Brazil.
| | | | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 519020, China.
| | - Gandhi Rádis-Baptista
- Northeast Biotechnology Network (RENORBIO), Post-Graduation Program in Biotechnology, Federal University of Ceará, Fortaleza 60440-900, Brazil.
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará, Fortaleza 60165-081, Brazil.
| |
Collapse
|
5
|
Nowruzi B, Haghighat S, Fahimi H, Mohammadi E. Nostoc
cyanobacteria species: a new and rich source of novel bioactive compounds with pharmaceutical potential. JOURNAL OF PHARMACEUTICAL HEALTH SERVICES RESEARCH 2017. [DOI: 10.1111/jphs.12202] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Bahareh Nowruzi
- Department of Biology, Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Setareh Haghighat
- Department of Microbiology; Faculty of Advanced Sciences & Technology; Pharmaceutical Sciences Branch; Islamic Azad University; IAUPS; Tehran Iran
| | - Hossein Fahimi
- Department of Molecular and Cellular Sciences; Faculty of Advanced Sciences & Technology; Pharmaceutical Sciences Branch; Islamic Azad University; IAUPS; Tehran Iran
| | - Ehsan Mohammadi
- Department of Molecular and Cellular Sciences; Faculty of Advanced Sciences & Technology; Pharmaceutical Sciences Branch; Islamic Azad University; IAUPS; Tehran Iran
| |
Collapse
|
6
|
Osman OA, Beier S, Grabherr M, Bertilsson S. Interactions of Freshwater Cyanobacteria with Bacterial Antagonists. Appl Environ Microbiol 2017; 83:e02634-16. [PMID: 28115385 PMCID: PMC5359482 DOI: 10.1128/aem.02634-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/07/2017] [Indexed: 01/15/2023] Open
Abstract
Cyanobacterial and algal mass development, or blooms, have severe effects on freshwater and marine systems around the world. Many of these phototrophs produce a variety of potent toxins, contribute to oxygen depletion, and affect water quality in several ways. Coexisting antagonists, such as cyanolytic bacteria, hold the potential to suppress, or even terminate, such blooms, yet the nature of this interaction is not well studied. We isolated 31 cyanolytic bacteria affiliated with the genera Pseudomonas, Stenotrophomonas, Acinetobacter, and Delftia from three eutrophic freshwater lakes in Sweden and selected four phylogenetically diverse bacterial strains with strong-to-moderate lytic activity. To characterize their functional responses to the presence of cyanobacteria, we performed RNA sequencing (RNA-Seq) experiments on coculture incubations, with an initial predator-prey ratio of 1:1. Genes involved in central cellular pathways, stress-related heat or cold shock proteins, and antitoxin genes were highly expressed in both heterotrophs and cyanobacteria. Heterotrophs in coculture expressed genes involved in cell motility, signal transduction, and putative lytic activity. l,d-Transpeptidase was the only significantly upregulated lytic gene in Stenotrophomonas rhizophila EK20. Heterotrophs also shifted their central metabolism from the tricarboxylic acid cycle to the glyoxylate shunt. Concurrently, cyanobacteria clearly show contrasting antagonistic interactions with the four tested heterotrophic strains, which is also reflected in the physical attachment to their cells. In conclusion, antagonistic interactions with cyanobacteria were initiated within 24 h, and expression profiles suggest varied responses for the different cyanobacteria and studied cyanolytes.IMPORTANCE Here, we present how gene expression profiles can be used to reveal interactions between bloom-forming freshwater cyanobacteria and antagonistic heterotrophic bacteria. Species-specific responses in both heterotrophs and cyanobacteria were identified. The study contributes to a better understanding of the interspecies cellular interactions underpinning the persistence and collapse of cyanobacterial blooms.
Collapse
Affiliation(s)
- Omneya Ahmed Osman
- Department of Ecology and Genetics, Limnology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sara Beier
- Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| | - Manfred Grabherr
- Department of Medical Microbiology and Biochemistry, Bioinformatics Infrastructure for Life Sciences, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Kollar P, Šmejkal K, Salmonová H, Vlková E, Lepšová-Skácelová O, Balounová Z, Rajchard J, Cvačka J, Jaša L, Babica P, Pazourek J. Assessment of Chemical Impact of Invasive Bryozoan Pectinatella magnifica on the Environment: Cytotoxicity and Antimicrobial Activity of P. magnifica Extracts. Molecules 2016; 21:E1476. [PMID: 27827926 PMCID: PMC6272939 DOI: 10.3390/molecules21111476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 11/16/2022] Open
Abstract
Pectinatella magnifica, an invasive bryozoan, might significantly affect ecosystem balance due to its massive occurrence in many areas in Europe and other parts of the world. Biological and chemical analyses are needed to get complete information about the impact of the animal on the environment. In this paper, we aimed to evaluate in vitro cytotoxic effects of five extracts prepared from P. magnifica using LDH assay on THP-1 cell line. Antimicrobial activities of extracts against 22 different bacterial strains were tested by microdilution method. Our study showed that all extracts tested, except aqueous portion, demonstrated LD50 values below 100 μg/mL, which indicates potential toxicity. The water extract of P. magnifica with LD50 value of 250 μg/mL also shows potentially harmful effects. Also, an environmental risk resulting from the presence and increasing biomass of potentially toxic benthic cyanobacteria in old colonies should not be underestimated. Toxicity of Pectinatella extracts could be partially caused by presence of Aeromonas species in material, since we found members of these genera as most abundant bacteria associated with P. magnifica. Furthermore, P. magnifica seems to be a promising source of certain antimicrobial agents. Its methanolic extract, hexane, and chloroform fractions possessed selective inhibitory effect on some potential pathogens and food spoiling bacteria in the range of MIC 0.5-10 mg/mL. Future effort should be made to isolate and characterize the content compounds derived from P. magnifica, which could help to identify the substance(s) responsible for the toxic effects of P. magnifica extracts.
Collapse
Affiliation(s)
- Peter Kollar
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, Brno 61242, Czech Republic.
