1
|
Maryami F, Rismani E, Davoudi-Dehaghani E, Khalesi N, Motlagh FZ, Kordafshari A, Talebi S, Rahimi H, Zeinali S. Identifying and predicting the pathogenic effects of a novel variant inducing severe early onset MMA: a bioinformatics approach. Hereditas 2023; 160:25. [PMID: 37248539 DOI: 10.1186/s41065-023-00281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Methylmalonic acidemia (MMA) is a rare metabolic disorder resulting from functional defects in methylmalonyl-CoA mutase. Mutations in the MMAB gene are responsible for the cblB type of vitamin B12-responsive MMA. RESULTS This study used Whole-exome sequencing (WES), Sanger sequencing, linkage analysis, and in-silico evaluation of the variants' effect on protein structure and function to confirm their pathogenicity in a 2-day-old neonate presenting an early-onset metabolic crisis and death. WES revealed a homozygous missense variant on chromosome 12, the NM_052845.4 (MMAB):c.557G > A, p.Arg186Gln, in exon 7, a highly conserved and hot spot region for pathogenic variants. After being confirmed by Sanger sequencing, the wild-type and mutant proteins' structure and function were modeled and examined using in-silico bioinformatics tools and compared to the variant NM_052845.4 (MMAB):c.556C > T, p.Arg186Trp, a known pathogenic variant at the same position. Comprehensive bioinformatics analysis showed a significant reduction in the stability of variants and changes in protein-protein and ligand-protein interactions. Interestingly, the variant c.557G > A, p.Arg186Gln depicted more variations in the secondary structure and less binding to the ATP and B12 ligands compared to the c.556C > T, p.Arg186Trp, the known pathogenic variant. CONCLUSION This study succeeded in expanding the variant spectra of the MMAB, forasmuch as the variant c.557G > A, p.Arg186Gln is suggested as a pathogenic variant and the cause of severe MMA and neonatal death. These results benefit the prenatal diagnosis of MMA in the subsequent pregnancies and carrier screening of the family members. Furthermore, as an auxiliary technique, homology modeling and protein structure and function evaluations could provide geneticists with a more accurate interpretation of variants' pathogenicity.
Collapse
Affiliation(s)
- Fereshteh Maryami
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur St., Tehran, Iran
| | - Elham Rismani
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur St., Tehran, Iran
| | - Elham Davoudi-Dehaghani
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur St., Tehran, Iran
| | - Nasrin Khalesi
- Department of Pediatrics and Neonatal Intensive Care Unit, Ali-Asghar Children's Hospital, Iran University of Medical Sciences, Vahid Dastgerdi Street, Modarres Highway, Tehran, Iran.
| | | | - Alireza Kordafshari
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur St., Tehran, Iran
| | - Saeed Talebi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Medical Genetics, Ali-Asghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hamzeh Rahimi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur St., Tehran, Iran
- Present address: Texas Biomedical Research Center, San Antonio, USA
| | - Sirous Zeinali
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur St., Tehran, Iran.
- Medical Genetics Lab, Kawsar Human Genetics Research Center, No. 41 Majlesi St., ValiAsr St., Tehran, Iran.
| |
Collapse
|
2
|
Song K, Lee HS, Jia L, Chelakkot C, Rajasekaran N, Shin YK. SMAD4 Controls Cancer Cell Metabolism by Regulating Methylmalonic Aciduria Cobalamin Deficiency (cbl) B Type. Mol Cells 2022; 45:413-424. [PMID: 35680374 PMCID: PMC9200659 DOI: 10.14348/molcells.2022.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/27/2022] Open
Abstract
Suppressor of mothers against decapentaplegic homolog (SMAD) 4 is a pluripotent signaling mediator that regulates myriad cellular functions, including cell growth, cell division, angiogenesis, apoptosis, cell invasion, and metastasis, through transforming growth factor β (TGF-β)-dependent and -independent pathways. SMAD4 is a critical modulator in signal transduction and functions primarily as a transcription factor or cofactor. Apart from being a DNA-binding factor, the additional SMAD4 mechanisms in tumor suppression remain elusive. We previously identified methyl malonyl aciduria cobalamin deficiency B type (MMAB) as a critical SMAD4 binding protein using a proto array analysis. This study confirmed the interaction between SMAD4 and MMAB using bimolecular fluorescence complementation (BiFC) assay, proximity ligation assay (PLA), and conventional immunoprecipitation. We found that transient SMAD4 overexpression down-regulates MMAB expression via a proteasome-dependent pathway. SMAD4-MMAB interaction was independent of TGF-β signaling. Finally, we determined the effect of MMAB downregulation on cancer cells. siRNA-mediated knockdown of MMAB affected cancer cell metabolism in HeLa cells by decreasing ATP production and glucose consumption as well as inducing apoptosis. These findings suggest that SMAD4 controls cancer cell metabolism by regulating MMAB.
