1
|
Naïja A, Mutlu O, Khan T, Seers TD, Yalcin HC. An optimized CT-dense agent perfusion and micro-CT imaging protocol for chick embryo developmental stages. BMC Biomed Eng 2024; 6:3. [PMID: 38654382 DOI: 10.1186/s42490-024-00078-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Compared to classical techniques of morphological analysis, micro-CT (μ-CT) has become an effective approach allowing rapid screening of morphological changes. In the present work, we aimed to provide an optimized micro-CT dense agent perfusion protocol and μ-CT guidelines for different stages of chick embryo cardiogenesis. Our study was conducted over a period of 10 embryonic days (Hamburger-Hamilton HH36) in chick embryo hearts. During the perfusion of the micro-CT dense agent at different developmental stages (HH19, HH24, HH27, HH29, HH31, HH34, HH35, and HH36), we demonstrated that durations and volumes of the injected contrast agent gradually increased with the heart developmental stages contrary to the flow rate that was unchanged during the whole experiment. Analysis of the CT imaging confirmed the efficiency of the optimized parameters of the heart perfusion.
Collapse
Affiliation(s)
- Azza Naïja
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Onur Mutlu
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Talha Khan
- Petroleum Engineering Program, Texas A&M University, Doha, Qatar
| | | | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, Doha, Qatar.
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
- Department of Industrial and Mechanical Engineering, Qatar University, Doha, Qatar.
| |
Collapse
|
2
|
Naija A, Mutlu O, Khan T, Seers TD, Yalcin HC. An optimized CT-dense agent perfusion and micro-CT imaging protocol for chick embryo developmental stages.. [DOI: 10.21203/rs.3.rs-2541863/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Compared to classical techniques of morphological analysis, micro-CT (µ-CT) has become an effective approach allowing rapid screening of morphological changes. In the present work, we aimed to provide an optimized µ-CT dense agent perfusion protocol and µ-CT guidelines for different stages of chick embryo cardiogenesis. Our study was conducted over a period of 10 embryonic days (Hamburger-Hamilton HH36) in chick embryo hearts. During the perfusion of the µ-CT dense agent at different developmental stages (HH19, HH24, HH27, HH29, HH31, HH34, HH35, and HH36), we demonstrated that durations and volumes of the injected contrast agent gradually increased with the heart developmental stages contrary to the flow rate that was unchanged during the whole experiment. Analysis of the CT imaging confirmed the efficiency of the optimized parameters of the heart perfusion.
Collapse
|
3
|
Nota T, Kageyama K, Yamamoto A, Kakehashi A, Yonezawa H, Jogo A, Sohgawa E, Murai K, Ogawa S, Miki Y. Safety and Feasibility of Contrast-Enhanced Computed Tomography with a Nanoparticle Contrast Agent for Evaluation of Diethylnitrosamine-Induced Liver Tumors in a Rat Model. Acad Radiol 2023; 30:30-39. [PMID: 35680546 DOI: 10.1016/j.acra.2022.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022]
Abstract
RATIONALE AND OBJECTIVES Safety and feasibility of contrast-enhanced computed tomography (CECT) with a nanoparticulate contrast agent, ExiTron nano 12000, was evaluated in a rat liver tumor model. MATERIALS AND METHODS This study employed eighteen 8-week-old male F344 rats. Six rats given tap water for 8 weeks further divided into two: Control group and Normal Liver with CECT group. Six rats each were given tap water containing diethylnitrosamine (DEN) at 100 ppm for 8 or 14 weeks; Adenoma group and Hepatocellular carcinoma (HCC) group, respectively. Biochemical marker values and adverse events were evaluated after CT imaging. ExiTron nano 12000 was evaluated for the hepatic contrast enhancement, and the detection and measurement of liver nodules by CECT after 8- and 14-weeks administration of DEN. Post-mortem liver specimens were evaluated by hematoxylin-eosin (HE) staining, and the number and size of liver nodules were measured. The HCC group was evaluated for diagnostic concordance between HE-stained and CECT-detected nodules. RESULTS The contrast agent enhanced liver and was tolerated after CECT in 15 rats. Biochemical parameter values did not differ significantly between the Control and Normal Liver groups. The numbers of CECT-detected nodules in the Adenoma and HCC groups were 14.8 ± 5.1, and 32.4 ± 8.1, respectively. The HCC group had 3.6 ± 2.7 of pathological HCCs, which were identified by CECT. The size of CECT-detected HCCs correlated significantly with that of pathological HCCs (r = 0.966, p < 0.0001). CONCLUSION CECT with ExiTron nano 12000 is a safe and feasible method to measure tumors in a rat liver tumor model.
Collapse
Affiliation(s)
- Takehito Nota
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine (T.N., K.K., A.Y., H.Y., A.J., E.S., K.M., S.O., Y.M.), Osaka City University (currently Osaka Metropolitan University), 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Ken Kageyama
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine (T.N., K.K., A.Y., H.Y., A.J., E.S., K.M., S.O., Y.M.), Osaka City University (currently Osaka Metropolitan University), 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan.
| | - Akira Yamamoto
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine (T.N., K.K., A.Y., H.Y., A.J., E.S., K.M., S.O., Y.M.), Osaka City University (currently Osaka Metropolitan University), 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology (A.K.), Graduate School of Medicine, Osaka City University (currently Osaka Metropolitan University), Abenoku, Osaka, Japan
| | - Hiroki Yonezawa
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine (T.N., K.K., A.Y., H.Y., A.J., E.S., K.M., S.O., Y.M.), Osaka City University (currently Osaka Metropolitan University), 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Atsushi Jogo
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine (T.N., K.K., A.Y., H.Y., A.J., E.S., K.M., S.O., Y.M.), Osaka City University (currently Osaka Metropolitan University), 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Etsuji Sohgawa
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine (T.N., K.K., A.Y., H.Y., A.J., E.S., K.M., S.O., Y.M.), Osaka City University (currently Osaka Metropolitan University), 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Kazuki Murai
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine (T.N., K.K., A.Y., H.Y., A.J., E.S., K.M., S.O., Y.M.), Osaka City University (currently Osaka Metropolitan University), 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Satoyuki Ogawa
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine (T.N., K.K., A.Y., H.Y., A.J., E.S., K.M., S.O., Y.M.), Osaka City University (currently Osaka Metropolitan University), 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Yukio Miki
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine (T.N., K.K., A.Y., H.Y., A.J., E.S., K.M., S.O., Y.M.), Osaka City University (currently Osaka Metropolitan University), 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| |
Collapse
|
4
|
Maynard J, Hart P. The Opportunities and Use of Imaging to Measure Target Engagement. SLAS DISCOVERY 2019; 25:127-136. [PMID: 31885303 DOI: 10.1177/2472555219897270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lack of efficacy and poor safety outcomes are deemed to be the greatest causes of clinical failure of novel therapeutics. The use of biomarkers that give accurate information on target engagement, providing confidence that pharmacological activity in the target organ is being achieved, is key in optimizing clinical success. Without a measurement of target engagement, it can be very difficult to discern the basis for any lack of efficacy of a drug molecule within the pharmaceutical industry. Target engagement can be measured in both an in vitro and in vivo setting, and in recent years imaging measurements have been used frequently in drug discovery and development to assess target engagement and receptor occupancy in both human and animal models. From this perspective, we assess and look at the advancements in both in vivo and ex vivo imaging to demonstrate the enormous potential that imaging has as an application to provide a greater understanding of target engagement with a correlative therapeutic impact.
