1
|
Risi B, Caria F, Bertella E, Giovanelli G, Gatti S, Poli L, Gazzina S, Leggio U, Bozzoni V, Volonghi I, Allali NA, Ottelli E, Ferrari E, Marrello A, Ricci G, Siciliano G, Padovani A, Filosto M. Management of Pompe disease alongside and beyond ERT: a narrative review. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2025; 44:11-22. [PMID: 40183436 PMCID: PMC11978428 DOI: 10.36185/2532-1900-1106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
Background Pompe disease is a lysosomal storage disorder that primarily affects muscles, and its natural history has been transformed over the past 20 years by therapies designed to restore the deficient enzyme function, from the first enzyme replacement therapies (ERTs) to the gene therapy currently in development. However, despite these ground-breaking innovations, the importance of a multi-system and rehabilitative approach remains critical, as it addresses the complex systems involved in the disease and optimizes the success of pharmacological treatments. Methods We conducted a narrative review of the current pharmacological treatments approved for Pompe disease, as well as those undergoing clinical trials. We also reviewed international recommendations for managing respiratory, musculoskeletal, and cardiac function specially focusing on the late-onset form. Results There are no universally agreed guidelines for the multidisciplinary management and many recommendations are based on expert consensus and small interventional studies. Nevertheless, combined approaches involving ERT therapy along with specific rehabilitation and nutritional programs appear to yield beneficial effects. Conclusions Pompe disease, one of the first neuromuscular diseases to benefit from the approval of disease-modifying therapies, is a paradigm for the importance of an integrated therapeutic-rehabilitative approach.
Collapse
Affiliation(s)
- Barbara Risi
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Filomena Caria
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | - Enrica Bertella
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | | | - Simonetta Gatti
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | - Loris Poli
- Unit of Neurology, ASST Spedali Civili, Brescia, Italy
| | | | - Ugo Leggio
- Unit of Neurology, ASST Spedali Civili, Brescia, Italy
| | | | | | | | - Elisa Ottelli
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | | | - Anna Marrello
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Padovani
- Unit of Neurology, ASST Spedali Civili, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Massimiliano Filosto
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
- Unit of Neurology, ASST Spedali Civili, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
2
|
Yin Y, Jiang J, Jin Y. A Real-World Data Analysis of Alglucosidase Alfa in the FDA Adverse Event Reporting System (FAERS) Database. Drugs R D 2025; 25:57-66. [PMID: 39833603 PMCID: PMC12011682 DOI: 10.1007/s40268-024-00502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Alglucosidase alfa for injection is used as an enzyme replacement therapy for the treatment of Pompe disease. The safety profile of alglucosidase alfa-associated adverse events requires a comprehensive evaluation. In this study, we aimed to identify drug safety alert signals and investigate the real-world safety of alglucosidase alfa to guide clinical decision making and optimize the risk-benefit balance. METHODS The adverse event reports from the first quarter of 2006 to the fourth quarter of 2023 were selected by exploring the Food and Drug Administration Adverse Event Reporting System (FAERS) database. The new and unexpected potential adverse event signals were detected using a disproportionality analysis, including the reporting odds ratio, the proportional reporting ratio, the Bayesian confidence propagation neural network, and the empirical Bayes geometric mean. Then, the Medical Dictionary for Regulatory Activities was used to systematically classify the results. RESULTS After analyzing 16,945,027 adverse event reports, a total of 4326 cases of adverse events related to alglucosidase alfa were identified, spanning 27 system organ classes. A total of 359 preferred terms of adverse events for glucosidase alpha were detected. Pyrexia ranked first, followed by pneumonia, dyspnea, respiratory failure, and disease progression according to occurrence frequency. The top three system organ classes were general disorders and administration-site conditions (n = 2466), respiratory, thoracic, and mediastinal disorders (n = 1749), and infections and infestations (n = 1551). In addition to adverse effects mentioned in the product label, our study also discovered rare but high signal intensity adverse events such as chronic recurrent multifocal osteomyelitis. CONCLUSIONS There are many adverse events associated with the clinical use of alglucosidase alfa, which should be closely monitored in the FAERS database. As the most effective enzyme replacement therapy for Pompe disease, it is crucial to closely monitor these adverse events. Ensuring patient safety while balancing drug effectiveness is particularly important.
Collapse
Affiliation(s)
- Yi Yin
- Department of Pediatric Intensive Care Unit, Shandong, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Ji'nan, Shandong, China.
| | - Jie Jiang
- Department of Pediatric Intensive Care Unit, Shandong, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Ji'nan, Shandong, China
| | - Youpeng Jin
- Department of Pediatric Intensive Care Unit, Shandong, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Ji'nan, Shandong, China.
| |
Collapse
|
3
|
Spiridigliozzi GA, Regmi N, Zimmerman K, Stefanescu M, Jung SH, Kishnani PS. Exploring the use of the National Institutes of Health Toolbox Cognition Battery with children and adolescents with Pompe disease: Preliminary findings. Mol Genet Metab 2025; 144:109043. [PMID: 39983297 DOI: 10.1016/j.ymgme.2025.109043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Although Pompe disease (PD) was originally characterized as a metabolic myopathy, there is now emerging evidence of neurological involvement in children and adolescents with infantile-onset Pompe disease (IOPD). Therefore, assessing cognition and detecting cognitive changes in these individuals over time have become important components of their care. The National Institutes of Health Toolbox Cognition Battery (NIHT-CB, Version 2) is a brief, standardized instrument designed to measure cognitive processes in individuals 3-85 years of age. With its availability and ease of administration by a trained provider, the NIHT-CB could potentially be used in a clinical health care setting to help screen/monitor cognition in individuals with PD. This is the first study to report the use of the NIHT-CB in children and adolescents with IOPD and late-onset Pompe disease (LOPD) and their performance on this instrument in comparison to traditional neuropsychological measures. METHODS Fourteen children with IOPD (median age = 10.5, range = 6-19 years) and eight with LOPD (median age = 12.5, range = 7-17 years) were administered the NIHT-CB and a neuropsychological battery by the same psychologist with expertise in PD. RESULTS On the NIHT-CB and selected neuropsychological measures, nearly all median scores for the IOPD group were lower than those of the LOPD group. However, none of the differences between the IOPD and LOPD groups were statistically significant. Consistent with previous reports, there was a wide range of scores among the IOPD and LOPD participants on both the neuropsychological measures and the NIHT-CB. The lowest median NIHT-CB score for both groups was on the Flanker Inhibitory Control and Attention Test (IOPD = 77.5, LOPD = 84), a measure of executive function and selective attention. Positive, significant relationships were found between the NIHT-CB and neuropsychological measures of overall cognition, reading decoding, and short-term working memory on the Wechsler Intelligence Test scales and the Woodcock-Johnson Tests of Achievement subtest for the IOPD group only. CONCLUSIONS Though not a replacement for an established neuropsychological battery, the NIHT-CB could potentially be used as a screening measure to provide a baseline level of cognitive functioning in children and adolescents with IOPD. Observed changes in the NIHT-CB Cognitive Function Composite or selected subtests over time may also signal the need for a more comprehensive neuropsychological battery and/or brain imaging studies as indicated. Longitudinal studies examining the performance of a larger cohort of IOPD and LOPD children and adults at multiple time points are needed.