Collapse
Affiliation(s)
- Kyoung Song
- College of Pharmacy, Duksung Women’s University, Seoul 01366, Korea
| | - Hun Seok Lee
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | - Nirmal Rajasekaran
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
| | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 08826, Korea
- Bio-MAX Institute, Seoul National University, Seoul 08826, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
3
|
Forny P, Plessl T, Frei C, Bürer C, Froese DS, Baumgartner MR. Spectrum and characterization of bi-allelic variants in MMAB causing cblB-type methylmalonic aciduria. Hum Genet 2021; 141:1253-1267. [PMID: 34796408 PMCID: PMC9262797 DOI: 10.1007/s00439-021-02398-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022]
Abstract
Pathogenic variants in MMAB cause cblB-type methylmalonic aciduria, an autosomal-recessive disorder of propionate metabolism. MMAB encodes ATP:cobalamin adenosyltransferase, using ATP and cob(I)alamin to create 5’-deoxyadenosylcobalamin (AdoCbl), the cofactor of methylmalonyl-CoA mutase (MMUT). We identified bi-allelic disease-causing variants in MMAB in 97 individuals with cblB-type methylmalonic aciduria, including 33 different and 16 novel variants. Missense changes accounted for the most frequent pathogenic alleles (p.(Arg186Trp), N = 57; p.(Arg191Trp), N = 19); while c.700C > T (p.(Arg234*)) was the most frequently identified truncating variant (N = 14). In fibroblasts from 76 affected individuals, the ratio of propionate incorporation in the presence and absence of hydroxocobalamin (PI ratio) was associated to clinical cobalamin responsiveness and later disease onset. We found p.(Arg234*) to be associated with cobalamin responsiveness in vitro, and clinically with later onset; p.(Arg186Trp) and p.(Arg191Trp) showed no clear cobalamin responsiveness and early onset. Mapping these and novel variants onto the MMAB structure revealed their potential to affect ATP and AdoCbl binding. Follow-up biochemical characterization of recombinant MMAB identified its three active sites to be equivalent for ATP binding, determined by fluorescence spectroscopy (Kd = 21 µM) and isothermal calorimetry (Kd = 14 µM), but function as two non-equivalent AdoCbl binding sites (Kd1 = 0.55 μM; Kd2 = 8.4 μM). Ejection of AdoCbl was activated by ATP (Ka = 24 µM), which was sensitized by the presence of MMUT (Ka = 13 µM). This study expands the landscape of pathogenic MMAB variants, provides association of in vitro and clinical responsiveness, and facilitates insight into MMAB function, enabling better disease understanding.
Collapse
Affiliation(s)
- Patrick Forny
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Tanja Plessl
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Caroline Frei
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Celine Bürer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland.
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland.
| |
Collapse
|
4
|
Gouda H, Mascarenhas R, Pillay S, Ruetz M, Koutmos M, Banerjee R. Patient mutations in human ATP:cob(I)alamin adenosyltransferase differentially affect its catalytic versus chaperone functions. J Biol Chem 2021; 297:101373. [PMID: 34757128 PMCID: PMC8633584 DOI: 10.1016/j.jbc.2021.101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022] Open
Abstract
Human ATP:cob(I)alamin adenosyltransferase (ATR) is a mitochondrial enzyme that catalyzes an adenosyl transfer to cob(I)alamin, synthesizing 5′-deoxyadenosylcobalamin (AdoCbl) or coenzyme B12. ATR is also a chaperone that escorts AdoCbl, transferring it to methylmalonyl-CoA mutase, which is important in propionate metabolism. Mutations in ATR lead to methylmalonic aciduria type B, an inborn error of B12 metabolism. Our previous studies have furnished insights into how ATR protein dynamics influence redox-linked cobalt coordination chemistry, controlling its catalytic versus chaperone functions. In this study, we have characterized three patient mutations at two conserved active site residues in human ATR, R190C/H, and E193K and obtained crystal structures of R190C and E193K variants, which display only subtle structural changes. All three mutations were found to weaken affinities for the cob(II)alamin substrate and the AdoCbl product and increase KM(ATP). 31P NMR studies show that binding of the triphosphate product, formed during the adenosylation reaction, is also weakened. However, although the kcat of this reaction is significantly diminished for the R190C/H mutants, it is comparable with the WT enzyme for the E193K variant, revealing the catalytic importance of Arg-190. Furthermore, although the E193K mutation selectively impairs the chaperone function by promoting product release into solution, its catalytic function might be unaffected at physiological ATP concentrations. In contrast, the R190C/H mutations affect both the catalytic and chaperoning activities of ATR. Because the E193K mutation spares the catalytic activity of ATR, our data suggest that the patients carrying this mutation are more likely to be responsive to cobalamin therapy.