Collapse
Affiliation(s)
| | - Philippa Hart
- Medicines Discovery Catapult, Alderley Park, Cheshire, UK
| |
Collapse
|
5
|
Tracking Dynamics of Spontaneous Tumors in Mice Using Photon-Counting Computed Tomography. iScience 2019; 21:68-83. [PMID: 31655257 PMCID: PMC6820243 DOI: 10.1016/j.isci.2019.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
Computed tomography is a powerful medical imaging modality for longitudinal studies in cancer to follow neoplasia progression and evaluate anticancer therapies. Here, we report the generation of a photon-counting micro-computed tomography (PC-CT) method based on hybrid pixel detectors with enhanced sensitivity and precision of tumor imaging. We then applied PC-CT for longitudinal imaging in a clinically relevant liver cancer model, the Alb-R26Met mice, and found a remarkable heterogeneity in the dynamics for tumors at the initiation phases. Instead, the growth curve of evolving tumors exhibited a comparable exponential growth, with a constant doubling time. Furthermore, longitudinal PC-CT imaging in mice treated with a combination of MEK and BCL-XL inhibitors revealed a drastic tumor regression accompanied by a striking remodeling of macrophages in the tumor microenvironment. Thus, PC-CT is a powerful system to detect cancer initiation and progression, and to monitor its evolution during treatment. Development of photon-counting micro-computed tomography (PC-CT) with hybrid pixels PC-CT allows longitudinal imaging of tumor dynamics in mouse cancer models RTK-driven tumors are heterogeneous at onset, but grow steadily during progression MEK + BCL-XL targeting leads to tumor regression and microenvironment remodeling
Collapse
|
6
|
In Vivo Detection and Measurement of Aortic Aneurysm and Dissection in Mouse Models Using Microcomputed Tomography with Contrast Agent. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:5940301. [PMID: 30956627 PMCID: PMC6431409 DOI: 10.1155/2019/5940301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/11/2019] [Indexed: 02/03/2023]
Abstract
Objectives The aim of this study was to evaluate the potential of microcomputed tomography (micro-CT) using the intravascular contrast agent ExiTron nano 12000 for aorta imaging and monitoring the dynamic changing process of the aorta in mouse models with aortic aneurysm and dissection. Materials and Methods Experiments were performed on healthy mice and mice with aortic dissection. Mice that were developing aortic dissection and healthy mice underwent micro-CT imaging after injection of ExiTron nano 12000. Time-dependent signal enhancement (at 1, 2, 3, 6, and 12 hours after intravenous injection of the contrast agent, respectively) in the aorta of healthy mice was measured to confirm the optimal imaging time of aorta. Various contrast agent doses (70, 100, and 150 μl per 25 g mouse, respectively) were investigated to determine the optimal required dose for imaging of the aorta. The mice were scanned with micro-CT at 1, 14, and 28 days after onset of aneurysm and dissection to monitor the dynamic changing process of the aorta. Mouse aortas were stained with hematoxylin and eosin staining, and the diameter of the aorta was measured and compared with those obtained by micro-CT. Results Time-dependent signal enhancement in the aorta shows that the contrast agent has a long blood half-life of 6 hours, with a peak enhancement at 2 hours after injection. Injection of 100 μl ExiTron nano 12000 per 25 g mouse allows for effective visualization of the aorta. Micro-CT combined with contrast agent can monitor the changing process of the aorta in the mouse model of aortic aneurysm and dissection dynamically. The values of the diameter of the aortas obtained from the in vivo micro-CT imaging were compared with those obtained from histology and showed a significant correlation (R2 = 0.96). Conclusions These data demonstrate that in vivo micro-CT is an accurate and feasible technique to detect aortic aneurysm or dissection in a mouse model, and the micro-CT technique using the innovative contrast agent ExiTron nano 12000 allows for monitoring various processes dynamically such as aortic remodeling in longitudinal studies.
Collapse
|
7
|
Liu CN, Morin J, Dokmanovich M, Bluette CT, Goldstein R, Manickam B, Bagi CM. Nanoparticle contrast-enhanced micro-CT: A preclinical tool for the 3D imaging of liver and spleen in longitudinal mouse studies. J Pharmacol Toxicol Methods 2019; 96:67-77. [PMID: 30738209 DOI: 10.1016/j.vascn.2019.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 01/04/2023]
Abstract
In drug discovery and development, X-ray micro-computed tomography (micro-CT) has gained increasing importance over the past decades. In recent years, micro-CT imaging of soft tissues has become popular due to the introduction of a variety of radiopaque contrast agents. More recently, nanoparticle-based ExiTron nano 12,000 has become commercially available for the nonclinical micro-CT imaging of soft tissues in rodents. Phagocytosis and accumulation of the contrast agent by Kupffer cells in the liver, as well as macrophages in the spleen, increase the soft tissue X-ray attenuation for up to 6 months. Therefore, it is essential to understand the potential toxicity of this nanomaterial in micro-CT imaging prior to its application in pharmacology and/or toxicology studies. Herein, we describe the time-course and distribution of the contrast in the liver, spleen and blood after a single intravenous injection (IV) of this nanoparticle contrast agent at 0.1 ml/mouse. Thoracic images of male adult C57BL/6 mice were acquired using a Bruker SkyScan 1276 micro-CT over a period of 29 days. The stability of X-ray attenuation enhancement in the above tissues was also tested after a single dose of Kupffer cell toxicant gadolinium chloride (GdCl3) at 15 mg/kg on day 2. The liver, spleen and kidney were examined microscopically on days 15 and 29 post treatment. Serum and liver cytokines (IL-1β, IL-2, IL-6, IL-10, IL-12p70, IFN-γ, IP-10, MIP1-α, MIP1-β and TNF-α) were quantified on days 15 and 29 as indicators of a pro-inflammatory response to treatment. This study determined that there was an accumulation of amphophilic granular material in the cells of the mononuclear phagocyte system in the liver and spleen following a single dose of ExiTron nano 12,000 and a second dose of GdCl3 or its vehicle. However, ExiTron nano12000 contrast administration did not cause any hepatotoxicity in the liver, nor did pro-inflammatory cytokines release in the liver or serum. Similarly, there were no adverse pathologies in the spleen or kidneys. In summary, ExiTron nano12000 contrast agent-enhanced micro-CT could be used as a safe method in up to 29-day longitudinal efficacy and toxicology mouse studies for the non-invasive assessment of the liver and spleen.
Collapse
Affiliation(s)
- Chang-Ning Liu
- Comparative Medicine, Pfizer Worldwide R&D, Groton, CT 06340, USA.
| | | | | | | | | | | | - Cedo M Bagi
- Comparative Medicine, Pfizer Worldwide R&D, Groton, CT 06340, USA
| |
Collapse
|
8
|
Gabrielson K, Maronpot R, Monette S, Mlynarczyk C, Ramot Y, Nyska A, Sysa-Shah P. In Vivo Imaging With Confirmation by Histopathology for Increased Rigor and Reproducibility in Translational Research: A Review of Examples, Options, and Resources. ILAR J 2018; 59:80-98. [PMID: 30541081 PMCID: PMC6645176 DOI: 10.1093/ilar/ily010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 07/18/2018] [Indexed: 12/13/2022] Open
Abstract
Preclinical noninvasive imaging can be an indispensable tool for studying animal models of disease. In vivo imaging to assess anatomical, functional, and molecular features requires verification by a comparison to the macroscopic and microscopic morphological features, since all noninvasive in vivo imaging methods have much lower resolution than standard histopathology. Comprehensive pathological evaluation of the animal model is underutilized; yet, many institutions have veterinary or human pathologists with necessary comparative pathology expertise. By performing a rigorous comparison to gross or histopathology for image interpretation, these trained individuals can assist scientists with the development of the animal model, experimental design, and evaluation of the in vivo imaging data. These imaging and pathology corroboration studies undoubtedly increase scientific rigor and reproducibility in descriptive and hypothesis-driven research. A review of case examples including ultrasound, nuclear, optical, and MRI is provided to illustrate how a wide range of imaging modalities data can be confirmed by gross or microscopic pathology. This image confirmation and authentication will improve characterization of the model and may contribute to decreasing costs and number of animals used and to more rapid translation from preclinical animal model to the clinic.
