1
|
Jyoti, Ritu, Gupta S, Shankar R. Comprehensive analysis of computational approaches in plant transcription factors binding regions discovery. Heliyon 2024; 10:e39140. [PMID: 39640721 PMCID: PMC11620080 DOI: 10.1016/j.heliyon.2024.e39140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Transcription factors (TFs) are regulatory proteins which bind to a specific DNA region known as the transcription factor binding regions (TFBRs) to regulate the rate of transcription process. The identification of TFBRs has been made possible by a number of experimental and computational techniques established during the past few years. The process of TFBR identification involves peak identification in the binding data, followed by the identification of motif characteristics. Using the same binding data attempts have been made to raise computational models to identify such binding regions which could save time and resources spent for binding experiments. These computational approaches depend a lot on what way they learn and how. These existing computational approaches are skewed heavily around human TFBRs discovery, while plants have drastically different genomic setup for regulation which these approaches have grossly ignored. Here, we provide a comprehensive study of the current state of the matters in plant specific TF discovery algorithms. While doing so, we encountered several software tools' issues rendering the tools not useable to researches. We fixed them and have also provided the corrected scripts for such tools. We expect this study to serve as a guide for better understanding of software tools' approaches for plant specific TFBRs discovery and the care to be taken while applying them, especially during cross-species applications. The corrected scripts of these software tools are made available at https://github.com/SCBB-LAB/Comparative-analysis-of-plant-TFBS-software.
Collapse
Affiliation(s)
- Jyoti
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC Supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, (HP), 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ritu
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC Supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, (HP), 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sagar Gupta
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC Supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, (HP), 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ravi Shankar
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC Supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, (HP), 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
2
|
Peco JD, Thouin H, Esbrí JM, Campos-Rodríguez HR, García-Noguero EM, Breeze D, Villena J, Gloaguen E, Higueras PL, Battaglia-Brunet F. Mobility of antimony in contrasting surface environments of a mine site: influence of redox conditions and microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105808-105828. [PMID: 37721674 DOI: 10.1007/s11356-023-29734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/02/2023] [Indexed: 09/19/2023]
Abstract
Microbial processes can influence the complex geochemical behaviour of the toxic metalloid antimony (Sb) in mining environments. The present study is aimed to evaluate the influence of microbial communities on the mobility of Sb from solid phases to water in different compartments and redox conditions of a mining site in southwest (SW) Spain. Samples of surface materials presenting high Sb concentrations, from two weathered mining waste dumps, and an aquatic sediment were incubated in slurries comparing oxic and anoxic conditions. The initial microbial communities of the three materials strongly differed. Incubations induced an increase of microbial biomass and an evolution of the microbial communities' structures and compositions, which diverged in different redox conditions. The presence of active bacteria always influenced the mobility of Sb, except in the neutral pH waste incubated in oxic conditions. The effect of active microbial activities in oxic conditions was dependent on the material: Sb oxic release was biologically amplified with the acidic waste, but attenuated with the sediment. Different bacterial genera involved in Sb, Fe and S oxidation or reduction were present and/or grew during incubation of each material. The results highlighted the wide diversity of microbial communities and metabolisms at the small geographic scale of a mining site and their strong implication in Sb mobility.
Collapse
Affiliation(s)
- Jesús Daniel Peco
- Instituto de Geología Aplicada, Escuela Universitaria Politécnica de Almadén, Universidad de Castilla-La Mancha, Plaza Manuel Meca, Ciudad Real, 13400, Almadén, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos de Ciudad Real, Universidad de Castilla-La Mancha, Ronda de Calatrava 7, 13071, Ciudad Real, Spain
| | - Hugues Thouin
- BRGM, 3 Av. Claude Guillemin, 45060, Orléans, France
| | - José María Esbrí
- Departamento de Mineralogía y Petrología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | | | - Eva Maria García-Noguero
- Instituto de Geología Aplicada, Escuela Universitaria Politécnica de Almadén, Universidad de Castilla-La Mancha, Plaza Manuel Meca, Ciudad Real, 13400, Almadén, Spain
| | | | - Jaime Villena
- Escuela Técnica Superior de Ingenieros Agrónomos de Ciudad Real, Universidad de Castilla-La Mancha, Ronda de Calatrava 7, 13071, Ciudad Real, Spain
| | - Eric Gloaguen
- CNRS, BRGM, ISTO, UMR 7327, Université d'Orléans, 45071, Orléans, France
| | - Pablo Leon Higueras
- Instituto de Geología Aplicada, Escuela Universitaria Politécnica de Almadén, Universidad de Castilla-La Mancha, Plaza Manuel Meca, Ciudad Real, 13400, Almadén, Spain
| | | |
Collapse
|
3
|
Blanc V, Molitor EA, Davidson NO. Protocol to isolate RBP-mRNA complexes using RNA-CLIP and examine target mRNAs. STAR Protoc 2023; 4:102313. [PMID: 37220002 PMCID: PMC10225919 DOI: 10.1016/j.xpro.2023.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/28/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
RNA-binding proteins (RBPs) regulate diverse functions by interacting with target transcripts. Here we present a protocol to isolate RBP-mRNA complexes using RNA-CLIP and examine target mRNAs in association with ribosomal populations. We describe steps to identify specific RBPs and RNA targets reflecting a variety of developmental, physiological, and pathological states. This protocol enables RNP complex isolation from tissue sources (liver and small intestine) or populations of primary cells (hepatocytes), but not at a single-cell level. For complete details on the use and execution of this protocol, please refer to Blanc et al. (2014)1 and Blanc et al. (2021).2.
Collapse
Affiliation(s)
- Valerie Blanc
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Elizabeth A Molitor
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nicholas O Davidson
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
4
|
Thouin H, Norini MP, Battaglia-Brunet F, Gautret P, Crampon M, Le Forestier L. Temporal evolution of surface and sub-surface geochemistry and microbial communities of Pb-rich mine tailings during phytostabilization: A one-year pilot-scale study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115538. [PMID: 35772273 DOI: 10.1016/j.jenvman.2022.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Old mine waste repositories can present health and/or environmental issues linked to their erosion, inducing dissemination of metals and metalloids in air and water that can be attenuated through phytostabilization. Here, the effect of this widespread phytomanagement option on the biogeochemistry of a Pb-rich mine waste was evaluated with a laboratory pilot-scale experiment giving access to the non-saturated and saturated zones below the rhizosphere compartment. Amendment of the tailings surface with biochar, manure and iron-oxide-rich ochre promoted growth of the seeded Agrostis capillaris plants. These events were accompanied by an increase of pH and a decrease of Pb concentration in pore water of the surface layer, and by a transient increase of Pb, Zn, and Ba concentrations in the deeper saturated levels. Macroscopic and microscopic observations (SEM) suggest that Pb was immobilized in A. capillaris rhizosphere through mechanical entrapment of tailing particles. Microbial taxonomic and metabolic diversities increased in the amended phytostabilized surface levels, with a rise of the proportion of heterotrophic micro-organisms. Below the surface, a transient modification of microbial communities was observed in the non-saturated and saturated levels, however 11 months after seeding, the prokaryotic community of the deepest saturated zone was close to that of the initial tailings. pH and water saturation seemed to be the main parameters driving prokaryotic communities' structures. Results obtained at pilot-scale will help to precisely evaluate the impacts of phytostabilization on the temporal evolution of reactions driving the fate of pollutants inside the tailings dumps.
Collapse
Affiliation(s)
| | - Marie-Paule Norini
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France; BRGM, BP 36009, 45060, Orléans Cedex 2, France
| | - Fabienne Battaglia-Brunet
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France; BRGM, BP 36009, 45060, Orléans Cedex 2, France
| | - Pascale Gautret
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France
| | | | - Lydie Le Forestier
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France
| |
Collapse
|
5
|
Hellal J, Saaidi PL, Bristeau S, Crampon M, Muselet D, Della-Negra O, Mauffret A, Mouvet C, Joulian C. Microbial Transformation of Chlordecone and Two Transformation Products Formed During in situ Chemical Reduction. Front Microbiol 2021; 12:742039. [PMID: 34803959 PMCID: PMC8600967 DOI: 10.3389/fmicb.2021.742039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/30/2021] [Indexed: 01/12/2023] Open
Abstract
Chlordecone (CLD) is a very persistent synthetic organochlorine pesticide found in the French West Indies. Recently published work has demonstrated the potential of zero-valent iron to dechlorinate CLD by in situ chemical reduction (ISCR) in soils under water-saturated conditions, forming mono- to penta-dechlorinated CLD transformation products. These transformation products are more mobile than CLD and less toxic; however, nothing is known about their further degradation, although increasing evidence of CLD biodegradation by bacteria is being found. The present study began with the enrichment from wastewater sludge of a CLD-transforming community which was then inoculated into fresh media in the presence of either CLD or two of the main ISCR transformation products, 10-monohydroCLD (-1Cl-CLD) and tri-hydroCLD (-3Cl-CLD). Carried out in triplicate batches and incubated at 38°C under anoxic conditions and in the dark, the cultures were sampled regularly during 3 months and analyzed for CLD, -1Cl-CLD, -3Cl-CLD, and possible transformation products by gas chromatography coupled to mass spectrometry. All batches showed a decrease in the amended substrates (CLD or hydroCLD). CLD degradation occurred with concomitant formation of a nine-carbon compound (pentachloroindene) and two sulfur-containing transformation products (chlordecthiol, CLD-SH; methyl chlordecsulfide, CLD-SCH3), demonstrating competing transformation pathways. In contrast, -1Cl-CLD and -3Cl-CLD only underwent a sequential reductive sulfidation/S-methylation process resulting in -1Cl-CLD-SH and -1Cl-CLD-SCH3 on the one hand, and -3Cl-CLD-SH, -3Cl-CLD-SCH3 on the other hand. Some sulfur-containing transformation products have been reported previously with single bacterial strains, but never in the presence of a complex microbial community. At the end of the experiment, bacterial and archaeal populations were investigated by 16S rRNA gene amplicon sequencing. The observed diversity was mostly similar in the CLD and -1Cl-CLD conditions to the inoculum with a dominant archaea genus, Methanobacterium, and four OTU affiliated to bacteria, identified at the family (Spirochaetaceae) or genus level (Desulfovibrio, Aminobacterium, and Soehngenia). On the other hand, in the -3Cl-CLD condition, although the same OTU were found, Clostridium sensu stricto 7, Candidatus Cloacimonas, and Proteiniphilum were also present at > 2% sequences. Presence of methanogens and sulfate-reducing bacteria could contribute to sulfidation and S-methylation biotransformations. Overall, these results contribute to increasing our knowledge on the biodegradability of CLD and its transformation products, helping to progress toward effective remediation solutions.