Collapse
Affiliation(s)
- Gail A Spiridigliozzi
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Road, Suite 300, Durham, NC 27705, United States of America; Department of Pediatrics, Duke University Medical Center, DUMC Box 103856 905 S. LaSalle St. GSRB1, Durham, NC 27710, United States of America.
| | - Neha Regmi
- Department of Pediatrics, Duke University Medical Center, DUMC Box 103856 905 S. LaSalle St. GSRB1, Durham, NC 27710, United States of America
| | - Kanecia Zimmerman
- Department of Pediatrics, Duke University Medical Center, DUMC Box 103856 905 S. LaSalle St. GSRB1, Durham, NC 27710, United States of America; Duke Clinical Research Institute, 300 W. Morgan Street, Durham, NC 27701, United States of America
| | - Mihaela Stefanescu
- Department of Pediatrics, Duke University Medical Center, DUMC Box 103856 905 S. LaSalle St. GSRB1, Durham, NC 27710, United States of America
| | - Seung-Hye Jung
- Department of Pediatrics, Duke University Medical Center, DUMC Box 103856 905 S. LaSalle St. GSRB1, Durham, NC 27710, United States of America
| | - Priya S Kishnani
- Department of Pediatrics, Duke University Medical Center, DUMC Box 103856 905 S. LaSalle St. GSRB1, Durham, NC 27710, United States of America
| |
Collapse
|
4
|
Hussein MA, ElTaher H, Mahmoud R, Sobh D, Al-Haggar M. Clinical manifestations in Egyptian Pompe disease patients: Molecular variability and enzyme replacement therapy (ERT) outcomes. Ital J Pediatr 2025; 51:13. [PMID: 39849595 PMCID: PMC11756172 DOI: 10.1186/s13052-025-01837-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Pompe disease is a rare genetic disorder caused by a deficiency of the enzyme acid alpha-glucosidase. This condition leads to muscle weakness, respiratory problems, and heart abnormalities in affected individuals. METHODS The aim of the study is to share our experience through cross sectional study of patients with infantile-onset Pompe disease (IOPD) with different genetic variations, resulting in diverse clinical presentations. We evaluated their phenotype, genotype, radiological and laboratory findings including their cross-reactive immunologic material (CRIM) status. Infantile Pompe disease was diagnosed by measurement of the activity of the enzyme alpha-glucosidase. The diagnosis was confirmed by molecular genetic testing using PCR amplification and sequencing of the acid alpha-glucosidase (GAA) gene. Routine two-D echocardiography, and multi-parametric ECG-gated cardiac magnetic resonance imaging (CMR) were done to patients six months after starting enzyme replacement therapy (ERT). RESULTS The results of our study revealed different genetic mutations among our patients, different CRIM status and also CMR abnormalities. CMR imaging revealed abnormalities in all cases that underwent the procedure, including myocardial and vascular changes, with feature tracking indicating issues across all parameters and LGE suggesting fibrosis. The patient with a positive immune response had the most severe cardiac abnormalities, despite improvements in muscle weakness and motor skills from ERT. This underscores that delayed diagnosis and ERT can lead to irreversible heart damage from autophagy buildup. CONCLUSION Pompe disease has various clinical presentations and results in significant CMR findings, which can be attributed to different genetic mutations. Early initiation of enzyme replacement therapy in infantile-onset Pompe disease is important to maximize its benefits.
Collapse
Affiliation(s)
| | - Heba ElTaher
- Pediatrics Department, Genetics Unit, Mansoura University, Mansoura, Egypt
| | - Ranim Mahmoud
- Pediatrics Department, Genetics Unit, Mansoura University, Mansoura, Egypt
| | - Donia Sobh
- Radiodiagnosis Department, Mansoura University, Mansoura, Egypt
| | - Mohammad Al-Haggar
- Pediatrics Department, Genetics Unit, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Fares AH, Desai AK, Case LE, Sharon C, Klinepeter A, Kirby A, Lisi MT, Koch RL, Kishnani PS. Optimizing clinical outcomes: The journey of twins with CRIM-negative infantile-onset Pompe disease on high-dose enzyme replacement therapy and immunomodulation. Mol Genet Metab Rep 2024; 41:101141. [PMID: 39314994 PMCID: PMC11419802 DOI: 10.1016/j.ymgmr.2024.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Infantile-onset Pompe disease (IOPD) is caused by a deficiency in the enzyme acid alpha-glucosidase (GAA). It is characterized by severe and progressive hypertrophic cardiomyopathy and muscle weakness with death in the first 2 years of life if left untreated. Enzyme replacement therapy (ERT) with alglucosidase-alfa is lifesaving, but its effectiveness is influenced by the patient's cross-reactive immunologic material (CRIM) status, dose of ERT, and the development of high antibody titers, which can reduce the therapy's efficacy. The inability of CRIM-negative IOPD patients to produce native GAA exposes them to a high risk of development of anti-rhGAA IgG antibody titers, leading to treatment failure. We present the case of CRIM-negative dizygotic twins treated with high-dose alglucosidase-alfa (40 mg/kg/week), initiated at 28 days (Twin A) and 44 days (Twin B). Both twins received immune tolerance induction (ITI) with rituximab, methotrexate, and IVIG to mitigate antibody response. Initial evaluations revealed elevated left ventricular mass index (LVMI) and elevated biomarkers (urine glucose tetrasaccharide (Glc4), creatine kinase (CK), and aspartate aminotransferase (AST)) in both twins. Following treatment, cardiac function and biomarkers normalized within several months, with a slight delay in Twin B compared to Twin A, likely attributed to the later initiation of ERT. Both twins safely tolerated ITI, achieving immune tolerance with low antibody titers. At 28 months, the twins transitioned to avalglucosidase-alfa (40 mg/kg every other week (EOW)), which was well tolerated without an increase in antibody titers. At 39 months, both twins exhibited normal cardiac function, LVMI, and biomarkers. Motor skills continued to improve, though some kinematic concerns persisted. These cases underscore the importance of early, high-dose ERT combined with ITI in managing CRIM-negative IOPD. While transitioning to avalglucosidase-alfa at 40 mg/kg/EOW was beneficial and well-tolerated in our patients, further studies are needed to confirm its long-term efficacy compared to the high-dose weekly 40 mg/kg alglucosidase-alfa.