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, Brno 61242, Czech Republic.
| | - Hana Salmonová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16521, Czech Republic.
| | - Eva Vlková
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16521, Czech Republic.
| | - Olga Lepšová-Skácelová
- Department of Botany, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, České Budějovice 37005, Czech Republic.
| | - Zuzana Balounová
- Department of Biological Studies, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 13, České Budějovice 37005, Czech Republic.
| | - Josef Rajchard
- Department of Biological Studies, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 13, České Budějovice 37005, Czech Republic.
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, Prague 16610, Czech Republic.
| | - Libor Jaša
- RECETOX-Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 60200, Czech Republic.
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Academy of Sciences of the Czech Republic, Lidická 25/27, Brno 60200, Czech Republic.
| | - Pavel Babica
- RECETOX-Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 60200, Czech Republic.
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Academy of Sciences of the Czech Republic, Lidická 25/27, Brno 60200, Czech Republic.
| | - Jiří Pazourek
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, Brno 61242, Czech Republic.
| |
Collapse
|
8
|
New Metabolites and Bioactive Actinomycins from Marine-Derived Streptomyces sp. ZZ338. Mar Drugs 2016; 14:md14100181. [PMID: 27727167 PMCID: PMC5082329 DOI: 10.3390/md14100181] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 11/16/2022] Open
Abstract
An extract prepared from the culture of a marine-derived actinomycete Streptomyces sp. ZZ338 was found to have significant antimicrobial and antiproliferative activities. A chemical investigation of this active extract resulted in the isolation of three known bioactive actinomycins (1–3) and two new metabolites (4 and 5). The structures of the isolated compounds were identified as actinomycins D (1), V (2), X0β (3), 2-acetylamino-3-hydroxyl-4-methyl-benzoic acid methyl ester (4), and N-1S-(4-methylaminophenylmethyl)-2-oxo-propyl acetamide (5) based on their nuclear magnetic resonance (NMR) and high resolution electrospray ionization mass spectroscopy (HRESIMS) data as well as their optical rotation. This class of new compound 5 had never before been found from a natural resource. Three known actinomycins showed activities in inhibiting the proliferation of glioma cells and the growth of methicillin-resistant Staphylococcus aureus, Escherichia coli, and Candida albicans and are responsible for the activity of the crude extract. Actinomycin D (1) was also found to downregulate several glioma metabolic enzymes of glycolysis, glutaminolysis, and lipogenesis, suggesting that targeting multiple tumor metabolic regulators might be a new anti-glioma mechanism of actinomycin D. This is the first report of such a possible mechanism for the class of actinomycins.
Collapse
|
9
|
Gomes NGM, Dasari R, Chandra S, Kiss R, Kornienko A. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the "Supply Problem". Mar Drugs 2016; 14:E98. [PMID: 27213412 PMCID: PMC4882572 DOI: 10.3390/md14050098] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023] Open
Abstract
Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors' opinion should be pursued due to their most promising anticancer activities.
Collapse
Affiliation(s)
- Nelson G M Gomes
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira No. 228, 4050-313 Porto, Portugal.
| | - Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Sunena Chandra
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, CP205/1, Boulevard du Triomphe, 1050 Brussels, Belgium.
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
10
|
Satheesh S, Ba-akdah MA, Al-Sofyani AA. Natural antifouling compound production by microbes associated with marine macroorganisms — A review. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
11
|
Trindade M, van Zyl LJ, Navarro-Fernández J, Abd Elrazak A. Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Front Microbiol 2015; 6:890. [PMID: 26379658 PMCID: PMC4552006 DOI: 10.3389/fmicb.2015.00890] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
Microbial natural products exhibit immense structural diversity and complexity and have captured the attention of researchers for several decades. They have been explored for a wide spectrum of applications, most noteworthy being their prominent role in medicine, and their versatility expands to application as drugs for many diseases. Accessing unexplored environments harboring unique microorganisms is expected to yield novel bioactive metabolites with distinguishing functionalities, which can be supplied to the starved pharmaceutical market. For this purpose the oceans have turned out to be an attractive and productive field. Owing to the enormous biodiversity of marine microorganisms, as well as the growing evidence that many metabolites previously isolated from marine invertebrates and algae are actually produced by their associated bacteria, the interest in marine microorganisms has intensified. Since the majority of the microorganisms are uncultured, metagenomic tools are required to exploit the untapped biochemistry. However, after years of employing metagenomics for marine drug discovery, new drugs are vastly under-represented. While a plethora of natural product biosynthetic genes and clusters are reported, only a minor number of potential therapeutic compounds have resulted through functional metagenomic screening. This review explores specific obstacles that have led to the low success rate. In addition to the typical problems encountered with traditional functional metagenomic-based screens for novel biocatalysts, there are enormous limitations which are particular to drug-like metabolites. We also present how targeted and function-guided strategies, employing modern, and multi-disciplinary approaches have yielded some of the most exciting discoveries attributed to uncultured marine bacteria. These discoveries set the stage for progressing the production of drug candidates from uncultured bacteria for pre-clinical and clinical development.
Collapse
Affiliation(s)
- Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, BellvilleSouth Africa
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, BellvilleSouth Africa
| | - José Navarro-Fernández
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, BellvilleSouth Africa
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Universidad de Murcia, IMIB-Arrixaca, MurciaSpain
| | - Ahmed Abd Elrazak
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, BellvilleSouth Africa
- Botany Department, Faculty of Science, Mansoura University, MansouraEgypt
| |
Collapse
|
12
|
Evolving marine biomimetics for regenerative dentistry. Mar Drugs 2014; 12:2877-912. [PMID: 24828293 PMCID: PMC4052322 DOI: 10.3390/md12052877] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 12/16/2022] Open
Abstract
New products that help make human tissue and organ regeneration more effective are in high demand and include materials, structures and substrates that drive cell-to-tissue transformations, orchestrate anatomical assembly and tissue integration with biology. Marine organisms are exemplary bioresources that have extensive possibilities in supporting and facilitating development of human tissue substitutes. Such organisms represent a deep and diverse reserve of materials, substrates and structures that can facilitate tissue reconstruction within lab-based cultures. The reason is that they possess sophisticated structures, architectures and biomaterial designs that are still difficult to replicate using synthetic processes, so far. These products offer tantalizing pre-made options that are versatile, adaptable and have many functions for current tissue engineers seeking fresh solutions to the deficiencies in existing dental biomaterials, which lack the intrinsic elements of biofunctioning, structural and mechanical design to regenerate anatomically correct dental tissues both in the culture dish and in vivo.