Collapse
Affiliation(s)
- Harsha Gouda
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Romila Mascarenhas
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Shubhadra Pillay
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Markus Ruetz
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Markos Koutmos
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
5
|
Tran ML, Génisson Y, Ballereau S, Dehoux C. Second-Generation Pharmacological Chaperones: Beyond Inhibitors. Molecules 2020; 25:molecules25143145. [PMID: 32660097 PMCID: PMC7397201 DOI: 10.3390/molecules25143145] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023] Open
Abstract
Protein misfolding induced by missense mutations is the source of hundreds of conformational diseases. The cell quality control may eliminate nascent misfolded proteins, such as enzymes, and a pathological loss-of-function may result from their early degradation. Since the proof of concept in the 2000s, the bioinspired pharmacological chaperone therapy became a relevant low-molecular-weight compound strategy against conformational diseases. The first-generation pharmacological chaperones were competitive inhibitors of mutant enzymes. Counterintuitively, in binding to the active site, these inhibitors stabilize the proper folding of the mutated protein and partially rescue its cellular function. The main limitation of the first-generation pharmacological chaperones lies in the balance between enzyme activity enhancement and inhibition. Recent research efforts were directed towards the development of promising second-generation pharmacological chaperones. These non-inhibitory ligands, targeting previously unknown binding pockets, limit the risk of adverse enzymatic inhibition. Their pharmacophore identification is however challenging and likely requires a massive screening-based approach. This review focuses on second-generation chaperones designed to restore the cellular activity of misfolded enzymes. It intends to highlight, for a selected set of rare inherited metabolic disorders, the strategies implemented to identify and develop these pharmacologically relevant small organic molecules as potential drug candidates.
Collapse
Affiliation(s)
| | | | | | - Cécile Dehoux
- Correspondence: (S.B.); (C.D.); Tel.: +33-5-6155-6127 (C.D.)
| |
Collapse
|
6
|
Brasil S, Briso-Montiano A, Gámez A, Underhaug J, Flydal M, Desviat L, Merinero B, Ugarte M, Martinez A, Pérez B. New perspectives for pharmacological chaperoning treatment in methylmalonic aciduria cblB type. Biochim Biophys Acta Mol Basis Dis 2018; 1864:640-648. [DOI: 10.1016/j.bbadis.2017.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 02/08/2023]
|
7
|
McDonald MK, Fritz JA, Jia D, Scheuchner D, Snyder FF, Stanislaus A, Curle J, Li L, Stabler SP, Allen RH, Mains PE, Gravel RA. Identification of ABC transporters acting in vitamin B 12 metabolism in Caenorhabditis elegans. Mol Genet Metab 2017; 122:160-171. [PMID: 29153845 DOI: 10.1016/j.ymgme.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 01/19/2023]
Abstract
Vitamin B12 (cobalamin, Cbl) is a micronutrient essential to human health. Cbl is not utilized as is but must go through complex subcellular and metabolic processing to generate two cofactor forms: methyl-Cbl for methionine synthase, a cytosolic enzyme; and adenosyl-Cbl for methylmalonyl-CoA mutase, a mitochondrial enzyme. Some 10-12 human genes have been identified responsible for the intracellular conversion of Cbl to cofactor forms, including genes that code for ATP-binding cassette (ABC) transporters acting at the lysosomal and plasma membranes. However, the gene for mitochondrial uptake is not known. We hypothesized that ABC transporters should be candidates for other uptake and efflux functions, including mitochondrial transport, and set out to screen ABC transporter mutants for blocks in Cbl utilization using the nematode roundworm Caenorhabditis elegans. Thirty-seven mutant ABC transporters were screened for the excretion of methylmalonic acid (MMA), which should result from loss of Cbl transport into the mitochondria. One mutant, wht-6, showed elevated MMA excretion and reduced [14C]-propionate incorporation, pointing to a functional block in methylmalonyl-CoA mutase. In contrast, the wht-6 mutant appeared to have a normal cytosolic pathway based on analysis of cystathionine excretion, suggesting that cytosolic methionine synthase was functioning properly. Further, the MMA excretion in wht-6 could be partially reversed by including vitamin B12 in the assay medium. The human ortholog of wht-6 is a member of the G family of ABC transporters. We propose wht-6 as a candidate for the transport of Cbl into mitochondria and suggest that a member of the corresponding ABCG family of ABC transporters has this role in humans. Our ABC transporter screen also revealed that mrp-1 and mrp-2 mutants excreted lower MMA than wild type, suggesting they were concentrating intracellular Cbl, consistent with the cellular efflux defect proposed for the mammalian MRP1 ABC transporter.
Collapse
Affiliation(s)
- Megan K McDonald
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | - Julie-Anne Fritz
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | - Dongxin Jia
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | - Deborah Scheuchner
- Department of Medical Genetics, University of Calgary, Calgary, T2N 4N1, Canada
| | - Floyd F Snyder
- Department of Medical Genetics, University of Calgary, Calgary, T2N 4N1, Canada
| | - Avalyn Stanislaus
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Jared Curle
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Sally P Stabler
- Division of Hematology, University of Colorado Denver, Aurora, CO, USA
| | - Robert H Allen
- Division of Hematology, University of Colorado Denver, Aurora, CO, USA
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | - Roy A Gravel
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4N1, Canada.
