1
|
Choi EY, Wolfe JH, Kaler SG. Choroid plexus-targeted viral gene therapy for alpha-mannosidosis, a prototypical neurometabolic lysosomal storage disease. Hum Mol Genet 2025:ddae201. [PMID: 39815619 DOI: 10.1093/hmg/ddae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/20/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
The choroid plexuses (CP) are highly vascularized structures that project into the ventricles of the vertebrate brain. The polarized epithelia of the CP produce cerebrospinal fluid by transporting water and ions into the ventricles from the blood and normally secrete a large number of proteins. We assessed the feasibility of selective CP transduction with recombinant adeno-associated virus (rAAV) gene therapy vectors for treatment of lysosomal storage disease (LSD), a broad category of neurometabolic illness associated with significant burdens to affected patients and their families. There are no ideal or complete therapeutic options currently available, especially for the central nervous system manifestations of LSDs. Alpha-mannosidosis (AMD) is an autosomal recessive prototypical LSD caused by deficiency of lysosomal alpha-mannosidase and characterized by cerebellar ataxia, neurocognitive disability, facial and skeletal abnormalities, hearing impairment, and mild immune deficiency. In a murine model of AMD, we compared the biochemical effects of CSF-directed rAAV serotypes 1, 4, 5, 6, and 9. Recombinant AAV1 and rAAV6, two closely related serotypes whose capsid sequences differ by only six amino acids, showed the most robust transduction of CP in mouse brain, consistent with their transduction of CPE in nonhuman primates and cats, as well as in other structures. We found restoration of LAMAN enzyme activity comparable to or higher than AMD heterozygote levels in the brain globally (olfactory bulb, cortex, cerebellum, brainstem). Further IND-generating preclinical experiments will advance rAAV6-LAMAN, which appears to be the most promising choroid plexus-targeting candidate serotype for future clinical translation to treat AMD.
Collapse
Affiliation(s)
- Eun-Young Choi
- Section on Translational Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - John H Wolfe
- Research Institute of Children's Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Stephen G Kaler
- Section on Translational Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
- Center for Gene Therapy, Nationwide Children's Hospital, Abigail Wexner Research Institute, and Department of Pediatrics, The Ohio State University College of Medicine, 575 Children's Crossroad, Columbus, OH 43215, USA
- Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, 630 West 168th Street, Room 10-451, New York, NY 10032, USA
| |
Collapse
|
2
|
Schuh RS, Franceschi EP, Brum BB, Fachel FNS, Poletto É, Vera LNP, Santos HS, Medeiros-Neves B, Monteagudo de Barros V, Helena da Rosa Paz A, Baldo G, Matte U, Giugliani R, Ferreira Teixeira H. Laronidase-loaded liposomes reach the brain and other hard-to-treat organs after noninvasive nasal administration. Int J Pharm 2024; 660:124355. [PMID: 38897489 DOI: 10.1016/j.ijpharm.2024.124355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Mucopolysaccharidosis type I (MPS I) is caused by a lack of the lysosomal enzyme α-L-iduronidase (IDUA), responsible for the degradation of the glycosaminoglycans (GAGs) dermatan and heparan sulfate, leading to multisystemic signs and symptoms. Enzyme replacement therapy (ERT) is a treatment that consists of weekly intravenous administrations of laronidase, a recombinant version of IDUA. However, ERT has limited access to certain tissues, such as bone, cartilage, and brain, and laronidase fails to trespass the BBB. In this sense, this study reports the development and characterization of laronidase-loaded liposomes for the treatment of MPS I mice. Liposomal complexes were obtained by the thin film formation method followed by microfluidization. The main characterization results showed mean vesicle size of 103.0 ± 3.3 nm, monodisperse populations of vesicles, zeta potential around + 30.0 ± 2.1 mV, and mucoadhesion strength of 5.69 ± 0.14 mN. Treatment of MPS I mice fibroblasts showed significant increase in enzyme activity. Nasal administration of complexes to MPS I mice resulted in significant increase in laronidase activity in the brain cortex, heart, lungs, kidneys, eyes, and serum. The overall results demonstrate the feasibility of nasal administration of laronidase-loaded liposomes to deliver enzyme in difficult-to-reach tissues, circumventing ERT issues and bringing hope as a potential treatment for MPS I.
Collapse
Affiliation(s)
- Roselena Silvestri Schuh
- Postgraduate Program in Pharmaceutical Sciences, UFRGS, Porto Alegre, RS, Brazil; Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | | | - Bruna Brazeiro Brum
- Postgraduate Program in Pharmaceutical Sciences, UFRGS, Porto Alegre, RS, Brazil; Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Édina Poletto
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Luisa Natália Pimentel Vera
- Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hallana Souza Santos
- Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Bruna Medeiros-Neves
- Postgraduate Program in Pharmaceutical Sciences, UFRGS, Porto Alegre, RS, Brazil
| | | | - Ana Helena da Rosa Paz
- Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, RS, Brazil
| | | |
Collapse
|
3
|
Critchley BJ, Gaspar HB, Benedetti S. Targeting the central nervous system in lysosomal storage diseases: Strategies to deliver therapeutics across the blood-brain barrier. Mol Ther 2023; 31:657-675. [PMID: 36457248 PMCID: PMC10014236 DOI: 10.1016/j.ymthe.2022.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are multisystem inherited metabolic disorders caused by dysfunctional lysosomal activity, resulting in the accumulation of undegraded macromolecules in a variety of organs/tissues, including the central nervous system (CNS). Treatments include enzyme replacement therapy, stem/progenitor cell transplantation, and in vivo gene therapy. However, these treatments are not fully effective in treating the CNS as neither enzymes, stem cells, nor viral vectors efficiently cross the blood-brain barrier. Here, we review the latest advancements in improving delivery of different therapeutic agents to the CNS and comment upon outstanding questions in the field of neurological LSDs.
Collapse
Affiliation(s)
- Bethan J Critchley
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK
| | - H Bobby Gaspar
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK; Orchard Therapeutics Ltd., London EC4N 6EU, UK
| | - Sara Benedetti
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
4
|
Zhang H, Young SP, Millington DS. Quantification of Glycosaminoglycans in Urine by Isotope-Dilution Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry. Curr Protoc 2023; 3:e701. [PMID: 36929617 DOI: 10.1002/cpz1.701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Mucopolysaccharidoses (MPSs) are complex lysosomal storage disorders that result in the accumulation of glycosaminoglycans (GAGs) in urine, blood, and tissues. Lysosomal enzymes responsible for GAG degradation are defective in MPSs. GAGs including chondroitin sulfate (CS), dermatan sulfate (DS), heparan sulfate (HS), and keratan sulfate (KS) are disease-specific biomarkers for MPSs. This article describes a stable isotope dilution-tandem mass spectrometric method for quantifying CS, DS, and HS in urine samples. The GAGs are methanolyzed to uronic or iduronic acid-N-acetylhexosamine or iduronic acid-N-sulfo-glucosamine dimers and mixed with internal standards derived from deuteriomethanolysis of GAG standards. Specific dimers derived from HS, DS, and CS are separated by ultra-performance liquid chromatography (UPLC) and analyzed by electrospray ionization tandem mass spectrometry (MS/MS) using selected reaction monitoring for each targeted GAG product and its corresponding internal standard. This UPLC-MS/MS GAG assay is useful for identifying patients with MPS types I, II, III, VI, and VII. © 2023 Wiley Periodicals LLC. Basic Protocol: Urinary GAG analysis by ESI-MS/MS Support Protocol 1: Prepare calibration samples Support Protocol 2: Preparation of stable isotope-labeled internal standards Support Protocol 3: Preparation of quality controls for GAG analysis in urine Support Protocol 4: Optimization of the methanolysis time Support Protocol 5: Measurement of the concentration of methanolic HCl.
Collapse
Affiliation(s)
- Haoyue Zhang
- Biochemical Genetics Laboratory, Duke University Health System, Durham, North Carolina
| | - Sarah P Young
- Biochemical Genetics Laboratory, Duke University Health System, Durham, North Carolina
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - David S Millington
- Biochemical Genetics Laboratory, Duke University Health System, Durham, North Carolina
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
5
|
Hunter JE, Molony CM, Bagel JH, O’Donnell PA, Kaler SG, Wolfe JH. Transduction characteristics of alternative adeno-associated virus serotypes in the cat brain by intracisternal delivery. Mol Ther Methods Clin Dev 2022; 26:384-393. [PMID: 36034772 PMCID: PMC9391516 DOI: 10.1016/j.omtm.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/12/2022] [Indexed: 11/18/2022]
Abstract
Multiple studies have examined the transduction characteristics of different AAV serotypes in the mouse brain, where they can exhibit significantly different patterns of transduction. The pattern of transduction also varies with the route of administration. Much less information exists for the transduction characteristics in large-brained animals. Large animal models have brains that are closer in size and organization to the human brain, such as being gyrencephalic compared to the lissencephalic rodent brains, pathway organization, and certain electrophysiologic properties. Large animal models are used as translational intermediates to develop gene therapies to treat human diseases. Various AAV serotypes and routes of delivery have been used to study the correction of pathology in the brain in lysosomal storage diseases. In this study, we evaluated the ability of selected AAV serotypes to transduce cells in the cat brain when delivered into the cerebrospinal fluid via the cisterna magna. We previously showed that AAV1 transduced significantly greater numbers of cells than AAV9 in the cat brain by this route. In the present study, we evaluated serotypes closely related to AAVs 1 and 9 (AAVs 6, AS, hu32) that may mediate more extensive transduction, as well as AAVs 4 and 5, which primarily transduce choroid plexus epithelial (CPE) and ependymal lining cells in the rodent brain. The related serotypes tended to have similar patterns of transduction but were divergent in some specific brain structures.
Collapse
Affiliation(s)
- Jacqueline E. Hunter
- Research Institute of Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Caitlyn M. Molony
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica H. Bagel
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patricia A. O’Donnell
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen G. Kaler
- Section on Translational Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - John H. Wolfe
- Research Institute of Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA,W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Corresponding author John H. Wolfe, Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104-4399, USA.
| |
Collapse
|
6
|
Belov V, Appleton J, Levin S, Giffenig P, Durcanova B, Papisov M. Large-Volume Intrathecal Administrations: Impact on CSF Pressure and Safety Implications. Front Neurosci 2021; 15:604197. [PMID: 33935624 PMCID: PMC8079755 DOI: 10.3389/fnins.2021.604197] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/24/2021] [Indexed: 12/04/2022] Open
Abstract
The increasing number of studies demonstrates the high potency of the intrathecal (IT) route for the delivery of biopharmaceuticals to the central nervous system (CNS). Our earlier data exhibited that both the infused volume and the infusion rate can regulate the initial disposition of the administered solute within the cerebrospinal fluid (CSF). This disposition is one of key factors in defining the subsequent transport of the solute to its intended target. On the other hand, fast additions of large volumes of liquid to the CSF inevitably raise the CSF pressure [a.k.a. intracranial pressure (ICP)], which may in turn lead to adverse reactions if the physiologically delimited threshold is exceeded. While long-term biological effects of elevated ICP (hydrocephalus) are known, the safety thresholds pertaining to short-term ICP elevations caused by IT administrations have not yet been characterized. This study aimed to investigate the dynamics of ICP in rats and non-human primates (NHPs) with respect to IT infusion rates and volumes. The safety regimes were estimated and analyzed across species to facilitate the development of translational large-volume IT therapies. The data revealed that the addition of a liquid to the CSF raised the ICP in a rate and volume-dependent manner. At low infusion rates (<0.12 ml/min in rats and <2 ml/min in NHPs), NHPs and rats displayed similar tolerance patterns. Specifically, safe accommodations of such added volumes were mainly facilitated by the accelerated pressure-dependent CSF drainage into the blood, with I stabilizing at different levels below the safety threshold of 28 ± 4 mm Hg in rats and 50 ± 5 mm Hg in NHPs. These ICPs were safely tolerated for extended durations (of at least 2–25 min). High infusion rates (including boluses) caused uncompensated exponential ICP elevations rapidly exceeding the safety thresholds. Their tolerance was species-dependent and was facilitated by the compensatory role of the varied components of craniospinal compliance while not excluding the possibility of other contributing factors. In conclusion, large volumes of liquids can safely be delivered via IT routes provided that ICP is monitored as a safety factor and cross-species physiological differences are accounted for.