Collapse
|
13
|
Kollár P, Rajchard J, Balounová Z, Pazourek J. Marine natural products: bryostatins in preclinical and clinical studies. PHARMACEUTICAL BIOLOGY 2014; 52:237-242. [PMID: 24033119 DOI: 10.3109/13880209.2013.804100] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Bryostatins represent an important group of pharmaceutically promising substances. These compounds are produced by commensal microorganisms naturally occurring in marine invertebrates, mainly in bryozoans. The most frequently investigated substance is bryostatin-1, which is a highly oxygenated macrolide with a polyacetate backbone. OBJECTIVE The aim of this work was to summarize documented preclinical and clinical effects of bryostatin-class compounds. METHODS A literature search was made of Medline and Web of Science databases in 2012. RESULTS AND CONCLUSION Our review showed that bryostatins are potent agonists of protein kinase C. In addition to this, their significant antineoplastic activity against several tumor types has also been established and described. Bryostatin's anticancer activity has been proved against various cancer types. Moreover, significant results have been achieved by using bryostatin-1 in combination with other therapies, including combination with vaccine testing. Concerning other important properties that bryostatins possess, their ability to sensitize some resistant cells to chemotherapy agents, or immunoactivity and further stimulating growth of new neural connections, and enhancing effect on long-term memory are worth mentioning. In particular, some new bryostatin analogs could represent potential therapeutic agent for the treatment of cancer and other diseases in future.
Collapse
Affiliation(s)
- Peter Kollár
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
| | | | | | | |
Collapse
|
14
|
|
15
|
Importance of microbial natural products and the need to revitalize their discovery. J Ind Microbiol Biotechnol 2013; 41:185-201. [PMID: 23990168 DOI: 10.1007/s10295-013-1325-z] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 08/03/2013] [Indexed: 12/31/2022]
Abstract
Microbes are the leading producers of useful natural products. Natural products from microbes and plants make excellent drugs. Significant portions of the microbial genomes are devoted to production of these useful secondary metabolites. A single microbe can make a number of secondary metabolites, as high as 50 compounds. The most useful products include antibiotics, anticancer agents, immunosuppressants, but products for many other applications, e.g., antivirals, anthelmintics, enzyme inhibitors, nutraceuticals, polymers, surfactants, bioherbicides, and vaccines have been commercialized. Unfortunately, due to the decrease in natural product discovery efforts, drug discovery has decreased in the past 20 years. The reasons include excessive costs for clinical trials, too short a window before the products become generics, difficulty in discovery of antibiotics against resistant organisms, and short treatment times by patients for products such as antibiotics. Despite these difficulties, technology to discover new drugs has advanced, e.g., combinatorial chemistry of natural product scaffolds, discoveries in biodiversity, genome mining, and systems biology. Of great help would be government extension of the time before products become generic.
Collapse
|
16
|
Noro JC, Kalaitzis JA, Neilan BA. Bioactive natural products from Papua New Guinea marine sponges. Chem Biodivers 2013; 9:2077-95. [PMID: 23081914 DOI: 10.1002/cbdv.201100292] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discovery of novel natural products for drug development relies heavily upon a rich biodiversity, of which the marine environment is an obvious example. Marine natural product research has spawned several drugs and many other candidates, some of which are the focus of current clinical trials. The sponge megadiversity of Papua New Guinea is a rich but underexplored source of bioactive natural products. Here, we review some of the many natural products derived from PNG sponges with an emphasis on those with interesting biological activity and, therefore, drug potential. Many bioactive natural products discussed here appear to be derived from non-ribosomal peptide and polyketide biosynthesis pathways, strongly suggesting a microbial origin of these compounds. With this in mind, we also explore the notion of sponge-symbiont biosynthesis of these bioactive compounds and present examples to support the working hypothesis.
Collapse
Affiliation(s)
- Jeffery C Noro
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | | | | |
Collapse
|
17
|
|
18
|
Gallardo-Rodríguez J, Sánchez-Mirón A, García-Camacho F, López-Rosales L, Chisti Y, Molina-Grima E. Bioactives from microalgal dinoflagellates. Biotechnol Adv 2012; 30:1673-84. [PMID: 22884890 DOI: 10.1016/j.biotechadv.2012.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/27/2012] [Accepted: 07/29/2012] [Indexed: 01/12/2023]
Abstract
Dinoflagellate microalgae are an important source of marine biotoxins. Bioactives from dinoflagellates are attracting increasing attention because of their impact on the safety of seafood and potential uses in biomedical, toxicological and pharmacological research. Here we review the potential applications of dinoflagellate toxins and the methods for producing them. Only sparing quantities of dinoflagellate toxins are generally available and this hinders bioactivity characterization and evaluation in possible applications. Approaches to production of increased quantities of dinoflagellate bioactives are discussed. Although many dinoflagellates are fragile and grow slowly, controlled culture in bioreactors appears to be generally suitable for producing many of the metabolites of interest.
Collapse
|
19
|
Parallel synthesis of peptide-like macrocycles containing imidazole-4,5-dicarboxylic acid. Molecules 2012; 17:5346-62. [PMID: 22569415 PMCID: PMC6268944 DOI: 10.3390/molecules17055346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 04/26/2012] [Accepted: 05/03/2012] [Indexed: 12/15/2022] Open
Abstract
We prepared a series of peptide-like 14-membered macrocycles containing an imidazole-4,5-dicarboxylic acid scaffold by using known coupling reagents and protecting group strategies. Yields of the purified macrocycles were poor on average, yet seemingly independent of amino acid substitution or stereochemistry. The macrocycles retain some level of conformational variability as observed by both molecular modeling and X-ray crystallography. These macrocycles represent a new class of structures for further development and for future application in high-throughput screening against a variety of biological targets.