Collapse
Affiliation(s)
| | - Pierre-Loïc Saaidi
- UMR 8030 Génomique Métabolique, CEA, Institut de Biologie François Jacob, Genoscope, Université d'Evry Val d'Essonne, Université Paris-Saclay, Evry, France
| | | | | | - Delphine Muselet
- UMR 8030 Génomique Métabolique, CEA, Institut de Biologie François Jacob, Genoscope, Université d'Evry Val d'Essonne, Université Paris-Saclay, Evry, France
| | - Oriane Della-Negra
- UMR 8030 Génomique Métabolique, CEA, Institut de Biologie François Jacob, Genoscope, Université d'Evry Val d'Essonne, Université Paris-Saclay, Evry, France
| | | | | | | |
Collapse
|
6
|
Gorodylova N, Michel C, Seron A, Joulian C, Delorme F, Bresch S, Garreau C, Giovannelli F, Michel K. Modified zeolite-supported biofilm in service of pesticide biodegradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45296-45316. [PMID: 33864216 DOI: 10.1007/s11356-021-13876-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The development of biofilms on modified natural zeolites was investigated with purpose to obtain biocomposites with biodegradation activity towards pesticides MCPA (2-methyl-4-chlorophenoxyacetic acid) and glyphosate (N-(phosphonomethyl)glycine) for potential application in bioaugmentation of polluted agricultural soils. Microbial communities were selected from agricultural pesticide-contaminated soil/water samples and enriched on the basis of their ability to biodegrade the pesticides. In order to enhance affinity of microbial communities to the support material, the natural mineral zeolite was modified by nontoxic environmentally friendly cations (Li+, Na+, K+, NH4+, H+, Mg2+, Ca2+, Fe3+) by methods preserving its structure and characterised using powder XRD, surface area measurement and chemical composition analysis. Kinetics of pesticide degradation by the biocomposites was studied in liquid media. Results showed that according to zeolite modifications, the microbial activity and biodiversity changed. The best biodegradation rate of MCPA and glyphosate reached 0.12-0.13 mg/h with half-life of 16-18 h, which is considerably quicker than observed in natural environment. However, in some cases, biodegradation activity towards pesticides was lost which was connected to unfavourable zeolite modification and accumulation of toxic metabolites. High-throughput sequencing on the 16S rRNA genes of the biofilm communities highlighted the selection of bacteria genera known to metabolise MCPA (Aminobacter, Cupriavidus, Novosphingobium, Pseudomonas, Rhodococcus, Sphingobium and Sphingopyxis) and glyphosate (Pseudomonas). Altogether, results suggested that zeolites do not only have a passive role of biofilm support but also have protective and nutrient-supportive functions that consequently increase biodiversity of the pesticide degraders growing in the biofilm and influence the pesticide biodegradation rate.
Collapse
Affiliation(s)
- Nataliia Gorodylova
- Division of Water, Environment, Process and Analyses (DEPA), BRGM, The French Geological Survey, 3 Avenue Claude Guillemin, 45100, Orléans, France.
- CNRS, INSA CVL, GREMAN UMR 7347, IUT de Blois, GREMAN, University of Tours, 15 Rue de la Chocolaterie, 41029, Blois, France.
- University of Pardubice, Studentska 95, 53210, Pardubice, Czech Republic.
| | - Caroline Michel
- Division of Water, Environment, Process and Analyses (DEPA), BRGM, The French Geological Survey, 3 Avenue Claude Guillemin, 45100, Orléans, France
| | - Alain Seron
- Division of Water, Environment, Process and Analyses (DEPA), BRGM, The French Geological Survey, 3 Avenue Claude Guillemin, 45100, Orléans, France
| | - Catherine Joulian
- Division of Water, Environment, Process and Analyses (DEPA), BRGM, The French Geological Survey, 3 Avenue Claude Guillemin, 45100, Orléans, France
| | - Fabian Delorme
- CNRS, INSA CVL, GREMAN UMR 7347, IUT de Blois, GREMAN, University of Tours, 15 Rue de la Chocolaterie, 41029, Blois, France
| | - Sophie Bresch
- CDHR Centre-Val-de-Loire, 620 Rue de Cornay, Saint-Cyr-en-Val, 45590, France
| | | | - Fabien Giovannelli
- CNRS, INSA CVL, GREMAN UMR 7347, IUT de Blois, GREMAN, University of Tours, 15 Rue de la Chocolaterie, 41029, Blois, France
| | - Karine Michel
- Division of Water, Environment, Process and Analyses (DEPA), BRGM, The French Geological Survey, 3 Avenue Claude Guillemin, 45100, Orléans, France
| |
Collapse
|
7
|
Zhang Z, Wan J, Liu X, Zhang W. Strategies and technologies for exploring long noncoding RNAs in heart failure. Biomed Pharmacother 2020; 131:110572. [PMID: 32836073 DOI: 10.1016/j.biopha.2020.110572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNA (lncRNA) was once considered to be the "noise" of genome transcription without biological function. However, increasing evidence shows that lncRNA is dynamically expressed in developmental stage or disease status, playing a regulatory role in the process of gene expression and translation. In recent years, lncRNA is considered to be a core node of functional regulatory networks that controls cardiac and also involves in multiple process of heart failure such as myocardial hypertrophy, fibrosis, angiogenesis, etc., which would be a therapeutic target for diseases. In fact, it is the development of technology that has improved our understanding of lncRNAs and broadened our perspective on heart failure. From transcriptional "noise" to star molecule, progress of lncRNAs can't be achieved without the combination of multidisciplinary technologies, especially the emergence of high-throughput approach. Thus, here, we review the strategies and technologies available for the exploration lncRNAs and try to yield insights into the prospect of lncRNAs in clinical diagnosis and treatment in heart failure.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jingjing Wan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Joulian C, Fonti V, Chapron S, Bryan CG, Guezennec AG. Bioleaching of pyritic coal wastes: bioprospecting and efficiency of selected consortia. Res Microbiol 2020; 171:260-270. [PMID: 32890633 DOI: 10.1016/j.resmic.2020.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 11/19/2022]
Abstract
Pyrite-bearing coal wastes are responsible of the formation of acid mine drainage (AMD), and their management to mitigate environmental impacts is a challenge to the coal mine industry in Europe and worldwide. The European CEReS project sought to develop a generic co-processing strategy to reuse and recycle coal wastes, based on removal of AMD generating potential through bioleaching. Chemolitoautotrophic iron- and sulfur-oxidizing microbial consortia were enriched from a Polish coal waste at 30 °C and 48 °C, but not 42 °C. Pyrite leaching yield, determined from bioleaching tests in 2-L stirred bioreactors, was best with the 48 °C endogenous consortium (80%), then the 42 °C exogenous BRGM-KCC consortium (71%), and finally the 30 °C endogenous consortium (50%). 16S rRNA gene-targeted metagenomics from five surface locations on the dump waste revealed a microbial community adapted to the site context, composed of iron- and/or sulfur-oxidizing genera thriving in low pH and metal rich environments and involved in AMD generation. All together, the results confirmed the predisposition of the pyritic coal waste to bioleaching and the potential of endogenous microorganisms for efficient bioleaching at 48 °C. The good leaching yields open the perspective to optimize further and scale-up the bioleaching process.
Collapse
Affiliation(s)
- Catherine Joulian
- Water, Environment, Process Development and Analyses Division, BRGM, 3 Avenue Claude Guillemin, 45060, Orléans Cedex 02, France.
| | - Viviana Fonti
- Water, Environment, Process Development and Analyses Division, BRGM, 3 Avenue Claude Guillemin, 45060, Orléans Cedex 02, France; Environment and Sustainability Institute & Camborne School of Mines, University of Exeter, Penryn, TR10 9FE, UK.
| | - Simon Chapron
- Water, Environment, Process Development and Analyses Division, BRGM, 3 Avenue Claude Guillemin, 45060, Orléans Cedex 02, France.
| | - Christopher G Bryan
- Water, Environment, Process Development and Analyses Division, BRGM, 3 Avenue Claude Guillemin, 45060, Orléans Cedex 02, France; Environment and Sustainability Institute & Camborne School of Mines, University of Exeter, Penryn, TR10 9FE, UK.
| | - Anne-Gwénaëlle Guezennec
- Water, Environment, Process Development and Analyses Division, BRGM, 3 Avenue Claude Guillemin, 45060, Orléans Cedex 02, France.
| |
Collapse
|
9
|
Sun YM, Chen YQ. Principles and innovative technologies for decrypting noncoding RNAs: from discovery and functional prediction to clinical application. J Hematol Oncol 2020; 13:109. [PMID: 32778133 PMCID: PMC7416809 DOI: 10.1186/s13045-020-00945-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Noncoding RNAs (ncRNAs) are a large segment of the transcriptome that do not have apparent protein-coding roles, but they have been verified to play important roles in diverse biological processes, including disease pathogenesis. With the development of innovative technologies, an increasing number of novel ncRNAs have been uncovered; information about their prominent tissue-specific expression patterns, various interaction networks, and subcellular locations will undoubtedly enhance our understanding of their potential functions. Here, we summarized the principles and innovative methods for identifications of novel ncRNAs that have potential functional roles in cancer biology. Moreover, this review also provides alternative ncRNA databases based on high-throughput sequencing or experimental validation, and it briefly describes the current strategy for the clinical translation of cancer-associated ncRNAs to be used in diagnosis.
