1
|
Piccolo M, Russo C, Arciuolo V, Ferraro MG, Abbate V, Di Porzio A, Cinquegrana E, Di Leva FS, Pagano B, Randazzo A, Hider RC, Irace C, Amato J, Giustiniano M. Design, Synthesis, and Anticancer Activity of Drug-like Iron Chelators/G-Quadruplex Binders as Synergic Dual Targeting Agents. J Med Chem 2025. [PMID: 39743313 DOI: 10.1021/acs.jmedchem.4c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Iron homeostasis is strictly related to numerous physiological pathways including cell cycle progression and cell growth. The newest anticancer strategies focus on either depleting the cells with a suitable chelator or increasing their loading by administering iron complexes to induce ferroptosis. Iron depletion inhibits cell proliferation, while iron overload induces the damage of guanine nucleobases in G-quadruplex structures via ROS generation, leading to genome instability. Here, we demonstrated that designing a molecular chimera embodying structural requirements for both iron chelation and G-quadruplex binding can result in dual-targeting compounds endowed with synergistic anticancer effects. We designed, synthesized, and tested a library of such compounds through biophysical and biological experiments. Compound 16 emerged as a lead candidate and a pharmacological tool able to chelate iron and stabilize G-quadruplexes in human leukemia Jurkat cells. Notably, it also localizes in the cell nucleus, serving as an intrinsically fluorescent nuclear tracer for the labile iron pool.
Collapse
Affiliation(s)
- Marialuisa Piccolo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Camilla Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Valentina Arciuolo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Maria Grazia Ferraro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Pansini 5, Naples 80131, Italy
| | - Vincenzo Abbate
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street London SE1 9NH, United Kingdom of Great Britain and Northern Ireland
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Elpidio Cinquegrana
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | | | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Robert Charles Hider
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street London SE1 9NH, United Kingdom of Great Britain and Northern Ireland
| | - Carlo Irace
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| |
Collapse
|
2
|
Srivastava P, Ghosh S. Insights into functional divergence, catalytic versatility and specificity of small molecule glycosyltransferases. Int J Biol Macromol 2024; 292:138821. [PMID: 39708858 DOI: 10.1016/j.ijbiomac.2024.138821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Glycosylation is one of the most fundamental biochemical processes in cells. It plays crucial roles in diversifying plant natural products for structures, bioavailability and bioactivity, and thus, renders the glycosylated compounds valuable as food additives, nutraceuticals and pharmaceuticals. Moreover, glycosylated compounds impact plant growth, development and stress response. Therefore, understanding the biochemical function of the glycosyltransferases (GTs) is crucial to the elucidation of natural product biosynthetic pathways, improving plant traits and development of processes for industrially-important compounds. UDP-dependent glycosyltransferases (UGTs) that belong to the glycosyltransferase family-1 (GT1) and catalyze the transfer of glycosyl moieties from UDP-sugars to various small molecules, are the key players in natural product glycosylation. Recent studies also found the involvement of non-canonical cellulose synthase-like (CesAs) and glycosyl hydrolase (GH) family enzymes in the glycosylation of plant specialized metabolites. Decades of research on GTs provided critical insights into catalytic mechanism, substrate/product specificity and catalytic promiscuity, but biochemical function and physiological roles of GTs in majority of the natural product biosynthetic pathways remain to be understood. It is also important to redefine high-throughput strategies of GT mining to uncover novel biochemical function, considering that GTs are the large superfamily members in plants and other organisms. This review underscores the roles of GTs in small molecule glycosylation, plant development and stress responses, highlighting the catalytic versatility and substrate/product specificity of GTs in shaping plant metabolic diversity, and discusses the emerging strategies for mining of uncharacterized GTs to unravel biochemical and physiological functions and to elucidate natural product biosynthetic pathways.
Collapse
Affiliation(s)
- Payal Srivastava
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India; Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA(1)
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Chou JCC, Dassama LMK. Lipid Trafficking in Diverse Bacteria. Acc Chem Res 2024. [PMID: 39680024 DOI: 10.1021/acs.accounts.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
ConspectusLipids are essential for life and serve as cell envelope components, signaling molecules, and nutrients. For lipids to achieve their required functions, they need to be correctly localized. This requires the action of transporter proteins and an energy source. The current understanding of bacterial lipid transporters is limited to a few classes. Given the diversity of lipid species and the predicted existence of specific lipid transporters, many more transporters await discovery and characterization. These proteins could be prime targets for modulators that control bacterial cell proliferation and pathogenesis.One overarching goal of our research is to understand the molecular mechanisms of bacterial metabolite trafficking, including lipids, and to leverage that understanding to identify or engineer inhibitory ligands. In recent years, our work has revealed two novel lipid transport systems in bacteria: bacterial sterol transporters (Bst) A, B, and C in Methylococcus capsulatus and the TatT proteins in Enhygromyxa salina and Treponema pallidum. Both systems are composed of transporters bioinformatically identified as being involved in the transport of other metabolites, but substrates were never revealed. However, the genetic colocalization of the genes encoding BstABC with sterol biosynthetic enzymes in M. capsulatus suggested that they might recognize sterols as substrates. Also, homologues of TatTs are present in diverse bacteria but are overrepresented in bacteria deficient in de novo lipid synthesis or residing in nutrient-poor environments; we reasoned that these proteins might facilitate the transport of lipids. Our efforts to reveal the substrate scope of two TatT proteins revealed their engagement with long-chain fatty acids.Enabling the discovery of the BstABC system and the TatT proteins were bioinformatic analyses, quantitative measurements of protein-ligand equilibrium affinities, and high-resolution structural studies that provided remarkable insights into ligand binding cavities and the structural basis for ligand interaction. These approaches, in particular our bioinformatics and structural work, highlighted the diversity of protein sequence and structures amenable to lipid engagement. These observations allowed the hypothesis that lipid handling proteins, in general and especially so in the bacterial domain, can have diverse amino acid compositions and three-dimensional structures. As such, bioinformatics geared at identifying them in poorly characterized genomes is likely to miss many candidates that diverge from well-characterized family members.This realization spurred efforts to understand the unifying features in all of the lipid handling proteins we have characterized to date. To do this, we inspected the ligand binding sites of the proteins: they were remarkably hydrophobic and sometimes displayed a dichotomy of hydrophobic and hydrophilic amino acids, akin to the ligands that they accommodate in those cavities. Because of this, we reasoned that the physicochemical features of ligand binding cavities could be accurate predictors of a protein's propensity to bind lipids. This finding was leveraged to create structure-based lipid-interacting pocket predictor (SLiPP), a machine-learning algorithm capable of identifying ligand cavities with physico-chemical features consistent with those of known lipid binding sites. SLiPP is especially useful in poorly annotated genomes (such as with bacterial pathogens), where it could reveal candidate proteins to be targeted for the development of antimicrobials.
Collapse
Affiliation(s)
- Jonathan Chiu-Chun Chou
- Department of Chemistry and Sarafan ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Laura M K Dassama
- Department of Chemistry and Sarafan ChEM-H Institute, Stanford University, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
4
|
Liu P, Zhang J, Liu S, Li Y, Qi C, Mo Q, Jiang Y, Hu H, Zhang T, Zhong K, Liu J, Liao Q, Chen J, Yang J. The plant signal peptide CLE7 induces plant defense response against viral infection in Nicotiana benthamiana. Dev Cell 2024:S1534-5807(24)00720-2. [PMID: 39689712 DOI: 10.1016/j.devcel.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/18/2024] [Accepted: 11/24/2024] [Indexed: 12/19/2024]
Abstract
In plants, small peptides are important players in the plant stress response, yet their function in plant antiviral responses remains poorly understood. Here, we identify that the plant small peptide, CLAVATA3/ESR-RELATED 7 (CLE7), enhances plant resistance to Chinese wheat mosaic virus infection in Nicotiana (N.) benthamiana. Subsequent investigations demonstrate that CLE7 recognizes receptor kinase NbPXC3 to control the plant antiviral response. Moreover, CLE7-NbPXC3 signaling induces NbMKK2-controlled NbMPK4 phosphorylation, resulting in phosphorylation of the transcription factor NbEDT1. NbEDT1 phosphorylation is involved in the transcriptional activity of NbNCED3, which is a rate-limiting enzyme in abscisic acid (ABA) biosynthesis. Moreover, CLE7 activates broad-spectrum disease resistance to multiple RNA viral infections. Our study indicates that CLE7 induces a plant antiviral response through a series of immune signal transductions in N. benthamiana and provides a foundation for the exploration of efficient viral disease management methods based on plant small peptides.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Juan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Shuang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yaoyao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Chunyan Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Qitao Mo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Haichao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Tianye Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Kaili Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianqian Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Qiansheng Liao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
5
|
Banerjee K, Mathew C, Inbasekar C, Fathima NN. Mechanistic insights on stabilization and destabilization effect of ionic liquids on type I collagen fibrils. J Mech Behav Biomed Mater 2024; 160:106772. [PMID: 39426355 DOI: 10.1016/j.jmbbm.2024.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Tuned assembly of collagen has tremendous applications in the field of biomedical and tissue engineering owing to its targeted biological functionalities. In this study, ionic liquids choline dihydrogen citrate (CDHC) and diethyl methyl ammonium methane sulfonate (AMS) have been used to regulate the self-assembly of collagen at its physiological pH by probing the assembled systems at certain concentration ratios of ionic liquids and the systems were studied using various characterization methods. Due to interaction with collagen, choline dihydrogen citrate causes delay in the collagen fibrillisation process showing no binding interactions with collagen. In contrast, diethyl methyl ammonium methane sulfonate shows crosslinking effect on collagen fibrillisation due to the electrostatic interaction with the tetrahedral hydration shell of collagen moieties. From rheological studies it was observed that the AMS treated collagen fibril at 1:1 % (w/v) has highest linear viscoelastic range, this can bear the stress under high strain compare to native collagen fibril as well as all CDHC composites. For a sustainable biomaterial or bio-scaffold, mechanical property plays pivotal role on it and from our experimental analysis we found certain composites of ionic liquid treated collagen fibrillar assembly which may act as a sustainable biomaterial or bio-scaffold. It was also evolved that, how the structure-function relationship of ionic force modulated fibrillar assembly controlling the mechanical properties of the tuned system. This self-assembled, ionic-liquid treated collagen-fibrillar system would accelerate various force modulated fibrillar network study, for mimicking the ECM and tissue engineering application.
Collapse
Affiliation(s)
- Kuntala Banerjee
- Inorganic and Physical Chemical Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Christina Mathew
- Inorganic and Physical Chemical Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, India
| | - Chandrasekar Inbasekar
- Inorganic and Physical Chemical Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, India
| | - Nishter Nishad Fathima
- Inorganic and Physical Chemical Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Zhang R, Luo X, Li D, Gao Y, Chen X, Xi Z, Zheng Z. Increased thermal stability and catalytic efficiency of 3-ketosteroid Δ 1-dehydrogenase5 from Arthrobacter simplex significantly reduces enzyme dosage in prednisone acetate biosynthesis. Int J Biol Macromol 2024; 283:137855. [PMID: 39566767 DOI: 10.1016/j.ijbiomac.2024.137855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
The 3-ketosteroid-Δ1-dehydrogenase5 (KsdD5) from Arthrobacter simplex converts cortisone acetate to prednisone acetate, an important step in steroid catabolism. To achieve sustainable and efficient enzyme production, we employed computer-aided screening, structural analysis, and combinatorial experiments to identify engineered KsdD5 variants (M1 and M3) with dual advantages of stability and active sites. M1 had a 8.2-fold longer half-life (19.6 h at 30 °C) than KsdD5-WT, an 11.8 °C higher half-inactivation temperature (T5015min), and a 10.6 °C higher melting temperature (Tm). M3 had 3.82-fold higher catalytic activity than WT, a 3.9-fold longer half-life at 30 °C, and higher T5015min and Tm by 14 °C and 6.9 °C, respectively. Furthermore, kinetic and microscale thermophoresis analyses revealed M3 exhibited higher catalytic efficiency due to its larger enzymatic channel. Molecular dynamics simulations showed M1 promoted tighter secondary structure packing, reduced residue flexibility, and increased hydrogen bond formation, ensuring enzyme stability and activity at elevated temperatures. Under industrial conditions, M1 converted >96 % cortisone acetate within 12 h at 30 °C with a 60 g·L-1 substrate dosage and 6 g·L-1 cell mass, whereas the M3 conversion rate was 95 %. This study demonstrates a robust strategy for developing efficient enzyme mutants, facilitating sustainable industrial production of prednisone acetate with a minimal enzyme dosage.