Collapse
Affiliation(s)
- Vasily Belov
- Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Shriners Hospitals for Children-Boston, Boston, MA, United States
| | | | - Stepan Levin
- Massachusetts General Hospital, Boston, MA, United States
| | - Pilar Giffenig
- Massachusetts General Hospital, Boston, MA, United States
| | | | - Mikhail Papisov
- Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Shriners Hospitals for Children-Boston, Boston, MA, United States
| |
Collapse
|
7
|
Safary A, Moghaddas-Sani H, Akbarzadeh-Khiavi M, Khabbazzi A, Rafi MA, Omidi Y. Enzyme replacement combinational therapy: effective treatments for mucopolysaccharidoses. Expert Opin Biol Ther 2021; 21:1181-1197. [PMID: 33653197 DOI: 10.1080/14712598.2021.1895746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Mucopolysaccharidoses (MPS), as a group of inherited lysosomal storage disorders (LSDs), are clinically heterogeneous and characterized by multi-systemic manifestations, such as skeletal abnormalities and neurological dysfunctions. The currently used enzyme replacement therapy (ERT) might be associated with several limitations including the low biodistribution of the enzymes into the main targets, immunological responses against foreign enzymes, and the high cost of the treatment procedure. Therefore, a suitable combination approach can be considered for the successful treatment of each type of MPS. AREAS COVERED In this review, we provide comprehensive insights into the ERT-based combination therapies of MPS by reviewing the published literature on PubMed and Scopus. We also discuss the recent advancements in the treatment of MPS and bring up the hopes and hurdles in the futuristic treatment strategies. EXPERT OPINION Given the complex pathophysiology of MPS and its involvement in different tissues, the ERT of MPS in combination with stem cell therapy or gene therapy is deemed to provide a personalized precision treatment modality with the highest therapeutic responses and minimal side effects. By the same token, new combinational approaches need to be evaluated by using drugs that target alternative and secondary pathological pathways.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazzi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvanian USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida USA
| |
Collapse
|
8
|
Seker Yilmaz B, Davison J, Jones SA, Baruteau J. Novel therapies for mucopolysaccharidosis type III. J Inherit Metab Dis 2021; 44:129-147. [PMID: 32944950 PMCID: PMC8436764 DOI: 10.1002/jimd.12316] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Mucopolysaccharidosis type III (MPS III) or Sanfilippo disease is an orphan inherited lysosomal storage disease and one of the most common MPS subtypes. The classical presentation is an infantile-onset neurodegenerative disease characterised by intellectual regression, behavioural and sleep disturbances, loss of ambulation, and early death. Unlike other MPS, no disease-modifying therapy has yet been approved. Here, we review the numerous approaches of curative therapy developed for MPS III from historical ineffective haematopoietic stem cell transplantation and substrate reduction therapy to the promising ongoing clinical trials based on enzyme replacement therapy or adeno-associated or lentiviral vectors mediated gene therapy. Preclinical studies are presented alongside the most recent translational first-in-man trials. In addition, we present experimental research with preclinical mRNA and gene editing strategies. Lessons from animal studies and clinical trials have highlighted the importance of an early therapy before extensive neuronal loss. A disease-modifying therapy for MPS III will undoubtedly mandate development of new strategies for early diagnosis.
Collapse
Affiliation(s)
- Berna Seker Yilmaz
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Department of Paediatric Metabolic MedicineMersin UniversityMersinTurkey
| | - James Davison
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Simon A. Jones
- Metabolic MedicineManchester University NHS Foundation TrustManchesterUK
| | - Julien Baruteau
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- National Institute of Health Research Great Ormond Street Hospital Biomedical Research CentreLondonUK
| |
Collapse
|
9
|
Wang F, Moen DR, Sauni C, Kan SH, Li S, Le SQ, Lomenick B, Zhang X, Ekins S, Singamsetty S, Wood J, Dickson PI, Chou TF. Enzyme Replacement Therapy for Mucopolysaccharidosis IIID using Recombinant Human α- N-Acetylglucosamine-6-Sulfatase in Neonatal Mice. Mol Pharm 2020; 18:214-227. [PMID: 33320673 DOI: 10.1021/acs.molpharmaceut.0c00831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is currently no cure or effective treatment available for mucopolysaccharidosis type IIID (MPS IIID, Sanfilippo syndrome type D), a lysosomal storage disorder (LSD) caused by the deficiency of α-N-acetylglucosamine-6-sulfatase (GNS). The clinical symptoms of MPS IIID, like other subtypes of Sanfilippo syndrome, are largely localized to the central nervous system (CNS), and any treatments aiming to ameliorate or reverse the catastrophic and fatal neurologic decline caused by this disease need to be delivered across the blood-brain barrier. Here, we report a proof-of-concept enzyme replacement therapy (ERT) for MPS IIID using recombinant human α-N-acetylglucosamine-6-sulfatase (rhGNS) via intracerebroventricular (ICV) delivery in a neonatal MPS IIID mouse model. We overexpressed and purified rhGNS from CHO cells with a specific activity of 3.9 × 104 units/mg protein and a maximal enzymatic activity at lysosomal pH (pH 5.6), which was stable for over one month at 4 °C in artificial cerebrospinal fluid (CSF). We demonstrated that rhGNS was taken up by MPS IIID patient fibroblasts via the mannose 6-phosphate (M6P) receptor and reduced intracellular glycosaminoglycans to normal levels. The delivery of 5 μg of rhGNS into the lateral cerebral ventricle of neonatal MPS IIID mice resulted in normalization of the enzymatic activity in brain tissues; rhGNS was found to be enriched in lysosomes in MPS IIID-treated mice relative to the control. Furthermore, a single dose of rhGNS was able to reduce the accumulated heparan sulfate and β-hexosaminidase. Our results demonstrate that rhGNS delivered into CSF is a potential therapeutic option for MPS IIID that is worthy of further development.
Collapse
Affiliation(s)
- Feng Wang
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, California 90502, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Derek R Moen
- Phoenix Nest Inc., Brooklyn, New York 11232, United States
| | - Chelsee Sauni
- Phoenix Nest Inc., Brooklyn, New York 11232, United States
| | - Shih-Hsin Kan
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, California 90502, United States.,Research Administration, CHOC Children's Hospital, Orange, California 92868, United States
| | - Shan Li
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, California 90502, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Steven Q Le
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, California 90502, United States.,Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaoyi Zhang
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, California 90502, United States
| | - Sean Ekins
- Phoenix Nest Inc., Brooklyn, New York 11232, United States
| | | | - Jill Wood
- Phoenix Nest Inc., Brooklyn, New York 11232, United States
| | - Patricia I Dickson
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, California 90502, United States.,Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Tsui-Fen Chou
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, California 90502, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States.,Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Bryniarski MA, Ren T, Rizvi AR, Snyder AM, Morris ME. Targeting the Choroid Plexuses for Protein Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12100963. [PMID: 33066423 PMCID: PMC7602164 DOI: 10.3390/pharmaceutics12100963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022] Open
Abstract
Delivery of therapeutic agents to the central nervous system is challenged by the barriers in place to regulate brain homeostasis. This is especially true for protein therapeutics. Targeting the barrier formed by the choroid plexuses at the interfaces of the systemic circulation and ventricular system may be a surrogate brain delivery strategy to circumvent the blood-brain barrier. Heterogenous cell populations located at the choroid plexuses provide diverse functions in regulating the exchange of material within the ventricular space. Receptor-mediated transcytosis may be a promising mechanism to deliver protein therapeutics across the tight junctions formed by choroid plexus epithelial cells. However, cerebrospinal fluid flow and other barriers formed by ependymal cells and perivascular spaces should also be considered for evaluation of protein therapeutic disposition. Various preclinical methods have been applied to delineate protein transport across the choroid plexuses, including imaging strategies, ventriculocisternal perfusions, and primary choroid plexus epithelial cell models. When used in combination with simultaneous measures of cerebrospinal fluid dynamics, they can yield important insight into pharmacokinetic properties within the brain. This review aims to provide an overview of the choroid plexuses and ventricular system to address their function as a barrier to pharmaceutical interventions and relevance for central nervous system drug delivery of protein therapeutics. Protein therapeutics targeting the ventricular system may provide new approaches in treating central nervous system diseases.
Collapse
|
11
|
Belur LR, Podetz-Pedersen KM, Tran TA, Mesick JA, Singh NM, Riedl M, Vulchanova L, Kozarsky KF, McIvor RS. Intravenous delivery for treatment of mucopolysaccharidosis type I: A comparison of AAV serotypes 9 and rh10. Mol Genet Metab Rep 2020; 24:100604. [PMID: 32461912 PMCID: PMC7242863 DOI: 10.1016/j.ymgmr.2020.100604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/25/2023] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is an inherited metabolic disorder caused by deficiency of alpha-L-iduronidase (IDUA), resulting in accumulation of heparan and dermatan sulfate glycosaminoglycans (GAGs). Individuals with the most severe form of the disease (Hurler syndrome) suffer from neurodegeneration, intellectual disability, and death by age 10. Current treatments for this disease include allogeneic hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT). However, these treatments do not address CNS manifestations of the disease. In this study we compared the ability of intravenously administered AAV serotypes 9 and rh10 (AAV9 and AAVrh10) for delivery and expression of the IDUA gene in the CNS. Adult C57BL/6 MPS I mice were infused intravenously with either AAV9 or AAVrh10 vector encoding the human IDUA gene. Treated animals demonstrated supraphysiological levels and widespread restoration of IDUA enzyme activity in the plasma and all organs including the CNS. High levels of IDUA enzyme activity were observed in the plasma, brain and spinal cord ranging from 10 to 100-fold higher than heterozygote controls, while levels in peripheral organs were also high, ranging from 1000 to 10,000-fold higher than control animals. In general, levels of IDUA expression were slightly higher in peripheral organs for AAVrh10 administered animals although these differences were not significant except for the lung. Levels of IDUA expression between AAV 9 and rh10 were roughly equivalent in the brain. Urinary and tissue GAGs were significantly reduced starting at 3 weeks after vector infusion, with restoration of normal GAG levels by the end of the study in animals treated with either AAV9 or rh10. These results demonstrate that non-invasive intravenous AAV9 or AAVrh10-mediated IDUA gene therapy is a potentially effective treatment for both systemic and CNS manifestations of MPS I, with implications for the treatment of other metabolic and neurological diseases as well.
Collapse
Affiliation(s)
- Lalitha R. Belur
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, Church St. S. E, Minneapolis, MN 55455, USA
| | - Kelly M. Podetz-Pedersen
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, Church St. S. E, Minneapolis, MN 55455, USA
| | - Thuy An Tran
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, Church St. S. E, Minneapolis, MN 55455, USA
| | - Joshua A. Mesick
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, Church St. S. E, Minneapolis, MN 55455, USA
| | - Nathaniel M. Singh
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, Church St. S. E, Minneapolis, MN 55455, USA
| | - Maureen Riedl
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, Church St. S.E, Minneapolis, MN 55455, USA
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, Church St. S.E, Minneapolis, MN 55455, USA
| | - Karen F. Kozarsky
- REGENXBIO Inc., 9600 Blackwell Road, Suite 210, Rockville, MD 20850, USA
| | - R. Scott McIvor
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, Church St. S. E, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Faller KME, Ridyard AE, Gutierrez-Quintana R, Rupp A, Kun-Rodrigues C, Orme T, Tylee KL, Church HJ, Guerreiro R, Bras J. A deletion of IDUA exon 10 in a family of Golden Retriever dogs with an attenuated form of mucopolysaccharidosis type I. J Vet Intern Med 2020; 34:1813-1824. [PMID: 32785987 PMCID: PMC7517864 DOI: 10.1111/jvim.15868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/11/2020] [Accepted: 07/22/2020] [Indexed: 01/07/2023] Open
Abstract
Background Mucopolysaccharidosis type I (MPS‐I) is a lysosomal storage disorder caused by a deficiency of the enzyme α‐l‐iduronidase, leading to accumulation of undegraded dermatan and heparan sulfates in the cells and secondary multiorgan dysfunction. In humans, depending upon the nature of the underlying mutation(s) in the IDUA gene, the condition presents with a spectrum of clinical severity. Objectives To characterize the clinical and biochemical phenotypes, and the genotype of a family of Golden Retriever dogs. Animals Two affected siblings and 11 related dogs. Methods Family study. Urine metabolic screening and leucocyte lysosomal enzyme activity assays were performed for biochemical characterization. Whole genome sequencing was used to identify the causal mutation. Results The clinical signs shown by the proband resemble the human attenuated form of the disease, with a dysmorphic appearance, musculoskeletal, ocular and cardiac defects, and survival to adulthood. Urinary metabolic studies identified high levels of dermatan sulfate, heparan sulfate, and heparin. Lysosomal enzyme activities demonstrated deficiency in α‐l‐iduronidase activity in leucocytes. Genome sequencing revealed a novel homozygous deletion of 287 bp resulting in full deletion of exon 10 of the IDUA gene (NC_006585.3(NM_001313883.1):c.1400‐76_1521+89del). Treatment with pentosan polyphosphate improved the clinical signs until euthanasia at 4.5 years. Conclusion and Clinical Importance Analysis of the genotype/phenotype correlation in this dog family suggests that dogs with MPS‐I could have a less severe phenotype than humans, even in the presence of severe mutations. Treatment with pentosan polyphosphate should be considered in dogs with MPS‐I.