Collapse
|
20
|
Construction of a metagenomic library for the marine sponge Halichondria okadai. Biosci Biotechnol Biochem 2012; 76:633-9. [PMID: 22484923 DOI: 10.1271/bbb.110533] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Symbionts of the marine sponge Halichondria okadai are promising as a source of natural products. Metagenomic technology is a powerful tool for accessing the genetic and biochemical potential of bacteria. Hence, we established a method of recovering bacterial-enriched metagenomic DNA by stepwise centrifugation. The metagenomic DNA was analyzed by ultrafast 454-pyrosequencing technology, and the results suggested that more than three types of bacterial DNA, Alphaproteobacteria, Actinobacteria, and Cyanobacteria, had been recovered, and that eukaryotic genes comprised only 0.02% of the metagenomic DNA. These results indicate that stepwise centrifugation and real-time quantitative PCR were effective for separating sponge cells and symbiotic bacteria, and that we constructed a bacteria-enriched metagenomic library from a marine sponge, H. okadai, selectively for the first time.
Collapse
|
21
|
Genta-Jouve G, Thomas OP. Sponge chemical diversity: from biosynthetic pathways to ecological roles. ADVANCES IN MARINE BIOLOGY 2012; 62:183-230. [PMID: 22664123 DOI: 10.1016/b978-0-12-394283-8.00004-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Since more than 50 years, sponges have raised the interest of natural product chemists due to the presence of structurally original secondary metabolites. While the main objective were first to discover new drugs from the Sea, a large number of interrogations arose along with the isolation and structure elucidations of a wide array of original architectures and new families of natural products not found in the terrestrial environment. In this chapter, we focus on the results obtained during this period on the following questions. A preliminary but still unresolved issue to be addressed will be linked to the role of the microbiota into the biosynthesis of these low-weight compounds. Our knowledge on the biosynthetic pathways leading to plant secondary metabolites is now well established, and this background will influence our comprehension of the biosynthetic events occurring in a sponge. But is the level of similarity between both metabolisms so important? We clearly need more experimental data to better assess this issue. This question is of fundamental interest because sponges have a long evolutionary history, and this will allow a better understanding on the transfer of the genetic information corresponding to the biosynthesis of secondary metabolites. After the how, the why! The question of the ecological role of these metabolites is also of high importance first not only because they can serve as synapomorphic characters but also because they may represent chemical cues in the water environment. Even if most of these compounds are considered as defensive weapons for these sessile invertebrates, they may also be linked to physiological characters as the reproduction. Finally, a metabolomic approach can appear as a complementary tool to give additional information on the sponge fitness. All the new developments in molecular biology and bioanalytical tools will open the way for a better comprehension on the complex field of sponge secondary metabolites.
Collapse
|
22
|
Matsunaga S, Jimbo M, Gill MB, Lash-Van Wyhe LL, Murata M, Nonomura K, Swanson GT, Sakai R. Isolation, amino acid sequence and biological activities of novel long-chain polyamine-associated peptide toxins from the sponge Axinyssa aculeata. Chembiochem 2011; 12:2191-200. [PMID: 21830292 PMCID: PMC3533443 DOI: 10.1002/cbic.201100329] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Indexed: 01/23/2023]
Abstract
A novel family of functionalized peptide toxins, aculeines (ACUs), was isolated from the marine sponge Axinyssa aculeate. ACUs are polypeptides with N-terminal residues that are modified by the addition of long-chain polyamines (LCPA). Aculeines were present in the sponge extract as a complex mixture with differing polyamine chain lengths and peptide structures. ACU-A and B, which were purified in this study, share a common polypeptide chain but differ in their N-terminal residue modifications. The amino acid sequence of the polypeptide portion of ACU-A and B was deduced from 3' and 5' RACE, and supported by Edman degradation and mass spectral analysis of peptide fragments. ACU induced convulsions upon intracerebroventricular (i.c.v.) injection in mice, and disrupted neuronal membrane integrity in electrophysiological assays. ACU also lysed erythrocytes with a potency that differed between animal species. Here we describe the isolation, amino acid sequence, and biological activity of this new group of cytotoxic sponge peptides.