Collapse
Affiliation(s)
- Angie H. Fares
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Ankit K. Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Laura E. Case
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
- Doctor of Physical Therapy Division, Department of Orthopaedics, Duke University Medical Center, Durham, North Carolina, USA
| | - Cassie Sharon
- Department of Rehabilitation Services, Pediatric Division, Duke University Medical Center, Durham, North Carolina, USA
| | - Amy Klinepeter
- Department of Rehabilitation Services, Pediatric Division, Duke University Medical Center, Durham, North Carolina, USA
| | - Amelia Kirby
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Matthew T. Lisi
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Rebecca L. Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
6
|
Nunes Campos L, Davila Rivera I, Ibañez Alegre DM, Del Puerto González FN, Garrido San Juan M, Fernandez Zelcer F, Borgobello D, Gerk A, Sosa LF, Miretti MM, Stegmann J, Argüelles CF. Navigating Pompe Disease Assessment: A Comprehensive Scoping Review. Cureus 2024; 16:e73593. [PMID: 39677172 PMCID: PMC11645167 DOI: 10.7759/cureus.73593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 12/17/2024] Open
Abstract
Pompe disease (PD) is a rare progressive autosomal recessive disorder resulting from the deficiency of acid alpha-glucosidase (GAA) enzyme activity. Due to its multisystemic involvement, PD leads to significant morbidity and impacts patients' quality of life. Despite the availability of approved disease-modifying treatments, the prompt diagnosis and management of PD, which are crucial for patient outcomes, still present several challenges. This scoping review aimed to synthesize the evidence regarding methods for screening, diagnosing, and following up PD. We searched articles in English and Spanish published from 2017 to February 8, 2022, across 11 databases (i.e., Cochrane Database of Systematic Reviews, Directory of Open Access Journals (DOAJ), Epistemonikos, Ingenta Connect, Medline/PubMed, SAGE, SciELO Citation Index, ScienceDirect, Springer Link, Virtual Health Library, and Wiley Online Library). We included primary studies (i.e., case reports, case series, cross-sectional studies, case controls, cohorts, clinical trials, and qualitative studies), reviews, and guidelines that described at least one assessment method for patients with confirmed clinical, genetic, or biochemical PD. Two independent reviewers screened and extracted data from articles, with a third reviewer solving conflicts. We synthesized data with narrative summaries and descriptive statistics. After screening 2,139 titles and abstracts, we included 96 eligible articles. Cross-sectional studies (n = 30) and guidelines (n = 1) were the most and least prevalent designs, respectively. Most studies targeted late-onset PD (LOPD, n = 48) and infantile-onset PD (IOPD, n = 21). Eleven articles described newborn screening programs, highlighting their potential to improve PD prevalence estimations and still limited availability among countries. Overall, 81 articles documented clinical manifestations of PD. Hypotonia (n = 7) and hypertrophic cardiomyopathy (n = 7) were the most documented for IOPD, while progressive muscle weakness (n = 21) and dyspnea (n = 11) were the most prevalent for LOPD. We found 26 articles reporting biochemical assays, with dried blood spots (DBS) for GAA enzyme deficiency detection being the most cited (n = 19). We also noted a lack of standardization in documenting DBS results. Additionally, 21 articles mentioned genetic studies, with next-generation sequencing emerging as the gold standard for identifying mutated alleles. Functional studies were the most utilized to follow up with patients. However, monitoring strategies for pediatric and adult PD lacked consensus, and only one article assessed patients' quality of life. This review comprehensively evaluated the literature on PD screening, diagnosis, and follow-up methods, identifying prevalent techniques within each assessment category. We emphasized the need for a more standardized approach to reporting biochemical assays, genetic testing, and clinical presentations. Our review also underscored the critical lack of standardization in PD follow-up. Addressing these gaps will enhance the comparability of future research findings and improve the quality of PD-related healthcare. Limitations of this review included restricting eligible languages and publication years to the latest five, the methodological heterogeneity of selected articles, and the lack of individual study bias assessment.
Collapse
Affiliation(s)
| | | | | | - Fabiana N Del Puerto González
- Rare Diseases, Rare Diseases Community (RDCom), Buenos Aires, ARG
- Genetics, GIGA, Instituto de Biología Subtropical, Nodo Posadas, Universidad Nacional de Misiones (UNaM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Posadas, ARG
| | | | | | | | - Ayla Gerk
- Rare Diseases, Rare Diseases Community (RDCom), Buenos Aires, ARG
| | - Laura F Sosa
- Rare Diseases, Rare Diseases Community (RDCom), Buenos Aires, ARG
| | - Marcos M Miretti
- Genetics, GIGA, Instituto de Biología Subtropical, Nodo Posadas, Universidad Nacional de Misiones (UNaM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Posadas, ARG
- Rare Diseases, Rare Diseases Community (RDCom), Buenos Aires, ARG
| | | | - Carina F Argüelles
- Rare Diseases, Rare Diseases Community (RDCom), Buenos Aires, ARG
- Faculty of Health Sciences, Universidad Católica de las Misiones, Posadas, ARG
- Genetics, GIGA, Instituto de Biología Subtropical, Nodo Posadas, Universidad Nacional de Misiones (UNaM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Posadas, ARG
| |
Collapse
|
7
|
Stern S, Wang J, Li RJ, Hon YY, Weis SL, Wang YMC, Schuck R, Pacanowski M. Clinical pharmacology considerations for first-in-human clinical trials for enzyme replacement therapy. J Inherit Metab Dis 2024; 47:1096-1106. [PMID: 38740427 PMCID: PMC11998121 DOI: 10.1002/jimd.12746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Inborn errors of metabolism (IEM) such as lysosomal storage disorders (LSDs) are conditions caused by deficiency of one or more key enzymes, cofactors, or transporters involved in a specific metabolic pathway. Enzyme replacement therapy (ERT) provides an exogenous source of the affected enzyme and is one of the most effective treatment options for IEMs. In this paper, we review the first-in-human (FIH) protocols for ERT drug development programs supporting 20 Biologic License Applications (BLA) approved by the Center for Drug Evaluation and Research (CDER) at the US Food and Drug Administration (FDA) in the period of May 1994 to September 2023. We surveyed study design elements across these FIH protocols including study population, dosage form, dose selection, treatment duration, immunogenicity, biomarkers, and study follow-up. A total of 18 FIH trials from 20 BLAs were identified and of those, 72% (13/18) used single ascending dose (SAD) and/or multiple ascending dose (MAD) study design, 83% (15/18) had a primary objective of assessing the safety and tolerability, 72% (13/18) included clinical endpoint assessments, and 94% (17/18) included biomarker assessments as secondary or exploratory endpoints. Notably, the majority of ERT products tested the approved route of administration and the approved dose was tested in 83% (15/18) of FIH trials. At last, we offer considerations for the design of FIH studies.
Collapse
Affiliation(s)
- Sydney Stern
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jie Wang
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ruo-Jing Li
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yuen Yi Hon
- Office of Rare Disease, Pediatrics, Urologic and Reproductive Medicine, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Shawna L. Weis
- Office of Rare Disease, Pediatrics, Urologic and Reproductive Medicine, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yow-Ming C. Wang
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Robert Schuck
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael Pacanowski
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
8
|
Kishnani PS, Chien YH, Berger KI, Thibault N, Sparks S. Clinical insight meets scientific innovation to develop a next generation ERT for Pompe disease. Mol Genet Metab 2024; 143:108559. [PMID: 39154400 DOI: 10.1016/j.ymgme.2024.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
Years of research into the structure, processing, and function of acid alpha-glucosidase led to the development and 2006 approval of alglucosidase alfa (recombinant human acid alpha-glucosidase, Myozyme®/Lumizyme®), an enzyme replacement therapy and the first approved treatment for Pompe disease. Alglucosidase alfa has been a lifesaving treatment for patients with infantile-onset Pompe disease and radically improved daily life for patients with late-onset Pompe disease; however, long-term experience with alglucosidase alfa unraveled key unmet needs in these populations. Despite treatment, Pompe disease continues to progress, especially from a skeletal muscle perspective, resulting in a multitude of functional limitations. Strong collaboration between the scientific and patient communities led to increased awareness of Pompe disease, a better understanding of disease pathophysiology, knowledge of the clinical course of the disease as patients surpassed the first decade of life, and the strengths and limitations of enzyme replacement therapy. Taken together, these advancements spurred the need for development of a next generation of enzyme replacement therapy and provided a framework for progress toward other novel treatments. This review provides an overview of the development of avalglucosidase alfa as a model to highlight the interaction between clinical experience with existing treatments, the role of the clinician scientist, translational research at both system and cellular levels, and the iterative and collaborative process that optimizes the development of therapeutics.