Collapse
Affiliation(s)
- Kiterie M E Faller
- School of Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
| | - Alison E Ridyard
- School of Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rodrigo Gutierrez-Quintana
- School of Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Angie Rupp
- School of Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Celia Kun-Rodrigues
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom.,Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Tatiana Orme
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Karen L Tylee
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, St Mary's Hospital, Manchester, United Kingdom
| | - Heather J Church
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, St Mary's Hospital, Manchester, United Kingdom
| | - Rita Guerreiro
- Department of Neurodegenerative Diseases, Institute of Neurology, University College London, London, United Kingdom.,UK Dementia Research Institute at UCL (UK DRI), London, United Kingdom.,Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Jose Bras
- Department of Neurodegenerative Diseases, Institute of Neurology, University College London, London, United Kingdom.,UK Dementia Research Institute at UCL (UK DRI), London, United Kingdom.,Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| |
Collapse
|
13
|
Story BD, Miller ME, Bradbury AM, Million ED, Duan D, Taghian T, Faissler D, Fernau D, Beecy SJ, Gray-Edwards HL. Canine Models of Inherited Musculoskeletal and Neurodegenerative Diseases. Front Vet Sci 2020; 7:80. [PMID: 32219101 PMCID: PMC7078110 DOI: 10.3389/fvets.2020.00080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Mouse models of human disease remain the bread and butter of modern biology and therapeutic discovery. Nonetheless, more often than not mouse models do not reproduce the pathophysiology of the human conditions they are designed to mimic. Naturally occurring large animal models have predominantly been found in companion animals or livestock because of their emotional or economic value to modern society and, unlike mice, often recapitulate the human disease state. In particular, numerous models have been discovered in dogs and have a fundamental role in bridging proof of concept studies in mice to human clinical trials. The present article is a review that highlights current canine models of human diseases, including Alzheimer's disease, degenerative myelopathy, neuronal ceroid lipofuscinosis, globoid cell leukodystrophy, Duchenne muscular dystrophy, mucopolysaccharidosis, and fucosidosis. The goal of the review is to discuss canine and human neurodegenerative pathophysiologic similarities, introduce the animal models, and shed light on the ability of canine models to facilitate current and future treatment trials.
Collapse
Affiliation(s)
- Brett D. Story
- Auburn University College of Veterinary Medicine, Auburn, AL, United States
- University of Florida College of Veterinary Medicine, Gainesville, FL, United States
| | - Matthew E. Miller
- Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Allison M. Bradbury
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily D. Million
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Toloo Taghian
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Dominik Faissler
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States
| | - Deborah Fernau
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sidney J. Beecy
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States
| | - Heather L. Gray-Edwards
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
14
|
Gurda BL, Vite CH. Large animal models contribute to the development of therapies for central and peripheral nervous system dysfunction in patients with lysosomal storage diseases. Hum Mol Genet 2020; 28:R119-R131. [PMID: 31384936 DOI: 10.1093/hmg/ddz127] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/16/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of 70 monogenic disorders characterized by the lysosomal accumulation of a substrate. As a group, LSDs affect ~1 in 5000 live births; however, each individual storage disease is rare, limiting the ability to perform natural history studies or to perform clinical trials. Perhaps in no other biomedical field have naturally occurring large animal (canine, feline, ovine, caprine, and bovine) models been so essential for understanding the fundamentals of disease pathogenesis and for developing safe and effective therapies. These models were critical for the development of hematopoietic stem cell transplantation in α- and β- mannosidosis, fucosidosis, and the mucopolysaccharidoses; enzyme replacement therapy for fucosidosis, the mucopolysaccharidoses, and neuronal ceroid lipofuscinosis; and small molecule therapy in Niemann-Pick type C disease. However, their most notable contributions to the biomedical field are in the development of gene therapy for LSDs. Adeno-associated viral vectors to treat nervous system disease have been evaluated in the large animal models of α-mannosidosis, globoid cell leukodystrophy, GM1 and GM2 gangliosidosis, the mucopolysaccharidoses, and neuronal ceroid lipofuscinosis. This review article will summarize the large animal models available for study as well as their contributions to the development of central and peripheral nervous system dysfunction in LSDs.
Collapse
Affiliation(s)
- Brittney L Gurda
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Vera MU, Le SQ, Victoroff A, Passage MB, Brown JR, Crawford BE, Polgreen LE, Chen AH, Dickson PI. Evaluation of non-reducing end pathologic glycosaminoglycan detection method for monitoring therapeutic response to enzyme replacement therapy in human mucopolysaccharidosis I. Mol Genet Metab 2020; 129:91-97. [PMID: 31630958 PMCID: PMC7219480 DOI: 10.1016/j.ymgme.2019.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 11/30/2022]
Abstract
Therapeutic development and monitoring require demonstration of effects on disease phenotype. However, due to the complexity of measuring clinically-relevant effects in rare multisystem diseases, robust biomarkers are essential. For the mucopolysaccharidoses (MPS), the measurement of glycosaminoglycan levels is relevant as glycosaminoglycan accumulation is the primary event that occurs due to reduced lysosomal enzyme activity. Traditional dye-based assays that measure total glycosaminoglycan levels have a high background, due to a normal, baseline glycosaminoglycan content in unaffected individuals. An assay that selectively detects the disease-specific non-reducing ends of heparan sulfate glycosaminoglycans that remain undegraded due to deficiency of a specific enzyme in the catabolic pathway avoids the normal background, increasing sensitivity and specificity. We evaluated glycosaminoglycan content by dye-based and non-reducing end methods using urine, serum, and cerebrospinal fluid from MPS I human samples before and after treatment with intravenous recombinant human alpha-l-iduronidase. We found that both urine total glycosaminoglycans and serum heparan sulfate derived non-reducing end levels were markedly decreased compared to baseline after 26 weeks and 52 weeks of therapy, with a significantly greater percentage reduction in serum non-reducing end (89.8% at 26 weeks and 81.3% at 52 weeks) compared to urine total glycosaminoglycans (68.3% at 26 weeks and 62.4% at 52 weeks, p < 0.001). Unexpectedly, we also observed a decrease in non-reducing end levels in cerebrospinal fluid in all five subjects for whom samples were collected (mean 41.8% reduction, p = 0.01). The non-reducing ends in cerebrospinal fluid showed a positive correlation with serum non-reducing end levels in the subjects (r2 = 0.65, p = 0.005). Results suggest utility of the non-reducing end assay in evaluating a therapeutic response in MPS I.
Collapse
Affiliation(s)
- Moin U Vera
- Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Steven Q Le
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA; Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Merry B Passage
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | | | - Lynda E Polgreen
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Agnes H Chen
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Patricia I Dickson
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA; Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
16
|
Partridge B, Rossmeisl JH. Companion animal models of neurological disease. J Neurosci Methods 2020; 331:108484. [PMID: 31733285 PMCID: PMC6942211 DOI: 10.1016/j.jneumeth.2019.108484] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Clinical translation of novel therapeutics that improve the survival and quality of life of patients with neurological disease remains a challenge, with many investigational drug and device candidates failing in advanced stage clinical trials. Naturally occurring inherited and acquired neurological diseases, such as epilepsy, inborn errors of metabolism, brain tumors, spinal cord injury, and stroke occur frequently in companion animals, and many of these share epidemiologic, pathophysiologic and clinical features with their human counterparts. As companion animals have a relatively abbreviated lifespan and genetic background, are immunocompetent, share their environment with human caregivers, and can be clinically managed using techniques and tools similar to those used in humans, they have tremendous potential for increasing the predictive value of preclinical drug and device studies. Here, we review comparative features of spontaneous neurological diseases in companion animals with an emphasis on neuroimaging methods and features, illustrate their historical use in translational studies, and discuss inherent limitations associated with each disease model. Integration of companion animals with naturally occurring disease into preclinical studies can complement and expand the knowledge gained from studies in other animal models, accelerate or improve the manner in which research is translated to the human clinic, and ultimately generate discoveries that will benefit the health of humans and animals.
Collapse
Affiliation(s)
- Brittanie Partridge
- Veterinary and Comparative Neuro-Oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA; Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Medical Center Blvd, NRC 405, Winston Salem, NC, 27157, USA
| | - John H Rossmeisl
- Veterinary and Comparative Neuro-Oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA; Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Medical Center Blvd, NRC 405, Winston Salem, NC, 27157, USA.
| |
Collapse
|
17
|
Abstract
Mucopolysaccharidoses (MPSs) are caused by deficiencies of specific lysosomal enzymes that affect the degradation of mucopolysaccharides or glycosaminoglycans (GAGs). Enzyme replacement therapies are available for an increasing number of MPSs since more than 15 years. Together with hematopoietic stem cell transplantation, these enzyme therapies are currently the gold standard of causal treatment in MPS. Both treatments can improve symptoms and prognosis, but they do not cure these severe conditions. The limitations of intravenous enzyme replacement and cell therapy can be summarized as the development of immune reactions against the therapeutic molecules/cells and failure to restore enduring and sufficient drug exposures in all relevant tissues. Thus innovative approaches include small molecules and encapsulated cells that do not induce immune reactions, gene therapy approaches that aim for sustained enzyme expression, and new enzymes that are able to penetrate barriers to drug distribution like the blood-brain barrier. This chapter provides an update on the state of development of these new therapies and highlights current challenges.
Collapse
Affiliation(s)
- Florian B Lagler
- Institute for Inborn Errors of Metabolism and Department of Paediatrics, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
18
|
Safary A, Akbarzadeh Khiavi M, Omidi Y, Rafi MA. Targeted enzyme delivery systems in lysosomal disorders: an innovative form of therapy for mucopolysaccharidosis. Cell Mol Life Sci 2019; 76:3363-3381. [PMID: 31101939 PMCID: PMC11105648 DOI: 10.1007/s00018-019-03135-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 12/27/2022]
Abstract
Mucopolysaccharidoses (MPSs), which are inherited lysosomal storage disorders caused by the accumulation of undegraded glycosaminoglycans, can affect the central nervous system (CNS) and elicit cognitive and behavioral issues. Currently used enzyme replacement therapy methodologies often fail to adequately treat the manifestations of the disease in the CNS and other organs such as bone, cartilage, cornea, and heart. Targeted enzyme delivery systems (EDSs) can efficiently cross biological barriers such as blood-brain barrier and provide maximal therapeutic effects with minimal side effects, and hence, offer great clinical benefits over the currently used conventional enzyme replacement therapies. In this review, we provide comprehensive insights into MPSs and explore the clinical impacts of multimodal targeted EDSs.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Mostafa Akbarzadeh Khiavi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
19
|
Christensen CL, Ashmead RE, Choy FYM. Cell and Gene Therapies for Mucopolysaccharidoses: Base Editing and Therapeutic Delivery to the CNS. Diseases 2019; 7:E47. [PMID: 31248000 PMCID: PMC6787741 DOI: 10.3390/diseases7030047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Although individually uncommon, rare diseases collectively account for a considerable proportion of disease impact worldwide. A group of rare genetic diseases called the mucopolysaccharidoses (MPSs) are characterized by accumulation of partially degraded glycosaminoglycans cellularly. MPS results in varied systemic symptoms and in some forms of the disease, neurodegeneration. Lack of treatment options for MPS with neurological involvement necessitates new avenues of therapeutic investigation. Cell and gene therapies provide putative alternatives and when coupled with genome editing technologies may provide long term or curative treatment. Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing technology and, more recently, advances in genome editing research, have allowed for the addition of base editors to the repertoire of CRISPR-based editing tools. The latest versions of base editors are highly efficient on-targeting deoxyribonucleic acid (DNA) editors. Here, we describe a number of putative guide ribonucleic acid (RNA) designs for precision correction of known causative mutations for 10 of the MPSs. In this review, we discuss advances in base editing technologies and current techniques for delivery of cell and gene therapies to the site of global degeneration in patients with severe neurological forms of MPS, the central nervous system, including ultrasound-mediated blood-brain barrier disruption.