Collapse
Affiliation(s)
- Kathleen Gabrielson
- Departments of Molecular and Comparative Pathology and Pathology School of Medicine, Environmental Health Engineering Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | | | - Sébastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York
| | - Coraline Mlynarczyk
- Department of Medicine, Division of Hematology & Medical Oncology and the Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Yuval Ramot
- Department of Dermatology, Hadassah—Hebrew University Medical Center, Kiryat Hadassah, Jerusalem, Israel
| | - Abraham Nyska
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel and Toxicologic Pathology, Timrat, Israel
| | - Polina Sysa-Shah
- Department of Radiology, Miller Research Building Molecular Imaging Service Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
9
|
Maronpot RR, Nyska A, Troth SP, Gabrielson K, Sysa-Shah P, Kalchenko V, Kuznetsov Y, Harmelin A, Schiffenbauer YS, Bonnel D, Stauber J, Ramot Y. Regulatory Forum Opinion Piece*: Imaging Applications in Toxicologic Pathology-Recommendations for Use in Regulated Nonclinical Toxicity Studies. Toxicol Pathol 2018. [PMID: 28641506 DOI: 10.1177/0192623317710014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Available imaging systems for use in preclinical toxicology studies increasingly show utility as important tools in the toxicologic pathologist's armamentarium, permit longitudinal evaluation of functional and morphological changes in tissues, and provide important information such as organ and lesion volume not obtained by conventional toxicology study parameters. Representative examples of practical imaging applications in toxicology research and preclinical studies are presented for ultrasound, positron emission tomography/single-photon emission computed tomography, optical, magnetic resonance imaging, and matrix-assisted laser desorption ionization-imaging mass spectrometry imaging. Some of the challenges for making imaging systems good laboratory practice-compliant for regulatory submission are presented. Use of imaging data on a case-by-case basis as part of safety evaluation in regulatory submissions is encouraged.
Collapse
Affiliation(s)
| | - Abraham Nyska
- 2 Toxicologic Pathology, Sackler School of Medicine, Tel Aviv University, Timrat, Israel
| | - Sean P Troth
- 3 Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Kathleen Gabrielson
- 4 Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Polina Sysa-Shah
- 4 Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vyacheslav Kalchenko
- 5 Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yuri Kuznetsov
- 5 Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Harmelin
- 5 Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | - Yuval Ramot
- 8 Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
10
|
Rodent models of pheochromocytoma, parallels in rodent and human tumorigenesis. Cell Tissue Res 2018; 372:379-392. [PMID: 29427052 DOI: 10.1007/s00441-018-2797-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/16/2018] [Indexed: 12/17/2022]
Abstract
Paragangliomas and pheochromocytomas are rare neuroendocrine tumors characterized by a large spectrum of hereditary predisposition. Based on gene expression profiling classification, they can be classically assigned to either a hypoxic/angiogenic cluster (cluster 1 including tumors with mutations in SDHx, VHL and FH genes) or a kinase-signaling cluster (cluster 2 consisting in tumors related to RET, NF1, TMEM127 and MAX genes mutations, as well as most of the sporadic tumors). The past 15 years have seen the emergence of an increasing number of genetically engineered and grafted models to investigate tumorigenesis and develop new therapeutic strategies. Among them, only cluster 2-related predisposed models have been successful but grafted models are however available to study cluster 1-related tumors. In this review, we present an overview of existing rodent models targeting predisposition genes involved or not in human pheochromocytoma/paraganglioma susceptibility and their contribution to the improvement of pheochromocytoma experimental research.
Collapse
|
11
|
In Vivo Quantification of Myocardial Infarction in Mice Using Micro-CT and a Novel Blood Pool Agent. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:2617047. [PMID: 29114173 PMCID: PMC5662822 DOI: 10.1155/2017/2617047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/12/2017] [Indexed: 11/25/2022]
Abstract
We herein developed a micro-CT method using the innovative contrast agent ExiTron™ MyoC 8000 to longitudinally monitor cardiac processes in vivo in small animals. Experiments were performed on healthy mice and mice with myocardial infarction inflicted by ligation of the left anterior descending artery. Time-dependent signal enhancement in different tissues of healthy mice was measured and various contrast agent doses were investigated so as to determine the minimum required dose for imaging of the myocardium. Due to its ability to be taken up by healthy myocardium but not by infarct tissue, ExiTron MyoC 8000 enables detection of myocardial infarction even at a very low dose. The signal enhancement in the myocardium of infarcted mice after contrast agent injection was exploited for quantification of infarct size. The values of infarct size obtained from the imaging method were compared with those obtained from histology and showed a significant correlation (R2 = 0.98). Thus, the developed micro-CT method allows for monitoring of a variety of processes such as cardiac remodeling in longitudinal studies.
Collapse
|
12
|
Hu J, Li P, Yin X, Wu T, Cao Y, Yang Z, Jiang L, Hu S, Lu H. Nondestructive imaging of the internal microstructure of vessels and nerve fibers in rat spinal cord using phase-contrast synchrotron radiation microtomography. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:482-489. [PMID: 28244444 DOI: 10.1107/s1600577517000121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
The spinal cord is the primary neurological link between the brain and other parts of the body, but unlike those of the brain, advances in spinal cord imaging have been challenged by the more complicated and inhomogeneous anatomy of the spine. Fortunately with the advancement of high technology, phase-contrast synchrotron radiation microtomography has become widespread in scientific research because of its ability to generate high-quality and high-resolution images. In this study, this method has been employed for nondestructive imaging of the internal microstructure of rat spinal cord. Furthermore, digital virtual slices based on phase-contrast synchrotron radiation were compared with conventional histological sections. The three-dimensional internal microstructure of the intramedullary arteries and nerve fibers was vividly detected within the same spinal cord specimen without the application of a stain or contrast agent or sectioning. With the aid of image post-processing, an optimization of vessel and nerve fiber images was obtained. The findings indicated that phase-contrast synchrotron radiation microtomography is unique in the field of three-dimensional imaging and sets novel standards for pathophysiological investigations in various neurovascular diseases.
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Ping Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Xianzhen Yin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200135, People's Republic of China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Zhiming Yang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Liyuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Shiping Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Hongbin Lu
- Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| |
Collapse
|
13
|
An image guided small animal stereotactic radiotherapy system. Oncotarget 2017; 7:18825-36. [PMID: 26958942 PMCID: PMC4951332 DOI: 10.18632/oncotarget.7939] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/02/2016] [Indexed: 11/25/2022] Open
Abstract
Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ~0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost.