Collapse
Affiliation(s)
- Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Yin-Hsiu Chien
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
9
|
Mozaffar T, Riou França L, Msihid J, Shukla P, Proskorovsky I, Zhou T, Periquet M, An Haack K, Pollissard L, Straub V. Efficacy of avalglucosidase alfa on forced vital capacity percent predicted in treatment-naïve patients with late-onset Pompe disease: A pooled analysis of clinical trials. Mol Genet Metab Rep 2024; 40:101109. [PMID: 39035044 PMCID: PMC11259910 DOI: 10.1016/j.ymgmr.2024.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024] Open
Abstract
Background The efficacy of avalglucosidase alfa (AVA) versus alglucosidase alfa (ALG) on forced vital capacity percent predicted (FVCpp) in patients with late-onset Pompe disease (LOPD) has been assessed in the Phase 3 COMET trial (NCT02782741). Due to the rarity of LOPD and thus small sample size in COMET, additional data were analyzed to gain further insights into the efficacy of AVA versus ALG. Methods Data from treatment-naive patients with LOPD were pooled from COMET and Phase 1/2 NEO1/NEO-EXT (NCT01898364/NCT02032524) trials for patients treated with AVA, and Phase 3 LOTS trial (NCT00158600) for patients treated with ALG. Regression analyses using mixed models with repeated measures consistent with those pre-specified in COMET were performed post-hoc. Analyses were adjusted for trials and differences in baseline characteristics. Four models were developed: Model 1 considered all trials; Model 2 included Phase 3 trials; Model 3 included Phase 3 trials and was adjusted for baseline ventilation use; Model 4 included COMET and NEO1/NEO-EXT (i.e., AVA trials only). Results Overall, 100 randomized patients from COMET (AVA, n = 51, ALG, n = 49), 60 from LOTS (ALG arm only), and three patients from NEO1/NEO-EXT (who received open-label AVA only) were considered for analysis. Mean age at enrollment was similar across trials (45.3-50.3 years); however, patients from LOTS had a longer mean duration of disease versus COMET and NEO1/NEO-EXT trials (9.0 years and 0.5-2.2 years, respectively) and younger mean age at diagnosis (36.2 years and 44.7-48.6 years, respectively). Least squares mean (95% confidence interval) improvement from baseline in FVCpp at Week 49-52 for AVA versus ALG was 2.43 (-0.13; 4.99) for COMET (n = 98); 2.31 (0.06; 4.57) for Model 1 (n = 160); 2.43 (0.21; 4.65) for Model 2 (n = 157); 2.80 (0.54; 5.05) for Model 3 (n = 154); and 2.27 (-0.30; 4.45) for Model 4 (n = 101). Conclusions Models 1 to 3, which had an increased sample size versus COMET, demonstrated a nominally significant effect on FVCpp favoring AVA versus ALG after 1 year of treatment, consistent with results from COMET.
Collapse
Affiliation(s)
- Tahseen Mozaffar
- Division of Neuromuscular Disorders, Department of Neurology, University of California, Irvine, CA, United States
| | | | | | | | | | | | | | | | | | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
10
|
Christensen CL, Kan SH, Andrade-Heckman P, Rha AK, Harb JF, Wang RY. Base editing rescues acid α-glucosidase function in infantile-onset Pompe disease patient-derived cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102220. [PMID: 38948331 PMCID: PMC11214518 DOI: 10.1016/j.omtn.2024.102220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/16/2024] [Indexed: 07/02/2024]
Abstract
Infantile-onset Pompe disease (IOPD) results from pathogenic variants in the GAA gene, which encodes acid α-glucosidase. The correction of pathogenic variants through genome editing may be a valuable one-time therapy for PD and improve upon the current standard of care. We performed adenine base editing in human dermal fibroblasts harboring three transition nonsense variants, c.2227C>T (p.Q743∗; IOPD-1), c.2560C>T (p.R854∗; IOPD-2), and c.2608C>T (p.R870∗; IOPD-3). Up to 96% adenine deamination of target variants was observed, with minimal editing across >50 off-target sites. Post-base editing, expressed GAA protein was up to 0.66-fold normal (unaffected fibroblasts), an improvement over affected fibroblasts wherein GAA was undetectable. GAA enzyme activity was between 81.91 ± 13.51 and 129.98 ± 9.33 units/mg protein at 28 days post-transfection, which falls within the normal range (50-200 units/mg protein). LAMP2 protein was significantly decreased in the most robustly edited cell line, IOPD-3, indicating reduced lysosomal burden. Taken together, the findings reported herein demonstrate that base editing results in efficacious adenine deamination, restoration of GAA expression and activity, and reduction in lysosomal burden in the most robustly edited cells. Future work will assess base editing outcomes and the impact on Pompe pathology in two mouse models, Gaa c.2227C>T and Gaa c.2560C>T.
Collapse
Affiliation(s)
| | - Shih-Hsin Kan
- CHOC Children’s Research Institute, Orange, CA 92868, USA
| | | | | | - Jerry F. Harb
- CHOC Children’s Research Institute, Orange, CA 92868, USA
| | - Raymond Y. Wang
- Division of Metabolic Disorders, CHOC Children’s Specialists, Orange, CA 92868, USA
- Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| |
Collapse
|
11
|
İnci A, Ezgü FS, Tümer L. Advances in Immune Tolerance Induction in Enzyme Replacement Therapy. Paediatr Drugs 2024; 26:287-308. [PMID: 38664313 PMCID: PMC11074017 DOI: 10.1007/s40272-024-00627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 05/07/2024]
Abstract
Inborn errors of metabolism (IEMs) are a group of genetic diseases that occur due to the either deficiency of an enzyme involved in a metabolic/biochemical pathway or other disturbances in the metabolic pathway including transport protein or activator protein deficiencies, cofactor deficiencies, organelle biogenesis, maturation or trafficking problems. These disorders are collectively significant due to their substantial impact on both the well-being and survival of affected individuals. In the quest for effective treatments, enzyme replacement therapy (ERT) has emerged as a viable strategy for patients with many of the lysosomal storage disorders (LSD) and enzyme substitution therapy in the rare form of the other inborn errors of metabolism including phenylketonuria and hypophosphatasia. However, a major challenge associated with enzyme infusion in patients with these disorders, mainly LSD, is the development of high antibody titres. Strategies focusing on immunomodulation have shown promise in inducing immune tolerance to ERT, leading to improved overall survival rates. The implementation of immunomodulation concurrent with ERT administration has also resulted in a decreased occurrence of IgG antibody development compared with cases treated solely with ERT. By incorporating the knowledge gained from current approaches and analysing the outcomes of immune tolerance induction (ITI) modalities from clinical and preclinical trials have demonstrated significant improvement in the efficacy of ERT. In this comprehensive review, the progress in ITI modalities is assessed, drawing insights from both clinical and preclinical trials. The focus is on evaluating the advancements in ITI within the context of IEM, specifically addressing LSDs managed through ERT.