Collapse
Affiliation(s)
- Chloe L Christensen
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| | - Rhea E Ashmead
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| | - Francis Y M Choy
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
20
|
Durcanova B, Appleton J, Gurijala N, Belov V, Giffenig P, Moeller E, Hogan M, Lee F, Papisov M. The Configuration of the Perivascular System Transporting Macromolecules in the CNS. Front Neurosci 2019; 13:511. [PMID: 31191221 PMCID: PMC6547014 DOI: 10.3389/fnins.2019.00511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/03/2019] [Indexed: 12/26/2022] Open
Abstract
Large blood vessels entering the CNS are surrounded by perivascular spaces that communicate with the cerebrospinal fluid and, at their termini, with the interstitial space. Solutes and particles can translocate along these perivascular conduits, reportedly in both directions. Recently, this prompted a renewed interest in the intrathecal therapy delivery route for CNS-targeted therapeutics. However, the extent of the CNS coverage by the perivascular system is unknown, making the outcome of drug administration to the CSF uncertain. We traced the translocation of model macromolecules from the CSF into the CNS of rats and non-human primates. Conduits transporting macromolecules were found to extend throughout the parenchyma from both external and internal (fissures) CNS boundaries, excluding ventricles, in large numbers, on average ca. 40 channels per mm2 in rats and non-human primates. The high density and depth of extension of the perivascular channels suggest that the perivascular route can be suitable for delivery of therapeutics to parenchymal targets throughout the CNS.
Collapse
Affiliation(s)
| | | | | | - Vasily Belov
- Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Shriners Hospitals for Children - Boston, Boston, MA, United States
| | - Pilar Giffenig
- Massachusetts General Hospital, Boston, MA, United States
| | | | - Matthew Hogan
- Massachusetts General Hospital, Boston, MA, United States
| | - Fredella Lee
- Massachusetts General Hospital, Boston, MA, United States
| | - Mikhail Papisov
- Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Shriners Hospitals for Children - Boston, Boston, MA, United States
| |
Collapse
|
21
|
Sohn YB, Ko AR, Seong MR, Lee S, Kim MR, Cho SY, Kim JS, Sakaguchi M, Nakazawa T, Kosuga M, Seo JH, Okuyama T, Jin DK. The efficacy of intracerebroventricular idursulfase-beta enzyme replacement therapy in mucopolysaccharidosis II murine model: heparan sulfate in cerebrospinal fluid as a clinical biomarker of neuropathology. J Inherit Metab Dis 2018; 41:1235-1246. [PMID: 29978271 DOI: 10.1007/s10545-018-0221-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/25/2018] [Accepted: 06/12/2018] [Indexed: 11/28/2022]
Abstract
Mucopolysaccharidosis II (MPS II) is caused by a deficiency of iduronate-2-sulfatase that results in accumulation of glycosaminoglycans (GAG), including heparan sulfate (HS), which is considered to contribute to neuropathology. We examined the efficacy of intracerebroventricular (ICV) enzyme replacement therapy (ERT) of idursulfase-beta (IDS-β) and evaluated the usefulness of HS as a biomarker for neuropathology in MPS II mice. We first examined the efficacy of three different doses (3, 10, and 30 μg) of single ICV injections of IDS-β in MPS II mice. After the single-injection study, its long-term efficacy was elucidated with 30 μg of IDS-β ICV injections repeated every 4 weeks for 24 weeks. The efficacy was assessed by the HS content in the cerebrospinal fluid (CSF) and the brain of the animals along with histologic examinations and behavioral tests. In the single-injection study, the 30 μg of IDS-β ICV injection showed significant reductions of HS content in brain and CSF that were maintained for 28 days. Furthermore, HS content in CSF was significantly correlated with HS content in brain. In the long-term repeated-injection study, the HS content in the brain and CSF was also significantly reduced and correlated. The histologic examinations showed a reduction in lysosomal storage. A significant improvement in memory/learning function was observed in open-field and fear-conditioning tests. ICV ERT with 30 μg of IDS-β produced significant improvements in biochemical, histological, and functional parameters in MPS II mice. Furthermore, we demonstrate for the first time that the HS in the CSF had significant positive correlation with brain tissue HS and GAG levels, suggesting HS in CSF as a useful clinical biomarker for neuropathology.
Collapse
Affiliation(s)
- Young Bae Sohn
- Department of Medical Genetics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ah-Ra Ko
- Research Institute for Future Medicine, Samsung Biomedical Research Center, Seoul, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Mi-Ran Seong
- Research Institute for Future Medicine, Samsung Biomedical Research Center, Seoul, Republic of Korea
| | - Soyeon Lee
- Research Institute for Future Medicine, Samsung Biomedical Research Center, Seoul, Republic of Korea
| | - Mi Ra Kim
- Research Institute for Future Medicine, Samsung Biomedical Research Center, Seoul, Republic of Korea
| | - Sung Yoon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Jung-Sun Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Sungkyunkwan University, SAIHST, Seoul, Republic of Korea
| | | | | | - Motomichi Kosuga
- Center for Lysosomal Storage Diseases, National Center for Child Health and Development, 2-10-1, Ohkura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Joo Hyun Seo
- Center for Lysosomal Storage Diseases, National Center for Child Health and Development, 2-10-1, Ohkura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Torayuki Okuyama
- Center for Lysosomal Storage Diseases, National Center for Child Health and Development, 2-10-1, Ohkura, Setagaya-ku, Tokyo, 157-8535, Japan.
| | - Dong-Kyu Jin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
22
|
Giugliani R, Dalla Corte A, Poswar F, Vanzella C, Horovitz D, Riegel M, Baldo G, Vairo F. Intrathecal/Intracerebroventricular enzyme replacement therapy for the mucopolysaccharidoses: efficacy, safety, and prospects. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1487838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Roberto Giugliani
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-Graduate Program in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Amauri Dalla Corte
- Post-Graduate Program in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabiano Poswar
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Cláudia Vanzella
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Dafne Horovitz
- Department of Medical Genetics, National Institute for Women, Children and Adolescent Health Fernandes Figueira/Fiocruz, Rio de Janeiro, Brazil
| | - Mariluce Riegel
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Baldo
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Filippo Vairo
- Center of Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
23
|
Harmatz P, Whitley CB, Wang RY, Bauer M, Song W, Haller C, Kakkis E. A novel Blind Start study design to investigate vestronidase alfa for mucopolysaccharidosis VII, an ultra-rare genetic disease. Mol Genet Metab 2018; 123:488-494. [PMID: 29478819 DOI: 10.1016/j.ymgme.2018.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Drug development for ultra-rare diseases is challenging because small sample sizes and heterogeneous study populations hamper the ability of randomized, placebo-controlled trials with a single primary endpoint to demonstrate valid treatment effects. METHODS To overcome these challenges, a novel Blind Start design was utilized in a study of vestronidase alfa in mucopolysaccharidosis VII (Sly syndrome), an ultra-rare lysosomal disease, that demonstrates the strengths of this approach in a challenging drug-development setting. Twelve subjects were randomized to 1 of 4 blinded groups, each crossing over to active treatment in a blinded fashion at different timepoints with efficacy analysis comparing the last assessment before cross over to after 24 weeks of treatment. Study assessments included: Percentage change from baseline in urinary GAG (uGAG); a Multi-Domain Responder Index (MDRI) using prespecified minimal important differences (6-Minute Walk Test, Forced Vital Capacity, shoulder flexion, visual acuity, and Bruininks-Oseretsky Test of Motor Proficiency); fatigue as assessed by the Pediatric Quality of Life Inventory™ Multidimensional Fatigue Scale; and safety. RESULTS Vestronidase alfa treatment for 24 weeks significantly reduced uGAG excretion (dermatan sulfate: 64.8%, p < 0.0001). Most subjects (10/12) had a clinically meaningful improvement in at least one MDRI domain with an overall mean change (±SD) of +0.5 (±0.8) at Treatment Week 24 (p = 0.0527). Exposure-adjusted incidence rates of adverse events were similar between groups. CONCLUSIONS The Blind Start study and MDRI design improve statistical power that enhances detection of a positive treatment effect in this rare heterogeneous disease and could be utilized for other ultra-rare diseases.
Collapse
Affiliation(s)
- Paul Harmatz
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, United States.
| | | | - Raymond Y Wang
- Children's Hospital of Orange County, Orange, CA, United States
| | - Mislen Bauer
- Miami Children's Hospital, Miami, FL, United States
| | - Wenjie Song
- Ultragenyx Pharmaceutical Inc., Novato, CA, United States
| | | | - Emil Kakkis
- Ultragenyx Pharmaceutical Inc., Novato, CA, United States
| |
Collapse
|
24
|
Scarpa M, Orchard PJ, Schulz A, Dickson PI, Haskins ME, Escolar ML, Giugliani R. Treatment of brain disease in the mucopolysaccharidoses. Mol Genet Metab 2017; 122S:25-34. [PMID: 29153844 DOI: 10.1016/j.ymgme.2017.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
Abstract
The mucopolysaccharidosis (MPS) disorders are a group of lysosomal storage diseases caused by lysosomal enzyme deficits that lead to glycosaminoglycan accumulation, affecting various tissues throughout the body based on the specific enzyme deficiency. These disorders are characterized by their progressive nature and a variety of somatic manifestations and neurological symptoms. There are established treatments for some MPS disorders, but these mostly alleviate somatic and non-neurological symptoms and do not cure the disease. Patients with MPS I, II, III, and VII can present with neurological manifestations such as neurocognitive decline and behavioral problems. Treatment of these neurological manifestations remains challenging due to the blood-brain barrier (BBB) that limits delivery of therapeutic agents to the central nervous system (CNS). New therapies that circumvent this barrier and target brain disease in MPS are currently under development. They primarily focus on facilitating penetration of drugs through the BBB, delivery of recombinant enzyme to the brain by gene therapy, or direct CNS administration. This review summarizes existing and potential future treatment approaches that target brain disease in MPS. The information in this review is based on current literature and presentations and discussions during a closed meeting by an international group of experts with extensive experience in managing and treating MPS.