| |
Collapse
|
8
|
Campanello GC, Lofgren M, Yokom AL, Southworth DR, Banerjee R. Switch I-dependent allosteric signaling in a G-protein chaperone-B 12 enzyme complex. J Biol Chem 2017; 292:17617-17625. [PMID: 28882898 DOI: 10.1074/jbc.m117.786095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/14/2017] [Indexed: 11/06/2022] Open
Abstract
G-proteins regulate various processes ranging from DNA replication and protein synthesis to cytoskeletal dynamics and cofactor assimilation and serve as models for uncovering strategies deployed for allosteric signal transduction. MeaB is a multifunctional G-protein chaperone, which gates loading of the active 5'-deoxyadenosylcobalamin cofactor onto methylmalonyl-CoA mutase (MCM) and precludes loading of inactive cofactor forms. MeaB also safeguards MCM, which uses radical chemistry, against inactivation and rescues MCM inactivated during catalytic turnover by using the GTP-binding energy to offload inactive cofactor. The conserved switch I and II signaling motifs used by G-proteins are predicted to mediate allosteric regulation in response to nucleotide binding and hydrolysis in MeaB. Herein, we targeted conserved residues in the MeaB switch I motif to interrogate the function of this loop. Unexpectedly, the switch I mutations had only modest effects on GTP binding and on GTPase activity and did not perturb stability of the MCM-MeaB complex. However, these mutations disrupted multiple MeaB chaperone functions, including cofactor editing, loading, and offloading. Hence, although residues in the switch I motif are not essential for catalysis, they are important for allosteric regulation. Furthermore, single-particle EM analysis revealed, for the first time, the overall architecture of the MCM-MeaB complex, which exhibits a 2:1 stoichiometry. These EM studies also demonstrate that the complex exhibits considerable conformational flexibility. In conclusion, the switch I element does not significantly stabilize the MCM-MeaB complex or influence the affinity of MeaB for GTP but is required for transducing signals between MeaB and MCM.
Collapse
Affiliation(s)
- Gregory C Campanello
- From the Departments of Biological Chemistry, University of Michigan Medical Center, and
| | - Michael Lofgren
- From the Departments of Biological Chemistry, University of Michigan Medical Center, and
| | - Adam L Yokom
- From the Departments of Biological Chemistry, University of Michigan Medical Center, and.,the Department of Biological Chemistry and.,the Graduate Program in Chemical Biology, Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600
| | - Daniel R Southworth
- From the Departments of Biological Chemistry, University of Michigan Medical Center, and.,the Department of Biological Chemistry and
| | - Ruma Banerjee
- From the Departments of Biological Chemistry, University of Michigan Medical Center, and
| |
Collapse
|
9
|
Abstract
Bacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis. The protein shells of MCPs are thought to selectively control the movement of enzyme cofactors, substrates, and products (including toxic or volatile intermediates) between the MCP interior and the cytoplasm of the cell using both passive electrostatic/steric and dynamic gated mechanisms. Evidence suggests that specialized shell proteins conduct electrons between the cytoplasm and the lumen of the MCP and/or help rebuild damaged iron-sulfur centers in the encapsulated enzymes. The MCP shell is elaborated through a family of small proteins whose structural core is known as a bacterial microcompartment (BMC) domain. BMC domain proteins oligomerize into flat, hexagonally shaped tiles, which assemble into extended protein sheets that form the facets of the shell. Shape complementarity along the edges allows different types of BMC domain proteins to form mixed sheets, while sequence variation provides functional diversification. Recent studies have also revealed targeting sequences that mediate protein encapsulation within MCPs, scaffolding proteins that organize lumen enzymes and the use of private cofactor pools (NAD/H and coenzyme A [HS-CoA]) to facilitate cofactor homeostasis. Although much remains to be learned, our growing understanding of MCPs is providing a basis for bioengineering of protein-based containers for the production of chemicals/pharmaceuticals and for use as molecular delivery vehicles.
Collapse
|
10
|
Chowdhury C, Sinha S, Chun S, Yeates TO, Bobik TA. Diverse bacterial microcompartment organelles. Microbiol Mol Biol Rev 2014. [PMID: 25184561 DOI: 10.1128/mmbr.00009–14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Bacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis. The protein shells of MCPs are thought to selectively control the movement of enzyme cofactors, substrates, and products (including toxic or volatile intermediates) between the MCP interior and the cytoplasm of the cell using both passive electrostatic/steric and dynamic gated mechanisms. Evidence suggests that specialized shell proteins conduct electrons between the cytoplasm and the lumen of the MCP and/or help rebuild damaged iron-sulfur centers in the encapsulated enzymes. The MCP shell is elaborated through a family of small proteins whose structural core is known as a bacterial microcompartment (BMC) domain. BMC domain proteins oligomerize into flat, hexagonally shaped tiles, which assemble into extended protein sheets that form the facets of the shell. Shape complementarity along the edges allows different types of BMC domain proteins to form mixed sheets, while sequence variation provides functional diversification. Recent studies have also revealed targeting sequences that mediate protein encapsulation within MCPs, scaffolding proteins that organize lumen enzymes and the use of private cofactor pools (NAD/H and coenzyme A [HS-CoA]) to facilitate cofactor homeostasis. Although much remains to be learned, our growing understanding of MCPs is providing a basis for bioengineering of protein-based containers for the production of chemicals/pharmaceuticals and for use as molecular delivery vehicles.