Collapse
|
14
|
Akladios C, Ignat M, Mutter D, Aprahamian M. Survival variability of controls and definition of imaging endpoints for longitudinal follow-up of pancreatic ductal adenocarcinoma in rats. J Cancer Res Clin Oncol 2017; 143:29-34. [PMID: 27620742 DOI: 10.1007/s00432-016-2265-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND The 3Rs guideline is the gold standard for ethics in animal experimentation. Two of those rules, namely refinement and reduction, require further improvement. The objective of this study was to define pathways to better compliance with these prerequisites. Two methods which move us in this direction are: (1) using small animal imaging techniques for pancreatic ductal adenocarcinoma (PDAC) follow-up and (2) reduction of the number of control animals included in a study of PDAC progression under treatment. MATERIALS AND METHODS Firstly, we used MicroCT scan to diagnose events showing PDAC progression prior to any clinical symptoms to thereby define more humane endpoints identifiable before any painful phenomenon is observed. Secondly, in order to test the hypothesis of using a reference control group in all preclinical studies of a new treatment of PDAC, we investigated the stability of the results obtained with the control groups in three successive identical studies comparing placebo and gemcitabine in tumor-bearing Lewis rats. RESULTS Two imaging endpoints were found. The first was the observation of a liver metastasis assessing PDAC diffusion and, earlier than liver metastasis, the presence of bands of fluid along the flanks, with more or less a medial displacement of bowel and solid viscera, reflecting a peritoneal ascites. Results of the longitudinal follow-up of rats in the gemcitabine study revealed heterogeneity in the survival rate in the three control groups, as opposed to the survival rate in the three treated groups which did not differ statistically. As a result, the significance of improved survival with chemotherapy varied greatly according to the control group used for the comparison, ranging from no impact to a highly significant effect. CONCLUSION The early detection by the means of animal imaging of one or more signs indicating the onset of a critical step in the development of the disease (e.g., ascites or/and metastasis) allows the researcher to prevent the occurrence of animal pain, thereby ensuring better animal welfare. However, using a single standard control group in an effort to use fewer animals for a given model runs such a significant risk of false results that it mars the entire study. Although reducing the number of animals in a study remains the gold standard of our experimental practice, in this case it would come at the price of a loss of validity of the results.
Collapse
Affiliation(s)
- Cherif Akladios
- IRCAD, University Hospital of Strasbourg, 1 place de l'hôpital, Strasbourg, France.
| | - Mihaela Ignat
- Department of Digestive and Endocrine Surgery, IRCAD, IHU, University Hospital of Strasbourg, 1 place de l'hôpital, Strasbourg, France
| | - Didier Mutter
- Department of Digestive and Endocrine Surgery, IRCAD, IHU, University Hospital of Strasbourg, 1 place de l'hôpital, Strasbourg, France
| | - Marc Aprahamian
- IRCAD, University Hospital of Strasbourg, 1 place de l'hôpital, Strasbourg, France
| |
Collapse
|
15
|
Consul N, Guo X, Coker C, Lopez-Pintado S, Hibshoosh H, Zhao B, Kalinsky K, Acharyya S. Monitoring Metastasis and Cachexia in a Patient with Breast Cancer: A Case Study. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2016; 10:83-94. [PMID: 27660506 PMCID: PMC5019129 DOI: 10.4137/cmo.s40479] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 01/05/2023]
Abstract
Cachexia, a wasting syndrome associated with advanced cancer and metastasis, is rarely documented in breast cancer patients. However, the incidence of cachexia in breast cancer is now thought to be largely underestimated. In our case report of a breast cancer patient with bone metastasis monitored during the course of her treatment, we document the development of cachexia by image analysis in relation to her metastatic burden. Elucidation of the link between metastatic burden and cachexia could unveil a highly specific screening process for metastasis, by assessing true muscle mass loss. Our patient was a 49-year-old premenopausal woman, with metastatic invasive ductal breast carcinoma in the vertebral and iliac bones on presentation, which progressed with new metastases to her hips, thigh bones, and vertebrae. In the two-year period, that is between her diagnosis and death, she lost >10% of her baseline weight. During these two years, we retrospectively identified a decrease in paraspinal muscle (PM) at the third lumbar vertebra followed by a sharp decline in weight. The increased tumor burden over time in metastatic sites was accompanied by a decrease in abdominal muscle and visceral and subcutaneous fat and was followed by the patient’s demise. The increasing tumor burden in the patient was correlated with the mass of other tissues to determine the tissue that could best serve as a surrogate marker to cachexia and tumor burden. We noted a strong negative correlation between PM area and metastatic tumor area at the third lumbar vertebral level, with PM loss correlating to increasing tumor burden. The monitoring of PM wasting may serve as a marker, and therefore a prognostic factor, for both cachexia and extent of metastatic disease, especially in breast cancer, where metastasis to bone is frequent. Based on our data and review of the literature in this case study, longitudinal monitoring of cachexia in the selected muscle groups can give clinicians early indications of the extent of cachexia in metastatic breast cancer patients.
Collapse
Affiliation(s)
- Nikita Consul
- Department of Medicine, College of Physicians and Surgeons, Columbia University
| | - Xiaotao Guo
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Courtney Coker
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Sara Lopez-Pintado
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Binsheng Zhao
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Kevin Kalinsky
- Division of Hematology and Medical Oncology, Columbia University Medical Center, New York, NY, USA
| | - Swarnali Acharyya
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Shami GJ, Cheng D, Braet F. Combined Multidimensional Microscopy as a Histopathology Imaging Tool. J Cell Physiol 2016; 232:249-256. [DOI: 10.1002/jcp.25470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/24/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Gerald J. Shami
- School of Medical Sciences (Discipline of Anatomy and Histology)-The Bosch Institute; The University of Sydney; Camperdown New South Wales Australia
| | - Delfine Cheng
- School of Medical Sciences (Discipline of Anatomy and Histology)-The Bosch Institute; The University of Sydney; Camperdown New South Wales Australia
| | - Filip Braet
- School of Medical Sciences (Discipline of Anatomy and Histology)-The Bosch Institute; The University of Sydney; Camperdown New South Wales Australia
- Australian Centre for Microscopy and Microanalysis; The University of Sydney; Camperdown New South Wales Australia
- Charles Perkins Centre; Cellular Imaging Facility; The University of Sydney; Camperdown New South Wales Australia
| |
Collapse
|
17
|
Lepoutre-Lussey C, Thibault C, Buffet A, Morin A, Badoual C, Bénit P, Rustin P, Ottolenghi C, Janin M, Castro-Vega LJ, Trapman J, Gimenez-Roqueplo AP, Favier J. From Nf1 to Sdhb knockout: Successes and failures in the quest for animal models of pheochromocytoma. Mol Cell Endocrinol 2016; 421:40-8. [PMID: 26123588 DOI: 10.1016/j.mce.2015.06.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 01/19/2023]
Abstract
Pheochromocytomas and paragangliomas (PPGL) are rare neuroendocrine tumors characterized by a high frequency of hereditary forms. Based on transcriptome classification, PPGL can be classified in two different clusters. Cluster 1 tumors are caused by mutations in SDHx, VHL and FH genes and are characterized by a pseudohypoxic signature. Cluster 2 PPGL carry mutations in RET, NF1, MAX or TMEM127 genes and display an activation of the MAPK and mTOR signaling pathways. Many genetically engineered and allografted mouse models have been generated these past 30 years to investigate the mechanisms of PPGL tumorigenesis and test new therapeutic strategies. Among them, only Cluster 2-related models have been successful while no Cluster 1-related knockout mouse was so far reported to develop a PPGL. In this review, we present an overview of existing, successful or not, PPGL models, and a description of our own experience on the quest of Sdhb knockout mouse models of PPGL.