Collapse
Affiliation(s)
- Aslı İnci
- Department of Paediatric Metabolism and Nutrition, Gazi University School of Medicine, Emniyet Street, Yenimahalle, Ankara, Turkey.
| | - Fatih Süheyl Ezgü
- Department of Paediatric Metabolism and Nutrition, Gazi University School of Medicine, Emniyet Street, Yenimahalle, Ankara, Turkey
- Department of Paediatric Genetic, Gazi University School of Medicine, Ankara, Turkey
| | - Leyla Tümer
- Department of Paediatric Metabolism and Nutrition, Gazi University School of Medicine, Emniyet Street, Yenimahalle, Ankara, Turkey
| |
Collapse
|
12
|
Chen HA, Hsu RH, Fang CY, Desai AK, Lee NC, Hwu WL, Tsai FJ, Kishnani PS, Chien YH. Optimizing treatment outcomes: immune tolerance induction in Pompe disease patients undergoing enzyme replacement therapy. Front Immunol 2024; 15:1336599. [PMID: 38715621 PMCID: PMC11074348 DOI: 10.3389/fimmu.2024.1336599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/05/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Pompe disease, a lysosomal storage disorder, is characterized by acid α-glucosidase (GAA) deficiency and categorized into two main subtypes: infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD). The primary treatment, enzyme replacement therapy (ERT) with recombinant human GAA (rhGAA), faces challenges due to immunogenic responses, including the production of anti-drug antibody (ADA), which can diminish therapeutic efficacy. This study aims to assess the effectiveness of immune tolerance induction (ITI) therapy in cross-reactive immunologic material (CRIM)-positive Pompe disease patients with established high ADA levels. Method In a single-center, open-label prospective study, we assessed ITI therapy's efficacy in Pompe disease patients, both IOPD and LOPD, with persistently elevated ADA titers (≥1:12,800) and clinical decline. The ITI regimen comprised bortezomib, rituximab, methotrexate, and intravenous immunoglobulin. Biochemical data, biomarkers, ADA titers, immune status, and respiratory and motor function were monitored over six months before and after ITI. Results This study enrolled eight patients (5 IOPD and 3 LOPD). After a 6-month ITI course, median ADA titers significantly decreased from 1:12,800 (range 1:12,800-1:51,200) to 1:1,600 (range 1:400-1:12,800), with sustained immune tolerance persisting up to 4.5 years in some cases. Serum CK levels were mostly stable or decreased, stable urinary glucose tetrasaccharide levels were maintained in four patients, and no notable deterioration in respiratory or ambulatory status was noted. Adverse events included two treatable infection episodes and transient symptoms like numbness and diarrhea. Conclusion ITI therapy effectively reduces ADA levels in CRIM-positive Pompe disease patients with established high ADA titers, underscoring the importance of ADA monitoring and timely ITI initiation. The findings advocate for personalized immunogenicity risk assessments to enhance clinical outcomes. In some cases, prolonged immune suppression may be necessary, highlighting the need for further studies to optimize ITI strategies for Pompe disease treatment. ClinicalTrials.gov NCT02525172; https://clinicaltrials.gov/study/NCT02525172.
Collapse
Affiliation(s)
- Hui-An Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Rai-Hseng Hsu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Ya Fang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ankit K. Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
13
|
Desai AK, Shrivastava G, Grant CL, Wang RY, Burt TD, Kishnani PS. An updated management approach of Pompe disease patients with high-sustained anti-rhGAA IgG antibody titers: experience with bortezomib-based immunomodulation. Front Immunol 2024; 15:1360369. [PMID: 38524130 PMCID: PMC10959098 DOI: 10.3389/fimmu.2024.1360369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction High sustained anti-rhGAA antibody titers (HSAT; ≥12,800) are directly linked to reduced efficacy of enzyme replacement therapy (ERT) and subsequent clinical deterioration in infantile-onset Pompe disease (IOPD). We have previously demonstrated the safety and effectiveness of a bortezomib-based immune-tolerance induction (ITI) regimen (bortezomib, rituximab, methotrexate, and IVIG) in eliminating HSAT. Methods Here, we describe two IOPD cases (patients 6 and 8) who developed HSAT at 8 and 10 weeks on ERT despite transient low-dose methotrexate ITI administration in the ERT-naïve setting and were treated with a bortezomib-based ITI regimen, and we compare their courses to a series of six historical patients (patients 1-5, and 7) with a similar presentation who exemplify our evolving approach to treatment. Results In total, patients 6 and 8 received 16 and 8 doses of bortezomib (4 doses=1 cycle) respectively reducing titers from 25,600 to seronegative, but differences in the course of their therapy were instructive regarding the optimal approach to initial treatment of HSAT; specifically, patient 6 was treated initially with only a single course of bortezomib rescue therapy, while patient 8 received two back-to-back courses. Patient 8 received IVIG therapy throughout the immunosuppression whereas patient 6 received IVIG therapy and was switched to subcutaneous IgG replacement. Patient 6 had a transient reduction in anti-rhGAA antibodies, after receiving a single initial cycle of bortezomib, but had a recurrence of high anti-rhGAA antibody titer after 160 weeks that required 3 additional cycles of bortezomib to ultimately achieve tolerance. In contrast, patient 8 achieved tolerance after being given two consecutive cycles of bortezomib during their initial treatment and had B cell recovery by week 54. Since the reduction in anti-rhGAA antibodies, both patients are doing well clinically, and have decreasing ALT, AST, and CK. No major infections leading to interruption of treatment were observed in either patient. The bortezomib-based ITI was safe and well-tolerated, and patients continue to receive ERT at 40 mg/kg/week. Discussion These case studies and our previous experience suggest that to achieve an effective reduction of anti-rhGAA antibodies in the setting of HSAT, bortezomib should be initiated at the earliest sign of high anti-rhGAA antibodies with a minimum of two consecutive cycles as shown in the case of patient 8. It is important to note that, despite initiation of ERT at age 2.3 weeks, patient 8 quickly developed HSAT. We recommend close monitoring of anti-rhGAA antibodies and early intervention with ITI as soon as significantly elevated anti-rhGAA antibody titers are noted.