Collapse
Affiliation(s)
- Maurizio Scarpa
- Department of Paediatric and Adolescent Medicine, Helios Dr. Horst Schmidt Kliniken, Center for Rare Diseases, Wiesbaden, Germany; Department of Women's and Children's Health, University of Padova, Padova, Italy.
| | - Paul J Orchard
- Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Angela Schulz
- Department of Pediatrics, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patricia I Dickson
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mark E Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria L Escolar
- Department of Pediatrics, Program for Neurodevelopment in Rare Disorders, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roberto Giugliani
- Department of Genetics, UFRGS & Medical Genetics Service, HCPA, INAGEMP, Porto Alegre, RS, Brazil
| |
Collapse
|
25
|
Hsu YH, Liu RS, Lin WL, Yuh YS, Lin SP, Wong TT. Transcranial pulsed ultrasound facilitates brain uptake of laronidase in enzyme replacement therapy for Mucopolysaccharidosis type I disease. Orphanet J Rare Dis 2017; 12:109. [PMID: 28595620 PMCID: PMC5465581 DOI: 10.1186/s13023-017-0649-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
Background Mucopolysaccharidosis type I (MPS I) is a debilitating hereditary disease characterized by alpha-L-iduronidase (IDUA) deficiency and consequent inability to degrade glycosaminoglycans. The pathological accumulation of glycosaminoglycans systemically results in severe mental retardation and multiple organ dysfunction. Enzyme replacement therapy with recombinant human alpha-L-iduronidase (rhIDU) improves the function of some organs but not neurological deficits owing to its exclusion from the brain by the blood-brain barrier (BBB). Methods We divided MPS I mice into control group, enzyme replacement group with rhIDU 2.9 mg/kg injection, enzyme replacement with one-spot ultrasound treatment group, and enzyme replacement with two-spot ultrasound treatment group, and compare treatment effectiveness between groups. All ultrasound treatments were applied on left side brain. Evans blue was used to simulate the distribution of rhIDU in the brain. Results Transcranial pulsed weakly focused ultrasound combined with microbubbles facilitates brain rhIDU delivery in MPS I mice receiving systemic enzyme replacement therapy. With intravenously injected rhIDU 2.9 mg/kg, the IDUA enzyme activity on the ultrasound treated side of the cerebral hemisphere raised to 7.81-fold that on the untreated side and to 75.84% of its normal value. Evans blue simulation showed the distribution of the delivered drug was extensive, involving a large volume of the treated cerebral hemisphere. Two-spot ultrasound treatment scheme is more efficient for brain rhIDU delivery than one-spot ultrasound treatment scheme. Conclusions Transcranial pulsed weakly focused ultrasound can open BBB extensively and facilitates brain rhIDU delivery. This novel technology may provide a new MPS I treatment strategy.
Collapse
Affiliation(s)
- Yu-Hone Hsu
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.,Department of Neurosurgery, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Ren-Shyan Liu
- Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan.,National PET/Cyclotron Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Win-Li Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yeong-Seng Yuh
- Department of Pediatrics, Cheng-Hsin General Hospital, No.45, Cheng Hsin St., Pai-Tou, Taipei, 112, Taiwan.,Department of Pediatrics, National Defense Medical Center, Taipei, Taiwan
| | - Shuan-Pei Lin
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Department of Pediatrics, MacKay Memorial Hospital, No. 92, Sec. 2 Chung-Shan North Road, Taipei, 10449, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2 Chung-Shan North Road, Taipei, 10449, Taiwan.,Department of Early Childhood Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Tai-Tong Wong
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institutes of Clinical Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, 252 Wuxing St, Taipei, 11031, Taiwan. .,Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
26
|
Aoyagi-Scharber M, Crippen-Harmon D, Lawrence R, Vincelette J, Yogalingam G, Prill H, Yip BK, Baridon B, Vitelli C, Lee A, Gorostiza O, Adintori EG, Minto WC, Van Vleet JL, Yates B, Rigney S, Christianson TM, Tiger PMN, Lo MJ, Holtzinger J, Fitzpatrick PA, LeBowitz JH, Bullens S, Crawford BE, Bunting S. Clearance of Heparan Sulfate and Attenuation of CNS Pathology by Intracerebroventricular BMN 250 in Sanfilippo Type B Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 6:43-53. [PMID: 28664165 PMCID: PMC5480280 DOI: 10.1016/j.omtm.2017.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/31/2017] [Indexed: 01/02/2023]
Abstract
Sanfilippo syndrome type B (mucopolysaccharidosis IIIB), caused by inherited deficiency of α-N-acetylglucosaminidase (NAGLU), required for lysosomal degradation of heparan sulfate (HS), is a pediatric neurodegenerative disorder with no approved treatment. Intracerebroventricular (ICV) delivery of a modified recombinant NAGLU, consisting of human NAGLU fused with insulin-like growth factor 2 (IGF2) for enhanced lysosomal targeting, was previously shown to result in marked enzyme uptake and clearance of HS storage in the Naglu−/− mouse brain. To further evaluate regional, cell type-specific, and dose-dependent biodistribution of NAGLU-IGF2 (BMN 250) and its effects on biochemical and histological pathology, Naglu−/− mice were treated with 1–100 μg ICV doses (four times over 2 weeks). 1 day after the last dose, BMN 250 (100 μg doses) resulted in above-normal NAGLU activity levels, broad biodistribution, and uptake in all cell types, with NAGLU predominantly localized to neurons in the Naglu−/− mouse brain. This led to complete clearance of disease-specific HS and reduction of secondary lysosomal defects and neuropathology across various brain regions lasting for at least 28 days after the last dose. The substantial brain uptake of NAGLU attainable by this highest ICV dosage was required for nearly complete attenuation of disease-driven storage accumulations and neuropathology throughout the Naglu−/− mouse brain.
Collapse
Affiliation(s)
- Mika Aoyagi-Scharber
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | | | - Roger Lawrence
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Jon Vincelette
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Gouri Yogalingam
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Heather Prill
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Bryan K Yip
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Brian Baridon
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Catherine Vitelli
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Amanda Lee
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Olivia Gorostiza
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Evan G Adintori
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Wesley C Minto
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Jeremy L Van Vleet
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Bridget Yates
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Sara Rigney
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Terri M Christianson
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Pascale M N Tiger
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Melanie J Lo
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - John Holtzinger
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Paul A Fitzpatrick
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Jonathan H LeBowitz
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Sherry Bullens
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Brett E Crawford
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Stuart Bunting
- Research, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| |
Collapse
|
27
|
King B, Marshall NR, Hassiotis S, Trim PJ, Tucker J, Hattersley K, Snel MF, Jolly RD, Hopwood JJ, Hemsley KM. Slow, continuous enzyme replacement via spinal CSF in dogs with the paediatric-onset neurodegenerative disease, MPS IIIA. J Inherit Metab Dis 2017; 40:443-453. [PMID: 27832416 DOI: 10.1007/s10545-016-9994-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Abstract
Intra-cerebrospinal fluid (CSF) injection of recombinant human lysosomal enzyme is a potential treatment strategy for several neurodegenerative lysosomal storage disorders including Sanfilippo syndrome (Mucopolysaccharidosis type IIIA; MPS IIIA). Here we have utilised the MPS IIIA Huntaway dog model to compare the effectiveness of the repeated intermittent bolus injection strategy being used in the trials with an alternate approach; slow, continual infusion of replacement enzyme (recombinant human sulphamidase; rhSGSH) into the spinal CSF using a SynchroMed II® pump attached to a spinal infusion cannula. The ability of each enzyme delivery strategy to ameliorate lesions in MPS IIIA brain was determined in animals treated from ∼three- to six-months of age. Controls received buffer or no treatment. Significant reductions in heparan sulphate (primary substrate) were observed in brain samples from dogs treated via either cisternal or lumbar spinal CSF bolus injection methods and also in slow intra-spinal CSF infusion-treated dogs. The extent of the reduction differed regionally. Pump-delivered rhSGSH was less effective in reducing secondary substrate (GM3 ganglioside) in deeper aspects of cerebral cortex, and although near-amelioration of microglial activation was seen in superficial (but not deep) layers of cerebral cortex in both bolus enzyme-treated groups, pump-infusion of rhSGSH had little impact on microgliosis. While continual low-dose infusion of rhSGSH into MPS IIIA dog CSF reduces disease-based lesions in brain, it was not as efficacious as repeated cisternal or spinal CSF bolus infusion of rhSGSH over the time-frame of these experiments.
Collapse
Affiliation(s)
- Barbara King
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA, 5001, Australia
| | - Neil R Marshall
- Institute of Veterinary, Animal and Biomedical Science, Massey University, Palmerston North, New Zealand
| | - Sofia Hassiotis
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA, 5001, Australia
| | - Paul J Trim
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA, 5001, Australia
| | - Justin Tucker
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA, 5001, Australia
| | - Kathryn Hattersley
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA, 5001, Australia
| | - Marten F Snel
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA, 5001, Australia
| | - Robert D Jolly
- Institute of Veterinary, Animal and Biomedical Science, Massey University, Palmerston North, New Zealand
| | - John J Hopwood
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA, 5001, Australia
| | - Kim M Hemsley
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA, 5001, Australia.
| |
Collapse
|
28
|
Belur LR, Temme A, Podetz-Pedersen KM, Riedl M, Vulchanova L, Robinson N, Hanson LR, Kozarsky KF, Orchard PJ, Frey WH, Low WC, McIvor RS. Intranasal Adeno-Associated Virus Mediated Gene Delivery and Expression of Human Iduronidase in the Central Nervous System: A Noninvasive and Effective Approach for Prevention of Neurologic Disease in Mucopolysaccharidosis Type I. Hum Gene Ther 2017; 28:576-587. [PMID: 28462595 DOI: 10.1089/hum.2017.187] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a progressive, multi-systemic, inherited metabolic disease caused by deficiency of α-L-iduronidase (IDUA). Current treatments for this disease are ineffective in treating central nervous system (CNS) disease due to the inability of lysosomal enzymes to traverse the blood-brain barrier. A noninvasive and effective approach was taken in the treatment of CNS disease by intranasal administration of an IDUA-encoding adeno-associated virus serotype 9 (AAV9) vector. Adult IDUA-deficient mice aged 3 months were instilled intranasally with AAV9-IDUA vector. Animals sacrificed 5 months post instillation exhibited IDUA enzyme activity levels that were up to 50-fold that of wild-type mice in the olfactory bulb, with wild-type levels of enzyme restored in all other parts of the brain. Intranasal treatment with AAV9-IDUA also resulted in the reduction of tissue glycosaminoglycan storage materials in the brain. There was strong IDUA immunofluorescence staining of tissue sections observed in the nasal epithelium and olfactory bulb, but there was no evidence of the presence of transduced cells in other portions of the brain. This indicates that reduction of storage materials most likely occurred as a result of enzyme diffusion from the olfactory bulb and the nasal epithelium into deeper areas of the brain. At 8 months of age, neurocognitive testing using the Barnes maze to assess spatial navigation demonstrated that treated IDUA-deficient mice were no different from normal control animals, while untreated IDUA-deficient mice exhibited significant learning and navigation deficits. This novel, noninvasive strategy for intranasal AAV9-IDUA instillation could potentially be used to treat CNS manifestations of human MPS I.
Collapse
Affiliation(s)
- Lalitha R Belur
- 1 Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis
| | - Alexa Temme
- 1 Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis
| | - Kelly M Podetz-Pedersen
- 1 Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis
| | - Maureen Riedl
- 2 Department of Neuroscience, University of Minnesota , Minneapolis
| | - Lucy Vulchanova
- 2 Department of Neuroscience, University of Minnesota , Minneapolis
| | - Nicholas Robinson
- 3 Department of Research Animal Resources, University of Minnesota , Minneapolis
| | - Leah R Hanson
- 4 HealthPartners Neurosciences, Regions Hospital , St. Paul, Minneapolis
| | | | - Paul J Orchard
- 6 Program in Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota , Minneapolis
| | - William H Frey
- 4 HealthPartners Neurosciences, Regions Hospital , St. Paul, Minneapolis
| | - Walter C Low
- 7 Department of Neurosurgery and Graduate Program in Neuroscience, University of Minnesota , Minneapolis
| | - R Scott McIvor
- 1 Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis
| |
Collapse
|
29
|
Marianecci C, Rinaldi F, Hanieh PN, Di Marzio L, Paolino D, Carafa M. Drug delivery in overcoming the blood-brain barrier: role of nasal mucosal grafting. Drug Des Devel Ther 2017; 11:325-335. [PMID: 28184152 PMCID: PMC5291459 DOI: 10.2147/dddt.s100075] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The blood-brain barrier (BBB) plays a fundamental role in protecting and maintaining the homeostasis of the brain. For this reason, drug delivery to the brain is much more difficult than that to other compartments of the body. In order to bypass or cross the BBB, many strategies have been developed: invasive techniques, such as temporary disruption of the BBB or direct intraventricular and intracerebral administration of the drug, as well as noninvasive techniques. Preliminary results, reported in the large number of studies on the potential strategies for brain delivery, are encouraging, but it is far too early to draw any conclusion about the actual use of these therapeutic approaches. Among the most recent, but still pioneering, approaches related to the nasal mucosa properties, the permeabilization of the BBB via nasal mucosal engrafting can offer new potential opportunities. It should be emphasized that this surgical procedure is quite invasive, but the implication for patient outcome needs to be compared to the gold standard of direct intracranial injection, and evaluated whilst keeping in mind that central nervous system diseases and lysosomal storage diseases are chronic and severely debilitating and that up to now no therapy seems to be completely successful.