Collapse
Affiliation(s)
- Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| |
Collapse
|
10
|
Liu G, Du W, Xu H, Sun Q, Tang D, Zou S, Zhang Y, Ma M, Zhang G, Du X, Ju S, Cheng W, Tian Y, Fu X. RNA G-quadruplex regulates microRNA-26a biogenesis and function. J Hepatol 2020; 73:371-382. [PMID: 32165252 DOI: 10.1016/j.jhep.2020.02.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS RNA G-quadruplexes (RG4s) appear to be important in post-transcriptional gene regulation, but their pathophysiological functions remain unknown. MicroRNA-26a (miR-26a) is emerging as a therapeutic target for various human diseases, however the mechanisms underlying endogenous miR-26a regulation are poorly understood. Herein, we study the role of RG4 in miR-26a expression and function in vitro and in vivo. METHODS Putative RG4s within liver-enriched miRNAs were predicted by bioinformatic analysis, and the presence of an RG4 structure in the miR-26a-1 precursor (pre-miR-26a-1) was further analyzed by biophysical and biochemical methods. RG4 stabilizers, pre-miR-26a-1 overexpression plasmids, and luciferase reporter assays were used to assess the effect of RG4 on pre-miR-26a-1 maturation. Both miR-26a knock-in and knockout mouse models were employed to investigate the influence of this RG4 on miR-26a expression and function. Moreover, the interaction between RG4 in pre-miR-26a-1 and DEAH-box helicase 36 (DHX36) was determined by biophysical and molecular methods. Finally, miR-26a processing and DHX36 expression were quantified in the livers of obese mice. RESULTS We identify a guanine-rich sequence in pre-miR-26a-1 that can fold into an RG4 structure. This RG4 impairs pre-miR-26a-1 maturation, resulting in a decrease in miR-26a expression and subsequently an increase in miR-26a cognate targets. In line with known miR-26a functions, this RG4 can regulate hepatic insulin sensitivity and lipid metabolism in vitro and in vivo. Furthermore, we reveal that DHX36 can bind and unwind this RG4 structure, thereby enhancing miR-26a maturation. Intriguingly, there is a concordant decrease of miR-26a maturation and DHX36 expression in obese mouse livers. CONCLUSIONS Our findings define a dynamic DHX36/RG4/miR-26a regulatory axis during obesity, highlighting an important role of RG4 in physiology and pathology. LAY SUMMARY Specific RNA sequences called G-quadruplexes (or RG4) appear to be important in post-transcriptional gene regulation. Obesity leads to the formation of these RG4 structures in pre-miR-26a-1 molecules, impairing the maturation and function of miR-26a, which has emerged as a therapeutic target in several diseases. This contributes to hepatic insulin resistance and the dysregulation of liver metabolism.
Collapse
Affiliation(s)
- Geng Liu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Wenya Du
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Haixia Xu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Qiu Sun
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Sailan Zou
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Yu Zhang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Meilin Ma
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Guixiang Zhang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiao Du
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Department of General Surgery, Yaan People's Hospital, Yaan 625000, Sichuan, China
| | - Shenggen Ju
- College of Computer Science, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China.
| |
Collapse
|
11
|
Thouin H, Battaglia-Brunet F, Norini MP, Joulian C, Hellal J, Le Forestier L, Dupraz S, Gautret P. Microbial community response to environmental changes in a technosol historically contaminated by the burning of chemical ammunitions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134108. [PMID: 32380607 DOI: 10.1016/j.scitotenv.2019.134108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/30/2019] [Accepted: 08/24/2019] [Indexed: 06/11/2023]
Abstract
The burning of chemical weapons in the 1926-1928 period produced polluted technosols with elevated levels of arsenic, zinc, lead and copper. During an eight-month mesocosm experiment, these soils were submitted to two controlled environmental changes, namely the alternation of dry and water-saturated conditions and the addition of fragmented organic forest litter to the surface soil. We investigated, by sequencing the gene coding 16S rRNA and 18S rRNA, (1) the structure of the prokaryotic and eukaryotic community in this polluted technosol and (2) their response to the simulated environmental changes, in the four distinct layers of the mesocosm. In spite of the high concentrations of toxic elements, microbial diversity was found to be similar to that of non-polluted soils. The bacterial community was dominated by Proteobacteria, Acidobacteria and Bacteroidetes, while the fungal community was dominated by Ascomicota. Amongst the most abundant bacterial Operational Taxonomic Units (OTUs), including Sphingomonas as a major genus, some were common to soil environments in general whereas a few, such as organisms related to Leptospirillum and Acidiferrobacter, seemed to be more specific to the geochemical context. Evolution of the microbial abundance and community structures shed light on modifications induced by water saturation and the addition of forest litter to the soil surface. Co-inertia analysis suggests a relationship between the physico-chemical parameters total organic carbon, Zn, NH4+ and As(III) concentrations and the bacterial community structure. Both these results imply that microbial community dynamics linked to environmental changes should be considered as factors influencing the behavior of toxic elements on former ammunition burning sites.
Collapse
Affiliation(s)
- Hugues Thouin
- BRGM, 3 avenue Claude Guillemin, 45060 Orléans, France; Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071 Orléans, France.
| | - Fabienne Battaglia-Brunet
- BRGM, 3 avenue Claude Guillemin, 45060 Orléans, France; Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071 Orléans, France
| | - Marie-Paule Norini
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071 Orléans, France
| | | | | | - Lydie Le Forestier
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071 Orléans, France
| | | | - Pascale Gautret
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071 Orléans, France
| |
Collapse
|
12
|
Liu F, Ma T, Zhang Y. Genome-wide identification of protein binding sites on RNAs in mammalian cells. Biochem Biophys Res Commun 2019; 508:953-958. [DOI: 10.1016/j.bbrc.2018.11.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022]
|
13
|
Wei J, Liu F, Lu Z, Fei Q, Ai Y, He PC, Shi H, Cui X, Su R, Klungland A, Jia G, Chen J, He C. Differential m 6A, m 6A m, and m 1A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm. Mol Cell 2018; 71:973-985.e5. [PMID: 30197295 PMCID: PMC6151148 DOI: 10.1016/j.molcel.2018.08.011] [Citation(s) in RCA: 548] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/03/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
Abstract
FTO, the first RNA demethylase discovered, mediates the demethylation of internal N6-methyladenosine (m6A) and N6, 2-O-dimethyladenosine (m6Am) at the +1 position from the 5' cap in mRNA. Here we demonstrate that the cellular distribution of FTO is distinct among different cell lines, affecting the access of FTO to different RNA substrates. We find that FTO binds multiple RNA species, including mRNA, snRNA, and tRNA, and can demethylate internal m6A and cap m6Am in mRNA, internal m6A in U6 RNA, internal and cap m6Am in snRNAs, and N1-methyladenosine (m1A) in tRNA. FTO-mediated demethylation has a greater effect on the transcript levels of mRNAs possessing internal m6A than the ones with cap m6Am in the tested cells. We also show that FTO can directly repress translation by catalyzing m1A tRNA demethylation. Collectively, FTO-mediated RNA demethylation occurs to m6A and m6Am in mRNA and snRNA as well as m1A in tRNA.
Collapse
Affiliation(s)
- Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - Fange Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - Zhike Lu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, 18 Shilongshan Road, Hangzhou 310064, China
| | - Qili Fei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - Yuxi Ai
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - P Cody He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - Hailing Shi
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - Xiaolong Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Arne Klungland
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Norway Institute of Basic Medical Sciences, University of Oslo, PO Box 1018 Blindern, 0315 Oslo, Norway
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA.
| |
Collapse
|
14
|
Alvelos MI, Juan-Mateu J, Colli ML, Turatsinze JV, Eizirik DL. When one becomes many-Alternative splicing in β-cell function and failure. Diabetes Obes Metab 2018; 20 Suppl 2:77-87. [PMID: 30230174 PMCID: PMC6148369 DOI: 10.1111/dom.13388] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
Pancreatic β-cell dysfunction and death are determinant events in type 1 diabetes (T1D), but the molecular mechanisms behind β-cell fate remain poorly understood. Alternative splicing is a post-transcriptional mechanism by which a single gene generates different mRNA and protein isoforms, expanding the transcriptome complexity and enhancing protein diversity. Neuron-specific and certain serine/arginine-rich RNA binding proteins (RBP) are enriched in β-cells, playing crucial roles in the regulation of insulin secretion and β-cell survival. Moreover, alternative exon networks, regulated by inflammation or diabetes susceptibility genes, control key pathways and processes for the correct function and survival of β-cells. The challenge ahead of us is to understand the precise role of alternative splicing regulators and splice variants on β-cell function, dysfunction and death and develop tools to modulate it.
Collapse
Affiliation(s)
- Maria Inês Alvelos
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Jonàs Juan-Mateu
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Maikel Luis Colli
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Jean-Valéry Turatsinze
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Décio L. Eizirik
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| |
Collapse
|
15
|
Cipriano A, Ballarino M. The Ever-Evolving Concept of the Gene: The Use of RNA/Protein Experimental Techniques to Understand Genome Functions. Front Mol Biosci 2018; 5:20. [PMID: 29560353 PMCID: PMC5845540 DOI: 10.3389/fmolb.2018.00020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
The completion of the human genome sequence together with advances in sequencing technologies have shifted the paradigm of the genome, as composed of discrete and hereditable coding entities, and have shown the abundance of functional noncoding DNA. This part of the genome, previously dismissed as “junk” DNA, increases proportionally with organismal complexity and contributes to gene regulation beyond the boundaries of known protein-coding genes. Different classes of functionally relevant nonprotein-coding RNAs are transcribed from noncoding DNA sequences. Among them are the long noncoding RNAs (lncRNAs), which are thought to participate in the basal regulation of protein-coding genes at both transcriptional and post-transcriptional levels. Although knowledge of this field is still limited, the ability of lncRNAs to localize in different cellular compartments, to fold into specific secondary structures and to interact with different molecules (RNA or proteins) endows them with multiple regulatory mechanisms. It is becoming evident that lncRNAs may play a crucial role in most biological processes such as the control of development, differentiation and cell growth. This review places the evolution of the concept of the gene in its historical context, from Darwin's hypothetical mechanism of heredity to the post-genomic era. We discuss how the original idea of protein-coding genes as unique determinants of phenotypic traits has been reconsidered in light of the existence of noncoding RNAs. We summarize the technological developments which have been made in the genome-wide identification and study of lncRNAs and emphasize the methodologies that have aided our understanding of the complexity of lncRNA-protein interactions in recent years.