Collapse
Affiliation(s)
- Rong Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Xinran Luo
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Danni Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yating Gao
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Xizi Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Zubin Xi
- Hubei Goto Biopharm Co., Ltd., 33th Floor of Building #1, IFC, South jiangshan Rd, Wolong Ave, Fancheng District, Xiangyang, Hubei 441057, China
| | - Zhongliang Zheng
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
7
|
Fu F, Crespy D, Landfester K, Jiang S. In situ characterization techniques of protein corona around nanomaterials. Chem Soc Rev 2024; 53:10827-10851. [PMID: 39291461 DOI: 10.1039/d4cs00507d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nanoparticles (NPs) inevitably interact with proteins upon exposure to biological fluids, leading to the formation of an adsorption layer known as the "protein corona". This corona imparts NPs with a new biological identity, directly influencing their interactions with living systems and dictating their fates in vivo. Thus, gaining a comprehensive understanding of the dynamic interplay between NPs and proteins in biological fluids is crucial for predicting therapeutic effects and advancing the clinical translation of nanomedicines. Numerous methods have been established to decode the protein corona fingerprints. However, these methods primarily rely on prior isolation of NP-protein complex from the surrounding medium by centrifugation, resulting in the loss of outer-layer proteins that directly interact with the biological system and determine the in vivo fate of NPs. We discuss here separation techniques as well as in situ characterization methods tailored for comprehensively unraveling the inherent complexities of NP-protein interactions, highlighting the challenges of in situ protein corona characterization and its significance for nanomedicine development and clinical translation.
Collapse
Affiliation(s)
- Fangqin Fu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | | | - Shuai Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
8
|
Ruan C, Wang C, Gu J, Zhu Z. Isoscopoletin inhibits hepatocellular carcinoma cell proliferation via regulating glycolysis-related proteins. PLoS One 2024; 19:e0310530. [PMID: 39509399 PMCID: PMC11542786 DOI: 10.1371/journal.pone.0310530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/28/2024] [Indexed: 11/15/2024] Open
Abstract
OBJECTIVE Isoscopoletin is one of the primary metabolites of natural product scoparone, which was reported to against tumor proliferation. The aim of this study was to explore the mechanism of isoscopoletin against hepatocellular carcinoma (HCC). METHODS Transcriptomics was used to reveal the possible pathways of isoscopoletin against HCC in vitro. The potential targets of isoscopoletin against HCC through affecting glycolysis were analyzed by network pharmacology, then the potential binding abilities of isoscopoletin to glycolysis-related proteins were initially verified by high throughput virtual molecular docking. The affinities of isoscopoletin for glycolysis-related proteins were assayed using microscale thermophoresis (MST), which was reverse-validated by inhibiting the binding ability of isoscopoletin to GPD2. Glucose consumption and lactate production were examined to evaluate the effects of isoscopoletin on intracellular glycolysis, and the regulation of glycolysis-related targets by isoscopoletin was detected using RT-qPCR and ELISA kits. RESULTS The results of transcriptomics showed that the differentially expressed genes (DEGs) were mainly enriched in glycolysis and other metabolic-related pathways. Network pharmacology and molecular docking revealed that GPD2, GPI, HSP90AA1 and PGK2 were the core targets in the glycolysis process of isoscopoletin against HCC. MST results showed that there was a strong affinity between isoscopoletin and GPD2, GPI, Hsp90α and PGK2. In vitro results showed that isoscopoletin inhibited glucose consumption and lactate production, while regulating the levels of glycolysis-related proteins. CONCLUSION This study suggests that isoscopoletin may exist an anti-tumor effect by regulating the glycolysis-related proteins GPD2, GPI, Hsp90α and PGK2, inhibiting the glycolysis process in HCC cells, then blocking the energy supply of tumor cells.
Collapse
Affiliation(s)
- Chenyao Ruan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiawen Gu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhihui Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Zhong Y, Du X, Wang P, Li W, Xia C, Wu D, Jiang H, Xu H, Huang L. Protective effect of Huashi Baidu formula against AKI and active ingredients that target SphK1 and PAI-1. Chin Med 2024; 19:152. [PMID: 39487526 PMCID: PMC11529477 DOI: 10.1186/s13020-024-01024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Huashi Baidu Formula (HBF) is a clinical formula known for its efficacy against coronavirus disease 2019 (COVID-19). HBF may reduce the number of patients with abnormal serum creatinine while improving respiratory symptoms, suggesting that this formula may have potential for treating acute kidney injury (AKI). However, the protective effect of HBF on AKI has not been definitively confirmed, and the mechanism remains unclear. Therefore, the present study explored the renoprotective effects and molecular mechanisms of HBF and screened for its active ingredients to identify new potential applications of renoprotection by HBF. METHODS The present study first assessed the protective effects of HBF on AKI in a DOX-induced mouse model. Then, RNA-seq and bioinformatics analyses were used to explore the related pathological processes and potential molecular mechanisms, which were subsequently validated using qRT-PCR and Western blotting. Furthermore, candidate compounds with potential binding affinity to two pivotal targets, sphingosine kinase 1 (SphK1) and plasminogen activator inhibitor-1 (PAI-1), were screened from the 29 constituents present in the blood using Microscale Thermophoresis (MST). Finally, to identify the active ingredients, the candidate components were re-screened using the SphK1 kinase activity detection system or the uPA/PAI-1 substrate colorimetric assay system. RESULTS In the DOX-induced AKI mouse model, therapeutic administration of HBF significantly reduced the levels of CRE, BUN, TNF-α, IL-1β, IL-6, and UA in plasma and the levels of MDA, T-CHO, and TG in kidney tissue. Additionally, the levels of TP and Alb in plasma and SOD and CAT in the kidney tissue were significantly increased. Histopathological assessment revealed that HBF reduced tubular vacuolation, renal interstitial inflammatory cell infiltration, tubular atrophy, and positive staining of renal interstitial collagen. RNA-seq and bioinformatics analyses showed that oxidative stress, the immune-inflammatory response, and extracellular matrix (ECM) formation could be the pathological processes that HBF targets to exerts its renoprotective effects. Furthermore, HBF regulated the APJ/SPHK1/NF-κB and APJ/PAI-1/TGFβ signaling axes and reduced the phosphorylation levels of NF-κB p65 and SMAD2 and the expression of cytokines and the ECM downstream of the axis. Finally, six SphK1 inhibitors (paeoniflorin, astragalin, emodin, glycyrrhisoflavone, quercetin, and liquiritigenin) and three PAI-1 inhibitors (glycyrrhisoflavone, licochalcone B, and isoliquiritigenin) were identified as potentially active ingredients in HBF. CONCLUSION In brief, our investigation underscores the renoprotective effect of HBF in a DOX-induced AKI model mice, elucidating its mechanisms through distinct pathological processes and identifying key bioactive compounds. These findings offer new insights for broadening the clinical applications of HBF and unravelling its molecular mode of action.
Collapse
Affiliation(s)
- Yute Zhong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xia Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Weijie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cong Xia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dan Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hong Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
10
|
Orlikowska M, Wyciszkiewicz A, Węgrzyn K, Mehringer J, de Souza Paiva D, Jurczak P. Methods for monitoring protein-membrane binding. Comparison based on the interactions between amyloidogenic protein human cystatin C and phospholipid liposomes. Int J Biol Macromol 2024; 278:134889. [PMID: 39168225 DOI: 10.1016/j.ijbiomac.2024.134889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
A cell membrane is an essential cellular component providing protection against the outer environment. It is also a host for proteins and carbohydrates responsible for, e.g. transporter, receptor, or enzymatic functions. In parallel, the membrane may also be implicated in pathological processes leading, e.g. to the oligomerization of amyloid-forming proteins, a hallmark of i.a. Alzheimer's disease. The increasing need for detailed information on mechanisms driving the amyloid formation and the potential role of cell membranes in the process proves the research on protein-membrane interactions biologically relevant. Considering the potential and limitations of the relatively well established and newly developed methods, this study focused on selecting methods that allow a broad and comprehensive description of interactions between amyloidogenic protein human cystatin C and lipid bilayers. In the first step, dot-blot and ELISA tests were selected as techniques allowing fast screening for protein-ligand interactions. Next, surface plasmon resonance, spectral shift, biolayer interferometry, and switchSENSE® technology were used to determine kinetic parameters and binding constants for interactions between human cystatin C and the selected lipid bilayers. Based on the obtained results we have proposed the most promising candidates for monitoring of interactions and determining affinity between amyloidogenic proteins and membrane mimetics.
Collapse
Affiliation(s)
- Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | | | - Katarzyna Węgrzyn
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | | | | | - Przemyslaw Jurczak
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
11
|
Danda M, Klimešová A, Kušková K, Dostálková A, Pagáčová A, Prchal J, Kapisheva M, Ruml T, Rumlová M. Biochemical characterization of naturally occurring mutations in SARS-CoV-2 RNA-dependent RNA polymerase. Protein Sci 2024; 33:e5103. [PMID: 39145418 PMCID: PMC11325161 DOI: 10.1002/pro.5103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Since the emergence of SARS-CoV-2, mutations in all subunits of the RNA-dependent RNA polymerase (RdRp) of the virus have been repeatedly reported. Although RdRp represents a primary target for antiviral drugs, experimental studies exploring the phenotypic effect of these mutations have been limited. This study focuses on the phenotypic effects of substitutions in the three RdRp subunits: nsp7, nsp8, and nsp12, selected based on their occurrence rate and potential impact. We employed nano-differential scanning fluorimetry and microscale thermophoresis to examine the impact of these mutations on protein stability and RdRp complex assembly. We observed diverse impacts; notably, a single mutation in nsp8 significantly increased its stability as evidenced by a 13°C increase in melting temperature, whereas certain mutations in nsp7 and nsp8 reduced their binding affinity to nsp12 during RdRp complex formation. Using a fluorometric enzymatic assay, we assessed the overall effect on RNA polymerase activity. We found that most of the examined mutations altered the polymerase activity, often as a direct result of changes in stability or affinity to the other components of the RdRp complex. Intriguingly, a combination of nsp8 A21V and nsp12 P323L mutations resulted in a 50% increase in polymerase activity. To our knowledge, this is the first biochemical study to demonstrate the impact of amino acid mutations across all components constituting the RdRp complex in emerging SARS-CoV-2 subvariants.
Collapse
Affiliation(s)
- Matěj Danda
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Anna Klimešová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Klára Kušková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Aneta Pagáčová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Jan Prchal
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Marina Kapisheva
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
12
|
Jagilinki BP, Willis MA, Mus F, Sharma R, Pellows LM, Mulder DW, Yang ZY, Seefeldt LC, King PW, Dukovic G, Peters JW. Microscale Thermophoresis (MST) as a Tool to Study Binding Interactions of Oxygen-Sensitive Biohybrids. Bio Protoc 2024; 14:e5041. [PMID: 39131194 PMCID: PMC11309957 DOI: 10.21769/bioprotoc.5041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 08/13/2024] Open
Abstract
Microscale thermophoresis (MST) is a technique used to measure the strength of molecular interactions. MST is a thermophoretic-based technique that monitors the change in fluorescence associated with the movement of fluorescent-labeled molecules in response to a temperature gradient triggered by an IR LASER. MST has advantages over other approaches for examining molecular interactions, such as isothermal titration calorimetry, nuclear magnetic resonance, biolayer interferometry, and surface plasmon resonance, requiring a small sample size that does not need to be immobilized and a high-sensitivity fluorescence detection. In addition, since the approach involves the loading of samples into capillaries that can be easily sealed, it can be adapted to analyze oxygen-sensitive samples. In this Bio-protocol, we describe the troubleshooting and optimization we have done to enable the use of MST to examine protein-protein interactions, protein-ligand interactions, and protein-nanocrystal interactions. The salient elements in the developed procedures include 1) loading and sealing capabilities in an anaerobic chamber for analysis using a NanoTemper MST located on the benchtop in air, 2) identification of the optimal reducing agents compatible with data acquisition with effective protection against trace oxygen, and 3) the optimization of data acquisition and analysis procedures. The procedures lay the groundwork to define the determinants of molecular interactions in these technically demanding systems. Key features • Established procedures for loading and sealing tubes in an anaerobic chamber for subsequent analysis. • Sodium dithionite (NaDT) could easily be substituted with one electron-reduced 1,1'-bis(3-sulfonatopropyl)-4,4'-bipyridinium [(SPr)2V•] to perform sensitive biophysical assays on oxygen-sensitive proteins like the MoFe protein. • Established MST as an experimental tool to quantify binding affinities in novel enzyme-quantum dot biohybrid complexes that are extremely oxygen-sensitive.