Collapse
Affiliation(s)
- Satoko Matsunaga
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611 (Japan)
| | - Mitsuru Jimbo
- School of Marine Biosciences, Kitasato University, Sanriku-cho Ofunato 022-0101 (Japan)
| | - Martin B. Gill
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 (USA)
| | - L. Leanne Lash-Van Wyhe
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 (USA)
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)
| | - Ken’ichi Nonomura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)
| | - Geoffrey T. Swanson
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 (USA)
| | - Ryuichi Sakai
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611 (Japan)
| |
Collapse
|
23
|
Mayer AMS, Rodríguez AD, Berlinck RGS, Fusetani N. Marine pharmacology in 2007-8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:191-222. [PMID: 20826228 PMCID: PMC7110230 DOI: 10.1016/j.cbpc.2010.08.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/25/2010] [Accepted: 08/25/2010] [Indexed: 11/23/2022]
Abstract
The peer-reviewed marine pharmacology literature in 2007-8 is covered in this review, which follows a similar format to the previous 1998-2006 reviews of this series. The preclinical pharmacology of structurally characterized marine compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis and antiviral activities were reported for 74 marine natural products. Additionally, 59 marine compounds were reported to affect the cardiovascular, immune and nervous systems as well as to possess anti-inflammatory effects. Finally, 65 marine metabolites were shown to bind to a variety of receptors and miscellaneous molecular targets, and thus upon further completion of mechanism of action studies, will contribute to several pharmacological classes. Marine pharmacology research during 2007-8 remained a global enterprise, with researchers from 26 countries, and the United States, contributing to the preclinical pharmacology of 197 marine compounds which are part of the preclinical marine pharmaceuticals pipeline. Sustained preclinical research with marine natural products demonstrating novel pharmacological activities, will probably result in the expansion of the current marine pharmaceutical clinical pipeline, which currently consists of 13 marine natural products, analogs or derivatives targeting a limited number of disease categories.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | | | | | | |
Collapse
|
24
|
Dang VT, Benkendorff K, Speck P. In vitro antiviral activity against herpes simplex virus in the abalone Haliotis laevigata. J Gen Virol 2010; 92:627-37. [PMID: 21123549 DOI: 10.1099/vir.0.025247-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As viruses are extremely abundant in oceans, marine organisms may have evolved novel metabolites to protect themselves from viral infection. This research examined a well-known commercial gastropod, abalone (Haliotidae), which in Australia have recently experienced disease due to a neurotropic infection, abalone viral ganglioneuritis, caused by an abalone herpesvirus (AbHV). Due to the lack of molluscan cell lines for culturing AbHV, the antiviral activity of the abalone Haliotis laevigata was assessed against another neurotropic herpesvirus, herpes simplex virus type 1 (HSV-1), using a plaque assay. The concentration range at which abalone extract was used for antiviral testing caused minimal (<10 %) mortality in Vero cells. Haemolymph (20 %, v/v) and lipophilic extract of the digestive gland (3000 μg ml(-1)) both substantially decreased the number and size of plaques. By adding haemolymph or lipophilic extract at different times during the plaque assay, it was shown that haemolymph inhibited viral infection at an early stage. In contrast, the antiviral effect of the lipophilic extract was greatest when added 1 h after infection, suggesting that it may act at an intracellular stage of infection. These results suggest that abalone have at least two antiviral compounds with different modes of action against viral infection, and provide a novel lead for marine antiviral drug discovery.
Collapse
Affiliation(s)
- Vinh T Dang
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | | | | |
Collapse
|
25
|
Abstract
For over 40 years, natural products have served us well in combating cancer. The main sources of these successful compounds are microbes and plants from the terrestrial and marine environments. The microbes serve as a major source of natural products with anti‐tumour activity. A number of these products were first discovered as antibiotics. Another major contribution comes from plant alkaloids, taxoids and podophyllotoxins. A vast array of biological metabolites can be obtained from the marine world, which can be used for effective cancer treatment. The search for novel drugs is still a priority goal for cancer therapy, due to the rapid development of resistance to chemotherapeutic drugs. In addition, the high toxicity usually associated with some cancer chemotherapy drugs and their undesirable side‐effects increase the demand for novel anti‐tumour drugs active against untreatable tumours, with fewer side‐effects and/or with greater therapeutic efficiency. This review points out those technologies needed to produce the anti‐tumour compounds of the future.
Collapse
Affiliation(s)
- Arnold L Demain
- Charles A Dana Research Institute for Scientists Emeriti, Drew University, Madison, NJ 07940, USA.
| | | |
Collapse
|
26
|
Folmer F, Jaspars M, Schumacher M, Dicato M, Diederich M. Marine natural products targeting phospholipases A2. Biochem Pharmacol 2010; 80:1793-800. [PMID: 20833149 DOI: 10.1016/j.bcp.2010.08.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/25/2010] [Accepted: 08/27/2010] [Indexed: 01/23/2023]
Abstract
Phospholipases A(2) (PLA(2)s) form a family of enzymes catalyzing the hydrolysis of membrane phospholipids into arachidonic acid, which is the major precursor of pro-inflammatory eicosanoids. As a result, PLA(2)s have been considered as potential targets in anti-inflammatory drug discovery. Marine natural products are a rich source of bioactive compounds, including PLA(2) inhibitors. Here, we review the properties of marine PLA(2) inhibitors identified since the first discovery of PLA(2) inhibitory activity in the marine natural product manoalide in the mid 1980s.
Collapse
Affiliation(s)
- Florence Folmer
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Fondation de Recherche Cancer et Sang, Hôpital Kirchberg, 9 Rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | | | | | | | | |
Collapse
|
27
|
Ouyang Y, Dai S, Xie L, Ravi Kumar MS, Sun W, Sun H, Tang D, Li X. Isolation of high molecular weight DNA from marine sponge bacteria for BAC library construction. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:318-325. [PMID: 19685098 DOI: 10.1007/s10126-009-9223-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 07/24/2009] [Indexed: 05/28/2023]
Abstract
Metagenomics is a powerful tool for mining the genetic repositories from environmental microorganisms. Bacteria associated with marine sponges (phylum Porifera) are rich sources of biologically active natural products. However, to date, few compounds are discovered from the sponge metagenomic libraries, and the main reason might be the difficulties in recovery of high molecular weight (HMW) DNA from sponge symbionts to construct large insert libraries. Here, we describe a method to recover HMW bacterial DNA from diverse sponges with high quality for bacterial artificial chromosome (BAC) library construction. Microorganisms concentrated from sponges by differential centrifugation were embedded in agarose plugs to lyse out the HMW DNA for recovery. DNA fragments over 436 kb size were recovered from three different types of sponges, Halichondria sp., Haliclona sp., and Xestospongia sp. To evaluate the recovered DNA quality, the diversity of bacterial DNA comprised in the HMW DNA derived from sponge Halichondria sp. was analyzed, and this HMW DNA sample was also cloned into a shuttle BAC vector between Escherichia coli and Streptomyces sp. The results showed that more than five types of bacterial DNA, i.e., Proteobacteria, Nitrospirae, Cyanobacteria, Planctomycetes, and unidentified bacteria, had been recovered by this method, and an average 100 kb size insert DNA in a constructed BAC library demonstrated that the recovered HMW DNA is suitable for metagenomic library construction.