Collapse
Affiliation(s)
- Ankit K. Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Garima Shrivastava
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Christina L. Grant
- Division of Genetics and Metabolism, Children’s National Hospital, Washington, DC, United States
| | - Raymond Y. Wang
- Division of Metabolic Disorders, Children’s Hospital of Orange County, Orange, CA, United States
- Department of Pediatrics, University of California-Irvine School of Medicine, Orange, CA, United States
| | - Trevor D. Burt
- Division of Neonatology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
- Children’s Health and Discovery Initiative, Duke University School of Medicine, Durham, NC, United States
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
14
|
Desai AK, Smith PB, Yi JS, Rosenberg AS, Burt TD, Kishnani PS. Immunophenotype associated with high sustained antibody titers against enzyme replacement therapy in infantile-onset Pompe disease. Front Immunol 2024; 14:1301912. [PMID: 38250073 PMCID: PMC10798041 DOI: 10.3389/fimmu.2023.1301912] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction The efficacy of enzyme replacement therapy (ERT) with alglucosidase alfa for infantile-onset Pompe disease (IOPD) is limited in some patients due to the development of high and sustained antibody titers (HSAT; ≥12,800). Methods We carried out detailed immunophenotyping of IOPD patients (n=40), including analysis of circulating cell populations by flow cytometry and plasma cytokines by multiplex array, to determine whether patients with HSAT have unique immunological characteristics compared to those with low titers (LT; <12,800). Results Compared to patients with LT, patients who develop HSAT were skewed toward a type 2 immune profile, with an increased frequency of Th2 cells that was positively correlated with levels of Th2 (IL-4, IL-5, IL-13) and pro-inflammatory (IL-6, TNF-α, MIP-1α, MIP-1β) cytokines. B cells were increased in HSAT patients with a decreased fraction of unswitched memory B cells. Plasma GM-CSF concentrations were lower on average in HSAT patients, while CXCL11 was elevated. Finally, using principal components analysis, we derived an HSAT Signature Score that successfully stratified patients according to their antibody titers. Discussion The immune profiles revealed in this study not only identify potential biomarkers of patients that developed HSAT but also provide insights into the pathophysiology of HSAT that will ultimately lead to improved immunotherapy strategies.
Collapse
Affiliation(s)
- Ankit K. Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, United States
| | - P. Brian Smith
- Division of Neonatology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
- Duke Clinical Research Institute, Durham, NC, United States
| | - John S. Yi
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | | | - Trevor D. Burt
- Division of Neonatology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
- Children’s Health and Discovery Initiative, Duke University School of Medicine, Durham, NC, United States
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, United States
| |
Collapse
|
15
|
Hahn P, Siefen RG, Benz K, Jackowski J, Köhler C, Lücke T. [Diagnosis and Management of Late-Onset Pompe Disease]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2024; 92:33-40. [PMID: 37494148 DOI: 10.1055/a-2095-2977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Pompe disease is a lysosomal storage disorder, with onset between the first weeks after birth and adulthood, depending on its phenotype. It can affect multiple organ systems and presents itself with a wide variety of symptoms. Thus, recognizing Pompe disease is difficult. Especially since enzyme replacement therapy for Pompe disease was introduced (in Germany in 2006), early diagnosis by means of enzyme activity determination from dried blood spot analysis and genetic verification has become important for outcome and quality of life. When facing an obscure muscular disorder, it is crucial to consider Pompe disease. This article provides an overview about Pompe disease and focuses on the diagnosis of the late onset type. The most important aspects of interdiciplinary care for patients with Pompe disease are presented. Additionally, it contains a section focusing on psychosocial challenges for children with Pompe disease and their families, which may include mental disorders and social retreat, and gives advice on how to support parents of affected children.
Collapse
Affiliation(s)
- Philipp Hahn
- Universitätsklinik für Kinder- und Jugendmedizin, Ruhr-Universität Bochum, St. Josef-Hospital, Bochum, Germany
| | - Rainer-Georg Siefen
- Universitätsklinik für Kinder- und Jugendmedizin, Ruhr-Universität Bochum, St. Josef-Hospital, Bochum, Germany
| | - Korbinian Benz
- Abteilung Zahnärztliche Chirurgie und Poliklinische Ambulanz der privaten Universität Witten/Herdecke, Universitäts-Zahnklinik, Witten/Herdecke, Germany
| | - Jochen Jackowski
- Abteilung Zahnärztliche Chirurgie und Poliklinische Ambulanz der privaten Universität Witten/Herdecke, Universitäts-Zahnklinik, Witten/Herdecke, Germany
| | - Cornelia Köhler
- Universitätsklinik für Kinder- und Jugendmedizin, Ruhr-Universität Bochum, St. Josef-Hospital, Bochum, Germany
| | - Thomas Lücke
- Universitätsklinik für Kinder- und Jugendmedizin, Ruhr-Universität Bochum, St. Josef-Hospital, Bochum, Germany
| |
Collapse
|
16
|
Sellier P, Vidal P, Bertin B, Gicquel E, Bertil-Froidevaux E, Georger C, van Wittenberghe L, Miranda A, Daniele N, Richard I, Gross DA, Mingozzi F, Collaud F, Ronzitti G. Muscle-specific, liver-detargeted adeno-associated virus gene therapy rescues Pompe phenotype in adult and neonate Gaa -/- mice. J Inherit Metab Dis 2024; 47:119-134. [PMID: 37204237 DOI: 10.1002/jimd.12625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Pompe disease (PD) is a neuromuscular disorder caused by acid α-glucosidase (GAA) deficiency. Reduced GAA activity leads to pathological glycogen accumulation in cardiac and skeletal muscles responsible for severe heart impairment, respiratory defects, and muscle weakness. Enzyme replacement therapy with recombinant human GAA (rhGAA) is the standard-of-care treatment for PD, however, its efficacy is limited due to poor uptake in muscle and the development of an immune response. Multiple clinical trials are ongoing in PD with adeno-associated virus (AAV) vectors based on liver- and muscle-targeting. Current gene therapy approaches are limited by liver proliferation, poor muscle targeting, and the potential immune response to the hGAA transgene. To generate a treatment tailored to infantile-onset PD, we took advantage of a novel AAV capsid able to increase skeletal muscle targeting compared to AAV9 while reducing liver overload. When combined with a liver-muscle tandem promoter (LiMP), and despite the extensive liver-detargeting, this vector had a limited immune response to the hGAA transgene. This combination of capsid and promoter with improved muscle expression and specificity allowed for glycogen clearance in cardiac and skeletal muscles of Gaa-/- adult mice. In neonate Gaa-/- , complete rescue of glycogen content and muscle strength was observed 6 months after AAV vector injection. Our work highlights the importance of residual liver expression to control the immune response toward a potentially immunogenic transgene expressed in muscle. In conclusion, the demonstration of the efficacy of a muscle-specific AAV capsid-promoter combination for the full rescue of PD manifestation in both neonate and adult Gaa-/- provides a potential therapeutic avenue for the infantile-onset form of this devastating disease.
Collapse
Affiliation(s)
- P Sellier
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - P Vidal
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - B Bertin
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - E Gicquel
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | | | | | | | | | | | - I Richard
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - D A Gross
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - F Mingozzi
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - F Collaud
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - G Ronzitti
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| |
Collapse
|
17
|
Mackels L, Servais L. The Importance of Early Treatment of Inherited Neuromuscular Conditions. J Neuromuscul Dis 2024; 11:253-274. [PMID: 38306060 DOI: 10.3233/jnd-230189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
There has been tremendous progress in treatment of neuromuscular diseases over the last 20 years, which has transformed the natural history of these severely debilitating conditions. Although the factors that determine the response to therapy are many and in some instance remain to be fully elucidated, early treatment clearly has a major impact on patient outcomes across a number of inherited neuromuscular conditions. To improve patient care and outcomes, clinicians should be aware of neuromuscular conditions that require prompt treatment initiation. This review describes data that underscore the importance of early treatment of children with inherited neuromuscular conditions with an emphasis on data resulting from newborn screening efforts.