Collapse
Affiliation(s)
- Bhanu P. Jagilinki
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, USA
| | - Mark A. Willis
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Florence Mus
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, USA
| | - Ritika Sharma
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, USA
| | - Lauren M. Pellows
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - David W. Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Paul W. King
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Gordana Dukovic
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
- Materials Science and Engineering and Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, USA
| | - John W. Peters
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, USA
| |
Collapse
|
13
|
Brahma R, Raghuraman H. Characterization of a novel MgtE homolog and its structural dynamics in membrane mimetics. Biophys J 2024; 123:1968-1983. [PMID: 38042987 PMCID: PMC11309985 DOI: 10.1016/j.bpj.2023.11.3402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 12/04/2023] Open
Abstract
Magnesium (Mg2+) is the most abundant divalent cation in the cell and is critical for numerous cellular processes. Despite its importance, the mechanisms of intracellular Mg2+ transport and its regulation are poorly understood. MgtE is the main Mg2+ transport system in almost half of bacterial species and is an ortholog of mammalian SLC41A1 transporters, which are implicated in neurodegenerative diseases and cancer. To date, only MgtE from Thermus thermophilus (MgtETT) has been extensively characterized, mostly in detergent micelles, and gating-related structural dynamics in biologically relevant membranes are scarce. The MgtE homolog from Bacillus firmus (MgtEBF) is unique since it lacks the entire Mg2+-sensing N-domain but has conserved structural motifs in the TM-domain for Mg2+ transport. In this work, we have successfully purified this novel homolog in a stable and functional form, and ColabFold structure prediction analysis suggests a homodimer. Further, microscale thermophoresis experiments show that MgtEBF binds Mg2+ and ATP, similar to MgtETT. Importantly, we show that, despite lacking the N-domain, MgtEBF mediates Mg2+ transport function in the presence of an inwardly directed Mg2+ gradient in reconstituted proteoliposomes. Furthermore, comparison of the organization and dynamics of Trp residues in the TM-domain of MgtEBF in membrane mimetics, in apo- and Mg2+-bound forms, suggests that the cytoplasmic binding of Mg2+ might involve modest gating-related conformational changes at the TM-domain. Overall, our results show that the gating-related structural dynamics (hydration dynamics, conformational heterogeneity) of the full-length MgtEBF is significantly changed in functionally pertinent membrane environment, emphasizing the importance of lipid-protein interactions in MgtE gating mechanisms.
Collapse
Affiliation(s)
- Rupasree Brahma
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - H Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Training School Complex, Mumbai, India.
| |
Collapse
|
14
|
Lühmann KL, Seemann S, Martinek N, Ostendorp S, Kehr J. The glycine-rich domain of GRP7 plays a crucial role in binding long RNAs and facilitating phase separation. Sci Rep 2024; 14:16018. [PMID: 38992080 PMCID: PMC11239674 DOI: 10.1038/s41598-024-66955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024] Open
Abstract
Microscale thermophoresis (MST) is a well-established method to quantify protein-RNA interactions. In this study, we employed MST to analyze the RNA binding properties of glycine-rich RNA binding protein 7 (GRP7), which is known to have multiple biological functions related to its ability to bind different types of RNA. However, the exact mechanism of GRP7's RNA binding is not fully understood. While the RNA-recognition motif of GRP7 is known to be involved in RNA binding, the glycine-rich region (known as arginine-glycine-glycine-domain or RGG-domain) also influences this interaction. To investigate to which extend the RGG-domain of GRP7 is involved in RNA binding, mutation studies on putative RNA interacting or modulating sites were performed. In addition to MST experiments, we examined liquid-liquid phase separation of GRP7 and its mutants, both with and without RNA. Furthermore, we systemically investigated factors that might affect RNA binding selectivity of GRP7 by testing RNAs of different sizes, structures, and modifications. Consequently, our study revealed that GRP7 exhibits a high affinity for a variety of RNAs, indicating a lack of pronounced selectivity. Moreover, we established that the RGG-domain plays a crucial role in binding longer RNAs and promoting phase separation.
Collapse
Affiliation(s)
- Kim Lara Lühmann
- Department of Biology, Molecular Plant Genetics, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Silja Seemann
- Department of Biology, Molecular Plant Genetics, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Nina Martinek
- Department of Biology, Molecular Plant Genetics, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Steffen Ostendorp
- Department of Biology, Molecular Plant Genetics, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Julia Kehr
- Department of Biology, Molecular Plant Genetics, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
15
|
Mellouk A, Jaouen P, Ruel LJ, Lê M, Martini C, Moraes TF, El Bakkouri M, Lagüe P, Boisselier E, Calmettes C. POTRA domains of the TamA insertase interact with the outer membrane and modulate membrane properties. Proc Natl Acad Sci U S A 2024; 121:e2402543121. [PMID: 38959031 PMCID: PMC11252910 DOI: 10.1073/pnas.2402543121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
The outer membrane (OM) of gram-negative bacteria serves as a vital organelle that is densely populated with OM proteins (OMPs) and plays pivotal roles in cellular functions and virulence. The assembly and insertion of these OMPs into the OM represent a fundamental process requiring specialized molecular chaperones. One example is the translocation and assembly module (TAM), which functions as a transenvelope chaperone promoting the folding of specific autotransporters, adhesins, and secretion systems. The catalytic unit of TAM, TamA, comprises a catalytic β-barrel domain anchored within the OM and three periplasmic polypeptide-transport-associated (POTRA) domains that recruit the TamB subunit. The latter acts as a periplasmic ladder that facilitates the transport of unfolded OMPs across the periplasm. In addition to their role in recruiting the auxiliary protein TamB, our data demonstrate that the POTRA domains mediate interactions with the inner surface of the OM, ultimately modulating the membrane properties. Through the integration of X-ray crystallography, molecular dynamic simulations, and biomolecular interaction methodologies, we located the membrane-binding site on the first and second POTRA domains. Our data highlight a binding preference for phosphatidylglycerol, a minor lipid constituent present in the OM, which has been previously reported to facilitate OMP assembly. In the context of the densely OMP-populated membrane, this association may serve as a mechanism to secure lipid accessibility for nascent OMPs through steric interactions with existing OMPs, in addition to creating favorable conditions for OMP biogenesis.
Collapse
Affiliation(s)
- Abdelkader Mellouk
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| | - Paul Jaouen
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, centre hospitalier universitaire de Québec, Université Laval, Québec City, QCG1S 4L8, Canada
| | - Louis-Jacques Ruel
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec City, QCG1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QCG1V 0A6, Canada
| | - Michel Lê
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| | - Cyrielle Martini
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| | - Trevor F. Moraes
- Department of Biochemistry, University of Toronto, Toronto, ONM5G 1M1, Canada
| | - Majida El Bakkouri
- National Research Council Canada, Human Health Therapeutics, Montréal, QCH4P 2R2, Canada
| | - Patrick Lagüe
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec City, QCG1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QCG1V 0A6, Canada
| | - Elodie Boisselier
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, centre hospitalier universitaire de Québec, Université Laval, Québec City, QCG1S 4L8, Canada
| | - Charles Calmettes
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| |
Collapse
|
16
|
Lackner A, Qiu Y, Armanus E, Nicholas A, Macapagal K, Leonidas L, Xu H, McNulty R. Measuring Interactions Between Proteins and Small Molecules or Nucleic Acids. Curr Protoc 2024; 4:e1105. [PMID: 39040024 PMCID: PMC11335060 DOI: 10.1002/cpz1.1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Interactions between proteins and small molecules or nucleic acids play a pivotal role in numerous biological processes critical for human health and are fundamental for advancing our understanding of biological systems. Proteins are the workhorses of the cell, executing various functions ranging from catalyzing biochemical reactions to transmitting signals within the body. Small molecules, including drugs and metabolites, can modulate protein activity, thereby impacting cellular processes and disease pathways. Similarly, nucleic acids, such as DNA and RNA, regulate protein synthesis and function through intricate interactions. Understanding these interactions is crucial for drug discovery and development and can shed light on gene regulation, transcriptional control, and RNA processing, providing insights into genetic diseases and developmental disorders. Moreover, studying protein-small molecule and protein-nucleic acid interactions enhances our comprehension of fundamental biological mechanisms. A wide array of methods to study these interactions range in cost, sensitivity, materials usage, throughput, and complexity. Notably in the last decade, new techniques have been developed that enhance our understanding of these interactions. In this review, we aim to summarize the new state-of-the-art methods for detecting interactions between proteins and small molecules or nucleic acids, as well as discuss older methods that still hold value today. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Angela Lackner
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697 USA
| | - Yanfei Qiu
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697 USA
| | - Emy Armanus
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697 USA
| | - Alijah Nicholas
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697 USA
| | - Kahea Macapagal
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697 USA
| | - Lemuel Leonidas
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697 USA
| | - Huilin Xu
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697 USA
| | - Reginald McNulty
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697 USA
| |
Collapse
|
17
|
Brindani N, Vuong LM, La Serra MA, Salvador N, Menichetti A, Acquistapace IM, Ortega JA, Veronesi M, Bertozzi SM, Summa M, Girotto S, Bertorelli R, Armirotti A, Ganesan AK, De Vivo M. Discovery of CDC42 Inhibitors with a Favorable Pharmacokinetic Profile and Anticancer In Vivo Efficacy. J Med Chem 2024; 67:10401-10424. [PMID: 38866385 PMCID: PMC11215724 DOI: 10.1021/acs.jmedchem.4c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
We previously reported trisubstituted pyrimidine lead compounds, namely, ARN22089 and ARN25062, which block the interaction between CDC42 with its specific downstream effector, a PAK protein. This interaction is crucial for the progression of multiple tumor types. Such inhibitors showed anticancer efficacy in vivo. Here, we describe a second class of CDC42 inhibitors with favorable drug-like properties. Out of the 25 compounds here reported, compound 15 (ARN25499) stands out as the best lead compound with an improved pharmacokinetic profile, increased bioavailability, and efficacy in an in vivo PDX tumor mouse model. Our results indicate that these CDC42 inhibitors represent a promising chemical class toward the discovery of anticancer drugs, with ARN25499 as an additional lead candidate for preclinical development.