Collapse
Affiliation(s)
- Carlotta Marianecci
- Department of Drug Chemistry and Technology, University of Rome “Sapienza”, Rome, Italy
| | - Federica Rinaldi
- Center for Life Nano Science@ Sapienza, Fondazione Istituto Italiano di Tecnologia, Rome, Italy
| | - Patrizia Nadia Hanieh
- Department of Drug Chemistry and Technology, University of Rome “Sapienza”, Rome, Italy
| | - Luisa Di Marzio
- Department of Pharmacy, University “G. d’Annunzio”, Chieti, Italy
| | - Donatella Paolino
- IRC FSH-Interregional Research Center for Food Safety & Health, Campus Universitario “S. Venuta”, University of Catanzaro “Magna Græcia”, Catanzaro, Italy
- Department of Health Sciences, Campus Universitario “S. Venuta”, University of Catanzaro “Magna Græcia”, Catanzaro, Italy
| | - Maria Carafa
- Department of Drug Chemistry and Technology, University of Rome “Sapienza”, Rome, Italy
| |
Collapse
|
30
|
Hinderer C, Bell P, Louboutin JP, Katz N, Zhu Y, Lin G, Choa R, Bagel J, O'Donnell P, Fitzgerald CA, Langan T, Wang P, Casal ML, Haskins ME, Wilson JM. Neonatal tolerance induction enables accurate evaluation of gene therapy for MPS I in a canine model. Mol Genet Metab 2016; 119:124-30. [PMID: 27386755 PMCID: PMC5240037 DOI: 10.1016/j.ymgme.2016.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 11/26/2022]
Abstract
High fidelity animal models of human disease are essential for preclinical evaluation of novel gene and protein therapeutics. However, these studies can be complicated by exaggerated immune responses against the human transgene. Here we demonstrate that dogs with a genetic deficiency of the enzyme α-l-iduronidase (IDUA), a model of the lysosomal storage disease mucopolysaccharidosis type I (MPS I), can be rendered immunologically tolerant to human IDUA through neonatal exposure to the enzyme. Using MPS I dogs tolerized to human IDUA as neonates, we evaluated intrathecal delivery of an adeno-associated virus serotype 9 vector expressing human IDUA as a therapy for the central nervous system manifestations of MPS I. These studies established the efficacy of the human vector in the canine model, and allowed for estimation of the minimum effective dose, providing key information for the design of first-in-human trials. This approach can facilitate evaluation of human therapeutics in relevant animal models, and may also have clinical applications for the prevention of immune responses to gene and protein replacement therapies.
Collapse
Affiliation(s)
- Christian Hinderer
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean-Pierre Louboutin
- Section of Anatomy, Department of Basic Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Nathan Katz
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yanqing Zhu
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gloria Lin
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruth Choa
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica Bagel
- Departments of Pathobiology and Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patricia O'Donnell
- Departments of Pathobiology and Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caitlin A Fitzgerald
- Departments of Pathobiology and Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Therese Langan
- Departments of Pathobiology and Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ping Wang
- Departments of Pathobiology and Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margret L Casal
- Departments of Pathobiology and Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark E Haskins
- Departments of Pathobiology and Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
King B, Setford ML, Hassiotis S, Trim PJ, Duplock S, Tucker JN, Hattersley K, Snel MF, Hopwood JJ, Hemsley KM. Low-dose, continual enzyme delivery ameliorates some aspects of established brain disease in a mouse model of a childhood-onset neurodegenerative disorder. Exp Neurol 2016; 278:11-21. [DOI: 10.1016/j.expneurol.2015.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022]
|
32
|
Giugliani R, Federhen A, Vairo F, Vanzella C, Pasqualim G, da Silva LMR, Giugliani L, de Boer APK, de Souza CFM, Matte U, Baldo G. Emerging drugs for the treatment of mucopolysaccharidoses. Expert Opin Emerg Drugs 2016; 21:9-26. [PMID: 26751109 DOI: 10.1517/14728214.2016.1123690] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Despite being reported for the first time almost one century ago, only in the last few decades effective have treatments become available for the mucopolysaccharidoses (MPSs), a group of 11 inherited metabolic diseases that affect lysosomal function. These diseases are progressive, usually severe, and, in a significant number of cases, involve cognitive impairment. AREAS COVERED This review will not cover established treatments such as bone marrow/hematopoietic stem cell transplantation and classic intravenous enzyme replacement therapy (ERT), whose long-term outcomes have already been published (MPS I, MPS II, and MPS VI), but it instead focuses on emerging therapies for MPSs. That includes intravenous ERT for MPS IVA and VII, intrathecal ERT, ERT with fusion proteins, substrate reduction therapy, gene therapy, and other novel approaches. EXPERT OPINION The available treatments have resulted in improvements for several disease manifestations, but they still do not represent a cure for these diseases; thus, it is important to develop alternative methods to approach the unmet needs (i.e. bone disease, heart valve disease, corneal opacity, and central nervous system (CNS) involvement). The work in progress with novel approaches makes us confident that in 2017, when MPS will commemorate 100 years of its first report, we will be much closer to an effective cure for these challenging conditions.
Collapse
Affiliation(s)
- Roberto Giugliani
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil.,b Department of Genetics , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil.,c Post-Graduate Program in Child and Adolescent Health , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil.,d Post-Graduate Program in Genetics and Molecular Biology , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Andressa Federhen
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil.,c Post-Graduate Program in Child and Adolescent Health , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Filippo Vairo
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Cláudia Vanzella
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil.,e Post-Graduate Program in Biological Sciences: Biochemistry , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Gabriela Pasqualim
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil.,b Department of Genetics , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Letícia Machado Rosa da Silva
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Luciana Giugliani
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Ana Paula Kurz de Boer
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Carolina Fishinger Moura de Souza
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Ursula Matte
- b Department of Genetics , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil.,d Post-Graduate Program in Genetics and Molecular Biology , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil.,f Gene Therapy Center , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Guilherme Baldo
- d Post-Graduate Program in Genetics and Molecular Biology , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil.,f Gene Therapy Center , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil.,g Department of Physiology , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| |
Collapse
|
33
|
Continual Low-Dose Infusion of Sulfamidase Is Superior to Intermittent High-Dose Delivery in Ameliorating Neuropathology in the MPS IIIA Mouse Brain. JIMD Rep 2015; 29:59-68. [PMID: 26620043 DOI: 10.1007/8904_2015_495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/14/2015] [Accepted: 08/26/2015] [Indexed: 02/08/2023] Open
Abstract
Mucopolysaccharidosis IIIA (MPS IIIA) is a neurodegenerative lysosomal storage disorder characterised by progressive loss of learned skills, sleep disturbance and behavioural problems. Reduced activity of lysosomal sulfamidase results in accumulation of heparan sulfate and secondary storage of glycolipids in the brain. Intra-cisternal sulfamidase infusions reduce disease-related neuropathology; however, repeated injections may subject patients to the risk of infection and tissue damage so alternative approaches are required. We undertook a proof-of-principle study comparing the ability of slow/continual or repeat/bolus infusion to ameliorate neuropathology in MPS IIIA mouse brain. Six-week-old MPS IIIA mice were implanted with subcutaneously located mini-osmotic pumps filled with recombinant human sulfamidase (rhSGSH) or vehicle, connected to lateral ventricle-directed cannulae. Pumps were replaced at 8 weeks of age. Additional MPS IIIA mice received intra-cisternal bolus infusions of the same amount of rhSGSH (or vehicle), at 6 and 8 weeks of age. Unaffected mice received vehicle via each strategy. All mice were euthanised at 10 weeks of age and the brain was harvested to assess the effect of treatment on neuropathology. Mice receiving pump-delivered rhSGSH exhibited highly significant reductions in lysosomal storage markers (lysosomal integral membrane protein-2, GM3 ganglioside and filipin-positive lipids) and neuroinflammation (isolectin B4-positive microglia, glial fibrillary acidic protein-positive astroglia). MPS IIIA mice receiving rhSGSH via bolus infusion displayed reductions in these markers, but the effectiveness of the strategy was inferior to that seen with slow/pump-based delivery. Continual low-dose infusion may therefore be a more effective strategy for enzyme delivery in MPS IIIA.
Collapse
|
34
|
Tylki-Szymańska A, Jurecka A. Prospective therapies for mucopolysaccharidoses. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1089167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Abstract
Lysosomal storage diseases are a group of rare, inborn, metabolic errors characterized by deficiencies in normal lysosomal function and by intralysosomal accumulation of undegraded substrates. The past 25 years have been characterized by remarkable progress in the treatment of these diseases and by the development of multiple therapeutic approaches. These approaches include strategies aimed at increasing the residual activity of a missing enzyme (enzyme replacement therapy, hematopoietic stem cell transplantation, pharmacological chaperone therapy and gene therapy) and approaches based on reducing the flux of substrates to lysosomes. As knowledge has improved about the pathophysiology of lysosomal storage diseases, novel targets for therapy have been identified, and innovative treatment approaches are being developed.
Collapse
|
36
|
Yoon SY, Bagel JH, O'Donnell PA, Vite CH, Wolfe JH. Clinical Improvement of Alpha-mannosidosis Cat Following a Single Cisterna Magna Infusion of AAV1. Mol Ther 2015; 24:26-33. [PMID: 26354342 DOI: 10.1038/mt.2015.168] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/01/2015] [Indexed: 11/09/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are debilitating neurometabolic disorders for most of which long-term effective therapies have not been developed. Gene therapy is a potential treatment but a critical barrier to treating the brain is the need for global correction. We tested the efficacy of cisterna magna infusion of adeno-associated virus type 1 (AAV1) expressing feline alpha-mannosidase gene in the postsymptomatic alpha-mannosidosis (AMD) cat, a homologue of the human disease. Lysosomal alpha-mannosidase (MANB) activity in the cerebrospinal fluid (CSF) and serum were increased above the control values in untreated AMD cats. Clinical neurological signs were delayed in onset and reduced in severity. The lifespan of the treated cats was significantly extended. Postmortem histopathology showed resolution of lysosomal storage lesions throughout the brain. MANB activity in brain tissue was significantly above the levels of untreated tissues. The results demonstrate that a single cisterna magna injection of AAV1 into the CSF can mediate widespread neuronal transduction of the brain and meaningful clinical improvement. Thus, cisterna magna gene delivery by AAV1 appears to be a viable strategy for treatment of the whole brain in AMD and should be applicable to many of the neurotropic LSDs as well as other neurogenetic disorders.
Collapse
Affiliation(s)
- Sea Young Yoon
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jessica H Bagel
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patricia A O'Donnell
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles H Vite
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John H Wolfe
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Dickson PI, Kaitila I, Harmatz P, Mlikotic A, Chen AH, Victoroff A, Passage MB, Madden J, Le SQ, Naylor DE. Safety of laronidase delivered into the spinal canal for treatment of cervical stenosis in mucopolysaccharidosis I. Mol Genet Metab 2015; 116:69-74. [PMID: 26260077 PMCID: PMC4572891 DOI: 10.1016/j.ymgme.2015.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 02/08/2023]
Abstract
Enzyme replacement therapy with laronidase (recombinant human alpha-l-iduronidase) is successfully used to treat patients with mucopolysaccharidosis type I (MPS I). However, the intravenously-administered enzyme is not expected to treat or prevent neurological deterioration. As MPS I patients suffer from spinal cord compression due in part to thickened spinal meninges, we undertook a phase I clinical trial of lumbar intrathecal laronidase in MPS I subjects age 8 years and older with symptomatic (primarily cervical) spinal cord compression. The study faced significant challenges, including a heterogeneous patient population, difficulty recruiting subjects despite an international collaborative effort, and an inability to include a placebo-controlled design due to ethical concerns. Nine serious adverse events occurred in the subjects. All subjects reported improvement in symptomatology and showed improved neurological examinations, but objective outcome measures did not demonstrate change. Despite limitations, we demonstrated the safety of this approach to treating neurological disease due to MPS I.