Collapse
Affiliation(s)
- Charlotte Lepoutre-Lussey
- INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France
| | - Constance Thibault
- INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France
| | - Alexandre Buffet
- INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France
| | - Aurélie Morin
- INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France
| | - Cécile Badoual
- INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d'anatomo-pathologie, F-75015 Paris, France
| | - Paule Bénit
- INSERM, UMR1141, Hôpital Robert Debré, F-75019 Paris, France; Université Paris 7, Faculté de Médecine Denis Diderot, Paris, France
| | - Pierre Rustin
- INSERM, UMR1141, Hôpital Robert Debré, F-75019 Paris, France; Université Paris 7, Faculté de Médecine Denis Diderot, Paris, France
| | - Chris Ottolenghi
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France; Metabolic Biochemistry, Hôpital Necker-Enfants Malades, Paris, France; INSERM, Unit 1124, Paris, France
| | - Maxime Janin
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France; Metabolic Biochemistry, Hôpital Necker-Enfants Malades, Paris, France; INSERM, Unit 1124, Paris, France
| | - Luis-Jaime Castro-Vega
- INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France
| | - Jan Trapman
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Anne-Paule Gimenez-Roqueplo
- INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, France
| | - Judith Favier
- INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France.
| |
Collapse
|
18
|
|
19
|
Hua XW, Lu TF, Li DW, Wang WG, Li J, Liu ZZ, Lin WW, Zhang JJ, Xia Q. Contrast-enhanced micro-computed tomography using ExiTron nano6000 for assessment of liver injury. World J Gastroenterol 2015; 21:8043-8051. [PMID: 26185375 PMCID: PMC4499346 DOI: 10.3748/wjg.v21.i26.8043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/13/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the potential of contrast-enhanced computed tomography (CECT) using ExiTron nano6000 for assessment of liver lesions in mouse models.
METHODS: Three mouse models of liver lesions were used: bile duct ligation (BDL), lipopolysaccharide (LPS)/D-galactosamine (D-GalN), and alcohol. After injection with the contrast agent ExiTron nano6000, the mice were scanned with micro-CT. Liver lesions were evaluated using CECT images, hematoxylin and eosin staining, and serum aminotransferase levels. Macrophage distribution in the injury models was shown by immunohistochemical staining of CD68. The in vitro studies measured the densities of RAW264.7 under different conditions by CECT.
RESULTS: In the in vitro studies, CECT provided specific and strong contrast enhancement of liver in mice. CECT could present heterogeneous images and densities of injured livers induced by BDL, LPS/D-GalN, and alcohol. The liver histology and immunochemistry of CD68 demonstrated that both dilated biliary tracts and necrosis in the injured livers could lead to the heterogeneous distribution of macrophages. The in vitro study showed that the RAW264.7 cell masses had higher densities after LPS activation.
CONCLUSION: Micro-CT with the contrast agent ExiTron nano6000 is feasible for detecting various liver lesions by emphasizing the heterogeneous textures and densities of CECT images.
Collapse
|
20
|
Contrast agents for preclinical targeted X-ray imaging. Adv Drug Deliv Rev 2014; 76:116-133. [PMID: 25086373 DOI: 10.1016/j.addr.2014.07.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/08/2014] [Accepted: 07/22/2014] [Indexed: 11/20/2022]
Abstract
Micro-computed tomography (micro-CT) is an X-ray based instrument that it is specifically designed for biomedical research at a preclinical stage for live imaging of small animals. This imaging modality is cost-effective, fast, and produces remarkable high-resolution images of X-ray opaque skeleton. Administration of biocompatible X-ray opaque contrast agent allows delineation of the blood vessels, and internal organs and even detection of tumor metastases as small as 300 μm. However, the main limitation of micro-CT lies in the poor efficacy or toxicity of the contrast agents. Moreover, contrast agents for micro-CT have to be stealth nanoparticulate systems, i.e. preventing their rapid renal clearance. The chemical composition and physicochemical properties will condition their uptake and elimination pathways, and therefore all the biological fluids, organs, and tissues trough this elimination route of the nanoparticles will be contrasted. Furthermore, several technologies playing on the nanoparticle properties, aim to influence these biological pathways in order to induce their accumulation onto given targeted sites, organs of tumors. In function of the methodologies carried out, taking benefit or not of the action of immune system, of the natural response of the organism like hepatocyte uptake or enhanced permeation and retention effect, or even accumulation due to ligand/receptor interactions, the technologies are called passive or active targeted imaging. The present review presents the most recent advances in the development of specific contrast agents for targeted X-ray imaging micro-CT, discussing the recent advance of in vivo targeting of nanoparticulate contrast agents, and the influence of the formulations, nature of the nanocarrier, nature and concentration of the X-ray contrasting materials, effect of the surface properties, functionalization and bioconjugation. The pharmacokinetic and versatility of nanometric systems appear particularly advantageous for addressing the versatile biomedical research needs. State of the art investigations are on going to propose contrast agents with tumor accumulating properties and will contribute for development of safer cancer medicine having detection and therapeutic modalities.
Collapse
|
21
|
Comparison of Fenestra LC, ExiTron nano 6000, and ExiTron nano 12000 for micro-CT imaging of liver and spleen in mice. Acad Radiol 2013; 20:1137-43. [PMID: 23931428 DOI: 10.1016/j.acra.2013.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 12/30/2022]
Abstract
RATIONALE AND OBJECTIVES The purpose of this study was to compare different contrast agents for longitudinal liver and spleen imaging in a mouse model of liver metastasis. MATERIALS AND METHODS Mice developing liver metastases underwent longitudinal micro-computed tomography imaging after injection of Fenestra LC, ExiTron nano 6000, or ExiTron nano 12000. Elimination times and contrast enhancement of liver and spleen were compared. RESULTS For all contrast agents, liver contrast peaked at approximately 4 hours and spleen contrast at 48 hours postinjection. A single dose of 100 μL of ExiTron nano 6000 or 12000 resulted in longstanding enhancement of liver and spleen tissue for longer than 3 weeks, whereas repeated injections of 400 μL of Fenestra LC were required to retain contrast at acceptable levels and allowed imaging of the liver/spleen for up to 2 and 9 days, respectively. CONCLUSION Both ExiTron nano agents provide longer and stronger contrast enhancement of liver and spleen compared to Fenestra LC, and they do so at a 75% lower injection volume in mice.
Collapse
|
22
|
Nanotechnology for Computed Tomography: A Real Potential Recently Disclosed. Pharm Res 2013; 31:20-34. [DOI: 10.1007/s11095-013-1131-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
|
23
|
Wathen CA, Foje N, van Avermaete T, Miramontes B, Chapaman SE, Sasser TA, Kannan R, Gerstler S, Leevy WM. In vivo X-ray computed tomographic imaging of soft tissue with native, intravenous, or oral contrast. SENSORS (BASEL, SWITZERLAND) 2013; 13:6957-80. [PMID: 23711461 PMCID: PMC3715264 DOI: 10.3390/s130606957] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/16/2013] [Accepted: 05/23/2013] [Indexed: 02/07/2023]
Abstract
X-ray Computed Tomography (CT) is one of the most commonly utilized anatomical imaging modalities for both research and clinical purposes. CT combines high-resolution, three-dimensional data with relatively fast acquisition to provide a solid platform for non-invasive human or specimen imaging. The primary limitation of CT is its inability to distinguish many soft tissues based on native contrast. While bone has high contrast within a CT image due to its material density from calcium phosphate, soft tissue is less dense and many are homogenous in density. This presents a challenge in distinguishing one type of soft tissue from another. A couple exceptions include the lungs as well as fat, both of which have unique densities owing to the presence of air or bulk hydrocarbons, respectively. In order to facilitate X-ray CT imaging of other structures, a range of contrast agents have been developed to selectively identify and visualize the anatomical properties of individual tissues. Most agents incorporate atoms like iodine, gold, or barium because of their ability to absorb X-rays, and thus impart contrast to a given organ system. Here we review the strategies available to visualize lung, fat, brain, kidney, liver, spleen, vasculature, gastrointestinal tract, and liver tissues of living mice using either innate contrast, or commercial injectable or ingestible agents with selective perfusion. Further, we demonstrate how each of these approaches will facilitate the non-invasive, longitudinal, in vivo imaging of pre-clinical disease models at each anatomical site.