Collapse
Affiliation(s)
- Chiranjit Chowdhury
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Sharmistha Sinha
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Sunny Chun
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Todd O Yeates
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA Department of Energy Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California, USA Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Thomas A Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
11
|
Brasil S, Richard E, Jorge-Finnigan A, Leal F, Merinero B, Banerjee R, Desviat LR, Ugarte M, Pérez B. Methylmalonic aciduria cblB type: characterization of two novel mutations and mitochondrial dysfunction studies. Clin Genet 2014; 87:576-81. [PMID: 24813872 DOI: 10.1111/cge.12426] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
Abstract
Methylmalonic aciduria (MMA) cblB type is caused by mutations in the MMAB gene, which codes for the enzyme adenosine triphosphate (ATP): cobalamin adenosyltransferase (ATR). This study reports differences in the metabolic and disease outcomes of two pairs of siblings with MMA cblB type, respectively harbouring the novel changes p.His183Leu/p.Arg190dup (P1 and P2) and the previously described mutations p.Ile96Thr/p.Ser174fs (P3 and P4). Expression analysis showed p.His183Leu and p.Arg190dup to be destabilizing mutations. Both were associated with reduced ATR stability and a shorter half-life than wild-type ATR. Analysis of several parameters related to oxidative stress and mitochondrial function showed an increase in reactive oxygen species (ROS) content, a decrease in mitochondrial respiration and changes in mitochondria morphology and structure in patient-derived fibroblasts compared to control cells. The impairment in energy production and the presence of oxidative stress and fission of the mitochondrial reticulum suggested mitochondrial dysfunction in cblB patients' fibroblasts. The recovery of mitochondrial function should be a goal in efforts to improve the clinical outcome of MMA cblB type.
Collapse
Affiliation(s)
- S Brasil
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigación Biomédica, IDIPaz, Madrid, Spain; Metabolism & Genetics Group, Research Institute for Medicines and Pharmaceuticals Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jorge-Finnigan A, Brasil S, Underhaug J, Ruíz-Sala P, Merinero B, Banerjee R, Desviat LR, Ugarte M, Martinez A, Pérez B. Pharmacological chaperones as a potential therapeutic option in methylmalonic aciduria cblB type. Hum Mol Genet 2013; 22:3680-9. [PMID: 23674520 DOI: 10.1093/hmg/ddt217] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Methylmalonic aciduria (MMA) cblB type is caused by mutations in the MMAB gene. This encodes the enzyme ATP:cob(I)alamin adenosyltransferase (ATR), which converts reduced cob(I)alamin to an active adenosylcobalamin cofactor. We recently reported the presence of destabilizing pathogenic mutations that retain some residual ATR activity. The aim of the present study was to seek pharmacological chaperones as a tailored therapy for stabilizing the ATR protein. High-throughput ligand screening of over 2000 compounds was performed; six were found to enhance the thermal stability of purified recombinant ATR. Further studies using a well-established bacterial system in which the recombinant ATR protein was expressed in the presence of these six compounds, showed them all to increase the stability of the wild-type ATR and the p.Ile96Thr mutant proteins. Compound V (N-{[(4-chlorophenyl)carbamothioyl]amino}-2-phenylacetamide) significantly increased this stability and did not act as an inhibitor of the purified protein. Importantly, compound V increased the activity of ATR in patient-derived fibroblasts harboring the destabilizing p.Ile96Thr mutation in a hemizygous state to within control range. When cobalamin was coadministrated with compound V, mutant ATR activity further improved. Oral administration of low doses of compound V to C57BL/6J mice for 12 days, led to increase in steady-state levels of ATR protein in liver and brain (disease-relevant organs). These results hold promise for the clinical use of pharmacological chaperones in MMA cblB type patients harboring chaperone-responsive mutations.
Collapse
Affiliation(s)
- Ana Jorge-Finnigan
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO, UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jorge-Finnigan A, Aguado C, Sánchez-Alcudia R, Abia D, Richard E, Merinero B, Gámez A, Banerjee R, Desviat LR, Ugarte M, Pérez B. Functional and structural analysis of five mutations identified in methylmalonic aciduria cblB type. Hum Mutat 2010; 31:1033-42. [PMID: 20556797 DOI: 10.1002/humu.21307] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ATP:cob(I)alamin adenosyltransferase (ATR, E.C.2.5.1.17) converts reduced cob(I)alamin to the adenosylcobalamin cofactor. Mutations in the MMAB gene encoding ATR are responsible for the cblB type methylmalonic aciduria. Here we report the functional analysis of five cblB mutations to determine the underlying molecular basis of the dysfunction. The transcriptional profile along with minigenes analysis revealed that c.584G>A, c.349-1G>C, and c.290G>A affect the splicing process. Wild-type ATR and the p.I96T (c.287T>C) and p.R191W (c.571C>T) mutant proteins were expressed in a prokaryote and a eukaryotic expression systems. The p.I96T protein was enzymatically active with a K(M) for ATP and K(D) for cob(I)alamin similar to wild-type enzyme, but exhibited a 40% reduction in specific activity. Both p.I96T and p.R191W mutant proteins are less stable than the wild-type protein, with increased stability when expressed under permissive folding conditions. Analysis of the oligomeric state of both mutants showed a structural defect for p.I96T and also a significant impact on the amount of recovered mutant protein that was more pronounced for p.R191W that, along with the structural analysis, suggest they might be misfolded. These results could serve as a basis for the implementation of pharmacological therapies aimed at increasing the residual activity of this type of mutations.