Collapse
Affiliation(s)
- Nicoletta Brindani
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Linh M. Vuong
- Department
of Dermatology, University of California, Irvine, California 92697, United States
| | - Maria Antonietta La Serra
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Noel Salvador
- Department
of Dermatology, University of California, Irvine, California 92697, United States
| | - Andrea Menichetti
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Isabella Maria Acquistapace
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Jose Antonio Ortega
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Marina Veronesi
- Structural
Biophysics Facility, Istituto Italiano di
Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Sine Mandrup Bertozzi
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Maria Summa
- Translational
Pharmacology Facility, Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Stefania Girotto
- Structural
Biophysics Facility, Istituto Italiano di
Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Rosalia Bertorelli
- Translational
Pharmacology Facility, Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Anand K. Ganesan
- Department
of Dermatology, University of California, Irvine, California 92697, United States
| | - Marco De Vivo
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| |
Collapse
|
18
|
Rudani BA, Jakubowski A, Kriegs H, Wiegand S. Deciphering the guanidinium cation: Insights into thermal diffusion. J Chem Phys 2024; 160:214502. [PMID: 38828819 DOI: 10.1063/5.0215843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Thermophoresis, or thermodiffusion, is becoming a more popular method for investigating the interactions between proteins and ligands due to its high sensitivity to the interactions between solutes and water. Despite its growing use, the intricate mechanisms behind thermodiffusion remain unclear. This gap in knowledge stems from the complexities of thermodiffusion in solvents that have specific interactions as well as the intricate nature of systems that include many components with both non-ionic and ionic groups. To deepen our understanding, we reduce complexity by conducting systematic studies on aqueous salt solutions. In this work, we focused on how guanidinium salt solutions behave in a temperature gradient, using thermal diffusion forced Rayleigh scattering experiments at temperatures ranging from 15 to 35 °C. We looked at the thermodiffusive behavior of four guanidinium salts (thiocyanate, iodide, chloride, and carbonate) in solutions with concentrations ranging from 1 to 3 mol/kg. The guanidinium cation is disk-shaped and is characterized by flat hydrophobic surfaces and three amine groups, which enable directional hydrogen bonding along the edges. We compare our results to the behavior of salts with spherical cations, such as sodium, potassium, and lithium. Our discussions are framed around how different salts are solvated, specifically in the context of the Hofmeister series, which ranks ions based on their effects on the solvation of proteins.
Collapse
Affiliation(s)
- Binny A Rudani
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Andre Jakubowski
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Hartmut Kriegs
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Simone Wiegand
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| |
Collapse
|
19
|
Luginina AP, Khnykin AN, Khorn PA, Moiseeva OV, Safronova NA, Pospelov VA, Dashevskii DE, Belousov AS, Borschevskiy VI, Mishin AV. Rational Design of Drugs Targeting G-Protein-Coupled Receptors: Ligand Search and Screening. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:958-972. [PMID: 38880655 DOI: 10.1134/s0006297924050158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 06/18/2024]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane proteins that participate in many physiological processes and represent major pharmacological targets. Recent advances in structural biology of GPCRs have enabled the development of drugs based on the receptor structure (structure-based drug design, SBDD). SBDD utilizes information about the receptor-ligand complex to search for suitable compounds, thus expanding the chemical space of possible receptor ligands without the need for experimental screening. The review describes the use of structure-based virtual screening (SBVS) for GPCR ligands and approaches for the functional testing of potential drug compounds, as well as discusses recent advances and successful examples in the application of SBDD for the identification of GPCR ligands.
Collapse
Affiliation(s)
- Aleksandra P Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Andrey N Khnykin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Polina A Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Olga V Moiseeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Nadezhda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Vladimir A Pospelov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Anatolii S Belousov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Valentin I Borschevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| |
Collapse
|
20
|
Zhao Y, Ma W, Tian K, Wang Z, Fu X, Zuo Q, Qi Y, Zhang S. Sucrose ester embedded lipid carrier for DNA delivery. Eur J Pharm Biopharm 2024; 198:114269. [PMID: 38527635 DOI: 10.1016/j.ejpb.2024.114269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 03/27/2024]
Abstract
Sucrose esters (SEs) have great potential in the field of nucleic acid delivery due to their unique physical and chemical properties and good biosafety. However, the mechanism of the effect of SEs structure on delivery efficiency has not been studied. The liposomes containing peptide lipids and SEs were constructed, and the effects of SEs on the interaction between the liposomes and DNA were studied. The addition of SEs affects the binding rate of liposomes to DNA, and the binding rate gradually decreases with the increase of SEs' carbon chain length. SEs also affect the binding site and affinity of liposomes to DNA, promoting the aggregation of lipids to form liposomes, where DNA wraps around or compresses inside the liposomes, allowing it to compress DNA without damaging the DNA structure. COL-6, which is composed of sucrose laurate, exhibits the optimal affinity for DNA, and SE promotes the formation of ordered membrane structure and enhances membrane stability, so that COL-6 exhibits a balance between rigidity and flexibility, and thus exhibits the highest delivery efficiency of DNA among these formulations. This work provides theoretical foundations for the application of SE in gene delivery and guides for the rational design of delivery systems.
Collapse
Affiliation(s)
- Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Wanting Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Kexin Tian
- College of Chemical Engineering, Dalian University of Technology, Dalian 116600, China
| | - Zhe Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Xingxing Fu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Qi Zuo
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney 2050, Australia.
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
21
|
Albani M, Fassi EMA, Moretti RM, Garofalo M, Montagnani Marelli M, Roda G, Sgrignani J, Cavalli A, Grazioso G. Computational Design of Novel Cyclic Peptides Endowed with Autophagy-Inhibiting Activity on Cancer Cell Lines. Int J Mol Sci 2024; 25:4622. [PMID: 38731842 PMCID: PMC11083565 DOI: 10.3390/ijms25094622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
(1) Autophagy plays a significant role in development and cell proliferation. This process is mainly accomplished by the LC3 protein, which, after maturation, builds the nascent autophagosomes. The inhibition of LC3 maturation results in the interference of autophagy activation. (2) In this study, starting from the structure of a known LC3B binder (LIR2-RavZ peptide), we identified new LC3B ligands by applying an in silico drug design strategy. The most promising peptides were synthesized, biophysically assayed, and biologically evaluated to ascertain their potential antiproliferative activity on five humans cell lines. (3) A cyclic peptide (named Pep6), endowed with high conformational stability (due to the presence of a disulfide bridge), displayed a Kd value on LC3B in the nanomolar range. Assays accomplished on PC3, MCF-7, and A549 cancer cell lines proved that Pep6 exhibited cytotoxic effects comparable to those of the peptide LIR2-RavZ, a reference LC3B ligand. Furthermore, it was ineffective on both normal prostatic epithelium PNT2 and autophagy-defective prostate cancer DU145 cells. (4) Pep6 can be considered a new autophagy inhibitor that can be employed as a pharmacological tool or even as a template for the rational design of new small molecules endowed with autophagy inhibitory activity.
Collapse
Affiliation(s)
- Marco Albani
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.A.); (G.R.)
| | - Enrico Mario Alessandro Fassi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.A.); (G.R.)
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (R.M.M.); (M.M.M.)
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, Università di Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (R.M.M.); (M.M.M.)
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.A.); (G.R.)
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine (IRB), Via Chiesa 5, 6500 Bellinzona, Switzerland; (J.S.); (A.C.)
| | - Andrea Cavalli
- Institute for Research in Biomedicine (IRB), Via Chiesa 5, 6500 Bellinzona, Switzerland; (J.S.); (A.C.)
- Swiss Institute of Bioinformatics (SIB), University of Lausanne, Quartier UNIL-Sorge, Bâtiment Amphipôle, 1015 Lausanne, Switzerland
| | - Giovanni Grazioso
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.A.); (G.R.)
| |
Collapse
|
22
|
Garbagnoli M, Linciano P, Listro R, Rossino G, Vasile F, Collina S. Biophysical Assays for Investigating Modulators of Macromolecular Complexes: An Overview. ACS OMEGA 2024; 9:17691-17705. [PMID: 38680367 PMCID: PMC11044174 DOI: 10.1021/acsomega.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Drug discovery is a lengthy and intricate process, and in its early stage, crucial steps are the selection of the therapeutic target and the identification of novel ligands. Most targets are dysregulated in pathogenic cells; typically, their activation or deactivation leads to the desired effect, while in other cases, interfering with the target-natural binder complex achieves the therapeutic results. Biophysical assays are a suitable strategy for finding new ligands or interferent agents, being able to evaluate ligand-protein interactions and assessing the effect of small molecules (SMols) on macromolecular complexes. This mini-review provides a detailed analysis of widely used biophysical methods, including fluorescence-based approaches, circular dichroism, isothermal titration calorimetry, microscale thermophoresis, and NMR spectroscopy. After a brief description of the methodologies, examples of interaction and competition experiments are described, together with an analysis of the advantages and disadvantages of each technique. This mini-review provides an overview of the most relevant biophysical technologies that can help in identifying SMols able not only to bind proteins but also to interfere with macromolecular complexes.
Collapse
Affiliation(s)
- Martina Garbagnoli
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Pasquale Linciano
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Roberta Listro
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Giacomo Rossino
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Francesca Vasile
- Department
of Chemistry, University of Milan, Via Golgi 19, Milano 20133, Italy
| | - Simona Collina
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
23
|
Pagba CV, Gupta AK, Dilsha K, Sadrpour P, Jakubec J, Prakash P, van der Hoeven D, Cho KJ, Gilbertson S, Gorfe AA. Biophysical and Biochemical Characterization of Structurally Diverse Small Molecule Hits for KRAS Inhibition. Chembiochem 2024; 25:e202300827. [PMID: 38349283 DOI: 10.1002/cbic.202300827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/12/2024] [Indexed: 03/08/2024]
Abstract
We describe six compounds as early hits for the development of direct inhibitors of KRAS, an important anticancer drug target. We show that these compounds bind to KRAS with affinities in the low micromolar range and exert different effects on its interactions with binding partners. Some of the compounds exhibit selective binding to the activated form of KRAS and inhibit signal transduction through both the MAPK or the phosphatidylinositide 3-kinase PI3K-protein kinase B (AKT) pathway in cells expressing mutant KRAS. Most inhibit intrinsic and/or SOS-mediated KRAS activation while others inhibit RAS-effector interaction. We propose these compounds as starting points for the development of non-covalent allosteric KRAS inhibitors.
Collapse
Affiliation(s)
- Cynthia V Pagba
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas, 77030, USA
| | - Amit K Gupta
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas, 77030, USA
| | - Kasuni Dilsha
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX 77204, USA
| | - Parisa Sadrpour
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| | - Jacob Jakubec
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas, 77030, USA
| | - Priyanka Prakash
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas, 77030, USA
| | - Dharini van der Hoeven
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge St., Houston, Texas, 77030, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| | - Scott Gilbertson
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX 77204, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas, 77030, USA
- Biochemistry and Cell Biology Program & Therapeutics and Pharmacology Program, UTHealth MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, 6431 Fannin St., Houston, Texas, 77030, USA
| |
Collapse
|
24
|
Banerjee K, Rasheeda K, Tarannum A, Fathima NN. Structural and mechanical behavior of type-I collagen fibrils in presence of induced electrostatic interactions through ionic liquids. Biophys Chem 2024; 307:107192. [PMID: 38335806 DOI: 10.1016/j.bpc.2024.107192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Tuning the self-assembly of collagen has broad applications in the biomedical field owing to their desired biological performance as collagenous materials with tunable functionalities can further determine cellular responses. In this work, an attempt has been made to tune the self-assembly of collagen using ionic liquids, viz., imidazolium chloride (IC) and choline dihydrogen phosphate (CDHP) at its physiological pH, followed by probing assembled systems using various characterization methods. Turbidity measurements of fibrillar networks were performed to ascertain the rate of fibril formation in addition of imidazolium chloride and choline dihydrogen phosphate to collagen at physiological pH. Morphological changes were examined using Scanning Electron Microscope (SEM), binding affinities were measured by Microscale Thermophoresis (MST), in addition to, changes in the shear viscosity, mechanical strength of collagen fibrils when interacted with imidazolium and choline based ILs were carried out using rotational rheometer and Quartz Crystal Microbalance (QCM) measurements. Experimental result depicts that CDHP imparts better crosslinking as well as mechanical strength compare to IC, which is already known for destabilizing the triple helix structure is inhibiting the fibril formation. This self-assembled, ionic-liquid treated collagen-fibrillar system would accelerate various force modulated fibrillar network study, for mimicking the ECM and tissue engineering application.