Collapse
Affiliation(s)
- Connor A. Wathen
- Department of Biological Sciences, 100 Galvin Life Sciences Center, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mail:
| | - Nathan Foje
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
| | - Tony van Avermaete
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
- Penn High School, 55900 Bittersweet Road, Mishawaka, IN 46545, USA
| | - Bernadette Miramontes
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
- Penn High School, 55900 Bittersweet Road, Mishawaka, IN 46545, USA
| | - Sarah E. Chapaman
- Notre Dame Integrated Imaging Facility, Notre Dame, IN 46556, USA; E-Mail:
| | - Todd A. Sasser
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
- Bruker-Biospin Corporation, 4 Research Drive, Woodbridge, CT 06525, USA
| | - Raghuraman Kannan
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA; E-Mail:
| | - Steven Gerstler
- Saint Joseph Regional Medical Center, Mishawaka, IN 46545, USA; E-Mail:
| | - W. Matthew Leevy
- Department of Biological Sciences, 100 Galvin Life Sciences Center, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mail:
- Notre Dame Integrated Imaging Facility, Notre Dame, IN 46556, USA; E-Mail:
- Harper Cancer Research Institute, A200 Harper Hall, Notre Dame, IN 46530, USA
| |
Collapse
|
24
|
Breuilly M, Malandain G, Guglielmi J, Marsault R, Pourcher T, Franken PR, Darcourt J. Amplitude-based data selection for optimal retrospective reconstruction in micro-SPECT. Phys Med Biol 2013; 58:2657-74. [DOI: 10.1088/0031-9155/58/8/2657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Pandit P, Johnston SM, Qi Y, Story J, Nelson R, Johnson GA. The utility of micro-CT and MRI in the assessment of longitudinal growth of liver metastases in a preclinical model of colon carcinoma. Acad Radiol 2013; 20:430-9. [PMID: 23498983 DOI: 10.1016/j.acra.2012.09.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 09/17/2012] [Accepted: 09/24/2012] [Indexed: 12/30/2022]
Abstract
RATIONALE AND OBJECTIVES Liver is a common site for distal metastases in colon and rectal cancer. Numerous clinical studies have analyzed the relative merits of different imaging modalities for detection of liver metastases. Several exciting new therapies are being investigated in preclinical models. But, technical challenges in preclinical imaging make it difficult to translate conclusions from clinical studies to the preclinical environment. This study addresses the technical challenges of preclinical magnetic resonance imaging (MRI) and micro-computed tomography (CT) to enable comparison of state-of-the-art methods for following metastatic liver disease. MATERIALS AND METHODS We optimized two promising preclinical protocols to enable a parallel longitudinal study tracking metastatic human colon carcinoma growth in a mouse model: T2-weighted MRI using two-shot PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) and contrast-enhanced micro-CT using a liposomal contrast agent. Both methods were tailored for high throughput with attention to animal support and anesthesia to limit biological stress. RESULTS AND CONCLUSIONS Each modality has its strengths. Micro-CT permitted more rapid acquisition (<10 minutes) with the highest spatial resolution (88-micron isotropic resolution). But detection of metastatic lesions requires the use of a blood pool contrast agent, which could introduce a confound in the evaluation of new therapies. MRI was slower (30 minutes) and had lower anisotropic spatial resolution. But MRI eliminates the need for a contrast agent and the contrast-to-noise between tumor and normal parenchyma was higher, making earlier detection of small lesions possible. Both methods supported a relatively high-throughput, longitudinal study of the development of metastatic lesions.
Collapse
|
26
|
Li X, Anton N, Zuber G, Zhao M, Messaddeq N, Hallouard F, Fessi H, Vandamme TF. Iodinated α-tocopherol nano-emulsions as non-toxic contrast agents for preclinical X-ray imaging. Biomaterials 2012; 34:481-91. [PMID: 23083930 DOI: 10.1016/j.biomaterials.2012.09.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/14/2012] [Indexed: 02/01/2023]
Abstract
Micro-computed tomography (micro-CT) is an emerging imaging modality, due to the low cost of the imagers as well as their efficiency in establishing high-resolution (1-100 μm) three-dimensional images of small laboratory animals and facilitating rapid, structural and functional in vivo visualization. However use of a contrast agent is absolutely necessary when imaging soft tissues. The main limitation of micro-CT is the low efficiency and toxicity of the commercially available blood pool contrast agents. This study proposes new, efficient and non-toxic contrast agents for micro-CT imaging. This formulation consists of iodinated vitamin E (α-tocopheryl 2,3,5-triiodobenzoate) as an oily phase, formulated as liquid nano-emulsion droplets (by low-energy nano-emulsification), surrounded by a hairy PEG layer to confer stealth properties. The originality and strength of these new contrast agents lie not only in their outstanding contrasting properties, biocompatibility and low toxicity, but also in the simplicity of their fabrication: one-step synthesis of highly iodinated oil (iodine constitutes 41.7% of the oil molecule weight) and its spontaneous emulsification. After i.v. administration in mice (8.5% of blood volume), the product shows stealth properties towards the immune system and thus acts as an efficient blood pool contrast agent (t(1/2) = 9.0 h), exhibiting blood clearance following mono-exponential decay. A gradual accumulation predominantly due to hepatocyte uptake is observed and measured in the liver, establishing a strong hepatic contrast, persistent for more than four months. To summarize, in the current range of available or developed contrast agents for preclinical X-ray imaging, this agent appears to be one of the most efficient.
Collapse
Affiliation(s)
- Xiang Li
- University of Strasbourg, Faculty of Pharmacy, Illkirch, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ahmad I, Sansom OJ, Leung HY. Exploring molecular genetics of bladder cancer: lessons learned from mouse models. Dis Model Mech 2012; 5:323-32. [PMID: 22422829 PMCID: PMC3339826 DOI: 10.1242/dmm.008888] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Urothelial cell carcinoma (UCC) of the bladder is one of the most common malignancies worldwide, causing considerable morbidity and mortality. It is unusual among the epithelial carcinomas because tumorigenesis can occur by two distinct pathways: low-grade, recurring papillary tumours usually contain oncogenic mutations in FGFR3 or HRAS, whereas high-grade, muscle-invasive tumours with metastatic potential generally have defects in the pathways controlled by the tumour suppressors p53 and retinoblastoma (RB). Over the past 20 years, a plethora of genetically engineered mouse (GEM) models of UCC have been developed, containing deletions or mutations of key tumour suppressor genes or oncogenes. In this review, we provide an up-to-date summary of these GEM models, analyse their flaws and weaknesses, discuss how they have advanced our understanding of UCC at the molecular level, and comment on their translational potential. We also highlight recent studies supporting a role for dysregulated Wnt signalling in UCC and the development of mouse models that recapitulate this dysregulation.