Collapse
Affiliation(s)
- Patricia I Dickson
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States.
| | - Ilkka Kaitila
- Medical Genetics, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Paul Harmatz
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, United States
| | - Anton Mlikotic
- Department of Radiology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Agnes H Chen
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States; Department of Neurology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Alla Victoroff
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Merry B Passage
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Jacqueline Madden
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, United States
| | - Steven Q Le
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - David E Naylor
- Department of Neurology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| |
Collapse
|
38
|
Hinderer C, Bell P, Louboutin JP, Zhu Y, Yu H, Lin G, Choa R, Gurda BL, Bagel J, O'Donnell P, Sikora T, Ruane T, Wang P, Tarantal AF, Casal ML, Haskins ME, Wilson JM. Neonatal Systemic AAV Induces Tolerance to CNS Gene Therapy in MPS I Dogs and Nonhuman Primates. Mol Ther 2015; 23:1298-1307. [PMID: 26022732 DOI: 10.1038/mt.2015.99] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/19/2015] [Indexed: 12/19/2022] Open
Abstract
The potential host immune response to a nonself protein poses a fundamental challenge for gene therapies targeting recessive diseases. We demonstrate in both dogs and nonhuman primates that liver-directed gene transfer using an adeno-associated virus (AAV) vector in neonates induces a persistent state of immunological tolerance to the transgene product, substantially improving the efficacy of subsequent vector administration targeting the central nervous system (CNS). We applied this approach to a canine model of mucopolysaccharidosis type I (MPS I), a progressive neuropathic lysosomal storage disease caused by deficient activity of the enzyme α-l-iduronidase (IDUA). MPS I dogs treated systemically in the first week of life with a vector expressing canine IDUA did not develop antibodies against the enzyme and exhibited robust expression in the CNS upon intrathecal AAV delivery at 1 month of age, resulting in complete correction of brain storage lesions. Newborn rhesus monkeys treated systemically with AAV vector expressing human IDUA developed tolerance to the transgene, resulting in high cerebrospinal fluid (CSF) IDUA expression and no antibody induction after subsequent CNS gene therapy. These findings suggest that inducing tolerance to the transgene product during a critical period in immunological development can improve the efficacy and safety of gene therapy.
Collapse
Affiliation(s)
- Christian Hinderer
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Peter Bell
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jean-Pierre Louboutin
- Section of Anatomy, Department of Basic Medical Sciences, University of West Indies, Kingston, Jamaica
| | - Yanqing Zhu
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hongwei Yu
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Gloria Lin
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ruth Choa
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brittney L Gurda
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Current address: School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Bagel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patricia O'Donnell
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tracey Sikora
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Therese Ruane
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ping Wang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alice F Tarantal
- Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases, California National Primate Research Center, School of Medicine, University of California, Davis, California, USA; Department of Pediatrics, School of Medicine, University of California, Davis, California, USA; Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California, USA
| | - Margret L Casal
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark E Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James M Wilson
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
39
|
Neverman NJ, Best HL, Hofmann SL, Hughes SM. Experimental therapies in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2292-300. [PMID: 25957554 DOI: 10.1016/j.bbadis.2015.04.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/11/2022]
Abstract
The neuronal ceroid lipofuscinoses represent a group of severe childhood lysosomal storage diseases. With at least 13 identified variants they are the most common cause of inherited neurodegeneration in children. These diseases share common pathological characteristics including motor problems, vision loss, seizures, and cognitive decline, culminating in premature death. Currently, no form of the disease can be treated or cured, with only palliative care to minimise discomfort. This review focuses on current and potentially ground-breaking clinical trials, including small molecule, enzyme replacement, stem cell, and gene therapies, in the development of effective treatments for the various disease subtypes. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
Affiliation(s)
- Nicole J Neverman
- Department of Biochemistry, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Batten Animal Research Network (BARN), New Zealand
| | - Hannah L Best
- Department of Biochemistry, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Batten Animal Research Network (BARN), New Zealand
| | - Sandra L Hofmann
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephanie M Hughes
- Department of Biochemistry, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Batten Animal Research Network (BARN), New Zealand.
| |
Collapse
|
40
|
Beard H, Luck AJ, Hassiotis S, King B, Trim PJ, Snel MF, Hopwood JJ, Hemsley KM. Determination of the role of injection site on the efficacy of intra-CSF enzyme replacement therapy in MPS IIIA mice. Mol Genet Metab 2015; 115:33-40. [PMID: 25795516 DOI: 10.1016/j.ymgme.2015.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/30/2022]
Abstract
MPS IIIA is an inherited neurodegenerative lysosomal storage disorder characterized by cognitive impairment, sleep-wake cycle disturbance, speech difficulties, eventual mental regression and early death. Neuropathological changes include accumulation of heparan sulfate and glycolipids, neuroinflammation and degeneration. Pre-clinical animal studies indicate that replacement of the deficient enzyme, sulfamidase, via intra-cerebrospinal fluid (CSF) injection is a clinically-relevant treatment approach, reducing neuropathological changes and improving symptoms. Given that there are several routes of administration of enzyme into the CSF (intrathecal lumbar, cisternal and ventricular), determining the effectiveness of each injection strategy is crucial in order to provide the best outcome for patients. We delivered recombinant human sulfamidase (rhSGSH) to a congenic mouse model of MPS IIIA via each of the three routes. Mice were euthanized 24h or one-week post-injection; the distribution of enzyme within the brain and spinal cord parenchyma was investigated, and the impact on primary substrate levels and other pathological lesions determined. Both ventricular and cisternal injection of rhSGSH enable enzyme delivery to brain and spinal cord regions, with the former mediating large, statistically significant decreases in substrate levels and reducing microglial activation. The single lumbar CSF infusion permitted more restricted enzyme delivery, with no reduction in substrate levels and little change in other disease-related lesions in brain tissue. While the ventricular route is the most invasive of the three methods, this strategy may enable the widest distribution of enzyme within the brain, and thus requires further exploration.
Collapse
Affiliation(s)
- Helen Beard
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, South Australia 5001, Australia
| | - Amanda J Luck
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, South Australia 5001, Australia
| | - Sofia Hassiotis
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, South Australia 5001, Australia
| | - Barbara King
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, South Australia 5001, Australia
| | - Paul J Trim
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, South Australia 5001, Australia
| | - Marten F Snel
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, South Australia 5001, Australia
| | - John J Hopwood
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, South Australia 5001, Australia
| | - Kim M Hemsley
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, South Australia 5001, Australia
| |
Collapse
|
41
|
Griffin TA, Anderson HC, Wolfe JH. Ex vivo gene therapy using patient iPSC-derived NSCs reverses pathology in the brain of a homologous mouse model. Stem Cell Reports 2015; 4:835-46. [PMID: 25866157 PMCID: PMC4437470 DOI: 10.1016/j.stemcr.2015.02.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 12/01/2022] Open
Abstract
Neural stem cell (NSC) transplantation is a promising strategy for delivering therapeutic proteins in the brain. We evaluated a complete process of ex vivo gene therapy using human induced pluripotent stem cell (iPSC)-derived NSC transplants in a well-characterized mouse model of a human lysosomal storage disease, Sly disease. Human Sly disease fibroblasts were reprogrammed into iPSCs, differentiated into a stable and expandable population of NSCs, genetically corrected with a transposon vector, and assessed for engraftment in NOD/SCID mice. Following neonatal intraventricular transplantation, the NSCs engraft along the rostrocaudal axis of the CNS primarily within white matter tracts and survive for at least 4 months. Genetically corrected iPSC-NSCs transplanted post-symptomatically into the striatum of adult Sly disease mice reversed neuropathology in a zone surrounding the grafts, while control mock-corrected grafts did not. The results demonstrate the potential for ex vivo gene therapy in the brain using human NSCs from autologous, non-neural tissues. Sly disease patient fibroblasts converted to iPSCs yield transplantable NSCs A PiggyBac transposon-based approach corrects the lysosomal enzyme deficiency Widespread migration of transplanted NSCs occurs in neonates, but not in adults Reversal of microglial pathology in a zone surrounding corrected grafts
Collapse
Affiliation(s)
- Tagan A Griffin
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hayley C Anderson
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John H Wolfe
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
King B, Marshall N, Beard H, Hassiotis S, Trim PJ, Snel MF, Rozaklis T, Jolly RD, Hopwood JJ, Hemsley KM. Evaluation of enzyme dose and dose-frequency in ameliorating substrate accumulation in MPS IIIA Huntaway dog brain. J Inherit Metab Dis 2015; 38:341-50. [PMID: 25421091 DOI: 10.1007/s10545-014-9790-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/08/2014] [Accepted: 10/29/2014] [Indexed: 12/18/2022]
Abstract
Intracerebrospinal fluid (CSF) infusion of replacement enzyme is under evaluation for amelioration of disease-related symptoms and biomarker changes in patients with the lysosomal storage disorder mucopolysaccharidosis type IIIA (MPS IIIA; www.clinicaltrials.gov ; NCT#01155778; #01299727). Determining the optimal dose/dose-frequency is important, given the invasive method for chronically supplying recombinant protein to the brain, the main site of symptom generation. To examine these variables, we utilised MPS IIIA Huntaway dogs, providing recombinant human sulphamidase (rhSGSH) to young pre-symptomatic dogs from an age when MPS IIIA dog brain exhibits significant accumulation of primary (heparan sulphate) and secondary (glycolipid) substrates. Enzyme was infused into CSF via the cisterna magna at one of two doses (3 mg or 15 mg/infusion), with the higher dose supplied at two different intervals; fortnightly or monthly. Euthanasia was carried out 24 h after the final injection. Dose- and frequency-dependent reductions in heparan sulphate were observed in CSF and deeper layers of cerebral cortex. When we examined the amount of immunostaining of the general endo/lysosomal marker, LIMP-2, or quantified activated microglia, the higher fortnightly dose resulted in superior outcomes in affected dogs. Secondary lesions such as accumulation of GM3 ganglioside and development of GAD-reactive axonal spheroids were treated to a similar degree by both rhSGSH doses and dose frequencies. Our findings indicate that the lower fortnightly dose is sub-optimal for ameliorating existing and preventing further development of disease-related pathology in young MPS IIIA dog brain; however, increasing the dose fivefold but halving the frequency of administration enabled near normalisation of disease-related biomarkers.
Collapse
Affiliation(s)
- Barbara King
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA, 5001, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Scarpa M, Bellettato CM, Lampe C, Begley DJ. Neuronopathic lysosomal storage disorders: Approaches to treat the central nervous system. Best Pract Res Clin Endocrinol Metab 2015; 29:159-71. [PMID: 25987170 DOI: 10.1016/j.beem.2014.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pharmacological research has always focused on developing new therapeutic strategies capable of modifying a disease's natural history and improving patients' quality of life. Despite recent advances within the fields of medicine and biology, some diseases still represent a major challenge for successful therapy. Neuronopathic lysosomal storage disorders, in particular, have high rates of morbidity and mortality and a devastating socio-economic effect. Many of the available therapies, such as enzyme replacement therapy, can reverse the natural history of the disease in peripheral organs but, unfortunately, are still unable to reach the central nervous system effectively because they cannot cross the blood-brain barrier that surrounds and protects the brain. Moreover, many lysosomal storage disorders are characterized by a number of blood-brain barrier dysfunctions, which may further contribute to disease neuropathology and accelerate neuronal cell death. These issues, and their context in the development of new therapeutic strategies, will be discussed in detail in this chapter.