Collapse
Affiliation(s)
- Andrea Cipriano
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Monica Ballarino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Post-transcriptional gene silencing mediated by microRNAs is controlled by nucleoplasmic Sfpq. Nat Commun 2017; 8:1189. [PMID: 29084942 PMCID: PMC5662751 DOI: 10.1038/s41467-017-01126-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/18/2017] [Indexed: 02/06/2023] Open
Abstract
There is a growing body of evidence about the presence and the activity of the miRISC in the nucleus of mammalian cells. Here, we show by quantitative proteomic analysis that Ago2 interacts with the nucleoplasmic protein Sfpq in an RNA-dependent fashion. By a combination of HITS-CLIP and transcriptomic analyses, we demonstrate that Sfpq directly controls the miRNA targeting of a subset of binding sites by local binding. Sfpq modulates miRNA targeting in both nucleoplasm and cytoplasm, indicating a nucleoplasmic commitment of Sfpq-target mRNAs that globally influences miRNA modes of action. Mechanistically, Sfpq binds to a sizeable set of long 3′UTRs forming aggregates to optimize miRNA positioning/recruitment at selected binding sites, including let-7a binding to Lin28A 3′UTR. Our results extend the miRNA-mediated post-transcriptional gene silencing into the nucleoplasm and indicate that an Sfpq-dependent strategy for controlling miRNA activity takes place in cells, contributing to the complexity of miRNA-dependent gene expression control. MicroRNAs have been best characterized for their functions in the cytoplasm; however, there is growing evidence of a nuclear localized role. Here, the authors identify Sfpq as an Ago2-interacting protein that modulates miRNA activity in both the nucleus and cytoplasm.
Collapse
|
17
|
Pfister H, Morzadec C, Le Cann P, Madec L, Lecureur V, Chouvet M, Jouneau S, Vernhet L. Granulometry, microbial composition and biological activity of dusts collected in French dairy farms. ENVIRONMENTAL RESEARCH 2017; 158:691-702. [PMID: 28735230 DOI: 10.1016/j.envres.2017.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Dairy working increases the prevalence of lower airway respiratory diseases, especially COPD and asthma. Epidemiological studies have reported that chronic inhalation of organic dusts released during specific daily tasks could represent a major risk factor for development of these pathologies in dairy workers. Knowledge on size, nature and biological activity of such organic dusts remain however limited. OBJECTIVE To compare size distribution, microbial composition and cellular effects of dusts liberated by the spreading of straw bedding in five French dairy farms located in Brittany. RESULTS Mechanized distribution of straw bedding generated a cloud of inhalable dusts in the five dairy farms' barns. Thoracic particles having a 3-7.5µm size constituted 58.9-68.3% of these dusts. Analyses of thoracic dusts by next generation sequencing showed that the microbial dust composition differed between the five French farms, although Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria represent more than 97.5% of the bacterial phyla detected in each sample. Several bacteria genera comprising of human pathogenic species, such as Pseudomonas, Staphylococcus, Thermoactinomyces or Saccharopolyspora were identified. Cladosporium and Alternaria fungal genera, which are potent environmental determinants of respiratory symptoms, were detected in dusts collected in the five farms and their levels reached 15.5-51.1% and 9-24.7% of assignable fungal sequences in each sample, respectively. Finally, all dust samples significantly and strongly increased the expression of the pro-inflammatory TNF-α, IL-1β, IL-6 and IL-8 cytokines at both mRNA and protein levels in human monocyte-derived macrophages. Their effects were dose-dependent and detectable from 1µg/ml. The intensity of the macrophage responses however differed according to the samples. CONCLUSIONS Our results strengthen the hypothesis that organic dusts released during the distribution of straw bedding are mainly constituted of thoracic particles which are small enough to deposit on lower bronchial epithelium of dairy farmers and induce inflammation.
Collapse
Affiliation(s)
- Hugo Pfister
- Institut technique des gaz et de l'air, Saint-Gregoire, France; UMR Inserm 1085, Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Claudie Morzadec
- UMR Inserm 1085, Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Pierre Le Cann
- UMR Inserm 1085, Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France; French School of Public Health, Department of Environmental and Occupational Health and Sanitary Engineering, Rennes, France
| | - Laurent Madec
- UMR Inserm 1085, Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France; French School of Public Health, Department of Environmental and Occupational Health and Sanitary Engineering, Rennes, France
| | - Valérie Lecureur
- UMR Inserm 1085, Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Martine Chouvet
- Institut technique des gaz et de l'air, Saint-Gregoire, France
| | - Stéphane Jouneau
- UMR Inserm 1085, Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France; Service de pneumologie, centre de compétences des maladies pulmonaires rares de Bretagne, Hôpital Pontchaillou, Rennes, France
| | - Laurent Vernhet
- UMR Inserm 1085, Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France.
| |
Collapse
|
18
|
Abstract
Asymmetric localization of mRNAs is a widespread gene regulatory mechanism that is crucial for many cellular processes. The localization of a transcript involves multiple steps and requires several protein factors to mediate transport, anchoring and translational repression of the mRNA. Specific recognition of the localizing transcript is a key step that depends on linear or structured localization signals, which are bound by RNA-binding proteins. Genetic studies have identified many components involved in mRNA localization. However, mechanistic aspects of the pathway are still poorly understood. Here we provide an overview of structural studies that contributed to our understanding of the mechanisms underlying mRNA localization, highlighting open questions and future challenges.
Collapse
Affiliation(s)
| | - Fulvia Bono
- a Max Planck Institute for Developmental Biology , Tübingen , Germany
| |
Collapse
|
19
|
Barra J, Leucci E. Probing Long Non-coding RNA-Protein Interactions. Front Mol Biosci 2017; 4:45. [PMID: 28744458 PMCID: PMC5504261 DOI: 10.3389/fmolb.2017.00045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022] Open
Abstract
Non-coding RNA sequences outnumber the protein-coding genes in the human genome, however our knowledge of their functions is still limited. RNA-binding proteins follow the transcripts, including non-coding RNAs, throughout their life, regulating not only maturation, nuclear export, stability and eventually translation, but also RNA functions. Therefore, development of sophisticated methods to study RNA-protein interactions are key to the systematic characterization of lncRNAs. Although mostly applicable to RNA-protein interactions in general, many approaches, especially the computational ones, need adjustment to be adapted to the length and complexity of lncRNA transcripts. Here we critically review all the wet lab and computational methods to study lncRNA-protein interactions and their potential to clarify the dark side of the genome.
Collapse
Affiliation(s)
- Jasmine Barra
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU LeuvenLeuven, Belgium.,Center for Cancer Biology, VIBLeuven, Belgium
| | - Eleonora Leucci
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU LeuvenLeuven, Belgium
| |
Collapse
|
20
|
Abstract
The pivotal role of the long non-coding RNA (lncRNA) urothelial carcinoma associated 1 (UCA1) in anti-cancer drug resistance has been confirmed in many cancers. Overexpression of lncRNA UCA1 correlates with resistance to chemotherapeutics such as cisplatin, gemcitabine, 5-FU, tamoxifen, imatinib and EGFR-TKIs, whereas lncRNA UCA1 knockdown restores drug sensitivity. These studies highlight the potential of lncRNA UCA1 as a diagnostic and prognostic biomarker, and a therapeutic target in malignant tumors. In this review, we address the role of lncRNA UCA1 in anti-cancer drug resistance and discuss its potential in future clinical applications.
Collapse
|
21
|
Bielli P, Sette C. Analysis of in vivo Interaction between RNA Binding Proteins and Their RNA Targets by UV Cross-linking and Immunoprecipitation (CLIP) Method. Bio Protoc 2017; 7:e2274. [PMID: 28573168 PMCID: PMC5448666 DOI: 10.21769/bioprotoc.2274] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/12/2017] [Accepted: 03/30/2017] [Indexed: 01/05/2023] Open
Abstract
RNA metabolism is tightly controlled across different tissues and developmental stages, and its dysregulation is one of the molecular hallmarks of cancer. Through direct binding to specific sequence element(s), RNA binding proteins (RBPs) play a pivotal role in co- and post-transcriptional RNA regulatory events. We have recently demonstrated that, in pancreatic cancer cells, acquisition of a drug resistant (DR)-phenotype relied on upregulation of the polypyrimidine tract binding protein (PTBP1), which in turn is recruited to the pyruvate kinase pre-mRNA and favors splicing of the oncogenic PKM2 variant. Herein, we describe a step-by-step protocol of the ultraviolet (UV) light cross-linking and immunoprecipitation (CLIP) method to determine the direct binding of a RBP to specific regions of its target RNAs in adherent human cell lines.
Collapse
Affiliation(s)
- Pamela Bielli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Laboratory of Neuroembriology, Fondazione Santa Lucia, Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Laboratory of Neuroembriology, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
22
|
Garzia A, Meyer C, Morozov P, Sajek M, Tuschl T. Optimization of PAR-CLIP for transcriptome-wide identification of binding sites of RNA-binding proteins. Methods 2017; 118-119:24-40. [PMID: 27765618 PMCID: PMC5393971 DOI: 10.1016/j.ymeth.2016.10.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022] Open
Abstract
Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) in combination with next-generation sequencing is a powerful method for identifying endogenous targets of RNA-binding proteins (RBPs). Depending on the characteristics of each RBP, key steps in the PAR-CLIP procedure must be optimized. Here we present a comprehensive step-by-step PAR-CLIP protocol with detailed explanations of the critical steps. Furthermore, we report the application of a new PAR-CLIP data analysis pipeline to three distinct RBPs targeting different annotation categories of cellular RNAs.