Collapse
Affiliation(s)
- Imran Ahmad
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.
| | | | | |
Collapse
|
28
|
Korpershoek E, Pacak K, Martiniova L. Murine models and cell lines for the investigation of pheochromocytoma: applications for future therapies? Endocr Pathol 2012; 23:43-54. [PMID: 22323007 PMCID: PMC3308007 DOI: 10.1007/s12022-012-9194-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pheochromocytomas (PCCs) are slow-growing neuroendocrine tumors arising from adrenal chromaffin cells. Tumors arising from extra-adrenal chromaffin cells are called paragangliomas. Metastases can occur up to approximately 60% or even more in specific subgroups of patients. There are still no well-established and clinically accepted "metastatic" markers available to determine whether a primary tumor is or will become malignant. Surgical resection is the most common treatment for non-metastatic PCCs, but no standard treatment/regimen is available for metastatic PCC. To investigate what kind of therapies are suitable for the treatment of metastatic PCC, animal models or cell lines are very useful. Over the last two decades, various mouse and rat models have been created presenting with PCC, which include models presenting tumors that are to a certain degree biochemically and/or molecularly similar to human PCC, and develop metastases. To be able to investigate which chemotherapeutic options could be useful for the treatment of metastatic PCC, cell lines such as mouse pheochromocytoma (MPC) and mouse tumor tissue (MTT) cells have been recently introduced and they both showed metastatic behavior. It appears these MPC and MTT cells are biochemically and molecularly similar to some human PCCs, are easily visualized by different imaging techniques, and respond to different therapies. These studies also indicate that some mouse models and both mouse PCC cell lines are suitable for testing new therapies for metastatic PCC.
Collapse
Affiliation(s)
- Esther Korpershoek
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC-University Medical Center Rotterdam, Room Ae304, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
29
|
Fiebig T, Boll H, Figueiredo G, Kerl HU, Nittka S, Groden C, Kramer M, Brockmann MA. Three-dimensional in vivo imaging of the murine liver: a micro-computed tomography-based anatomical study. PLoS One 2012; 7:e31179. [PMID: 22363574 PMCID: PMC3280110 DOI: 10.1371/journal.pone.0031179] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/04/2012] [Indexed: 01/21/2023] Open
Abstract
Various murine models are currently used to study acute and chronic pathological processes of the liver, and the efficacy of novel therapeutic regimens. The increasing availability of high-resolution small animal imaging modalities presents researchers with the opportunity to precisely identify and describe pathological processes of the liver. To meet the demands, the objective of this study was to provide a three-dimensional illustration of the macroscopic anatomical location of the murine liver lobes and hepatic vessels using small animal imaging modalities. We analysed micro-CT images of the murine liver by integrating additional information from the published literature to develop comprehensive illustrations of the macroscopic anatomical features of the murine liver and hepatic vasculature. As a result, we provide updated three-dimensional illustrations of the macroscopic anatomy of the murine liver and hepatic vessels using micro-CT. The information presented here provides researchers working in the field of experimental liver disease with a comprehensive, easily accessable overview of the macroscopic anatomy of the murine liver.
Collapse
Affiliation(s)
- Teresa Fiebig
- Department of Neuroradiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hanne Boll
- Department of Neuroradiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Giovanna Figueiredo
- Department of Neuroradiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hans Ulrich Kerl
- Department of Neuroradiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stefanie Nittka
- Department of Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christoph Groden
- Department of Neuroradiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martin Kramer
- Department of Veterinary Clinical Sciences, Small Animal Clinic, Justus-Liebig-University, Giessen, Germany
| | - Marc A. Brockmann
- Department of Neuroradiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- * E-mail:
| |
Collapse
|
30
|
Hueper K, Elalfy M, Laenger F, Halter R, Rodt T, Galanski M, Borlak J. PET/CT imaging of c-Myc transgenic mice identifies the genotoxic N-nitroso-diethylamine as carcinogen in a short-term cancer bioassay. PLoS One 2012; 7:e30432. [PMID: 22319569 PMCID: PMC3271108 DOI: 10.1371/journal.pone.0030432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 12/20/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND More than 100,000 chemicals are in use but have not been tested for their safety. To overcome limitations in the cancer bioassay several alternative testing strategies are explored. The inability to monitor non-invasively onset and progression of disease limits, however, the value of current testing strategies. Here, we report the application of in vivo imaging to a c-Myc transgenic mouse model of liver cancer for the development of a short-term cancer bioassay. METHODOLOGY/PRINCIPAL FINDINGS μCT and ¹⁸F-FDG μPET were used to detect and quantify tumor lesions after treatment with the genotoxic carcinogen NDEA, the tumor promoting agent BHT or the hepatotoxin paracetamol. Tumor growth was investigated between the ages of 4 to 8.5 months and contrast-enhanced μCT imaging detected liver lesions as well as metastatic spread with high sensitivity and accuracy as confirmed by histopathology. Significant differences in the onset of tumor growth, tumor load and glucose metabolism were observed when the NDEA treatment group was compared with any of the other treatment groups. NDEA treatment of c-Myc transgenic mice significantly accelerated tumor growth and caused metastatic spread of HCC in to lung but this treatment also induced primary lung cancer growth. In contrast, BHT and paracetamol did not promote hepatocarcinogenesis. CONCLUSIONS/SIGNIFICANCE The present study evidences the accuracy of in vivo imaging in defining tumor growth, tumor load, lesion number and metastatic spread. Consequently, the application of in vivo imaging techniques to transgenic animal models may possibly enable short-term cancer bioassays to significantly improve hazard identification and follow-up examinations of different organs by non-invasive methods.
Collapse
Affiliation(s)
- Katja Hueper
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Mahmoud Elalfy
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Florian Laenger
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Roman Halter
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Thomas Rodt
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Michael Galanski
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Juergen Borlak
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
31
|
Boll H, Nittka S, Doyon F, Neumaier M, Marx A, Kramer M, Groden C, Brockmann MA. Micro-CT based experimental liver imaging using a nanoparticulate contrast agent: a longitudinal study in mice. PLoS One 2011; 6:e25692. [PMID: 21984939 PMCID: PMC3184160 DOI: 10.1371/journal.pone.0025692] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/08/2011] [Indexed: 11/24/2022] Open
Abstract
Background Micro-CT imaging of liver disease in mice relies on high soft tissue contrast to detect small lesions like liver metastases. Purpose of this study was to characterize the localization and time course of contrast enhancement of a nanoparticular alkaline earth metal-based contrast agent (VISCOVER ExiTron nano) developed for small animal liver CT imaging. Methodology ExiTron nano 6000 and ExiTron nano 12000, formulated for liver/spleen imaging and angiography, respectively, were intravenously injected in C57BL/6J-mice. The distribution and time course of contrast enhancement were analysed by repeated micro-CT up to 6 months. Finally, mice developing liver metastases after intrasplenic injection of colon carcinoma cells underwent longitudinal micro-CT imaging after a single injection of ExiTron nano. Principal Findings After a single injection of ExiTron nano the contrast of liver and spleen peaked after 4–8 hours, lasted up to several months and was tolerated well by all mice. In addition, strong contrast enhancement of abdominal and mediastinal lymph nodes and the adrenal glands was observed. Within the first two hours after injection, particularly ExiTron nano 12000 provided pronounced contrast for imaging of vascular structures. ExiTron nano facilitated detection of liver metastases and provided sufficient contrast for longitudinal observation of tumor development over weeks. Conclusions The nanoparticulate contrast agents ExiTron nano 6000 and 12000 provide strong contrast of the liver, spleen, lymph nodes and adrenal glands up to weeks, hereby allowing longitudinal monitoring of pathological processes of these organs in small animals, with ExiTron nano 12000 being particularly optimized for angiography due to its very high initial vessel contrast.