Collapse
Affiliation(s)
- Maurizio Scarpa
- Center for Rare Diseases, Horst Schmidt Kliniken, Department of Child and Adolescent Medicine, Ludwig-Erhard-Straße 100, 65199 Wiesbaden, D, Germany; University of Padova, Department of Women and Children Health, Via Giustiniani 3, Padova, Italy; Brains for Brains Foundation, Department of Women and Children Health, Via Giustiniani 3, Padova, Italy.
| | - Cinzia Maria Bellettato
- Brains for Brains Foundation, Department of Women and Children Health, Via Giustiniani 3, Padova, Italy.
| | - Christina Lampe
- Center for Rare Diseases, Horst Schmidt Kliniken, Department of Child and Adolescent Medicine, Ludwig-Erhard-Straße 100, 65199 Wiesbaden, D, Germany.
| | - David J Begley
- Brains for Brains Foundation, Department of Women and Children Health, Via Giustiniani 3, Padova, Italy; Kings College London, Institute of Pharmaceutical Science, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
44
|
Langereis EJ, van Vlies N, Wijburg FA. Diagnosis, classification and treatment of mucopolysaccharidosis type I. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1016908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Hassiotis S, Beard H, Luck A, Trim PJ, King B, Snel MF, Hopwood JJ, Hemsley KM. Disease stage determines the efficacy of treatment of a paediatric neurodegenerative disease. Eur J Neurosci 2015; 39:2139-50. [PMID: 25068161 DOI: 10.1111/ejn.12557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lysosomal storage disorders are a large group of inherited metabolic conditions resulting from the deficiency of proteins involved in lysosomal catabolism, with resulting accumulation of substrates inside the cell. Two-thirds of these disorders are associated with a neurodegenerative phenotype and, although few therapeutic options are available to patients at present, clinical trials of several treatments including lysosomal enzyme replacement are underway. Although animal studies indicate the efficacy of presymptomatic treatment, it is largely unknown whether symptomatic disease-related pathology and functional deficits are reversible. To begin to address this, we used a naturally-occurring mouse model with Sanfilippo syndrome (mucopolysaccharidosis type IIIA) to examine the effectiveness of intracisternal cerebrospinal fluid enzyme replacement in early, mid- and symptomatic disease stage mice. We observed a disease-stage-dependent treatment effect, with the most significant reductions in primary and secondary substrate accumulation, astrogliosis and protein aggregate accumulation seen in mucopolysaccharidosis type IIIA mice treated very early in the disease course. Affected mice treated at a symptomatic age exhibited little change in these neuropathological markers in the time-frame of the study. Microgliosis was refractory to treatment regardless of the age at which treatment was instigated. Although longer-term studies are warranted, these findings indicate the importance of early intervention in this condition.
Collapse
|
46
|
Wolf DA, Banerjee S, Hackett PB, Whitley CB, McIvor RS, Low WC. Gene therapy for neurologic manifestations of mucopolysaccharidoses. Expert Opin Drug Deliv 2014; 12:283-96. [PMID: 25510418 DOI: 10.1517/17425247.2015.966682] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Mucopolysaccharidoses (MPS) are a family of lysosomal disorders caused by mutations in genes that encode enzymes involved in the catabolism of glycoaminoglycans. These mutations affect multiple organ systems and can be particularly deleterious to the nervous system. At the present time, enzyme replacement therapy and hematopoietic stem-cell therapy are used to treat patients with different forms of these disorders. However, to a great extent, the nervous system is not adequately responsive to current therapeutic approaches. AREAS COVERED Recent advances in gene therapy show great promise for treating MPS. This article reviews the current state of the art for routes of delivery in developing genetic therapies for treating the neurologic manifestations of MPS. EXPERT OPINION Gene therapy for treating neurological manifestations of MPS can be achieved by intraventricular, intrathecal, intranasal and systemic administrations. The intraventricular route of administration appears to provide the most widespread distribution of gene therapy vectors to the brain. The intrathecal route of delivery results in predominant distribution to the caudal areas of the brain. The systemic route of delivery via intravenous infusion can also achieve widespread delivery to the CNS; however, the distribution to the brain is greatly dependent on the vector system. Intravenous delivery using lentiviral vectors appear to be less effective than adeno-associated viral (AAV) vectors. Moreover, some subtypes of AAV vectors are more effective than others in crossing the blood-brain barrier. In summary, the recent advances in gene vector technology and routes of delivery to the CNS will facilitate the clinical translation of gene therapy for the treatment of the neurological manifestations of MPS.
Collapse
Affiliation(s)
- Daniel A Wolf
- University of Minnesota, Department of Genetics, Cell Biology, and Development , Minneapolis, MN 55455 , USA
| | | | | | | | | | | |
Collapse
|
47
|
Marshall NR, Hassiotis S, King B, Rozaklis T, Trim PJ, Duplock SK, Winner LK, Beard H, Snel MF, Jolly RD, Hopwood JJ, Hemsley KM. Delivery of therapeutic protein for prevention of neurodegenerative changes: comparison of different CSF-delivery methods. Exp Neurol 2014; 263:79-90. [PMID: 25246230 DOI: 10.1016/j.expneurol.2014.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/12/2014] [Accepted: 09/12/2014] [Indexed: 01/26/2023]
Abstract
Injection of lysosomal enzyme into cisternal or ventricular cerebrospinal fluid (CSF) has been carried out in 11 lysosomal storage disorder models, with each study demonstrating reductions in primary substrate and secondary neuropathological changes, and several reports of improved neurological function. Whilst acute studies in mucopolysaccharidosis (MPS) type II mice revealed that intrathecally-delivered enzyme (into thoraco-lumbar CSF) accesses the brain, the impact of longer-term treatment of affected subjects via this route is unknown. This approach is presently being utilized to treat children with MPS types I, II and III. Our aim was to determine the efficacy of repeated intrathecal injection of recombinant human sulfamidase (rhSGSH) on pathological changes in the MPS IIIA dog brain. The outcomes were compared with those in dogs treated via intra-cisternal or ventricular routes. Control dogs received buffer or no treatment. Significant reductions in primary/secondary substrate levels in brain were observed in dogs treated via all routes, although the extent of the reduction differed regionally. Treatment via all CSF access points resulted in large reductions in microgliosis in superficial cerebral cortex, but only ventricular injection enabled amelioration in deep cerebral cortex. Formation of glutamic acid decarboxylase-positive axonal spheroids in deep cerebellar nuclei was prevented by treatment delivered via any route. Anti-rhSGSH antibodies in the sera of some dogs did not reduce therapeutic efficacy. Our data indicates the capacity of intra-spinal CSF-injected rhSGSH to circulate within CSF-filled spaces, penetrate into brain and mediate a significant reduction in substrate accumulation and secondary pathology in the MPS IIIA dog brain.
Collapse
Affiliation(s)
- Neil R Marshall
- Institute of Veterinary, Animal and Biomedical Science, Massey University, Palmerston North, New Zealand
| | - Sofia Hassiotis
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Barbara King
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Tina Rozaklis
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Paul J Trim
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Stephen K Duplock
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Leanne K Winner
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Helen Beard
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Marten F Snel
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Robert D Jolly
- Institute of Veterinary, Animal and Biomedical Science, Massey University, Palmerston North, New Zealand
| | - John J Hopwood
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Kim M Hemsley
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia.
| |
Collapse
|
48
|
Wang RY, Aminian A, McEntee MF, Kan SH, Simonaro CM, Lamanna WC, Lawrence R, Ellinwood NM, Guerra C, Le SQ, Dickson PI, Esko JD. Intra-articular enzyme replacement therapy with rhIDUA is safe, well-tolerated, and reduces articular GAG storage in the canine model of mucopolysaccharidosis type I. Mol Genet Metab 2014; 112:286-93. [PMID: 24951454 PMCID: PMC4122635 DOI: 10.1016/j.ymgme.2014.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Treatment with intravenous enzyme replacement therapy and hematopoietic stem cell transplantation for mucopolysaccharidosis (MPS) type I does not address joint disease, resulting in persistent orthopedic complications and impaired quality of life. A proof-of-concept study was conducted to determine the safety, tolerability, and efficacy of intra-articular recombinant human iduronidase (IA-rhIDUA) enzyme replacement therapy in the canine MPS I model. METHODS Four MPS I dogs underwent monthly rhIDUA injections (0.58 mg/joint) into the right elbow and knee for 6 months. Contralateral elbows and knees concurrently received normal saline. No intravenous rhIDUA therapy was administered. Monthly blood counts, chemistries, anti-rhIDUA antibody titers, and synovial fluid cell counts were measured. Lysosomal storage of synoviocytes and chondrocytes, synovial macrophages and plasma cells were scored at baseline and 1 month following the final injection. RESULTS All injections were well-tolerated without adverse reactions. One animal required prednisone for spinal cord compression. There were no clinically significant abnormalities in blood counts or chemistries. Circulating anti-rhIDUA antibody titers gradually increased in all dogs except the prednisone-treated dog; plasma cells, which were absent in all baseline synovial specimens, were predominantly found in synovium of rhIDUA-treated joints at study-end. Lysosomal storage in synoviocytes and chondrocytes following 6 months of IA-rhIDUA demonstrated significant reduction compared to tissues at baseline, and saline-treated tissues at study-end. Mean joint synovial GAG levels in IA-rhIDUA joints were 8.62 ± 5.86 μg/mg dry weight and 21.6 ± 10.4 μg/mg dry weight in control joints (60% reduction). Cartilage heparan sulfate was also reduced in the IA-rhIDUA joints (113 ± 39.5 ng/g wet weight) compared to saline-treated joints (142 ± 56.4 ng/g wet weight). Synovial macrophage infiltration, which was present in all joints at baseline, was abolished in rhIDUA-treated joints only. CONCLUSIONS Intra-articular rhIDUA is well-tolerated and safe in the canine MPS I animal model. Qualitative and quantitative assessments indicate that IA-rhIDUA successfully reduces tissue and cellular GAG storage in synovium and articular cartilage, including cartilage deep to the articular surface, and eliminates inflammatory macrophages from synovial tissue. CLINICAL RELEVANCE The MPS I canine IA-rhIDUA results suggest that clinical studies should be performed to determine if IA-rhIDUA is a viable approach to ameliorating refractory orthopedic disease in human MPS I.
Collapse
Affiliation(s)
- Raymond Y Wang
- Division of Metabolic Disorders, CHOC Children's, Orange, CA, USA.
| | | | - Michael F McEntee
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN, USA
| | - Shih-Hsin Kan
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - Calogera M Simonaro
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William C Lamanna
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California-San Diego, La Jolla, CA, USA
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California-San Diego, La Jolla, CA, USA
| | | | - Catalina Guerra
- Biological Resource Center, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - Steven Q Le
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - Patricia I Dickson
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California-San Diego, La Jolla, CA, USA
| |
Collapse
|
49
|
Intrathecal gene therapy corrects CNS pathology in a feline model of mucopolysaccharidosis I. Mol Ther 2014; 22:2018-2027. [PMID: 25027660 DOI: 10.1038/mt.2014.135] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/09/2014] [Indexed: 02/03/2023] Open
Abstract
Enzyme replacement therapy has revolutionized the treatment of the somatic manifestations of lysosomal storage diseases (LSD), although it has been ineffective in treating central nervous system (CNS) manifestations of these disorders. The development of neurotrophic vectors based on novel serotypes of adeno-associated viruses (AAV) such as AAV9 provides a potential platform for stable and efficient delivery of enzymes to the CNS. We evaluated the safety and efficacy of intrathecal delivery of AAV9 expressing α-l-iduronidase (IDUA) in a previously described feline model of mucopolysaccharidosis I (MPS I). A neurological phenotype has not been defined in these animals, so our analysis focused on the biochemical and histological CNS abnormalities characteristic of MPS I. Five MPS I cats were dosed with AAV9 vector at 4-7 months of age and followed for 6 months. Treated animals demonstrated virtually complete correction of biochemical and histological manifestations of the disease throughout the CNS. There was a range of antibody responses against IDUA in this cohort which reduced detectable enzyme without substantially reducing efficacy; there was no evidence of toxicity. This first demonstration of the efficacy of intrathecal gene therapy in a large animal model of a LSD should pave the way for translation into the clinic.
Collapse
|
50
|
Agile delivery of protein therapeutics to CNS. J Control Release 2014; 190:637-63. [PMID: 24956489 DOI: 10.1016/j.jconrel.2014.06.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022]
Abstract
A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics.
Collapse
|