Collapse
Affiliation(s)
- Kuntala Banerjee
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - K Rasheeda
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, India
| | - Aafiya Tarannum
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, India
| | - N Nishad Fathima
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
25
|
Ye Z, Xu S, Shi Y, Cheng X, Zhang Y, Roy S, Namjoshi S, Longo MA, Link TM, Schlacher K, Peng G, Yu D, Wang B, Tainer JA, Ahmed Z. GRB2 stabilizes RAD51 at reversed replication forks suppressing genomic instability and innate immunity against cancer. Nat Commun 2024; 15:2132. [PMID: 38459011 PMCID: PMC10923831 DOI: 10.1038/s41467-024-46283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
Growth factor receptor-bound protein 2 (GRB2) is a cytoplasmic adapter for tyrosine kinase signaling and a nuclear adapter for homology-directed-DNA repair. Here we find nuclear GRB2 protects DNA at stalled replication forks from MRE11-mediated degradation in the BRCA2 replication fork protection axis. Mechanistically, GRB2 binds and inhibits RAD51 ATPase activity to stabilize RAD51 on stalled replication forks. In GRB2-depleted cells, PARP inhibitor (PARPi) treatment releases DNA fragments from stalled forks into the cytoplasm that activate the cGAS-STING pathway to trigger pro-inflammatory cytokine production. Moreover in a syngeneic mouse metastatic ovarian cancer model, GRB2 depletion in the context of PARPi treatment reduced tumor burden and enabled high survival consistent with immune suppression of cancer growth. Collective findings unveil GRB2 function and mechanism for fork protection in the BRCA2-RAD51-MRE11 axis and suggest GRB2 as a potential therapeutic target and an enabling predictive biomarker for patient selection for PARPi and immunotherapy combination.
Collapse
Affiliation(s)
- Zu Ye
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Shengfeng Xu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yin Shi
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xueqian Cheng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuan Zhang
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sunetra Roy
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sarita Namjoshi
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael A Longo
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Todd M Link
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Katharina Schlacher
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dihua Yu
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bin Wang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John A Tainer
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Zamal Ahmed
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Osman N, Omolo CA, Gafar MA, Devnarain N, Rambharose S, Ibrahim UH, Fasiku VO, Govender T. Niosomes modified with a novel pH-responsive coating (mPEG-OA) enhance the antibacterial and anti-biofilm activity of vancomycin against methicillin-resistant Staphylococcus aureus. NANO EXPRESS 2024; 5:015008. [DOI: 10.1088/2632-959x/ad1d02] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Surface functionalization of nanoparticles has shown potential in enhancing the efficacy of antibiotic-loaded nanosystems against drug-resistant bacteria. The objective of this study was to synthesize and characterize an acid-cleavable pH-responsive polymer from methoxy polyethylene glycol and oleylamine (mPEG-OA) to surface modify vancomycin (VCM)-loaded niosomes and to evaluate their antibacterial and anti-biofilm effectiveness against methicillin-resistant Staphylococcus aureus (MRSA). The novel mPEG-OA-coated niosomes were biocompatible, hemocompatible with size, polydispersity index, and zeta potential of 169.2 ± 1.6 nm, 0.21 ± 0.01 and −0.82 ± 0.22 mV, respectively. Under acidic conditions, mPEG-OA-coated niosomes exhibited a pH-responsive and sustained VCM release profile and in vitro antibacterial activity than non-coated niosomes and bare VCM. mPEG-OA-coated niosomes showed a significant reduction in biofilm formation at pH 6 compared to pH 7.4 (p = 0,0119). The in vivo efficacy of mPEG-OA-coated niosomes in the BALB/c mice skin infection model showed a 9.9-fold reduction in MRSA load compared to bare VCM. Histomorphologically, the mPEG-OA-coated niosomes group displayed the lowest bacterial load, tissue swelling, and inflammation. The results of this study demonstrate the potential of novel pH-responsive mPEG-OA-derived polymer coating to enhance bacterial killing kinetics, and antibacterial and anti-biofilm efficacies over conventional antibiotic and non-functionalized nano delivery systems.
Collapse
|
27
|
Avivi MY, Touitou N, Rohana H, Lerrer B, Shav-Tal Y, Peretz A, Cohen HY. Nucleic acid hybridization-based detection of pathogenic RNA using microscale thermophoresis. J Biol Chem 2024; 300:105676. [PMID: 38278326 PMCID: PMC10881438 DOI: 10.1016/j.jbc.2024.105676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
Infectious diseases are one of the world's leading causes of morbidity. Their rapid spread emphasizes the need for accurate and fast diagnostic methods for large-scale screening. Here, we describe a robust method for the detection of pathogens based on microscale thermophoresis (MST). The method involves the hybridization of a fluorescently labeled DNA probe to a target RNA and the assessment of thermophoretic migration of the resulting complex in solution within a 2 to 30-time window. We found that the thermophoretic migration of the nucleic acid-based probes is primarily determined by the fluorescent molecule used, rather than the nucleic acid sequence of the probe. Furthermore, a panel of uniformly labeled probes that bind to the same target RNA yields a more responsive detection pattern than a single probe, and moreover, can be used for the detection of specific pathogen variants. In addition, intercalating agents (ICA) can be used to alter migration directionality to improve detection sensitivity and resolving power by several orders of magnitude. We show that this approach can rapidly diagnose viral SARS-CoV2, influenza H1N1, artificial pathogen targets, and bacterial infections. Furthermore, it can be used for anti-microbial resistance testing within 2 h, demonstrating its diagnostic potential for early pathogen detection.
Collapse
Affiliation(s)
- Matan Yosef Avivi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Noga Touitou
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hanan Rohana
- Clinical Microbiology Laboratory, Baruch Padeh Medical Center, Tiberias, Israel; Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Batia Lerrer
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Avi Peretz
- Clinical Microbiology Laboratory, Baruch Padeh Medical Center, Tiberias, Israel; Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Haim Yosef Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
28
|
Ferens FG, Taber CC, Stuart S, Hubert M, Tarade D, Lee JE, Ohh M. Deficiency in PHD2-mediated hydroxylation of HIF2α underlies Pacak-Zhuang syndrome. Commun Biol 2024; 7:240. [PMID: 38418569 PMCID: PMC10902354 DOI: 10.1038/s42003-024-05904-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
Pacak-Zhuang syndrome is caused by mutations in the EPAS1 gene, which encodes for one of the three hypoxia-inducible factor alpha (HIFα) paralogs HIF2α and is associated with defined but varied phenotypic presentations including neuroendocrine tumors and polycythemia. However, the mechanisms underlying the complex genotype-phenotype correlations remain incompletely understood. Here, we devised a quantitative method for determining the dissociation constant (Kd) of the HIF2α peptides containing disease-associated mutations and the catalytic domain of prolyl-hydroxylase (PHD2) using microscale thermophoresis (MST) and showed that neuroendocrine-associated Class 1 HIF2α mutants have distinctly higher Kd than the exclusively polycythemia-associated Class 2 HIF2α mutants. Based on the co-crystal structure of PHD2/HIF2α peptide complex at 1.8 Å resolution, we showed that the Class 1 mutated residues are localized to the critical interface between HIF2α and PHD2, adjacent to the PHD2 active catalytic site, while Class 2 mutated residues are localized to the more flexible region of HIF2α that makes less contact with PHD2. Concordantly, Class 1 mutations were found to significantly increase HIF2α-mediated transcriptional activation in cellulo compared to Class 2 counterparts. These results reveal a structural mechanism in which the strength of the interaction between HIF2α and PHD2 is at the root of the general genotype-phenotype correlations observed in Pacak-Zhuang syndrome.
Collapse
Affiliation(s)
- Fraser G Ferens
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Cassandra C Taber
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Sarah Stuart
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Mia Hubert
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Daniel Tarade
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Michael Ohh
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Biochemistry, Faculty of Medicine, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
29
|
Lee N, Mohanakumar S, Briels WJ, Wiegand S. Non-monotonic Soret coefficients of aqueous LiCl solutions with varying concentrations. Phys Chem Chem Phys 2024; 26:7830-7836. [PMID: 38375894 DOI: 10.1039/d3cp06061f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
We investigate the thermodiffusive properties of aqueous solutions of lithium chloride, using thermal diffusion forced Rayleigh scattering in a concentration range of 0.5-2 mole per kg of solvent and a temperature range of 5 to 45 °C. All solutions exhibit non-monotonic variations of the Soret coefficient ST with a concentration exhibiting a minimum at about one mole per kg of solvent. The depth of the minimum decreases with increasing temperature and shifts slightly towards higher concentrations. We compare the experimental data with published data and apply a recent model based on overlapping hydration shells. Additionally, we calculate the ratio of the phenomenological Onsager coefficients using our experimental results and published data to calculate the thermodynamic factor. Simple linear, quadratic and exponential functions can be used to describe this ratio accurately, and together with the thermodynamic factors, the experimental Soret coefficients can be reproduced. The main conclusion from this analysis is that the minimum of the Soret coefficients results from a maximum in the thermodynamic factor, which appears itself at concentrations far below the experimental concentrations. Only after multiplication by the (negative) monotonous Onsager ratio does the minimum move into the experimental concentration window.
Collapse
Affiliation(s)
- Namkyu Lee
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, Jülich D-52428, Germany.
- Department of Mechanical Engineering, Yonsei University, Seoul, Korea.
| | - Shilpa Mohanakumar
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, Jülich D-52428, Germany.
| | - W J Briels
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, Jülich D-52428, Germany.
- University of Twente, Computational Chemical Physics, Postbus 217, Enschede 7500 AE, The Netherlands.
| | - Simone Wiegand
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, Jülich D-52428, Germany.
- Chemistry Department - Physical Chemistry, University Cologne, Cologne D-50939, Germany
| |
Collapse
|
30
|
Wang H, Mi Q, Mao Y, Tan Y, Yang M, Liu W, Wang N, Tian X, Huang L. Streptothricin-F Inhibition of FtsZ Function: A Promising Approach for Controlling Pseudomonas syringae pv. actinidiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2624-2633. [PMID: 38277222 DOI: 10.1021/acs.jafc.3c08474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is a significant pathogenic bacterium affecting the kiwifruit industry. This study investigated the target sites of streptothricin-F (ST-F), produced by Streptomyces lavendulae gCLA4. The inhibition of ST-F on Psa was examined by the microscopic structural differences of Psa before and after treatment with ST-F, as well as the interaction between ST-F and cell division-related proteins. The results revealed filamentation of Psa after ST-F treatment, and fluorescence microscopy showed that ST-F inhibited the formation of the Z-ring composed of FtsZ protein. In vitro experiments and molecular docking demonstrated that ST-F can bind to FtsZ with a binding energy of 0.4 μM and inhibit FtsZ's GTP-dependent polymerization reaction. In addition, ST-F does not exert inhibitory effects on cell division in Psa strains overexpressing ftsZ. In conclusion, FtsZ is one of the target sites for ST-F inhibition of Psa, highlighting its potential as a therapeutic target for controlling Psa-induced kiwifruit bacterial canker.
Collapse
Affiliation(s)
- Hua Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Qianqian Mi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Yiru Mao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Yunxiao Tan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Mingming Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Wei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Nana Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Life Science, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Xiangrong Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Forestry, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| |
Collapse
|
31
|
Kreida S, Roche JV, Missel JW, Al-Jubair T, Hagströmer CJ, Wittenbecher V, Linse S, Gourdon P, Törnroth-Horsefield S. The role of phosphorylation in calmodulin-mediated gating of human AQP0. Biochem J 2024; 481:17-32. [PMID: 38032258 PMCID: PMC10903448 DOI: 10.1042/bcj20230158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
Aquaporin-0 (AQP0) is the main water channel in the mammalian lens and is involved in accommodation and maintaining lens transparency. AQP0 binds the Ca2+-sensing protein calmodulin (CaM) and this interaction is believed to gate its water permeability by closing the water-conducting pore. Here, we express recombinant and functional human AQP0 in Pichia pastoris and investigate how phosphorylation affects the interaction with CaM in vitro as well as the CaM-dependent water permeability of AQP0 in proteoliposomes. Using microscale thermophoresis and surface plasmon resonance technology we show that the introduction of the single phospho-mimicking mutations S229D and S235D in AQP0 reduces CaM binding. In contrast, CaM interacts with S231D with similar affinity as wild type, but in a different manner. Permeability studies of wild-type AQP0 showed that the water conductance was significantly reduced by CaM in a Ca2+-dependent manner, whereas AQP0 S229D, S231D and S235D were all locked in an open state, insensitive to CaM. We propose a model in which phosphorylation of AQP0 control CaM-mediated gating in two different ways (1) phosphorylation of S229 or S235 abolishes binding (the pore remains open) and (2) phosphorylation of S231 results in CaM binding without causing pore closure, the functional role of which remains to be elucidated. Our results suggest that site-dependent phosphorylation of AQP0 dynamically controls its CaM-mediated gating. Since the level of phosphorylation increases towards the lens inner cortex, AQP0 may become insensitive to CaM-dependent gating along this axis.