Collapse
Affiliation(s)
- Hanne Boll
- Department of Neuroradiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stefanie Nittka
- Department of Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabian Doyon
- Department of Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Neumaier
- Department of Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alexander Marx
- Department of Pathology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martin Kramer
- Small Animal Clinic, Department of Veterinary Clinical Sciences, Justus-Liebig-University, Giessen, Germany
| | - Christoph Groden
- Department of Neuroradiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marc A. Brockmann
- Department of Neuroradiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- * E-mail:
| |
Collapse
|
32
|
Evaluation of a continuous-rotation, high-speed scanning protocol for micro-computed tomography. J Comput Assist Tomogr 2011; 35:517-23. [PMID: 21765313 DOI: 10.1097/rct.0b013e31821c662b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Micro-computed tomography is used frequently in preclinical in vivo research. Limiting factors are radiation dose and long scan times. The purpose of the study was to compare a standard step-and-shoot to a continuous-rotation, high-speed scanning protocol. METHODS Micro-computed tomography of a lead grid phantom and a rat femur was performed using a step-and-shoot and a continuous-rotation protocol. Detail discriminability and image quality were assessed by 3 radiologists. The signal-to-noise ratio and the modulation transfer function were calculated, and volumetric analyses of the femur were performed. The radiation dose of the scan protocols was measured using thermoluminescence dosimeters. RESULTS The 40-second continuous-rotation protocol allowed a detail discriminability comparable to the step-and-shoot protocol at significantly lower radiation doses. No marked differences in volumetric or qualitative analyses were observed. CONCLUSIONS Continuous-rotation micro-computed tomography significantly reduces scanning time and radiation dose without relevantly reducing image quality compared with a normal step-and-shoot protocol.
Collapse
|
33
|
Martiniova L, Perera SM, Brouwers FM, Alesci S, Abu-Asab M, Marvelle AF, Kiesewetter DO, Thomasson D, Morris JC, Kvetnansky R, Tischler AS, Reynolds JC, Fojo AT, Pacak K. Increased uptake of [¹²³I]meta-iodobenzylguanidine, [¹⁸F]fluorodopamine, and [³H]norepinephrine in mouse pheochromocytoma cells and tumors after treatment with the histone deacetylase inhibitors. Endocr Relat Cancer 2011; 18:143-57. [PMID: 21098082 PMCID: PMC4110720 DOI: 10.1677/erc-10-0090] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
[¹³¹I]meta-iodobenzylguanidine ([¹³¹I]MIBG) is the most commonly used treatment for metastatic pheochromocytoma and paraganglioma. It enters the chromaffin cells via the membrane norepinephrine transporter; however, its success has been modest. We studied the ability of histone deacetylase (HDAC) inhibitors to enhance [¹²³I]MIBG uptake by tumors in a mouse metastatic pheochromocytoma model. HDAC inhibitors are known to arrest growth, induce differentiation and apoptosis in various cancer cells, and further inhibit tumor growth. We report the in vitro and in vivo effects of two HDAC inhibitors, romidepsin and trichostatin A, on the uptake of [(3)H]norepinephrine, [¹²³I]MIBG, and [(18)F]fluorodopamine in a mouse model of metastatic pheochromocytoma. The effects of both inhibitors on norepinephrine transporter activity were assessed in mouse pheochromocytoma (MPC) cells by using the transporter-blocking agent desipramine and the vesicular-blocking agent reserpine. HDAC inhibitors increased [(3)H]norepinephrine, [¹²³I]MIBG, and [(18)F]fluorodopamine uptake through the norepinephrine transporter in MPC cells. In vivo, inhibitor treatment resulted in significantly increased uptake of [(18)F]fluorodopamine positron emission tomography (PET) in pheochromocytoma liver metastases (19.1 ± 3.2% injected dose per gram of tumor (%ID/g) compared to liver metastases in pretreatment scans 5.9 ± 0.6%; P<0.001). Biodistribution analysis after inhibitors treatment confirmed the PET results. The uptake of [(123)I]MIBG was significantly increased in liver metastases 9.5 ± 1.1% compared to 3.19 ± 0.4% in untreated control liver metastases (P<0.05). We found that HDAC inhibitors caused an increase in the amount of norepinephrine transporter expressed in tumors. HDAC inhibitors may enhance the therapeutic efficacy of [(131)I]MIBG treatment in patients with advanced malignant pheochromocytoma and paraganglioma.
Collapse
Affiliation(s)
- Lucia Martiniova
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Shiromi M. Perera
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Frederieke M. Brouwers
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Salvatore Alesci
- Clinical Neuroendocrinology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mones Abu-Asab
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amanda F. Marvelle
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dale O. Kiesewetter
- Intramural Science PRGMS, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Thomasson
- Laboratory of Diagnostic Radiology, Warren Grant Magnuson Clinical Center, Bethesda, MD, 20892 USA
| | - John C. Morris
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Richard Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Arthur S. Tischler
- Department of Pathology, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, 02111, USA
| | - James C Reynolds
- Nuclear Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - A. Tito Fojo
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
34
|
Ghaghada KB, Badea CT, Karumbaiah L, Fettig N, Bellamkonda RV, Johnson G, Annapragada A. Evaluation of tumor microenvironment in an animal model using a nanoparticle contrast agent in computed tomography imaging. Acad Radiol 2011; 18:20-30. [PMID: 21145026 DOI: 10.1016/j.acra.2010.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/24/2010] [Accepted: 09/20/2010] [Indexed: 01/01/2023]
Abstract
RATIONALE AND OBJECTIVES Non-invasive longitudinal imaging of tumor vasculature could provide new insights into the development of solid tumors, facilitating efficient delivery of therapeutics. In this study, we report three-dimensional imaging and characterization of tumor vascular architecture using a nanoparticle contrast agent and high-resolution computed tomography (CT) imaging. MATERIALS AND METHODS Five Balb/c mice implanted with 4T1/Luc syngeneic breast tumors cells were used for the study. The nanoparticle contrast agent was systemically administered and longitudinal CT imaging was performed pre-contrast and at serial time points post-contrast, for up to 7 days for studying the characteristics of tumor-associated blood vessels. Gene expression of tumor angiogenic biomarkers was measured using quantitative real-time polymerase chain reaction. RESULTS Early-phase imaging demonstrated the presence of co-opted and newly developed tumor vessels. The co-opted vessels demonstrated wall-permeability and "leakiness" characteristics evident by an increase in extravascular nanoparticle-based signal enhancement visible well beyond the margins of tumor. Diameters of tumor-associated vessels were larger than the contralateral normal vessels. Delayed-phase imaging also demonstrated significant accumulation of nanoparticle contrast agent both within and in areas surrounding the tumor. A heterogeneous pattern of signal enhancement was observed both within and among individual tumors. Gene-expression profiling demonstrated significant variability in several angiogenic biomarkers both within and among individual tumors. CONCLUSIONS The nanoparticle contrast agent and high-resolution CT imaging facilitated visualization of co-opted and newly developed tumors vessels as well as imaging of nanoparticle accumulation within tumors. The use of this agent could provide novel insights into tumor vascular biology and could have implications on the monitoring of tumor status.
Collapse
|