Collapse
Affiliation(s)
- Yongchang Ouyang
- LMB-CAS, LMMM-GD, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Thomas TRA, Kavlekar DP, LokaBharathi PA. Marine drugs from sponge-microbe association--a review. Mar Drugs 2010; 8:1417-68. [PMID: 20479984 PMCID: PMC2866492 DOI: 10.3390/md8041417] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/13/2010] [Accepted: 04/19/2010] [Indexed: 12/31/2022] Open
Abstract
The subject of this review is the biodiversity of marine sponges and associated microbes which have been reported to produce therapeutically important compounds, along with the contextual information on their geographic distribution. Class Demospongiae and the orders Halichondrida, Poecilosclerida and Dictyoceratida are the richest sources of these compounds. Among the microbial associates, members of the bacterial phylum Actinobacteria and fungal division Ascomycota have been identified to be the dominant producers of therapeutics. Though the number of bacterial associates outnumber the fungal associates, the documented potential of fungi to produce clinically active compounds is currently more important than that of bacteria. Interestingly, production of a few identical compounds by entirely different host-microbial associations has been detected in both terrestrial and marine environments. In the Demospongiae, microbial association is highly specific and so to the production of compounds. Besides, persistent production of bioactive compounds has also been encountered in highly specific host-symbiont associations. Though spatial and temporal variations are known to have a marked effect on the quality and quantity of bioactive compounds, only a few studies have covered these dimensions. The need to augment production of these compounds through tissue culture and mariculture has also been stressed. The reviewed database of these compounds is available at www.niobioinformatics.in/drug.php.
Collapse
Affiliation(s)
- Tresa Remya A. Thomas
- Biological Oceanography, National Institute of Oceanography, Dona Paula, Goa, Pin-403004, India; E-Mails:
(T.R.A.T.);
(D.P.K.)
| | - Devanand P. Kavlekar
- Biological Oceanography, National Institute of Oceanography, Dona Paula, Goa, Pin-403004, India; E-Mails:
(T.R.A.T.);
(D.P.K.)
| | - Ponnapakkam A. LokaBharathi
- Biological Oceanography, National Institute of Oceanography, Dona Paula, Goa, Pin-403004, India; E-Mails:
(T.R.A.T.);
(D.P.K.)
| |
Collapse
|
29
|
Parra MG, Fidalgo LM, Martinez JM, Alvarez AMM, Iglesias OV. Leishmanicidal activity of Echinaster (Othilia) echinophorus crude extract. Rev Inst Med Trop Sao Paulo 2010; 52:89-93. [DOI: 10.1590/s0036-46652010000200005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 01/12/2009] [Indexed: 11/21/2022] Open
Abstract
In this study, a methanolic extract from Echinaster (Othilia) echinophorus was evaluated for activity against Leishmania amazonensis. The extract showed activity against the promastigote and amastigote forms with IC50 values of 62.9 and 37.5 μg.mL-1 respectively. This extract showed a moderate toxicity on macrophages from BALB/c mice. A dose of 100 mg/kg/day was effective when administered during 15 days by intraperitoneal route to BALB/c mice infected experimentally.
Collapse
|
30
|
Thornburg CC, Zabriskie TM, McPhail KL. Deep-sea hydrothermal vents: potential hot spots for natural products discovery? JOURNAL OF NATURAL PRODUCTS 2010; 73:489-499. [PMID: 20099811 DOI: 10.1021/np900662k] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Deep-sea hydrothermal vents are among the most extreme and dynamic environments on Earth. However, islands of highly dense and biologically diverse communities exist in the immediate vicinity of hydrothermal vent flows, in stark contrast to the surrounding bare seafloor. These communities comprise organisms with distinct metabolisms based on chemosynthesis and growth rates comparable to those from shallow water tropical environments, which have been rich sources of biologically active natural products. The geological setting and geochemical nature of deep-sea vents that impact the biogeography of vent organisms, chemosynthesis, and the known biological and metabolic diversity of Eukarya, Bacteria, and Archaea, including the handful of natural products isolated to date from deep-sea vent organisms, are considered here in an assessment of deep-sea hydrothermal vents as potential hot spots for natural products investigations. Of critical importance too are the logistics of collecting deep vent organisms, opportunities for re-collection considering the stability and longevity of vent sites, and the ability to culture natural product-producing deep vent organisms in the laboratory. New cost-effective technologies in deep-sea research and more advanced molecular techniques aimed at screening a more inclusive genetic assembly are poised to accelerate natural product discoveries from these microbial diversity hot spots.
Collapse
Affiliation(s)
- Christopher C Thornburg
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | |
Collapse
|
31
|
Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. Chem Rev 2009; 109:3012-43. [PMID: 19422222 DOI: 10.1021/cr900019j] [Citation(s) in RCA: 910] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gordon M Cragg
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI-Frederick, Fairview Center, Suite 206, P.O. Box B, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
32
|
Zhang W, Zhang F, Li Z, Miao X, Meng Q, Zhang X. Investigation of bacteria with polyketide synthase genes and antimicrobial activity isolated from South China Sea sponges. J Appl Microbiol 2009; 107:567-75. [DOI: 10.1111/j.1365-2672.2009.04241.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Rastogi RP, Sinha RP. Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv 2009; 27:521-39. [DOI: 10.1016/j.biotechadv.2009.04.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/13/2009] [Accepted: 04/14/2009] [Indexed: 01/22/2023]
|
34
|
Baker PW, Kennedy J, Dobson ADW, Marchesi JR. Phylogenetic diversity and antimicrobial activities of fungi associated with Haliclona simulans isolated from Irish coastal waters. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:540-547. [PMID: 19083060 DOI: 10.1007/s10126-008-9169-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 11/26/2008] [Indexed: 05/27/2023]
Abstract
The diversity and antimicrobial activities of 80 fungi isolated from Haliclona simulans were assessed using different fungal media containing either agar or gellum gum. In total, 19 different genotypes were detected. These fungal isolates could be classified as members of the Agaricomycotina, Mucoromycotina, Saccharomycotina, and Pezizomycotina, although the majority of the isolates were associated with the latter class. Some of these fungal isolates showed antimicrobial inhibition of Escherichia coli, Bacillus sp., Staphylococcus aureus, and Candida glabrata. Fungal 18S rRNA gene sequences belonging to Eurotiales, Calosphaeriales, and Chaetothyriales were amplified from DNA and RNA extracted from this marine sponge. This study indicates that in contrast to the low diversity of fungi detected by polymerase chain reaction (PCR) and reverse transcription (RT)-PCR amplification from extracts of this marine sponge, a much higher diversity of fungi could be cultured. The data suggests that some fungi live in symbiosis with H. simulans, whereas other fungi may have been ingested from the surrounding seawater.