Collapse
Affiliation(s)
- Stefan Kreida
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | | | - Julie Winkel Missel
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Tamim Al-Jubair
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | | | | | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Pontus Gourdon
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
32
|
Jacobs LMC, Consol P, Chen Y. Drug Discovery in the Field of β-Lactams: An Academic Perspective. Antibiotics (Basel) 2024; 13:59. [PMID: 38247618 PMCID: PMC10812508 DOI: 10.3390/antibiotics13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
β-Lactams are the most widely prescribed class of antibiotics that inhibit penicillin-binding proteins (PBPs), particularly transpeptidases that function in peptidoglycan synthesis. A major mechanism of antibiotic resistance is the production of β-lactamase enzymes, which are capable of hydrolyzing β-lactam antibiotics. There have been many efforts to counter increasing bacterial resistance against β-lactams. These studies have mainly focused on three areas: discovering novel inhibitors against β-lactamases, developing new β-lactams less susceptible to existing resistance mechanisms, and identifying non-β-lactam inhibitors against cell wall transpeptidases. Drug discovery in the β-lactam field has afforded a range of research opportunities for academia. In this review, we summarize the recent new findings on both β-lactamases and cell wall transpeptidases because these two groups of enzymes are evolutionarily and functionally connected. Many efforts to develop new β-lactams have aimed to inhibit both transpeptidases and β-lactamases, while several promising novel β-lactamase inhibitors have shown the potential to be further developed into transpeptidase inhibitors. In addition, the drug discovery progress against each group of enzymes is presented in three aspects: understanding the targets, screening methodology, and new inhibitor chemotypes. This is to offer insights into not only the advancement in this field but also the challenges, opportunities, and resources for future research. In particular, cyclic boronate compounds are now capable of inhibiting all classes of β-lactamases, while the diazabicyclooctane (DBO) series of small molecules has led to not only new β-lactamase inhibitors but potentially a new class of antibiotics by directly targeting PBPs. With the cautiously optimistic successes of a number of new β-lactamase inhibitor chemotypes and many questions remaining to be answered about the structure and function of cell wall transpeptidases, non-β-lactam transpeptidase inhibitors may usher in the next exciting phase of drug discovery in this field.
Collapse
Affiliation(s)
| | | | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (L.M.C.J.); (P.C.)
| |
Collapse
|
33
|
Corbeski I, Horn V, van der Valk RA, le Paige U, Dame RT, van Ingen H. Microscale Thermophoresis Analysis of Chromatin Interactions. Methods Mol Biol 2024; 2819:357-379. [PMID: 39028515 DOI: 10.1007/978-1-0716-3930-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Architectural DNA-binding proteins are key to the organization and compaction of genomic DNA inside cells. The activity of architectural proteins is often subject to further modulation and regulation through the interaction with a diverse array of other protein factors. Detailed knowledge on the binding modes involved is crucial for our understanding of how these protein-protein and protein-DNA interactions shape the functional landscape of chromatin in all kingdoms of life: bacteria, archaea, and eukarya.Microscale thermophoresis (MST) is a biophysical technique for the study of biomolecular interactions. It has seen increasing application in recent years thanks to its solution-based nature, rapid application, modest sample demand, and the sensitivity of the thermophoresis effect to binding events.Here, we describe the use of MST in the study of chromatin interactions. The emphasis lies on the wide range of ways in which these experiments are set up and the diverse types of information they reveal. These aspects are illustrated with four very different systems: the sequence-dependent DNA compaction by architectural protein HMfB, the sequential binding of core histone complexes to histone chaperone APLF, the impact of the nucleosomal context on the recognition of histone modifications, and the binding of a viral peptide to the nucleosome. Special emphasis is given to the key steps in the design, execution, and analysis of MST experiments in the context of the provided examples.
Collapse
Affiliation(s)
- Ivan Corbeski
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | - Velten Horn
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- CSL Behring, Hattersheim, Germany
| | - Ramon A van der Valk
- Kavli Institute of NanoScience, Department of Bionanoscience, Faculty of Applied Sciences, TU Delft, Delft, The Netherlands
| | - Ulric le Paige
- Structure and Dynamics of Biomolecules, Department of Chemistry, Ecole Normale Supérieure - Paris Sciences et Lettres, Paris, France
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Hugo van Ingen
- Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
34
|
Zhao Y, Mikes A, Tóth G, Aigbirhio F. Detection of Small-Molecule Interactions with Fibrillar Tau Protein Aggregates Using Microscale Thermophoresis. Methods Mol Biol 2024; 2754:205-217. [PMID: 38512669 DOI: 10.1007/978-1-0716-3629-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Aggregated fibrillar tau protein is a pathological hallmark of several neurodegenerative diseases. Small molecules that bind to tau fibrils may be applied for their detection and quantification. This is of great importance as they can potentially be used for earlier diagnosis of disease and disease progression. Microscale thermophoresis (MST) enables the detection of biomolecular interactions in an aqueous environment in which no immobilization of either reaction partner is required. Here, an MST assay methodology is described for the detection of the interaction between a variety of small molecules and tau fibrils. The results of this study demonstrate that MST is a practical methodology to quantify interactions between small molecules and tau fibrillar aggregates.
Collapse
Affiliation(s)
- Yanyan Zhao
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Anna Mikes
- NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gergely Tóth
- NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
- Cantabio Pharmaceuticals Inc., Palo Alto, CA, USA
| | - Franklin Aigbirhio
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Basu S, Gohain N, Kim J, Trinh HV, Choe M, Joyce MG, Rao M. Determination of Binding Affinity of Antibodies to HIV-1 Recombinant Envelope Glycoproteins, Pseudoviruses, Infectious Molecular Clones, and Cell-Expressed Trimeric gp160 Using Microscale Thermophoresis. Cells 2023; 13:33. [PMID: 38201237 PMCID: PMC10778174 DOI: 10.3390/cells13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Developing a preventative vaccine for HIV-1 has been a global priority. The elicitation of broadly neutralizing antibodies (bNAbs) against a broad range of HIV-1 envelopes (Envs) from various strains appears to be a critical requirement for an efficacious HIV-1 vaccine. To understand their ability to neutralize HIV-1, it is important to characterize the binding characteristics of bNAbs. Our work is the first to utilize microscale thermophoresis (MST), a rapid, economical, and flexible in-solution temperature gradient method to quantitatively determine the binding affinities of bNAbs and non-neutralizing monoclonal antibodies (mAbs) to HIV-1 recombinant envelope monomer and trimer proteins of different subtypes, pseudoviruses (PVs), infectious molecular clones (IMCs), and cells expressing the trimer. Our results demonstrate that the binding affinities were subtype-dependent. The bNAbs exhibited a higher affinity to IMCs compared to PVs and recombinant proteins. The bNAbs and mAbs bound with high affinity to native-like gp160 trimers expressed on the surface of CEM cells compared to soluble recombinant proteins. Interesting differences were seen with V2-specific mAbs. Although they recognize linear epitopes, one of the antibodies also bound to the Envs on PVs, IMCs, and a recombinant trimer protein, suggesting that the epitope was not occluded. The identification of epitopes on the envelope surface that can bind to high affinity mAbs could be useful for designing HIV-1 vaccines and for down-selecting vaccine candidates that can induce high affinity antibodies to the HIV-1 envelope in their native conformation.
Collapse
Affiliation(s)
- Shraddha Basu
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.B.); (N.G.); (J.K.); (H.V.T.); (M.C.); (M.G.J.)
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Neelakshi Gohain
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.B.); (N.G.); (J.K.); (H.V.T.); (M.C.); (M.G.J.)
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jiae Kim
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.B.); (N.G.); (J.K.); (H.V.T.); (M.C.); (M.G.J.)
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Hung V. Trinh
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.B.); (N.G.); (J.K.); (H.V.T.); (M.C.); (M.G.J.)
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Misook Choe
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.B.); (N.G.); (J.K.); (H.V.T.); (M.C.); (M.G.J.)
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - M. Gordon Joyce
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.B.); (N.G.); (J.K.); (H.V.T.); (M.C.); (M.G.J.)
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Mangala Rao
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
36
|
Wang R, Shi X, Li C. Insights into the Surface Binding and Structural Interference of Polyphenols with the Membrane Raft Domains in Relation to Their Distinctive Ability to Inhibit Preadipocyte Differentiation in 3T3-L1 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19845-19855. [PMID: 38050784 DOI: 10.1021/acs.jafc.3c06747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Polyphenols with different structures have shown distinct variations in their ability to inhibit the differentiation of 3T3-L1 preadipocytes. However, the underlying mechanisms for these differences remain unclear. In the present study, the surface binding of polyphenols to different membrane domains was explored using coarse-grained molecular dynamics simulation (CG-MDs). Subsequently, this surface binding was confirmed in the liposome system by microscale thermophoresis. Additionally, the interference of polyphenols on the membrane raft's structure was studied through atomic force microscopy and high-content screening fluorescence microscopy. The results indicated that polyphenols with a differentiation-inhibitory ability, such as epicatechin-3-gallate (ECG) and epicatechin-3-gallate-(4β → 8, 2β → O → 7)-epicatechin-3-gallate (A-type ECG dimer), exhibited strong binding to ordered domains enriched in sphingolipids and cholesterol. This binding led to the structural disruption of membrane rafts by altering their size and shape, with the binding constant of 3.8 μM for ECG and 0.3 μM for A-type ECG dimer, respectively. In contrast, epicatechin (EC) with little differentiation-inhibitory ability had no effects on membrane rafts, and its binding constant with the ordered domain was 380.6 μM. Overall, the surface binding of polyphenols to ordered domains and the resulting disruption of membrane rafts structure might be a fundamental mechanism by which polyphenols inhibited the differentiation of 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xin Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Food Science, Ministry of Education, Wuhan, Hubei 430070, China
| |
Collapse
|
37
|
Pellows LM, Willis MA, Ruzicka JL, Jagilinki BP, Mulder DW, Yang ZY, Seefeldt LC, King PW, Dukovic G, Peters JW. High Affinity Electrostatic Interactions Support the Formation of CdS Quantum Dot:Nitrogenase MoFe Protein Complexes. NANO LETTERS 2023; 23:10466-10472. [PMID: 37930772 DOI: 10.1021/acs.nanolett.3c03205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Nitrogenase MoFe protein can be coupled with CdS nanocrystals (NCs) to enable photocatalytic N2 reduction. The nature of interactions that support complex formation is of paramount importance in intermolecular electron transfer that supports catalysis. In this work we have employed microscale thermophoresis to examine binding interactions between 3-mercaptopropionate capped CdS quantum dots (QDs) and MoFe protein over a range of QD diameters (3.4-4.3 nm). The results indicate that the interactions are largely electrostatic, with the strength of interactions similar to that observed for the physiological electron donor. In addition, the strength of interactions is sensitive to the QD diameter, and the binding interactions are significantly stronger for QDs with smaller diameters. The ability to quantitatively assess NC protein interactions in biohybrid systems supports strategies for understanding properties and reaction parameters that are important for obtaining optimal rates of catalysis in biohybrid systems.