Collapse
Affiliation(s)
- Laurane Mackels
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Adult Neurology Department, Citadelle Hospital, Liège, Belgium
| | - Laurent Servais
- Neuromuscular Centre, Division of Paediatrics, University and University Hospital of Liège, Liège, Belgium
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford & NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
18
|
Pfrimmer C, Smitka M, Muschol N, Husain RA, Huemer M, Hennermann JB, Schuler R, Hahn A. Long-Term Outcome of Infantile Onset Pompe Disease Patients Treated with Enzyme Replacement Therapy - Data from a German-Austrian Cohort. J Neuromuscul Dis 2024; 11:167-177. [PMID: 38043017 PMCID: PMC10789365 DOI: 10.3233/jnd-230164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Enzyme replacement therapy (ERT) with recombinant human alglucosidase alfa (rhGAA) was approved in Europe in 2006. Nevertheless, data on the long-term outcome of infantile onset Pompe disease (IOPD) patients at school age is still limited. OBJECTIVE We analyzed in detail cardiac, respiratory, motor, and cognitive function of 15 German-speaking patients aged 7 and older who started ERT at a median age of 5 months. RESULTS Starting dose was 20 mg/kg biweekly in 12 patients, 20 mg/kg weekly in 2, and 40 mg/kg weekly in one patient. CRIM-status was positive in 13 patients (86.7%) and negative or unknown in one patient each (6.7%). Three patients (20%) received immunomodulation. Median age at last assessment was 9.1 (7.0-19.5) years. At last follow-up 1 patient (6.7%) had mild cardiac hypertrophy, 6 (42.9%) had cardiac arrhythmias, and 7 (46.7%) required assisted ventilation. Seven patients (46.7%) achieved the ability to walk independently and 5 (33.3%) were still ambulatory at last follow-up. Six patients (40%) were able to sit without support, while the remaining 4 (26.7%) were tetraplegic. Eleven patients underwent cognitive testing (Culture Fair Intelligence Test), while 4 were unable to meet the requirements for cognitive testing. Intelligence quotients (IQs) ranged from normal (IQ 117, 102, 96, 94) in 4 patients (36.4%) to mild developmental delay (IQ 81) in one patient (9.1%) to intellectual disability (IQ 69, 63, 61, 3x <55) in 6 patients (54.5%). White matter abnormalities were present in 10 out of 12 cerebral MRIs from 7 patients. CONCLUSION Substantial motor, cardiac, respiratory, and cognitive deficits are frequent in IOPD long-term survivors who started ERT before 2016. The findings of this study can be valuable as comparative data when evaluating the impact of newer treatment strategies including higher enzyme dosage, immunomodulation, modified enzymes, or early start of treatment following newborn screening.
Collapse
Affiliation(s)
- Charlotte Pfrimmer
- Department of Child Neurology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Martin Smitka
- Children’s Hospital, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Nicole Muschol
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Ralf A. Husain
- Centre for Inborn Metabolic Disorders, Department of Neuropediatrics, Jena University Hospital, Jena, Germany
| | - Martina Huemer
- Department of Pediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria and Division of Metabolism, Children’s Research Center and University Children’s Hospital Zurich, Zurich, Switzerland
| | - Julia B. Hennermann
- Villa Metabolica, Center for Pediatric and Adolescent Medicine, University Medical Center Mainz, Mainz, Germany
| | - Rahel Schuler
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus-Liebig-University Gießen, Gießen, Germany
| |
Collapse
|
19
|
Nicolas X, Hurbin F, Periquet M, Richards S, Sensinger C, Welch K, An Haack K. Pharmacokinetics of Alglucosidase Alfa Manufactured at the 4000-L Scale in Participants with Pompe Disease: A Phase 3/4 Open-Label Study. Clin Pharmacol Drug Dev 2023; 12:1185-1193. [PMID: 37705424 DOI: 10.1002/cpdd.1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 09/15/2023]
Abstract
Pompe disease is a rare, autosomal recessive, degenerative neuromuscular disease caused by deficiency of acid α-glucosidase, a lysosomal enzyme that degrades α-1,4 and α-1,6 linkages in glycogen. The objectives of this study (PAPAYA; NCT01410890) were to (1) characterize the pharmacokinetics of 20 mg/kg body weight alglucosidase alfa manufactured at the 4000-L scale following a single intravenous dose in participants aged less than 18 and 18 years or older with Pompe disease and (2) evaluate the relationship between anti-alglucosidase alfa antibody titers and the pharmacokinetics of alglucosidase alfa. Mean maximum plasma concentration and area under the concentration-time curve from time zero and extrapolated to infinite time were 204 μg/mL and 1110 μg • h/mL for participants aged less than 18 years (n = 10), respectively, and 307 μg/mL and 1890 μg • h/mL for participants aged 18 years or older (n = 10), respectively. Mean terminal half-life was 5.43 hours in participants aged less than 18 years with a high variability (70%) and 3.84 hours in participants aged 18 years or older with a low variability (21%). Mean maximum plasma concentration and area under the concentration-time curve from time zero and extrapolated to infinite time were 256 μg/mL and 1452 μg • h/mL, respectively, in anti-alglucosidase alfa-negative participants (n = 12) and 262 μg/mL and 1703 μg • h/mL, respectively, in anti-alglucosidase alfa-positive participants (n = 7). The study findings enrich available data from existing information on alglucosidase alfa without changing its known risks and benefits.
Collapse
|
20
|
Herzeg A, Borges B, Lianoglou BR, Gonzalez-Velez J, Canepa E, Munar D, Young SP, Bali D, Gelb MH, Chakraborty P, Kishnani PS, Harmatz P, Cohen JL, MacKenzie TC. Intrauterine enzyme replacement therapies for lysosomal storage disorders: Current developments and promising future prospects. Prenat Diagn 2023; 43:1638-1649. [PMID: 37955580 PMCID: PMC11155627 DOI: 10.1002/pd.6460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of monogenic condition, with many characterized by an enzyme deficiency leading to the accumulation of an undegraded substrate within the lysosomes. For those LSDs, postnatal enzyme replacement therapy (ERT) represents the standard of care, but this treatment has limitations when administered only postnatally because, at that point, prenatal disease sequelae may be irreversible. Furthermore, most forms of ERT, specifically those administered systemically, are currently unable to access certain tissues, such as the central nervous system (CNS), and furthermore, may initiate an immune response. In utero enzyme replacement therapy (IUERT) is a novel approach to address these challenges evaluated in a first-in-human clinical trial for IUERT in LSDs (NCT04532047). IUERT has numerous advantages: in-utero intervention may prevent early pathology; the CNS can be accessed before the blood-brain barrier forms; and the unique fetal immune system enables exposure to new proteins with the potential to prevent an immune response and may induce sustained tolerance. However, there are challenges and limitations for any fetal procedure that involves two patients. This article reviews the current state of IUERT for LSDs, including its advantages, limitations, and potential future directions for definitive therapies.