Collapse
Affiliation(s)
- Aitor Garzia
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Pavel Morozov
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Marcin Sajek
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
23
|
Roussis IM, Myers FA, Scarlett GP. RNA Whole-Mount In Situ Hybridization Proximity Ligation Assay (rISH-PLA), an Assay for Detecting RNA-Protein Complexes in Intact Cells. CURRENT PROTOCOLS IN CELL BIOLOGY 2017; 74:17.20.1-17.20.10. [PMID: 28256719 DOI: 10.1002/cpcb.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Techniques for studying RNA-protein interactions have lagged behind those for DNA-protein interactions as a consequence of the complexities associated with working with RNA. This unit describes a method for the adaptation of the In Situ Hybridization-Proximity Ligation Assay (ISH-PLA) to the study of RNA regulation (rISH-PLA). The rISH-PLA assay allows the identification of a given RNA-protein complex at subcellular and single-cell resolution, thus avoiding the lack of spatial resolution and sensitivity associated with assaying heterogeneous cell populations from which conventional RNA-protein interaction detection techniques suffer. This technique will be particularly usefully for studying the activity of RNA binding proteins (RBPs) in complex mixtures of cells, for example tissue sections or whole embryos. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ioannis M Roussis
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Fiona A Myers
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Garry P Scarlett
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
24
|
La Rosa P, Bielli P, Compagnucci C, Cesari E, Volpe E, Farioli Vecchioli S, Sette C. Sam68 promotes self-renewal and glycolytic metabolism in mouse neural progenitor cells by modulating Aldh1a3 pre-mRNA 3'-end processing. eLife 2016; 5. [PMID: 27845622 PMCID: PMC5122457 DOI: 10.7554/elife.20750] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022] Open
Abstract
The balance between self-renewal and differentiation of neural progenitor cells (NPCs) dictates neurogenesis and proper brain development. We found that the RNA- binding protein Sam68 (Khdrbs1) is strongly expressed in neurogenic areas of the neocortex and supports the self-renewing potential of mouse NPCs. Knockout of Khdrbs1 constricted the pool of proliferating NPCs by accelerating their cell cycle exit and differentiation into post-mitotic neurons. Sam68 function was linked to regulation of Aldh1a3 pre-mRNA 3'-end processing. Binding of Sam68 to an intronic polyadenylation site prevents its recognition and premature transcript termination, favoring expression of a functional enzyme. The lower ALDH1A3 expression and activity in Khdrbs1-/- NPCs results in reduced glycolysis and clonogenicity, thus depleting the embryonic NPC pool and limiting cortical expansion. Our study identifies Sam68 as a key regulator of NPC self-renewal and establishes a novel link between modulation of ALDH1A3 expression and maintenance of high glycolytic metabolism in the developing cortex. DOI:http://dx.doi.org/10.7554/eLife.20750.001 Neurons develop from cells called neural progenitors. These cells can either divide to produce more progenitor cells or develop into specific types of neurons. These two activities – known as self-renewal and differentiation – must be balanced to produce the right number of specialized neurons, without depleting the pool of progenitor cells. The self-renewal and differentiation of progenitor cells is balanced by essentially regulating which genes are active, or expressed, within the cells. In the first step of gene expression, the genetic instructions are copied to form a molecule of pre-messenger RNA (or pre-mRNA for short). Each pre-mRNA molecule is then processed to produce a final product that can be translated into protein. Importantly, two copies of the same pre-mRNA may sometimes be processed in different ways, which allows multiple proteins to be produced from a single gene. RNA-binding proteins control pre-mRNA processing. The expression of one such protein, called Sam68, oscillates during the development of the nervous system, such that its expression peaks when there is intense production of new neurons and then declines. However, it was not known whether Sam68 actually helps neurons to develop. La Rosa et al. have now analysed the role of Sam68 in the developing brain of mice. The experiments confirmed that Sam68 is highly expressed in neural progenitor cells and showed that its levels dictate the cell’s fate: high expression encourages a cell to self-renew, while low expression triggers it to develop into a specialized neuron. Further investigation revealed that Sam68 works by promoting the expression of a metabolic enzyme called Aldehyde Dehydrogenase 1A3 or ALDH1A3. This enzyme promotes the release of energy from molecules of glucose via a process known as anaerobic glycolysis. La Rosa et al. found that cells that lack Sam68 make a truncated version of the pre-mRNA encoding ALDH1A3. This truncated pre-mRNA encodes a shortened version of the enzyme that is inactive. Further experiments confirmed that Sam68 normally prevents this from happening by binding to the pre-mRNA and processing it to produce the full-length, working version of the ALDH1A3 enzyme. Also, La Rosa et al. found that progenitor cells need working ALDH1A3 to keep them dividing, and to stop them from developing into specialized neurons too soon. Finally, because the processing of pre-RNA plays a major role in brain development, problems with this process often lead to intellectual disabilities and neurodegenerative diseases, such as autism spectrum disorder and amyotrophic lateral sclerosis. The next step following on from these new findings will be to investigate whether defects in Sam68 contribute to such conditions and, if so, to look for ways to counteract these defects. DOI:http://dx.doi.org/10.7554/eLife.20750.002
Collapse
Affiliation(s)
- Piergiorgio La Rosa
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, Italy
| | - Pamela Bielli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, Italy
| | - Claudia Compagnucci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, Italy
| | - Eleonora Cesari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, Italy
| | - Elisabetta Volpe
- Laboratory of Neuroimmunology, Fondazione Santa Lucia, Rome, Italy
| | | | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
25
|
Martin S, Bellora N, González-Vallinas J, Irimia M, Chebli K, de Toledo M, Raabe M, Eyras E, Urlaub H, Blencowe BJ, Tazi J. Preferential binding of a stable G3BP ribonucleoprotein complex to intron-retaining transcripts in mouse brain and modulation of their expression in the cerebellum. J Neurochem 2016; 139:349-368. [PMID: 27513819 DOI: 10.1111/jnc.13768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022]
Abstract
Neuronal granules play an important role in the localization and transport of translationally silenced messenger ribonucleoproteins in neurons. Among the factors associated with these granules, the RNA-binding protein G3BP1 (stress-granules assembly factor) is involved in neuronal plasticity and is induced in Alzheimer's disease. We immunopurified a stable complex containing G3BP1 from mouse brain and performed high-throughput sequencing and cross-linking immunoprecipitation to identify the associated RNAs. The G3BP-complex contained the deubiquitinating protease USP10, CtBP1 and the RNA-binding proteins Caprin-1, G3BP2a and splicing factor proline and glutamine rich, or PSF. The G3BP-complex binds preferentially to transcripts that retain introns, and to non-coding sequences like 3'-untranslated region and long non-coding RNAs. Specific transcripts with retained introns appear to be enriched in the cerebellum compared to the rest of the brain and G3BP1 depletion decreased this intron retention in the cerebellum of G3BP1 knockout mice. Among the enriched transcripts, we found an overrepresentation of genes involved in synaptic transmission, especially glutamate-related neuronal transmission. Notably, G3BP1 seems to repress the expression of the mature Grm5 (metabotropic glutamate receptor 5) transcript, by promoting the retention of an intron in the immature transcript in the cerebellum. Our results suggest that G3BP is involved in a new functional mechanism to regulate non-coding RNAs including intron-retaining transcripts, and thus have broad implications for neuronal gene regulation, where intron retention is widespread.
Collapse
Affiliation(s)
- Sophie Martin
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, Montpellier, France
| | - Nicolas Bellora
- Computational Genomics Group Universitat Pompeu Fabra PRBB, Barcelona, Spain.,Laboratorio de Microbiología Aplicada y Biotecnología, Instituto Andino-Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - UNComahue, Bariloche, Argentina
| | | | - Manuel Irimia
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Karim Chebli
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, Montpellier, France
| | - Marion de Toledo
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, Montpellier, France
| | - Monika Raabe
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Eduardo Eyras
- Computational Genomics Group Universitat Pompeu Fabra PRBB, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, Spain
| | - Henning Urlaub
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ben J Blencowe
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jamal Tazi
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, Montpellier, France.
| |
Collapse
|
26
|
Abstract
The number of long noncoding RNAs (lncRNAs) has grown rapidly; however, our understanding of their function remains limited. Although cultured cells have facilitated investigations of lncRNA function at the molecular level, the use of animal models provides a rich context in which to investigate the phenotypic impact of these molecules. Promising initial studies using animal models demonstrated that lncRNAs influence a diverse number of phenotypes, ranging from subtle dysmorphia to viability. Here, we highlight the diversity of animal models and their unique advantages, discuss the use of animal models to profile lncRNA expression, evaluate experimental strategies to manipulate lncRNA function in vivo, and review the phenotypes attributable to lncRNAs. Despite a limited number of studies leveraging animal models, lncRNAs are already recognized as a notable class of molecules with important implications for health and disease.
Collapse
|
27
|
Rupani DN, Connell GJ. Transferrin receptor mRNA interactions contributing to iron homeostasis. RNA (NEW YORK, N.Y.) 2016; 22:1271-82. [PMID: 27307498 PMCID: PMC4931119 DOI: 10.1261/rna.056184.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/07/2016] [Indexed: 05/03/2023]
Abstract
The transferrin receptor is the primary means of iron importation for most mammalian cells and understanding its regulatory mechanisms is relevant to hematologic, oncologic, and other disorders in which iron homeostasis is perturbed. The 3' UTR of the transferrin receptor mRNA contains an instability element that is protected from degradation during iron depletion through interactions of iron regulatory proteins (IRPs) with five iron-responsive elements (IREs). The structural features required for degradation and the site of IRP binding required for in situ protection remain unclear. An RNA-CLIP strategy is described here that identifies the predominant site of IRP-1 interaction within a nontransformed primary cell line. This approach avoided complications associated with the use of elevated concentrations of protein and/or mRNA and detected interactions within the native environment of the mRNA. A compensatory mutagenesis strategy indicates that the instability element at minimum consists of three non-IRE stem-loops that can function additively, suggesting that they are not forming one highly interdependent structure. Although the IREs are not essential for instability, they enhance instability when IRP interactions are inhibited. These results are supportive of a mechanism for a graded response to the intracellular iron resulting from a progressive loss of IRP protection.
Collapse
Affiliation(s)
- Dhwani N Rupani
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Gregory J Connell
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
28
|
Cáceres CJ, Contreras N, Angulo J, Vera-Otarola J, Pino-Ajenjo C, Llorian M, Ameur M, Lisboa F, Pino K, Lowy F, Sargueil B, López-Lastra M. Polypyrimidine tract-binding protein binds to the 5' untranslated region of the mouse mammary tumor virus mRNA and stimulates cap-independent translation initiation. FEBS J 2016; 283:1880-901. [PMID: 26972759 DOI: 10.1111/febs.13708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 12/23/2022]
Abstract
The 5' untranslated region (UTR) of the full-length mRNA of the mouse mammary tumor virus (MMTV) harbors an internal ribosomal entry site (IRES). In this study, we show that the polypyrimidine tract-binding protein (PTB), an RNA-binding protein with four RNA recognition motifs (RRMs), binds to the MMTV 5' UTR stimulating its IRES activity. There are three isoforms of PTB: PTB1, PTB2, and PTB4. Results show that PTB1 and PTB4, but not PTB2, stimulate MMTV-IRES activity. PTB1 promotes MMTV-IRES-mediated initiation more strongly than PTB4. When expressed in combination, PTB1 further enhanced PTB4 stimulation of the MMTV-IRES, while PTB2 fully abrogates PTB4-induced stimulation. PTB1-induced stimulation of MMTV-IRES was not altered in the presence of PTB4 or PTB2. Mutational analysis reveals that stimulation of MMTV-IRES activity is abrogated when PTB1 is mutated either in RRM1/RRM2 or RRM3/RRM4. In contrast, a PTB4 RRM1/RRM2 mutant has reduced effect over MMTV-IRES activity, while stimulation of the MMTV-IRES activity is still observed when the PTB4 RRM3/RMM4 mutant is used. Therefore, PTB1 and PTB4 differentially stimulate the IRES activity. In contrast, PTB2 acts as a negative modulator of PTB4-induced stimulation of MMTV-IRES. We conclude that PTB1 and PTB4 act as IRES trans-acting factors of the MMTV-IRES.