Collapse
Affiliation(s)
- Lauren M Pellows
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Mark A Willis
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Jesse L Ruzicka
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Bhanu P Jagilinki
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Gordana Dukovic
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99163, United States
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
38
|
Wu D, Wang L, Li W, Li X. Identifying a New Target for BtOBP8: Discovery of a Small Amino Ketone Molecule Containing Benzothiazole Fragments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17635-17645. [PMID: 37651643 DOI: 10.1021/acs.jafc.3c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Insects rely on odorant-binding proteins (OBPs) for chemical perception, making OBPs a promising target for studying attractants and repellents of pests, such as Bemisia tabaci. However, no reports have reported using B. tabaci OBPs (BtOBPs) as pesticide screening targets. To fill this gap, we obtained BtOBP8 through prokaryotic expression and purification. Then, we confirmed its identity using western blotting and mass spectrometry. Next, we used the sitting drop and hanging drop methods to screen its crystal conditions. Using microscale thermophoresis and isothermal titration calorimetry, we identified the highest affinity ligand, 3l, from 30 compounds. Furthermore, point mutation techniques identified Val119 as a key amino acid residue in binding 31 to BtOBP8. Finally, we tested the bioactivity of B. tabaci Mediterranean and found that 3l more effectively inhibits the bioactivity of B. tabaci MED than imidacloprid. This study presents a new approach for developing green insecticides specific to B. tabaci MED by targeting OBPs. Conclusively, identifying and targeting specific OBPs can create more targeted and effective pest control strategies without relying on toxic chemicals.
Collapse
Affiliation(s)
- Danxia Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Li Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Wei Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
39
|
Yu H, Zhao Q. Profiling Additional Effects of Aptamer Fluorophore Modification on Microscale Thermophoresis Characterization of Aptamer-Target Binding. Anal Chem 2023; 95:17011-17019. [PMID: 37946406 DOI: 10.1021/acs.analchem.3c03603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Aptamers are promising affinity ligands with considerable applications, such as biosensors, disease diagnosis, therapy, etc. Characterization of aptamer-target binding is important in aptamer selection and aptamer applications. Microscale thermophoresis (MST) is an emerging optical technique for molecular interactions, which monitors fluorescence responses of fluorescent molecules in a microscopic temperature gradient. Harnessing merits in trace sample consumption, high speed, free separation, free immobilization, and ratiometric analysis, MST draws intense wide attention. MST is often applied for aptamer-target binding studies using fluorescently labeled aptamers. However, the MST signal is strongly dependent on fluorophore modifications at aptamers, which brings additional challenges and effects for MST analyzing aptamer affinity. Here, we systematically explored effects of fluorophore modifications (e.g., fluorophore types, fluorophore positions, etc.) of aptamer probes on MST characterizing aptamer-target interactions and identified gaps of MST analysis in aptamer affinity determination, taking aptamers against cadmium ions and aflatoxin B1 as two representatives. The same aptamers with different fluorophore modifications showed distinct MST signals in response magnitudes and signs as well as determined affinities, and some of them failed to respond to target binding and gave false affinity information in MST. A competitive MST method can be used to extract the affinity of unmodified aptamers, excluding effects of fluorophore modification. This work highlights that appropriate fluorophore modification is crucial in MST analysis of aptamer affinity, and caution is needed in MST applications, providing a basis for rational design of the MST method for the reliable molecular interaction study.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
40
|
North KC, Shaw AA, Bukiya AN, Dopico AM. Progesterone activation of β 1-containing BK channels involves two binding sites. Nat Commun 2023; 14:7248. [PMID: 37945687 PMCID: PMC10636063 DOI: 10.1038/s41467-023-42827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Progesterone (≥1 µM) is used in recovery of cerebral ischemia, an effect likely contributed to by cerebrovascular dilation. The targets of this progesterone action are unknown. We report that micromolar (µM) progesterone activates mouse cerebrovascular myocyte BK channels; this action is lost in β1-/- mice myocytes and in lipid bilayers containing BK α subunit homomeric channels but sustained on β1/β4-containing heteromers. Progesterone binds to both regulatory subunits, involving two steroid binding sites conserved in β1-β4: high-affinity (sub-µM), which involves Trp87 in β1 loop, and low-affinity (µM) defined by TM1 Tyr32 and TM2 Trp163. Thus progesterone, but not its oxime, bridges TM1-TM2. Mutation of the high-affinity site blunts channel activation by progesterone underscoring a permissive role of the high-affinity site: progesterone binding to this site enables steroid binding at the low-affinity site, which activates the channel. In support of our model, cerebrovascular dilation evoked by μM progesterone is lost by mutating Tyr32 or Trp163 in β1 whereas these mutations do not affect alcohol-induced cerebrovascular constriction. Furthermore, this alcohol action is effectively counteracted both in vitro and in vivo by progesterone but not by its oxime.
Collapse
Affiliation(s)
- Kelsey C North
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Andrew A Shaw
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Anna N Bukiya
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
| |
Collapse
|
41
|
Gupta S, Saini M, Joshi N, Shafi S, Najmi AK, Singh S. Antimalarial and Plasmodium falciparum serpentine receptor 12 targeting effect of FDA approved purinergic receptor antagonist. J Biomol Struct Dyn 2023; 41:9462-9475. [PMID: 36351236 DOI: 10.1080/07391102.2022.2142298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Intraerythrocytic stages of Plasmodium falciparum responsible for all clinical manifestations of malaria are regulated by array of signalling cascades that represent attractive targets for antimalarial therapy. G-protein coupled receptors (GPCRs) are druggable targets in the treatment of various pathological conditions, however, there is limited understanding about the role of GPCRs in malaria pathogenesis. In Plasmodium, serpentine receptors (PfSR1, PfSR10, PfSR12 and PfSR25) with GPCR-like membrane topology have been reported with the finite knowledge about their potential as antimalarial targets. We analyzed the localization of these receptors in malaria parasite by immunofluorescence assays. All four receptors were expressed in blood stages with PfSR12 expressing more in late intraerythrocytic stages. Further, we evaluated the druggability of PfSR12 using FDA-approved P2Y purinergic receptor antagonist, Prasugrel and its active metabolite R138727, which is proposed to be specific towards PfSR12. Interestingly, biophysical analysis indicated strong binding between PfSR12 and R138727 as compared to the prodrug Prasugrel. This binding interaction was further confirmed by thermal shift assay. Treatment of parasite with Prasugrel and R138727 resulted in growth inhibition of P. falciparum indicating an important role of purinergic signalling and PfSR12 in parasite survival. Next, progression studies indicated the inhibitory effect of Prasugrel begins in late erythrocyte stages corroborating with PfSR12 expression at these stages. Furthermore, Prasugrel also blocked in vivo growth of malaria parasite in a mouse experimental model. This study indicates the presence of P2Y type of purinergic signalling in growth and development of malaria parasite and suggests PfSR12, putative purinergic receptor druggability through Prasugrel.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sonal Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Monika Saini
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Nishant Joshi
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
42
|
McGorman B, Poole S, López MV, Kellett A. Analysis of non-canonical three- and four-way DNA junctions. Methods 2023; 219:30-38. [PMID: 37690737 DOI: 10.1016/j.ymeth.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The development of compounds that can selectively bind with non-canonical DNA structures has expanded in recent years. Junction DNA, including three-way junctions (3WJs) and four-way Holliday junctions (HJs), offer an intriguing target for developmental therapeutics as both 3WJs and HJs are involved in DNA replication and repair processes. However, there are a limited number of assays available for the analysis of junction DNA binding. Here, we describe the design and execution of multiplex fluorescent polyacrylamide gel electrophoresis (PAGE) and microscale thermophoresis (MST) assays that enable evaluation of junction-binding compounds. Two well characterised junction-binding compounds-a C6 linked bis-acridine ligand and an iron(II)-bound peptide helicate, which recognise HJs and 3WJs, respectively-were employed as probes for both MST and PAGE experiments. The multiplex PAGE assay expands beyond previously reported fluorescent PAGE as it uses four individual fluorophores that can be combined to visualise single-strands, pseudo-duplexes, and junction DNA present during 3WJ and HJ formation. The use of MST to identify the binding affinity of junction binding agents is, to our knowledge, first reported example of this technique. The combined use of PAGE and MST provides complementary results for the visualisation of 3WJ and HJ formation and the direct binding affinity (Kd and EC50) of these agents. These assays can be used to aid the discovery and design of new therapeutics targeting non-canonical nucleic acid structures.
Collapse
Affiliation(s)
- Bríonna McGorman
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Ireland
| | - Simon Poole
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Ireland
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Inorgánica. Universidade de Santiago de Compostela., Rúa Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Andrew Kellett
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
43
|
Liu Y, Yang J, Ruan M, Zhang H, Wang J, Li Y. NMR-Based Characterization of the Interaction between Yeast Oxa1-CTD and Ribosomes. Int J Mol Sci 2023; 24:14657. [PMID: 37834108 PMCID: PMC10572626 DOI: 10.3390/ijms241914657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
In mitochondria, the major subunits of oxidative phosphorylation complexes are translated by the mitochondrial ribosome (mito-ribosome). The correct insertion and assembly of these subunits into the inner mitochondrial membrane (IMM) are facilitated by mitochondrial oxidase assembly protein 1 (Oxa1) during the translation process. This co-translational insertion process involves an association between the mito-ribosome and the C-terminus of Oxa1 (Oxa1-CTD) Nuclear magnetic resonance (NMR) methods were mainly used to investigate the structural characterization of yeast Oxa1-CTD and its mode of interaction with the E. coli 70S ribosome. Oxa1-CTD forms a transient α-helical structure within the residues P342-Q385, which were reported to form an α-helix when combining with the ribosome. Two conserved contact sites that could interact with the ribosome were further identified. The first site was located on the very end of the N-terminus (V321-I327), and the second one encompassed a stretch of amino acid residues I348-Q370. Based on our discoveries and previous reports, a model has been proposed in which Oxa1-CTD interacts with ribosomes, accompanied by transient-to-stable transitions at the second contact site. These observations may enhance our understanding of the potential role of Oxa1-CTD in facilitating the assembly of oxidative phosphorylation complexes and provide insight into the structural characteristics of Oxa1-CTD.
Collapse
Affiliation(s)
- Yong Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Y.L.); (J.Y.); (M.R.); (H.Z.)
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Jing Yang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Y.L.); (J.Y.); (M.R.); (H.Z.)
| | - Maosen Ruan
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Y.L.); (J.Y.); (M.R.); (H.Z.)
| | - Huiqin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Y.L.); (J.Y.); (M.R.); (H.Z.)
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Y.L.); (J.Y.); (M.R.); (H.Z.)
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yunyan Li
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Y.L.); (J.Y.); (M.R.); (H.Z.)
| |
Collapse
|
44
|
Kallert E, Behrendt M, Frey A, Kersten C, Barthels F. Non-covalent dyes in microscale thermophoresis for studying RNA ligand interactions and modifications. Chem Sci 2023; 14:9827-9837. [PMID: 37736627 PMCID: PMC10510756 DOI: 10.1039/d3sc02993j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/27/2023] [Indexed: 09/23/2023] Open
Abstract
Microscale Thermophoresis (MST) is a powerful biophysical technique that measures the mobility of biomolecules in response to a temperature gradient, making it useful for investigating the interactions between biological molecules. This study presents a novel methodology for studying RNA-containing samples using non-covalent nucleic acid-sensitive dyes in MST. This "mix-and-measure" protocol uses non-covalent dyes, such as those from the Syto or Sybr series, which lead to the statistical binding of one fluorophore per RNA oligo showing key advantages over traditional covalent labelling approaches. This new approach has been successfully used to study the binding of ligands to RNA molecules (e.g., SAM- and PreQ1 riboswitches) and the identification of modifications (e.g., m6A) in short RNA oligos which can be written by the RNA methyltransferase METTL3/14.