Collapse
Affiliation(s)
- Paul W Baker
- Environmental Research Institute, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
35
|
Sotka EE, Forbey J, Horn M, Poore AGB, Raubenheimer D, Whalen KE. The emerging role of pharmacology in understanding consumer–prey interactions in marine and freshwater systems. Integr Comp Biol 2009; 49:291-313. [DOI: 10.1093/icb/icp049] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
36
|
Jones AC, Gu L, Sorrels CM, Sherman DH, Gerwick WH. New tricks from ancient algae: natural products biosynthesis in marine cyanobacteria. Curr Opin Chem Biol 2009; 13:216-23. [PMID: 19307147 DOI: 10.1016/j.cbpa.2009.02.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/13/2009] [Accepted: 02/14/2009] [Indexed: 11/25/2022]
Abstract
Cyanobacteria, among Earth's oldest organisms, have evolved sophisticated biosynthetic pathways to produce a rich arsenal of bioactive natural products. In consequence, cyanobacterial secondary metabolites have been an incredibly fruitful source of lead compounds in drug discovery efforts. Investigations into the biochemistry responsible for the creation of these compounds, complemented by genome sequencing efforts, are revealing unique enzymatic mechanisms not described or rarely described elsewhere in the natural world. Herein, we discuss recent advances in understanding the biosynthesis of three cyanobacterial classes of natural product: mixed polyketide synthase/non ribosomal peptide synthetase (PKS/NRPS) metabolites, aromatic amino acid-derived alkaloids, and ribosomally encoded cyclic peptides. The unique biosynthetic mechanisms employed by cyanobacteria are inspiring new developments in heterologous gene expression and biotechnology.
Collapse
Affiliation(s)
- Adam C Jones
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
37
|
Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2009; 26:170-244. [PMID: 19177222 DOI: 10.1039/b805113p] [Citation(s) in RCA: 410] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review covers the literature published in 2007 for marine natural products, with 948 citations(627 for the period January to December 2007) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, cnidarians,bryozoans, molluscs, tunicates, echinoderms and true mangrove plants. The emphasis is on new compounds (961 for 2007), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.1 Introduction, 2 Reviews, 3 Marine microorganisms and phytoplankton, 4 Green algae, 5 Brown algae, 6 Red algae, 7 Sponges, 8 Cnidarians, 9 Bryozoans, 10 Molluscs, 11 Tunicates (ascidians),12 Echinoderms, 13 Miscellaneous, 14 Conclusion, 15 References.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
This review describes secondary metabolites that have been shown to be synthesized by symbiotic bacteria, or for which this possibility has been discussed. It includes 365 references.
Collapse
Affiliation(s)
- Jörn Piel
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany.
| |
Collapse
|
39
|
Antibacterial, antifungal and cytotoxic activity of terrestrial cyanobacterial strains from Serbia. ACTA ACUST UNITED AC 2008; 51:941-7. [DOI: 10.1007/s11427-008-0115-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 07/25/2008] [Indexed: 11/26/2022]
|
40
|
Garcia-Martin F, Cruz LJ, Rodriguez-Mias RA, Giralt E, Albericio F. Design and Synthesis of FAJANU: a de Novo C2 Symmetric Cyclopeptide Family. J Med Chem 2008; 51:3194-202. [DOI: 10.1021/jm800047b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fayna Garcia-Martin
- Institute for Research in Biomedicine, Barcelona Science Park, University of Barcelona, 08028 Barcelona, Spain, CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, 08028 Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Luis J. Cruz
- Institute for Research in Biomedicine, Barcelona Science Park, University of Barcelona, 08028 Barcelona, Spain, CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, 08028 Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Ricard A. Rodriguez-Mias
- Institute for Research in Biomedicine, Barcelona Science Park, University of Barcelona, 08028 Barcelona, Spain, CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, 08028 Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine, Barcelona Science Park, University of Barcelona, 08028 Barcelona, Spain, CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, 08028 Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Fernando Albericio
- Institute for Research in Biomedicine, Barcelona Science Park, University of Barcelona, 08028 Barcelona, Spain, CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, 08028 Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
41
|
Drugs from hidden bugs: their discovery via untapped resources. Res Microbiol 2008; 159:153-61. [DOI: 10.1016/j.resmic.2007.12.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 12/07/2007] [Accepted: 12/11/2007] [Indexed: 01/01/2023]
|
42
|
Simmons TL, Coates RC, Clark BR, Engene N, Gonzalez D, Esquenazi E, Dorrestein PC, Gerwick WH. Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc Natl Acad Sci U S A 2008; 105:4587-94. [PMID: 18250337 PMCID: PMC2290810 DOI: 10.1073/pnas.0709851105] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Indexed: 11/18/2022] Open
Abstract
In all probability, natural selection began as ancient marine microorganisms were required to compete for limited resources. These pressures resulted in the evolution of diverse genetically encoded small molecules with a variety of ecological and metabolic roles. Remarkably, many of these same biologically active molecules have potential utility in modern medicine and biomedical research. The most promising of these natural products often derive from organisms richly populated by associated microorganisms (e.g., marine sponges and ascidians), and often there is great uncertainty about which organism in these assemblages is making these intriguing metabolites. To use the molecular machinery responsible for the biosynthesis of potential drug-lead natural products, new tools must be applied to delineate their genetic and enzymatic origins. The aim of this perspective is to highlight both traditional and emerging techniques for the localization of metabolic pathways within complex marine environments. Examples are given from the literature as well as recent proof-of-concept experiments from the authors' laboratories.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pieter C. Dorrestein
- Departments of Chemistry and Biochemistry
- Pharmacology, and
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093
| | - William H. Gerwick
- *Scripps Institution of Oceanography
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
43
|
Sakai R, Yoshida K, Kimura A, Koike K, Jimbo M, Koike K, Kobiyama A, Kamiya H. Cellular origin of dysiherbaine, an excitatory amino acid derived from a marine sponge. Chembiochem 2008; 9:543-51. [PMID: 18236479 DOI: 10.1002/cbic.200700498] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cellular origin of dysiherbaine, a marine-sponge toxin, was investigated immunohistochemically by using an anti-dysiherbaine antibody. Dysiherbaine-like immunoreactivity was found to be localized in spherical cells harbored in the sponge mesohyl. A combination of ribosomal RNA gene (rDNA) analysis and cell-morphology analysis revealed that the spherical cells were Synechocystis cyanobacteria. However, the sponge, identified as Lendenfeldia chondrodes on the basis of its rDNA sequence, appeared to contain two different chemotypes--dysiherbaine-producing (DH+) and nondysiherbaine-producing (DH-)--both of which inhabited the same region. Synechocystis cells in the DH- sponge were not labeled with antibody, although the 16S rDNA gene profile of the cyanobacteria in the DH- sponge was indistinguishable from that of the cyanobacteria in the DH+ sponge. On the basis of these results, we hypothesize that dysiherbaine is a metabolite of certain varieties of endosymbiotic Synechocystis sp.