Collapse
Affiliation(s)
- Ana Jorge-Finnigan
- Centro de Diagnéstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain/Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Vitamin B12 (cobalamin, Cbl) is an essential nutrient in human metabolism. Genetic diseases of vitamin B12 utilisation constitute an important fraction of inherited newborn disease. Functionally, B12 is the cofactor for methionine synthase and methylmalonyl CoA mutase. To function as a cofactor, B12 must be metabolised through a complex pathway that modifies its structure and takes it through subcellular compartments of the cell. Through the study of inherited disorders of vitamin B12 utilisation, the genes for eight complementation groups have been identified, leading to the determination of the general structure of vitamin B12 processing and providing methods for carrier testing, prenatal diagnosis and approaches to treatment.
Collapse
|
15
|
Mera PE, Escalante-Semerena JC. Multiple roles of ATP:cob(I)alamin adenosyltransferases in the conversion of B12 to coenzyme B12. Appl Microbiol Biotechnol 2010; 88:41-8. [PMID: 20677021 DOI: 10.1007/s00253-010-2773-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/06/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
Our mechanistic understanding of the conversion of vitamin B(12) into coenzyme B(12) (a.k.a. adenosylcobalamin, AdoCbl) has been substantially advanced in recent years. Insights into the multiple roles played by ATP:cob(I)alamin adenosyltransferase (ACA) enzymes have emerged through the crystallographic, spectroscopic, biochemical, and mutational analyses of wild-type and variant proteins. ACA enzymes circumvent the thermodynamic barrier posed by the very low redox potential associated with the reduction of cob(II)alamin to cob(I)alamin by generating a unique four-coordinate cob(II)alamin intermediate that is readily converted to cob(I)alamin by physiological reductants. ACA enzymes not only synthesize AdoCbl but also they deliver it to the enzymes that use it, and in some cases, enzymes in which its function is needed to maintain the fidelity of the AdoCbl delivery process have been identified. Advances in our understanding of ACA enzyme function have provided valuable insights into the role of specific residues, and into why substitutions of these residues have profound negative effects on human health. From an applied science standpoint, a better understanding of the adenosylation reaction may lead to more efficient ways of synthesizing AdoCbl.
Collapse
Affiliation(s)
- Paola E Mera
- Department of Developmental Biology, Stanford University, 279 Campus Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
16
|
Characterization of the PduS cobalamin reductase of Salmonella enterica and its role in the Pdu microcompartment. J Bacteriol 2010; 192:5071-80. [PMID: 20656910 DOI: 10.1128/jb.00575-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Salmonella enterica degrades 1,2-propanediol (1,2-PD) in a coenzyme B12 (adenosylcobalamin, AdoCbl)-dependent fashion. Salmonella obtains AdoCbl by assimilation of complex precursors, such as vitamin B12 and hydroxocobalamin. Assimilation of these compounds requires reduction of their central cobalt atom from Co3+ to Co2+ to Co+, followed by adenosylation to AdoCbl. In this work, the His6-tagged PduS cobalamin reductase from S. enterica was produced at high levels in Escherichia coli, purified, and characterized. The anaerobically purified enzyme reduced cob(III)alamin to cob(II)alamin at a rate of 42.3±3.2 μmol min(-1) mg(-1), and it reduced cob(II)alamin to cob(I)alamin at a rate of 54.5±4.2 nmol min(-1) mg(-1) protein. The apparent Km values of PduS-His6 were 10.1±0.7 μM for NADH and 67.5±8.2 μM for hydroxocobalamin in cob(III)alamin reduction. The apparent Km values for cob(II)alamin reduction were 27.5±2.4 μM with NADH as the substrate and 72.4±9.5 μM with cob(II)alamin as the substrate. High-performance liquid chromatography (HPLC) and mass spectrometry (MS) indicated that each monomer of PduS contained one molecule of noncovalently bound flavin mononucleotide (FMN). Genetic studies showed that a pduS deletion decreased the growth rate of Salmonella on 1,2-PD, supporting a role in cobalamin reduction in vivo. Further studies demonstrated that the PduS protein is a component of the Pdu microcompartments (MCPs) used for 1,2-PD degradation and that it interacts with the PduO adenosyltransferase, which catalyzes the terminal step of AdoCbl synthesis. These studies further characterize PduS, an unusual MCP-associated cobalamin reductase, and, in conjunction with prior results, indicate that the Pdu MCP encapsulates a complete cobalamin assimilation system.