Collapse
Affiliation(s)
- Elisabeth Kallert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz Staudingerweg 5 55128 Mainz Germany
| | - Malte Behrendt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz Staudingerweg 5 55128 Mainz Germany
| | - Ariane Frey
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz Staudingerweg 5 55128 Mainz Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz Staudingerweg 5 55128 Mainz Germany
| | - Fabian Barthels
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz Staudingerweg 5 55128 Mainz Germany
| |
Collapse
|
45
|
Cai H, Li L, Slavik KM, Huang J, Yin T, Ai X, Hédelin L, Haas G, Xiang Z, Yang Y, Li X, Chen Y, Wei Z, Deng H, Chen D, Jiao R, Martins N, Meignin C, Kranzusch PJ, Imler JL. The virus-induced cyclic dinucleotide 2'3'-c-di-GMP mediates STING-dependent antiviral immunity in Drosophila. Immunity 2023; 56:1991-2005.e9. [PMID: 37659413 DOI: 10.1016/j.immuni.2023.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023]
Abstract
In mammals, the enzyme cGAS senses the presence of cytosolic DNA and synthesizes the cyclic dinucleotide (CDN) 2'3'-cGAMP, which triggers STING-dependent immunity. In Drosophila melanogaster, two cGAS-like receptors (cGLRs) produce 3'2'-cGAMP and 2'3'-cGAMP to activate STING. We explored CDN-mediated immunity in 14 Drosophila species covering 50 million years of evolution and found that 2'3'-cGAMP and 3'2'-cGAMP failed to control infection by Drosophila C virus in D. serrata and two other species. We discovered diverse CDNs produced in a cGLR-dependent manner in response to viral infection in D. melanogaster, including 2'3'-c-di-GMP. This CDN was a more potent STING agonist than cGAMP in D. melanogaster and it also activated a strong antiviral transcriptional response in D. serrata. Our results shed light on the evolution of cGLRs in flies and provide a basis for understanding the function and regulation of this emerging family of pattern recognition receptors in animal innate immunity.
Collapse
Affiliation(s)
- Hua Cai
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.
| | - Lihua Li
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Kailey M Slavik
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jingxian Huang
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Ting Yin
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xianlong Ai
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Léna Hédelin
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Gabrielle Haas
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Zhangmin Xiang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou, China
| | - Yunyun Yang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou, China
| | - Xiaoyan Li
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yuqiang Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Ziming Wei
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Huimin Deng
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Di Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Renjie Jiao
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Nelson Martins
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | - Jean-Luc Imler
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China; Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| |
Collapse
|
46
|
Dreishpoon MB, Bick NR, Petrova B, Warui DM, Cameron A, Booker SJ, Kanarek N, Golub TR, Tsvetkov P. FDX1 regulates cellular protein lipoylation through direct binding to LIAS. J Biol Chem 2023; 299:105046. [PMID: 37453661 PMCID: PMC10462841 DOI: 10.1016/j.jbc.2023.105046] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Ferredoxins are a family of iron-sulfur (Fe-S) cluster proteins that serve as essential electron donors in numerous cellular processes that are conserved through evolution. The promiscuous nature of ferredoxins as electron donors enables them to participate in many metabolic processes including steroid, heme, vitamin D, and Fe-S cluster biosynthesis in different organisms. However, the unique natural function(s) of each of the two human ferredoxins (FDX1 and FDX2) are still poorly characterized. We recently reported that FDX1 is both a crucial regulator of copper ionophore-induced cell death and serves as an upstream regulator of cellular protein lipoylation, a mitochondrial lipid-based post-translational modification naturally occurring on four mitochondrial enzymes that are crucial for TCA cycle function. Here we show that FDX1 directly regulates protein lipoylation by binding the lipoyl synthase (LIAS) enzyme promoting its functional binding to the lipoyl carrier protein GCSH and not through indirect regulation of cellular Fe-S cluster biosynthesis. Metabolite profiling revealed that the predominant cellular metabolic outcome of FDX1 loss of function is manifested through the regulation of the four lipoylation-dependent enzymes ultimately resulting in loss of cellular respiration and sensitivity to mild glucose starvation. Transcriptional profiling established that FDX1 loss-of-function results in the induction of both compensatory metabolism-related genes and the integrated stress response, consistent with our findings that FDX1 loss-of-function is conditionally lethal. Together, our findings establish that FDX1 directly engages with LIAS, promoting its role in cellular protein lipoylation, a process essential in maintaining cell viability under low glucose conditions.
Collapse
Affiliation(s)
| | - Nolan R Bick
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Boryana Petrova
- Harvard Medical School, Boston, Massachusetts, USA; Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Douglas M Warui
- Department of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes Medical Institute, The Pennsylvania State University, State College, Pennsylvania, USA
| | | | - Squire J Booker
- Department of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes Medical Institute, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Naama Kanarek
- Broad Institute of Harvard and MIT, Cambridge, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Todd R Golub
- Broad Institute of Harvard and MIT, Cambridge, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
47
|
Rieger J, Fitz M, Fischer SM, Wallmeroth N, Flores-Romero H, Fischer NM, Brand LH, García-Sáez AJ, Berendzen KW, Mira-Rodado V. Exploring the Binding Affinity of the ARR2 GARP DNA Binding Domain via Comparative Methods. Genes (Basel) 2023; 14:1638. [PMID: 37628689 PMCID: PMC10454580 DOI: 10.3390/genes14081638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Plants have evolved signaling mechanisms such as the multi-step phosphorelay (MSP) to respond to different internal and external stimuli. MSP responses often result in gene transcription regulation that is modulated through transcription factors such as B-type Arabidopsis response regulator (ARR) proteins. Among these proteins, ARR2 is a key component that is expressed ubiquitously and is involved in many aspects of plant development. Although it has been noted that B-type ARRs bind to their cognate genes through a DNA-binding domain termed the GARP domain, little is known about the structure and function of this type of DNA-binding domain; thus, how ARRs bind to DNA at a structural level is still poorly understood. In order to understand how the MSP functions in planta, it is crucial to unravel both the kinetics as well as the structural identity of the components involved in such interactions. For this reason, this work focusses on resolving how the GARP domain of ARR2 (GARP2) binds to the promoter region of ARR5, one of its native target genes in cytokinin signaling. We have established that GARP2 specifically binds to the ARR5 promoter with three different bi-molecular interaction systems-qDPI-ELISA, FCS, and MST-and we also determined the KD of this interaction. In addition, structural modeling of the GARP2 domain confirms that GARP2 entails a HTH motif, and that protein-DNA interaction most likely occurs via the α3-helix and the N-terminal arm of this domain since mutations in this region hinder ARR2's ability to activate transcription.
Collapse
Affiliation(s)
- Janine Rieger
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Michael Fitz
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Stefan Markus Fischer
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Niklas Wallmeroth
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Hector Flores-Romero
- Interfaculty Institute of Biochemistry (IFIB), Tübingen University, 72076 Tübingen, Germany
- CECAD Research Center, Institute of Genetics, Cologne University, 51069 Cologne, Germany
| | - Nina Monika Fischer
- Institute for Bioinformatics and Medical Informatics, Tübingen University, 72076 Tübingen, Germany
| | - Luise Helene Brand
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Ana J. García-Sáez
- Interfaculty Institute of Biochemistry (IFIB), Tübingen University, 72076 Tübingen, Germany
- CECAD Research Center, Institute of Genetics, Cologne University, 51069 Cologne, Germany
| | | | - Virtudes Mira-Rodado
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| |
Collapse
|
48
|
Liu J, Pang S, Wang M, Yu H, Ma P, Dong T, Zheng Z, Jiao Y, Zhang Y, Liu A. An ultrasensitive ELISA to assay femtomolar level SARS-CoV-2 antigen based on specific peptide and tyramine signal amplification. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 387:133746. [PMID: 37020533 PMCID: PMC10050199 DOI: 10.1016/j.snb.2023.133746] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 05/21/2023]
Abstract
The SARS-CoV-2 spreading rapidly has aroused catastrophic public healthcare issues and economy crisis worldwide. It plays predominant role to rapidly and accurately diagnose the virus for effective prevention and treatment. As an abundant transmembrane protein, spike protein (SP) is one of the most valuable antigenic biomarkers for diagnosis of COVID-19. Herein a phage expression of WNLDLSQWLPPM peptide specific to SARS-CoV-2 SP was screened. Molecular docking revealed that the isolated peptide binds to major antigenic epitope locating at S2 subunit with hydrogen bonding. Taking the specific peptide as antigen sensing probe and tyramine signal amplification (TSA), an ultrasensitive "peptide-antigen-antibody" ELISA (p-ELISA) was explored, by which the limit of detection (LOD) was 14 fM and 2.8 fM SARS-CoV-2 SP antigen for first TSA and secondary TSA, respectively. Compared with the LOD by the p-ELISA by direct mode, the sensitivity with 2nd TSA enhanced 100 times. Further, the proposed p-ELISA method can detect SARS-CoV-2 pseudoviruses down to 10 and 3 TCID50/mL spiked in healthy nasal swab sample with 1st TSA and 2nd TSA, separately. Thus, the proposed p-ELISA method with TSA is expected to be a promising ultrasensitive tool for rapidly detecting SARS-CoV-2 antigen to help control the infectious disease.
Collapse
Affiliation(s)
- Junchong Liu
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Haipeng Yu
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Tao Dong
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zongmei Zheng
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yiming Jiao
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yaru Zhang
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
49
|
Yu H, Zhao Q. Sensitive microscale thermophoresis assay for rapid ochratoxin A detection with fluorescently labeled engineered aptamer. Analyst 2023. [PMID: 37439690 DOI: 10.1039/d3an00867c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Ochratoxin A (OTA) is a widespread mycotoxin that causes contamination in a variety of foodstuffs and environments, inducing great health risks to humans and animals. Rapid and sensitive detection of OTA is necessary for food safety, environmental health, and risk assessment. Herein, we report an aptamer microscale thermophoresis (MST) assay for OTA, with the unique merits of ratiometric analysis, rapid measurement, simple operation, high sensitivity, low sample consumption, and high throughput. A fluorescein (FAM)-labeled high-affinity DNA aptamer with a G-quadruplex and duplex structure was used as the recognition element for OTA, and MST, which measures the fluorescence responses of the sample solution inside capillaries to a mild temperature increase generated by infrared laser heating, was employed for signal generation. Upon OTA binding, the FAM-labeled aptamer probe underwent changes in conformation and stability, and the bound and unbound aptamer probes showed significant differences in their MST signals. To achieve sensitive detection of OTA with a large signal change, we systematically characterized aptamers with different stem lengths, which had large effects on the MST responses of the aptamer probes to OTA. We found that a 32-mer aptamer with FAM label at the 3' end gave a sensitive MST response to OTA, allowing OTA detection within seconds with a detection limit of 0.98 nM under optimal experimental conditions. This aptamer MST assay shows potential in real sample analysis and broad applications.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
50
|
Khaddaj R, Stribny J, Cottier S, Schneiter R. Perilipin 3 promotes the formation of membrane domains enriched in diacylglycerol and lipid droplet biogenesis proteins. Front Cell Dev Biol 2023; 11:1116491. [PMID: 37465010 PMCID: PMC10350540 DOI: 10.3389/fcell.2023.1116491] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Lipid droplets (LDs) serve as intracellular stores of energy-rich neutral lipids. LDs form at discrete sites in the endoplasmic reticulum (ER) and they remain closely associated with the ER during lipogenic growth and lipolytic consumption. Their hydrophobic neutral lipid core is covered by a monolayer of phospholipids, which harbors a specific set of proteins. This LD surface is coated and stabilized by perilipins, a family of soluble proteins that specifically target LDs from the cytosol. We have previously used chimeric fusion proteins between perilipins and integral ER membrane proteins to test whether proteins that are anchored to the ER bilayer could be dragged onto the LD monolayer. Expression of these chimeric proteins induces repositioning of the ER membrane around LDs. Here, we test the properties of membrane-anchored perilipins in cells that lack LDs. Unexpectedly, membrane-anchored perilipins induce expansion and vesiculation of the perinuclear membrane resulting in the formation of crescent-shaped membrane domains that harbor LD-like properties. These domains are stained by LD-specific lipophilic dyes, harbor LD marker proteins, and they transform into nascent LDs upon induction of neutral lipid synthesis. These ER domains are enriched in diacylglycerol (DAG) and in ER proteins that are important for early steps of LD biogenesis, including seipin and Pex30. Formation of the domains in vivo depends on DAG levels, and we show that perilipin 3 (PLIN3) binds to liposomes containing DAG in vitro. Taken together, these observations indicate that perilipin not only serve to stabilize the surface of mature LDs but that they are likely to exert a more active role in early steps of LD biogenesis at ER subdomains enriched in DAG, seipin, and neutral lipid biosynthetic enzymes.
Collapse
Affiliation(s)
- Rasha Khaddaj
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jiri Stribny
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Stéphanie Cottier
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|