Collapse
Affiliation(s)
- Carlos J Cáceres
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nataly Contreras
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Constanza Pino-Ajenjo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Melissa Ameur
- Centre national de la Recherche Scientifique, Unité Mixte de Recherche 8015, Laboratoire de Cristallographie et RMN Biologique, Université Paris Descartes, France
| | - Francisco Lisboa
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla Pino
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Lowy
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bruno Sargueil
- Centre national de la Recherche Scientifique, Unité Mixte de Recherche 8015, Laboratoire de Cristallographie et RMN Biologique, Université Paris Descartes, France
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
29
|
Roussis IM, Guille M, Myers FA, Scarlett GP. RNA Whole-Mount In situ Hybridisation Proximity Ligation Assay (rISH-PLA), an Assay for Detecting RNA-Protein Complexes in Intact Cells. PLoS One 2016; 11:e0147967. [PMID: 26824753 PMCID: PMC4732756 DOI: 10.1371/journal.pone.0147967] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
Techniques for studying RNA-protein interactions have lagged behind those for DNA-protein complexes as a consequence of the complexities associated with working with RNA. Here we present a method for the modification of the existing In Situ Hybridisation-Proximity Ligation Assay (ISH-PLA) protocol to adapt it to the study of RNA regulation (rISH-PLA). As proof of principle we used the well-characterised interaction of the Xenopus laevis Staufen RNA binding protein with Vg1 mRNA, the complex of which co-localises to the vegetal pole of Xenopus oocytes. The applicability of both the Stau1 antibody and the Locked Nucleic Acid probe (LNA) recognising Vg1 mRNA were independently validated by whole-mount Immunohistochemistry and whole-mount in situ hybridisation assays respectively prior to combining them in the rISH-PLA assay. The rISH-PLA assay allows the identification of a given RNA-protein complex at subcellular and single cell resolution, thus avoiding the lack of spatial resolution and sensitivity associated with assaying heterogenous cell populations from which conventional RNA-protein interaction detection techniques suffer. This technique will be particularly usefully for studying the activity of RNA binding proteins (RBPs) in complex mixtures of cells, for example tissue sections or whole embryos.
Collapse
Affiliation(s)
- Ioannis M. Roussis
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Matthew Guille
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Fiona A. Myers
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Garry P. Scarlett
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| |
Collapse
|
30
|
Fan B, Ni P, Kao CC. Mapping RNA interactions to proteins in virions using CLIP-Seq. Methods Mol Biol 2016; 1297:213-24. [PMID: 25896006 DOI: 10.1007/978-1-4939-2562-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
RNA nanotechnology often involves protein-RNA complexes that require significant understanding of how the proteins and RNAs contact each other. The CLIP-Seq (cross-linking immunoprecipitation, and DNA sequencing) protocol can be used to probe the RNA molecules that interact with proteins. We have optimized the procedures for RNA fragmentation, immunoprecipitation, and library construction in CLIP-Seq to map the interactions between the RNA and the capsid of a simple positive-strand RNA virus. The results show that distinct portions of the viral RNA contact the capsid. The protocol should be applicable to other RNA virions and also RNA-protein nanoparticles.
Collapse
Affiliation(s)
- Baochang Fan
- Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne St., 201A Simon Hall, Bloomington, IN, 47405, USA
| | | | | |
Collapse
|
31
|
Yang L, Calay ES, Fan J, Arduini A, Kunz RC, Gygi SP, Yalcin A, Fu S, Hotamisligil GS. METABOLISM. S-Nitrosylation links obesity-associated inflammation to endoplasmic reticulum dysfunction. Science 2015; 349:500-6. [PMID: 26228140 DOI: 10.1126/science.aaa0079] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The association between inflammation and endoplasmic reticulum (ER) stress has been observed in many diseases. However, if and how chronic inflammation regulates the unfolded protein response (UPR) and alters ER homeostasis in general, or in the context of chronic disease, remains unknown. Here, we show that, in the setting of obesity, inflammatory input through increased inducible nitric oxide synthase (iNOS) activity causes S-nitrosylation of a key UPR regulator, IRE1α, which leads to a progressive decline in hepatic IRE1α-mediated XBP1 splicing activity in both genetic (ob/ob) and dietary (high-fat diet-induced) models of obesity. Finally, in obese mice with liver-specific IRE1α deficiency, reconstitution of IRE1α expression with a nitrosylation-resistant variant restored IRE1α-mediated XBP1 splicing and improved glucose homeostasis in vivo. Taken together, these data describe a mechanism by which inflammatory pathways compromise UPR function through iNOS-mediated S-nitrosylation of IRE1α, which contributes to defective IRE1α activity, impaired ER function, and prolonged ER stress in obesity.
Collapse
Affiliation(s)
- Ling Yang
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ediz S Calay
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jason Fan
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Alessandro Arduini
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ryan C Kunz
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Abdullah Yalcin
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Suneng Fu
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
32
|
Wang ET, Ward AJ, Cherone JM, Giudice J, Wang TT, Treacy DJ, Lambert NJ, Freese P, Saxena T, Cooper TA, Burge CB. Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins. Genome Res 2015; 25:858-71. [PMID: 25883322 PMCID: PMC4448682 DOI: 10.1101/gr.184390.114] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 04/02/2015] [Indexed: 01/01/2023]
Abstract
RNA binding proteins of the conserved CUGBP1, Elav-like factor (CELF) family contribute to heart and skeletal muscle development and are implicated in myotonic dystrophy (DM). To understand their genome-wide functions, we analyzed the transcriptome dynamics following induction of CELF1 or CELF2 in adult mouse heart and of CELF1 in muscle by RNA-seq, complemented by crosslinking/immunoprecipitation-sequencing (CLIP-seq) analysis of mouse cells and tissues to distinguish direct from indirect regulatory targets. We identified hundreds of mRNAs bound in their 3′ UTRs by both CELF1 and the developmentally induced MBNL1 protein, a threefold greater overlap in target messages than expected, including messages involved in development and cell differentiation. The extent of 3′ UTR binding by CELF1 and MBNL1 predicted the degree of mRNA repression or stabilization, respectively, following CELF1 induction. However, CELF1's RNA binding specificity in vitro was not detectably altered by coincubation with recombinant MBNL1. These findings support a model in which CELF and MBNL proteins bind independently to mRNAs but functionally compete to specify down-regulation or localization/stabilization, respectively, of hundreds of mRNA targets. Expression of many alternative 3′ UTR isoforms was altered following CELF1 induction, with 3′ UTR binding associated with down-regulation of isoforms and genes. The splicing of hundreds of alternative exons was oppositely regulated by these proteins, confirming an additional layer of regulatory antagonism previously observed in a handful of cases. The regulatory relationships between CELFs and MBNLs in control of both mRNA abundance and splicing appear to have evolved to enhance developmental transitions in major classes of heart and muscle genes.
Collapse
Affiliation(s)
- Eric T Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Amanda J Ward
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jennifer M Cherone
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Jimena Giudice
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Thomas T Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Daniel J Treacy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Nicole J Lambert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Peter Freese
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Tanvi Saxena
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Thomas A Cooper
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
33
|
Zhang Y, Xie S, Xu H, Qu L. CLIP: viewing the RNA world from an RNA-protein interactome perspective. SCIENCE CHINA-LIFE SCIENCES 2015; 58:75-88. [DOI: 10.1007/s11427-014-4764-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/13/2014] [Indexed: 12/20/2022]
|
34
|
Bielli P, Bordi M, Di Biasio V, Sette C. Regulation of BCL-X splicing reveals a role for the polypyrimidine tract binding protein (PTBP1/hnRNP I) in alternative 5' splice site selection. Nucleic Acids Res 2014; 42:12070-81. [PMID: 25294838 PMCID: PMC4231771 DOI: 10.1093/nar/gku922] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/18/2014] [Accepted: 09/22/2014] [Indexed: 02/06/2023] Open
Abstract
Alternative splicing (AS) modulates many physiological and pathological processes. For instance, AS of the BCL-X gene balances cell survival and apoptosis in development and cancer. Herein, we identified the polypyrimidine tract binding protein (PTBP1) as a direct regulator of BCL-X AS. Overexpression of PTBP1 promotes selection of the distal 5' splice site in BCL-X exon 2, generating the pro-apoptotic BCL-Xs splice variant. Conversely, depletion of PTBP1 enhanced splicing of the anti-apoptotic BCL-XL variant. In vivo cross-linking experiments and site-directed mutagenesis restricted the PTBP1 binding site to a polypyrimidine tract located between the two alternative 5' splice sites. Binding of PTBP1 to this site was required for its effect on splicing. Notably, a similar function of PTBP1 in the selection of alternative 5' splice sites was confirmed using the USP5 gene as additional model. Mechanistically, PTBP1 displaces SRSF1 binding from the proximal 5' splice site, thus repressing its selection. Our study provides a novel mechanism of alternative 5' splice site selection by PTBP1 and indicates that the presence of a PTBP1 binding site between two alternative 5' splice sites promotes selection of the distal one, while repressing the proximal site by competing for binding of a positive regulator.
Collapse
Affiliation(s)
- Pamela Bielli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Matteo Bordi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Valentina Di Biasio
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
35
|
Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol 2014; 24:651-63. [PMID: 25441720 DOI: 10.1016/j.tcb.2014.08.009] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 02/07/2023]
Abstract
Mammalian genomes encode thousands of long noncoding RNAs (lncRNAs) that play important roles in diverse biological processes. As a class, lncRNAs are generally enriched in the nucleus and, specifically, within the chromatin-associated fraction. Consistent with their localization, many lncRNAs have been implicated in the regulation of gene expression and in shaping 3D nuclear organization. In this review, we discuss the evidence that many nuclear-retained lncRNAs can interact with various chromatin regulatory proteins and recruit them to specific sites on DNA to regulate gene expression. Furthermore, we discuss the role of specific lncRNAs in shaping nuclear organization and their emerging mechanisms. Based on these examples, we propose a model that explains how lncRNAs may shape aspects of nuclear organization to regulate gene expression.