Collapse
|
17
|
Fan C, Bobik TA. Functional characterization and mutation analysis of human ATP:Cob(I)alamin adenosyltransferase. Biochemistry 2008; 47:2806-13. [PMID: 18251506 DOI: 10.1021/bi800084a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ATP:cob(I)alamin adenosyltransferase catalyzes the final step in the conversion of vitamin B 12 into the active coenzyme, adenosylcobalamin. Inherited defects in the gene for the human adenosyltransferase (hATR) result in methylmalonyl aciduria (MMA), a rare but life-threatening illness. In this study, we conducted a random mutagenesis of the hATR coding sequence. An ATR-deficient strain of Salmonella was used as a surrogate host to screen for mutations that impaired hATR activity in vivo. Fifty-seven missense mutations were isolated. These mapped to 30 positions of the hATR, 25 of which had not previously been shown to impair enzyme activity. Kinetic analysis and in vivo tests for enzyme activity were performed on the hATR variants, and mutations were mapped onto a hATR structural model. These studies functionally defined the hATR active site and tentatively implicated three amino acid residues in facilitating the reduction of cob(II)alamin to cob(I)alamin which is a prerequisite to adenosylation.
Collapse
Affiliation(s)
- Chenguang Fan
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
18
|
Merinero B, Pérez B, Pérez-Cerdá C, Rincón A, Desviat LR, Martínez MA, Sala PR, García MJ, Aldamiz-Echevarría L, Campos J, Cornejo V, Del Toro M, Mahfoud A, Martínez-Pardo M, Parini R, Pedrón C, Peña-Quintana L, Pérez M, Pourfarzam M, Ugarte M. Methylmalonic acidaemia: examination of genotype and biochemical data in 32 patients belonging to mut, cblA or cblB complementation group. J Inherit Metab Dis 2008; 31:55-66. [PMID: 17957493 DOI: 10.1007/s10545-007-0667-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 08/07/2007] [Accepted: 09/13/2007] [Indexed: 11/25/2022]
Abstract
Methylmalonic acidaemia (MMA) is a genetic disorder caused by defects in methylmalonyl-CoA mutase or in any of the different proteins involved in the synthesis of adenosylcobalamin. The aim of this work was to examine the biochemical and clinical phenotype of 32 MMA patients according to their genotype, and to study the mutant mRNA stability by real-time PCR analysis. Using cellular and biochemical methods, we classified our patient cohort as having the MMA forms mut (n = 19), cblA (n = 9) and cblB (n = 4). All the mut (0) and some of the cblB patients had the most severe clinical and biochemical manifestations, displaying non-inducible propionate incorporation in the presence of hydroxocobalamin (OHCbl) in vitro and high plasma odd-numbered long-chain fatty acid (OLCFA) concentrations under dietary therapy. In contrast, mut (-) and cblA patients exhibited a milder phenotype with propionate incorporation enhanced by OHCbl and normal OLCFA levels under dietary therapy. No missense mutations identified in the MUT gene, including mut (0) and mut (-) changes, affected mRNA stability. A new sequence variation (c.562G>C) in the MMAA gene was identified. Most of the cblA patients carried premature termination codons (PTC) in both alleles. Interestingly, the transcripts containing the PTC mutations were insensitive to nonsense-mediated decay (NMD).
Collapse
Affiliation(s)
- B Merinero
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Facultad de Ciencias, Universidad Autónoma, CIBER de Enfermedades Raras, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Mutations in the gene encoding human ATP:cobalamin adenosyltransferase (hATR) can result in the metabolic disorder known as methylmalonic aciduria (MMA). This enzyme catalyzes the final step in the conversion of cyanocobalamin (vitamin B12) to the essential human cofactor adenosylcobalamin. Here we present the 2.5 A crystal structure of ATP bound to hATR refined to an Rfree value of 25.2%. The enzyme forms a tightly associated trimer, where the monomer comprises a five-helix bundle and the active sites lie on the subunit interfaces. Only two of the three active sites within the trimer contain the bound ATP substrate, thereby providing examples of apo- and substrate-bound-active sites within the same crystal structure. Comparison of the empty and occupied sites indicates that twenty residues at the enzyme's N-terminus become ordered upon binding of ATP to form a novel ATP-binding site and an extended cleft that likely binds cobalamin. The structure explains the role of 20 invariant residues; six are involved in ATP binding, including Arg190, which hydrogen bonds to ATP atoms on both sides of the scissile bond. Ten of the hydrogen bonds are required for structural stability, and four are in positions to interact with cobalamin. The structure also reveals how the point mutations that cause MMA are deficient in these functions.
Collapse
Affiliation(s)
- Heidi L Schubert
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA.
| | | |
Collapse
|
20
|
Murphy C, Murray AM, Meaney S, Gåfvels M. Regulation by SREBP-2 defines a potential link between isoprenoid and adenosylcobalamin metabolism. Biochem Biophys Res Commun 2007; 355:359-64. [PMID: 17300749 DOI: 10.1016/j.bbrc.2007.01.155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 01/27/2007] [Indexed: 10/23/2022]
Abstract
Mevalonate kinase (MVK) catalyses an early step in cholesterol biosynthesis converting mevalonate to phosphomevalonate. Cob(I)alamin adenosyltransferase (MMAB) converts cob(I)alamin to adenosylcobalamin, functionally required for mitochondrial methylmalonyl-CoA mutase activity and succinyl-CoA formation. These two synthenic genes are found in a head-to-head formation on chromosome 12 in man and chromosome 5 in mouse. The 330bp intergenic region showed several conserved NF-Y sites indicative of potential bidirectional regulatory SREBP synergism. Both MVK and MMAB appear to be regulated in a similar manner, to a large extent by SREBP-2, since their tissue expression pattern was similar and both genes were suppressed by an excess of cholesterol as well as SREBP-2 knockdown. Statin treatment in mice upregulated both Mvk and Mmab mRNA levels indicating that this treatment may be useful in inborn errors of cblB complementation associated with methylmalonic aciduria as well as hyper IgD and periodic fever syndrome (HIDS).