Collapse
Affiliation(s)
- Ryuichi Sakai
- Kitasato University, School of Fisheries Sciences, Sanriku-cho, Ofunato, Iwate 022-0101, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Esquenazi E, Coates C, Simmons L, Gonzalez D, Gerwick WH, Dorrestein PC. Visualizing the spatial distribution of secondary metabolites produced by marine cyanobacteria and sponges via MALDI-TOF imaging. MOLECULAR BIOSYSTEMS 2008; 4:562-70. [PMID: 18493654 DOI: 10.1039/b720018h] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Marine cyanobacteria and sponges are prolific sources of natural products with therapeutic applications. In this paper we introduce a mass spectrometry based approach to characterize the spatial distribution of these natural products from intact organisms of differing complexities. The natural product MALDI-TOF-imaging (npMALDI-I) approach readily identified a number of metabolites from the cyanobacteria Lyngbya majuscula 3L and JHB, Oscillatoria nigro-viridis, Lyngbya bouillonii, and a Phormidium species, even when they were present as mixtures. For example, jamaicamide B, a well established natural product from the cyanobacterium Lyngbya majuscula JHB, was readily detected as were the ions that correspond to the natural products curacin A and curazole from Lyngbya majuscula 3L. In addition to these known natural products, a large number of unknown ions co-localized with the different cyanobacteria, providing an indication that this method can be used for dereplication and drug discovery strategies. Finally, npMALDI-I was used to observe the secondary metabolites found within the sponge Dysidea herbacea. From these sponge data, more than 40 ions were shown to be co-localized, many of which were halogenated. The npMALDI-I data on the sponge indicates that, based on the differential distribution of secondary metabolites, sponges have differential chemical micro-environments within their tissues. Our data demonstrate that npMALDI-I can be used to provide spatial distribution of natural products, from single strands of cyanobacteria to the very complex marine assemblage of a sponge.
Collapse
Affiliation(s)
- Eduardo Esquenazi
- Department of Biology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
45
|
Pettit GR, Hogan F, Xu JP, Tan R, Nogawa T, Cichacz Z, Pettit RK, Du J, Ye QH, Cragg GM, Herald CL, Hoard MS, Goswami A, Searcy J, Tackett L, Doubek DL, Williams L, Hooper JNA, Schmidt JM, Chapuis JC, Tackett DN, Craciunescu F. Antineoplastic agents. 536. New sources of naturally occurring cancer cell growth inhibitors from marine organisms, terrestrial plants, and microorganisms(1a,). JOURNAL OF NATURAL PRODUCTS 2008; 71:438-444. [PMID: 18327911 DOI: 10.1021/np700738k] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bioassay-guided fractionation of extracts of various plants, marine organisms, and microorganisms has led to the discovery of new natural sources of a number of known compounds that have significant biological activity. The isolation of interesting and valuable cancer cell growth inhibitors including majusculamide C ( 1), axinastatin 5 ( 5), bengazoles A ( 6), B ( 7), and E ( 8), manzamine A ( 10), jaspamide ( 11), and neoechinulin A ( 19) has been summarized.
Collapse
Affiliation(s)
- George R Pettit
- Department of Chemstry and Biochemistry, Arizona State University, Tempe, Arizona 85287-2404, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jia W, Li H, Zhao L, Nicholson JK. Gut microbiota: a potential new territory for drug targeting. Nat Rev Drug Discov 2008; 7:123-9. [PMID: 18239669 DOI: 10.1038/nrd2505] [Citation(s) in RCA: 346] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
|
48
|
Devillers J, Doré JC, Guyot M, Poroikov V, Gloriozova T, Lagunin A, Filimonov D. Prediction of biological activity profiles of cyanobacterial secondary metabolites. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2007; 18:629-643. [PMID: 18038364 DOI: 10.1080/10629360701698704] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Over the past decade cyanobacteria have become an interesting source of new classes of pharmacologically active natural products. Some cyanobacterial secondary metabolites (CSMs) are also well known for their toxic effects on living species. The PASS (Prediction of Activity Spectra for Substances) computer program, which is able to simultaneously predict more than one thousand biological and toxicological activities from only the structural formulas of the chemicals, was used to predict the biological activity profile of 681 CSMs. Multivariate methods were employed to structure and analyse this wealth of biological and chemical information. PASS predictions were successfully compared to the available information on the pharmacological and toxicological activity of these compounds.
Collapse
Affiliation(s)
- J Devillers
- CTIS, 3 Chemin de la Gravière, 69140 Rillieux La Pape, France.
| | | | | | | | | | | | | |
Collapse
|