Collapse
|
36
|
Seong Y, Lim DH, Kim A, Seo JH, Lee YS, Song H, Kwon YS. Global identification of target recognition and cleavage by the Microprocessor in human ES cells. Nucleic Acids Res 2014; 42:12806-21. [PMID: 25326327 PMCID: PMC4227787 DOI: 10.1093/nar/gku957] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Microprocessor plays an essential role in canonical miRNA biogenesis by facilitating cleavage of stem-loop structures in primary transcripts to yield pre-miRNAs. Although miRNA biogenesis has been extensively studied through biochemical and molecular genetic approaches, it has yet to be addressed to what extent the current miRNA biogenesis models hold true in intact cells. To address the issues of in vivo recognition and cleavage by the Microprocessor, we investigate RNAs that are associated with DGCR8 and Drosha by using immunoprecipitation coupled with next-generation sequencing. Here, we present global protein–RNA interactions with unprecedented sensitivity and specificity. Our data indicate that precursors of canonical miRNAs and miRNA-like hairpins are the major substrates of the Microprocessor. As a result of specific enrichment of nascent cleavage products, we are able to pinpoint the Microprocessor-mediated cleavage sites per se at single-nucleotide resolution. Unexpectedly, a 2-nt 3′ overhang invariably exists at the ends of cleaved bases instead of nascent pre-miRNAs. Besides canonical miRNA precursors, we find that two novel miRNA-like structures embedded in mRNAs are cleaved to yield pre-miRNA-like hairpins, uncoupled from miRNA maturation. Our data provide a framework for in vivo Microprocessor-mediated cleavage and a foundation for experimental and computational studies on miRNA biogenesis in living cells.
Collapse
Affiliation(s)
- Youngmo Seong
- Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747, Korea
| | - Do-Hwan Lim
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Augustine Kim
- Department of Food Science & Technology, Sejong University, Seoul 143-747, Korea
| | - Jae Hong Seo
- Department of Internal Medicine, Korea University Guro Hospital, Seoul 152-703, Korea
| | - Young Sik Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Hoseok Song
- Department of Biomedical Sciences, Korea University, Seoul 136-705, Korea
| | - Young-Soo Kwon
- Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747, Korea
| |
Collapse
|
37
|
Bielli P, Busà R, Di Stasi SM, Munoz MJ, Botti F, Kornblihtt AR, Sette C. The transcription factor FBI-1 inhibits SAM68-mediated BCL-X alternative splicing and apoptosis. EMBO Rep 2014; 15:419-27. [PMID: 24514149 PMCID: PMC3989673 DOI: 10.1002/embr.201338241] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 01/28/2023] Open
Abstract
Alternative splicing (AS) is tightly coupled to transcription for the majority of human genes. However, how these two processes are linked is not well understood. Here, we unveil a direct role for the transcription factor FBI-1 in the regulation of AS. FBI-1 interacts with the splicing factor SAM68 and reduces its binding to BCL-X mRNA. This, in turn, results in the selection of the proximal 5' splice site in BCL-X exon 2, thereby favoring the anti-apoptotic BCL-XL variant and counteracting SAM68-mediated apoptosis. Conversely, depletion of FBI-1, or expression of a SAM68 mutant lacking the FBI-1 binding region, restores the ability of SAM68 to induce BCL-XS splicing and apoptosis. FBI-1's role in splicing requires the activity of histone deacetylases, whose pharmacological inhibition recapitulates the effects of FBI-1 knockdown. Our study reveals an unexpected function for FBI-1 in splicing modulation with a direct impact on cell survival.
Collapse
Affiliation(s)
- Pamela Bielli
- Department of Biomedicine and Prevention, University of Rome Tor VergataRome, Italy
- Laboratory of Neuroembryology, Fondazione Santa LuciaRome, Italy
| | - Roberta Busà
- Department of Biomedicine and Prevention, University of Rome Tor VergataRome, Italy
- Laboratory of Neuroembryology, Fondazione Santa LuciaRome, Italy
| | - Savino M Di Stasi
- Department of Experimental Medicine and Surgery, University of Rome Tor VergataRome, Italy
| | - Manuel J Munoz
- Laboratorio de Fisiologia y Biologia Molecular, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Flavia Botti
- Department of Biomedicine and Prevention, University of Rome Tor VergataRome, Italy
| | - Alberto R Kornblihtt
- Laboratorio de Fisiologia y Biologia Molecular, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome Tor VergataRome, Italy
- Laboratory of Neuroembryology, Fondazione Santa LuciaRome, Italy
| |
Collapse
|
38
|
Depletion of the Trypanosome Pumilio domain protein PUF2 or of some other essential proteins causes transcriptome changes related to coding region length. EUKARYOTIC CELL 2014; 13:664-74. [PMID: 24681684 DOI: 10.1128/ec.00018-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pumilio domain RNA-binding proteins are known mainly as posttranscriptional repressors of gene expression that reduce mRNA translation and stability. Trypanosoma brucei has 11 PUF proteins. We show here that PUF2 is in the cytosol, with roughly the same number of molecules per cell as there are mRNAs. Although PUF2 exhibits a low level of in vivo RNA binding, it is not associated with polysomes. PUF2 also decreased reporter mRNA levels in a tethering assay, consistent with a repressive role. Depletion of PUF2 inhibited growth of bloodstream-form trypanosomes, causing selective loss of mRNAs with long open reading frames and increases in mRNAs with shorter open reading frames. Reexamination of published RNASeq data revealed the same trend in cells depleted of some other proteins. We speculate that these length effects could be caused by inhibition of the elongation phase of transcription or by an influence of translation status or polysomal conformation on mRNA decay.
Collapse
|
39
|
McHugh CA, Russell P, Guttman M. Methods for comprehensive experimental identification of RNA-protein interactions. Genome Biol 2014; 15:203. [PMID: 24467948 PMCID: PMC4054858 DOI: 10.1186/gb4152] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The importance of RNA-protein interactions in controlling mRNA regulation and non-coding RNA function is increasingly appreciated. A variety of methods exist to comprehensively define RNA-protein interactions. We describe these methods and the considerations required for designing and interpreting these experiments.
Collapse
|
40
|
Webb S, Hector RD, Kudla G, Granneman S. PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast. Genome Biol 2014; 15:R8. [PMID: 24393166 PMCID: PMC4053934 DOI: 10.1186/gb-2014-15-1-r8] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/07/2014] [Indexed: 12/04/2022] Open
Abstract
Background Nrd1 and Nab3 are essential sequence-specific yeast RNA binding proteins that function as a heterodimer in the processing and degradation of diverse classes of RNAs. These proteins also regulate several mRNA coding genes; however, it remains unclear exactly what percentage of the mRNA component of the transcriptome these proteins control. To address this question, we used the pyCRAC software package developed in our laboratory to analyze CRAC and PAR-CLIP data for Nrd1-Nab3-RNA interactions. Results We generated high-resolution maps of Nrd1-Nab3-RNA interactions, from which we have uncovered hundreds of new Nrd1-Nab3 mRNA targets, representing between 20 and 30% of protein-coding transcripts. Although Nrd1 and Nab3 showed a preference for binding near 5′ ends of relatively short transcripts, they bound transcripts throughout coding sequences and 3′ UTRs. Moreover, our data for Nrd1-Nab3 binding to 3′ UTRs was consistent with a role for these proteins in the termination of transcription. Our data also support a tight integration of Nrd1-Nab3 with the nutrient response pathway. Finally, we provide experimental evidence for some of our predictions, using northern blot and RT-PCR assays. Conclusions Collectively, our data support the notion that Nrd1 and Nab3 function is tightly integrated with the nutrient response and indicate a role for these proteins in the regulation of many mRNA coding genes. Further, we provide evidence to support the hypothesis that Nrd1-Nab3 represents a failsafe termination mechanism in instances of readthrough transcription.
Collapse
|
41
|
The importance of regulatory RNAs in Staphylococcus aureus. INFECTION GENETICS AND EVOLUTION 2014; 21:616-26. [DOI: 10.1016/j.meegid.2013.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 12/14/2022]
|
42
|
The miRNA-mediated cross-talk between transcripts provides a novel layer of posttranscriptional regulation. ADVANCES IN GENETICS 2014; 85:149-99. [PMID: 24880735 DOI: 10.1016/b978-0-12-800271-1.00003-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Endogenously expressed transcripts that are posttranscriptionally regulated by the same microRNAs (miRNAs) will, in principle, compete for the binding of their shared small noncoding RNA regulators and modulate each other's abundance. Recently, the levels of some coding as well as noncoding transcripts have indeed been found to be regulated in this way. Transcripts that engage in such regulatory interactions are referred to as competitive endogenous RNAs (ceRNAs). This novel layer of posttranscriptional regulation has been shown to contribute to diverse aspects of organismal and cellular biology, despite the number of functionally characterized ceRNAs being as yet relatively low. Importantly, increasing evidence suggests that the dysregulation of some ceRNA interactions is associated with disease etiology, most preeminently with cancer. Here we review how posttranscriptional regulation by miRNAs contributes to the cross-talk between transcripts and review examples of known ceRNAs by highlighting the features underlying their interactions and what might be their biological relevance.