Collapse
Affiliation(s)
- Charlotte Murphy
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, 14186 Stockholm, Sweden.
| | | | | | | |
Collapse
|
21
|
Richard E, Alvarez-Barrientos A, Pérez B, Desviat LR, Ugarte M. Methylmalonic acidaemia leads to increased production of reactive oxygen species and induction of apoptosis through the mitochondrial/caspase pathway. J Pathol 2007; 213:453-61. [DOI: 10.1002/path.2248] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
St. Maurice M, Mera PE, Taranto MP, Sesma F, Escalante-Semerena JC, Rayment I. Structural characterization of the active site of the PduO-type ATP:Co(I)rrinoid adenosyltransferase from Lactobacillus reuteri. J Biol Chem 2006; 282:2596-605. [PMID: 17121823 PMCID: PMC6574208 DOI: 10.1074/jbc.m609557200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional crystal structure of the PduO-type corrinoid adenosyltransferase from Lactobacillus reuteri (LrPduO) has been solved to 1.68-A resolution. The functional assignment of LrPduO as a corrinoid adenosyltransferase was confirmed by in vivo and in vitro evidence. The enzyme has an apparent Km(ATP) of 2.2 microM and Km(Cobalamin) of 0.13 microM and a kcat of 0.025 s(-1). Co-crystallization of the enzyme with Mg-ATP resulted in well-defined electron density for an N-terminal loop that had been disordered in other PduO-type enzyme structures. This newly defined N-terminal loop makes up the lower portion of the enzyme active site with the other half being contributed from an adjacent subunit. These results provide the first detailed description of the enzyme active site for a PduO-type adenosyltransferase and identify a unique ATP binding motif at the protein N terminus. The molecular architecture at the active site offers valuable new insight into the role of various residues responsible for the human disease methylmalonic aciduria.
Collapse
Affiliation(s)
- Martin St. Maurice
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Paola E. Mera
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | | | | | - Jorge C. Escalante-Semerena
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- To whom correspondence may be addressed.
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
- To whom correspondence may be addressed: Dept. of Biochemistry, 433 Babcock Dr., Madison, WI 53706. Tel.: 608-262-0437; Fax: 608-262-1319;
| |
Collapse
|
23
|
Yamada K, Gravel RA, Toraya T, Matthews RG. Human methionine synthase reductase is a molecular chaperone for human methionine synthase. Proc Natl Acad Sci U S A 2006; 103:9476-81. [PMID: 16769880 PMCID: PMC1480432 DOI: 10.1073/pnas.0603694103] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sustained activity of mammalian methionine synthase (MS) requires MS reductase (MSR), but there have been few studies of the interactions between these two proteins. In this study, recombinant human MS (hMS) and MSR (hMSR) were expressed in baculovirus-infected insect cells and purified to homogeneity. hMSR maintained hMS activity at a 1:1 stoichiometric ratio with a K(act) value of 71 nM. Escherichia coli MS, however, was not activated by hMSR. Moreover, hMS was not significantly active in the presence of E. coli flavodoxin and flavodoxin reductase, which maintain the activity of E. coli MS. These results indicate that recognition of MS by their reductive partners is very strict, despite the high homology between MS from different species. The effects of hMSR on the formation of hMS holoenzyme also were examined by using crude extracts of baculovirus-infected insect cells containing hMS apoenzyme (apoMS). In the presence of MSR and NADPH, holoenzyme formation from apoMS and methylcobalamin was significantly enhanced. The observed stimulation is shown to be due to stabilization of human apoMS in the presence of MSR. Apoenzyme alone is quite unstable at 37 degrees C. MSR also is able to reduce aquacobalamin to cob(II)alamin in the presence of NADPH, and this reduction leads to stimulation of the conversion of apoMS and aquacobalamin to MS holoenzyme. Based on these findings, we propose that MSR serves as a special chaperone for hMS and as an aquacobalamin reductase, rather than acting solely in the reductive activation of MS.
Collapse
Affiliation(s)
- Kazuhiro Yamada
- *Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-2216
- To whom correspondence may be sent at the present address:
Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Tokyo 184-8588, Japan. E-mail:
| | - Roy A. Gravel
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada T2N 4N1; and
| | - Tetsuo Toraya
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | - Rowena G. Matthews
- *Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-2216
- To whom correspondence may be addressed at:
4002 Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216. E-mail:
| |
Collapse
|