Collapse
|
43
|
Gromak N, Dienstbier M, Macias S, Plass M, Eyras E, Cáceres JF, Proudfoot NJ. Drosha regulates gene expression independently of RNA cleavage function. Cell Rep 2013; 5:1499-510. [PMID: 24360955 PMCID: PMC3898267 DOI: 10.1016/j.celrep.2013.11.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/13/2013] [Accepted: 11/15/2013] [Indexed: 12/21/2022] Open
Abstract
Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription-dependent manner. This binding is not associated with miRNA production or RNA cleavage. Drosha knockdown in HeLa cells downregulated nascent gene transcription, resulting in a reduction of polyadenylated mRNA produced from these gene regions. Furthermore, we show that this function of Drosha is dependent on its N-terminal protein-interaction domain, which associates with the RNA-binding protein CBP80 and RNA Polymerase II. Consequently, we uncover a previously unsuspected RNA cleavage-independent function of Drosha in the regulation of human gene expression. Drosha binds promoter-proximal regions of transcribed human genes Drosha binding is not associated with RNA cleavage or miRNA processing Drosha regulates nascent gene transcription Drosha interacts with CBP80 and RNA Pol II through its N-terminal domain
Collapse
Affiliation(s)
- Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Martin Dienstbier
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sara Macias
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Mireya Plass
- Computational Genomics Group, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain; The Bioinformatics Centre, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Eduardo Eyras
- Computational Genomics Group, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Nicholas J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
44
|
Reddy AS, Marquez Y, Kalyna M, Barta A. Complexity of the alternative splicing landscape in plants. THE PLANT CELL 2013; 25:3657-83. [PMID: 24179125 PMCID: PMC3877793 DOI: 10.1105/tpc.113.117523] [Citation(s) in RCA: 548] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 09/27/2013] [Accepted: 10/08/2013] [Indexed: 05/18/2023]
Abstract
Alternative splicing (AS) of precursor mRNAs (pre-mRNAs) from multiexon genes allows organisms to increase their coding potential and regulate gene expression through multiple mechanisms. Recent transcriptome-wide analysis of AS using RNA sequencing has revealed that AS is highly pervasive in plants. Pre-mRNAs from over 60% of intron-containing genes undergo AS to produce a vast repertoire of mRNA isoforms. The functions of most splice variants are unknown. However, emerging evidence indicates that splice variants increase the functional diversity of proteins. Furthermore, AS is coupled to transcript stability and translation through nonsense-mediated decay and microRNA-mediated gene regulation. Widespread changes in AS in response to developmental cues and stresses suggest a role for regulated splicing in plant development and stress responses. Here, we review recent progress in uncovering the extent and complexity of the AS landscape in plants, its regulation, and the roles of AS in gene regulation. The prevalence of AS in plants has raised many new questions that require additional studies. New tools based on recent technological advances are allowing genome-wide analysis of RNA elements in transcripts and of chromatin modifications that regulate AS. Application of these tools in plants will provide significant new insights into AS regulation and crosstalk between AS and other layers of gene regulation.
Collapse
Affiliation(s)
- Anireddy S.N. Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
- Address correspondence to
| | - Yamile Marquez
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna A-1030, Austria
| | - Maria Kalyna
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna A-1030, Austria
| | - Andrea Barta
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna A-1030, Austria
| |
Collapse
|
45
|
Hurt JA, Robertson AD, Burge CB. Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Res 2013; 23:1636-50. [PMID: 23766421 PMCID: PMC3787261 DOI: 10.1101/gr.157354.113] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
UPF1 is a DNA/RNA helicase with essential roles in nonsense-mediated mRNA decay (NMD) and embryonic development. How UPF1 regulates target abundance and the relationship between NMD and embryogenesis are not well understood. To explore how NMD shapes the embryonic transcriptome, we integrated genome-wide analyses of UPF1 binding locations, NMD-regulated gene expression, and translation in murine embryonic stem cells (mESCs). We identified over 200 direct UPF1 binding targets using crosslinking/immunoprecipitation-sequencing (CLIP-seq) and revealed a repression pathway that involves 3′ UTR binding by UPF1 and translation but is independent of canonical targeting features involving 3′ UTR length and stop codon placement. Interestingly, NMD targeting of this set of mRNAs occurs in other mouse tissues and is conserved in human. We also show, using ribosome footprint profiling, that actively translated upstream open reading frames (uORFs) are enriched in transcription factor mRNAs and predict mRNA repression by NMD, while poorly translated mRNAs escape repression. Together, our results identify novel NMD determinants and targets and provide context for understanding the impact of UPF1 and NMD on the mESC transcriptome.
Collapse
Affiliation(s)
- Jessica A Hurt
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
46
|
Shao J, Zhang J, Zhang Z, Jiang H, Lou X, Huang B, Foltz G, Lan Q, Huang Q, Lin B. Alternative polyadenylation in glioblastoma multiforme and changes in predicted RNA binding protein profiles. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:136-49. [PMID: 23421905 DOI: 10.1089/omi.2012.0098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alternative polyadenylation (APA) is widely present in the human genome and plays a key role in carcinogenesis. We conducted a comprehensive analysis of the APA products in glioblastoma multiforme (GBM, one of the most lethal brain tumors) and normal brain tissues and further developed a computational pipeline, RNAelements (http://sysbio.zju.edu.cn/RNAelements/), using covariance model from known RNA binding protein (RBP) targets acquired by RNA Immunoprecipitation (RIP) analysis. We identified 4530 APA isoforms for 2733 genes in GBM, and found that 182 APA isoforms from 148 genes showed significant differential expression between normal and GBM brain tissues. We then focused on three genes with long and short APA isoforms that show inconsistent expression changes between normal and GBM brain tissues. These were myocyte enhancer factor 2D, heat shock factor binding protein 1, and polyhomeotic homolog 1 (Drosophila). Using the RNAelements program, we found that RBP binding sites were enriched in the alternative regions between the first and the last polyadenylation sites, which would result in the short APA forms escaping regulation from those RNA binding proteins. To the best of our knowledge, this report is the first comprehensive APA isoform dataset for GBM and normal brain tissues. Additionally, we demonstrated a putative novel APA-mediated mechanism for controlling RNA stability and translation for APA isoforms. These observations collectively lay a foundation for novel diagnostics and molecular mechanisms that can inform future therapeutic interventions for GBM.
Collapse
Affiliation(s)
- Jiaofang Shao
- Systems Biology Division, Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hoque M, Ji Z, Zheng D, Luo W, Li W, You B, Park JY, Yehia G, Tian B. Analysis of alternative cleavage and polyadenylation by 3' region extraction and deep sequencing. Nat Methods 2012; 10:133-9. [PMID: 23241633 PMCID: PMC3560312 DOI: 10.1038/nmeth.2288] [Citation(s) in RCA: 344] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/15/2012] [Indexed: 11/23/2022]
Abstract
Alternative cleavage and polyadenylation (APA) leads to mRNA isoforms with different coding sequences (CDS) and/or 3′ untranslated regions (3′UTRs). Using 3′ Region Extraction And Deep Sequencing (3′READS), a method which addresses the internal priming and oligo(A) tail issues that commonly plague polyA site (pA) identification, we comprehensively mapped pAs in the mouse genome, thoroughly annotating 3′ ends of genes and revealing over five thousand pAs (~8% of total) flanked by A-rich sequences, which have hitherto been overlooked. About 79% of mRNA genes and 66% of long non-coding RNA (lncRNA) genes have APA; but these two gene types have distinct usage patterns for pAs in introns and upstream exons. Promoter-distal pAs become relatively more abundant during embryonic development and cell differentiation, a trend affecting pAs in both 3′-most exons and upstream regions. Upregulated isoforms generally have stronger pAs, suggesting global modulation of the 3′ end processing activity in development and differentiation.
Collapse
Affiliation(s)
- Mainul Hoque
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, Newark, New Jersey, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Proteins regulate gene expression by controlling mRNA biogenesis, localization, translation and decay. Identifying the composition, diversity and function of mRNA-protein complexes (mRNPs) is essential to understanding these processes. In a global survey of Saccharomyces cerevisiae mRNA-binding proteins, we identified 120 proteins that cross-link to mRNA, including 66 new mRNA-binding proteins. These include kinases, RNA-modification enzymes, metabolic enzymes and tRNA- and rRNA-metabolism factors. These proteins show dynamic subcellular localization during stress, including assembly into stress granules and processing bodies (P bodies). Cross-linking and immunoprecipitation (CLIP) analyses of the P-body components Pat1, Lsm1, Dhh1 and Sbp1 identified sites of interaction on specific mRNAs, revealing positional binding preferences and co-assembly preferences. When taken together, this work defines the major yeast mRNP proteins, reveals widespread changes in their subcellular location during stress and begins to define assembly rules for P-body mRNPs.
Collapse
|
49
|
Wang ET, Cody NAL, Jog S, Biancolella M, Wang TT, Treacy DJ, Luo S, Schroth GP, Housman DE, Reddy S, Lécuyer E, Burge CB. Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 2012; 150:710-24. [PMID: 22901804 DOI: 10.1016/j.cell.2012.06.041] [Citation(s) in RCA: 372] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/30/2012] [Accepted: 06/20/2012] [Indexed: 11/17/2022]
Abstract
The muscleblind-like (Mbnl) family of RNA-binding proteins plays important roles in muscle and eye development and in myotonic dystrophy (DM), in which expanded CUG or CCUG repeats functionally deplete Mbnl proteins. We identified transcriptome-wide functional and biophysical targets of Mbnl proteins in brain, heart, muscle, and myoblasts by using RNA-seq and CLIP-seq approaches. This analysis identified several hundred splicing events whose regulation depended on Mbnl function in a pattern indicating functional interchangeability between Mbnl1 and Mbnl2. A nucleotide resolution RNA map associated repression or activation of exon splicing with Mbnl binding near either 3' splice site or near the downstream 5' splice site, respectively. Transcriptomic analysis of subcellular compartments uncovered a global role for Mbnls in regulating localization of mRNAs in both mouse and Drosophila cells, and Mbnl-dependent translation and protein secretion were observed for a subset of mRNAs with Mbnl-dependent localization. These findings hold several new implications for DM pathogenesis.
Collapse
Affiliation(s)
- Eric T Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jaskiewicz L, Bilen B, Hausser J, Zavolan M. Argonaute CLIP--a method to identify in vivo targets of miRNAs. Methods 2012; 58:106-12. [PMID: 23022257 DOI: 10.1016/j.ymeth.2012.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 09/11/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022] Open
Abstract
microRNAs are important regulators of gene expression that guide translational repression and degradation of target mRNAs. Only relatively few miRNA targets have been characterized, and computational prediction is hampered by the relatively small number of nucleotides that seem to be involved in target recognition. Argonaute (Ago) crosslinking and immunoprecipitation (CLIP) in combination with next-generation sequencing proved to be a successful method for identifying targets of endogenous cellular miRNAs on a transcriptome-wide scale. Here we review various approaches to Ago CLIP, describe in detail the PAR-CLIP method and provide an outline of the necessary computational analysis for identification of in vivo miRNA binding sites.
Collapse
Affiliation(s)
- Lukasz Jaskiewicz
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Klingelbergstr 50/70, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|