Collapse
Affiliation(s)
- Akos Herzeg
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
| | - Beltran Borges
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
| | - Billie R. Lianoglou
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
| | - Juan Gonzalez-Velez
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, California, USA
| | - Emma Canepa
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
| | - Dane Munar
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
| | - Sarah P. Young
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Deeksha Bali
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Michel H. Gelb
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Pranesh Chakraborty
- Department of Pediatrics, Children’s Hospital of Eastern Ontario and University of Ottawa, Ottawa, Ontario, Canada
| | - Priya S. Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Paul Harmatz
- Benioff Children’s Hospital, University of California, San Francisco, California, USA
| | - Jennifer L. Cohen
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Tippi C. MacKenzie
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
- Benioff Children’s Hospital, University of California, San Francisco, California, USA
| |
Collapse
|
21
|
Vos EN, Demirbas D, Mangel M, Rubio-Gozalbo ME, Levy HL, Berry GT. The treatment of biochemical genetic diseases: From substrate reduction to nucleic acid therapies. Mol Genet Metab 2023; 140:107693. [PMID: 37716025 DOI: 10.1016/j.ymgme.2023.107693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/18/2023]
Abstract
Newborn screening (NBS) began a revolution in the management of biochemical genetic diseases, greatly increasing the number of patients for whom dietary therapy would be beneficial in preventing complications in phenylketonuria as well as in a few similar disorders. The advent of next generation sequencing and expansion of NBS have markedly increased the number of biochemical genetic diseases as well as the number of patients identified each year. With the avalanche of new and proposed therapies, a second wave of options for the treatment of biochemical genetic disorders has emerged. These therapies range from simple substrate reduction to enzyme replacement, and now ex vivo gene therapy with autologous cell transplantation. In some instances, it may be optimal to introduce nucleic acid therapy during the prenatal period to avoid fetopathy. However, as with any new therapy, complications may occur. It is important for physicians and other caregivers, along with ethicists, to determine what new therapies might be beneficial to the patient, and which therapies have to be avoided for those individuals who have less severe problems and for which standard treatments are available. The purpose of this review is to discuss the "Standard" treatment plans that have been in place for many years and to identify the newest and upcoming therapies, to assist the physician and other healthcare workers in making the right decisions regarding the initiation of both the "Standard" and new therapies. We have utilized several diseases to illustrate the applications of these different modalities and discussed for which disorders they may be suitable. The future is bright, but optimal care of the patient, including and especially the newborn infant, requires a deep knowledge of the disease process and careful consideration of the necessary treatment plan, not just based on the different genetic defects but also with regards to different variants within a gene itself.
Collapse
Affiliation(s)
- E Naomi Vos
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America; Manton Center for Orphan Disease Research, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Didem Demirbas
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America; Manton Center for Orphan Disease Research, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Matthew Mangel
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| | - M Estela Rubio-Gozalbo
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Centre+, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands; GROW, Maastricht University, Minderbroedersberg 4-6, 6211 LK Maastricht, the Netherlands; MetabERN: European Reference Network for Hereditary Metabolic Disorders, Udine, Italy; UMD: United for Metabolic Diseases Member, Amsterdam, the Netherlands.
| | - Harvey L Levy
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Gerard T Berry
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America; Manton Center for Orphan Disease Research, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| |
Collapse
|
22
|
Ditters IAM, van Kooten HA, van der Beek NAME, van der Ploeg AT, Huidekoper HH, van den Hout JMP. Are Anti-rhGAA Antibodies a Determinant of Treatment Outcome in Adults with Late-Onset Pompe Disease? A Systematic Review. Biomolecules 2023; 13:1414. [PMID: 37759814 PMCID: PMC10526476 DOI: 10.3390/biom13091414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Pompe disease is a lysosomal storage disease characterised by skeletal and respiratory muscle weakness. Since 2006, enzyme replacement therapy (ERT) with alglucosidase alfa has been available. ERT significantly improves the prognosis of patients with Pompe disease. The effect of high antibody titres on treatment response in adults with late-onset Pompe disease (LOPD) remains unclear but may contribute to interpatient variation. We therefore conducted a systematic review on this subject. METHODS A systematic search was performed in Embase, Medline Ovid, Web of Science, Psych Info Ovid, Cochrane (Clinical Trials only), and Google Scholar (random top-200). Articles were included if they involved adults with LOPD treated with alglucosidase alfa and mentioned anti-rhGAA antibodies or antibody titres. In addition, articles mentioning dosages different from the standard recommended dosage were included. RESULTS Our literature search retrieved 2562 publications, and 17 fulfilled our selection criteria, describing 443 cases. Seven publications reported on anti-rhGAA antibody titres on a group level, with the percentage of patients with a high titre as defined in the included articles ranging from 0-33%. Six publications reported on the effect of anti-rhGAA antibody titre on clinical course, and four found no correlation. Two studies reported a negative effect on treatment. The first study found a greater improvement in Medical Research Council (MRC) score in patients with no detectable antibody titre. In the second study, a patient discontinued ERT due to a declining neuromuscular state as a result of high anti-rhGAA antibody titres. Seven publications reported on 17 individual patients with a high antibody titre (range 1:12,800-1:3,906,250). In only two cases were high-sustained neutralising antibodies reported to interfere with treatment efficacy. CONCLUSIONS No clear effect of anti-rhGAA IgG antibodies on treatment response could be established for the majority of LOPD patients with a high antibody titre. In a minority of patients, a clinical decline related to (possible) interference of anti-rhGAA antibodies was described.
Collapse
Affiliation(s)
- Imke A. M. Ditters
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Harmke A. van Kooten
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Nadine A. M. E. van der Beek
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Ans T. van der Ploeg
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Hidde H. Huidekoper
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Johanna M. P. van den Hout
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| |
Collapse
|
23
|
Kim KH, Desai AK, Vucko ER, Boggs T, Kishnani PS, Burton BK. Development of high sustained anti-drug antibody titers and corresponding clinical decline in a late-onset Pompe disease patient after 11+ years on enzyme replacement therapy. Mol Genet Metab Rep 2023; 36:100981. [PMID: 37342670 PMCID: PMC10277605 DOI: 10.1016/j.ymgmr.2023.100981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
A late-onset Pompe disease patient developed high sustained antibody titers (HSAT) of ≥51,200 after 11+ years on alglucosidase alfa and previous tolerance. There was a corresponding worsening of motor function and rise in urinary glucose tetrasaccharide (Glc4). Following immunomodulation therapy, HSAT were eliminated with improved clinical outcomes and biomarker trends. This report highlights the importance of continued surveillance of antibody titers and biomarkers, the negative impact of HSAT, and improved outcomes with immunomodulation therapy.
Collapse
Affiliation(s)
- Katherine H. Kim
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Division of Genetics, Genomics and Metabolism, Ann & Robert H Lurie Children's Hospital of Chicago, 225 E Chicago Ave Box 59, Chicago, IL 60611, USA
| | - Ankit K. Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Box 103856 DUM, Durham, NC 27710, USA
| | - Erika R. Vucko
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Division of Genetics, Genomics and Metabolism, Ann & Robert H Lurie Children's Hospital of Chicago, 225 E Chicago Ave Box 59, Chicago, IL 60611, USA
| | - Tracy Boggs
- Department of Rehabilitation Services, Duke University Health System, 234 Crooked Creek Pkwy, Suite 310, Durham, NC 27713, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Box 103856 DUM, Durham, NC 27710, USA
| | - Barbara K. Burton
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Division of Genetics, Genomics and Metabolism, Ann & Robert H Lurie Children's Hospital of Chicago, 225 E Chicago Ave Box 59, Chicago, IL 60611, USA
| |
Collapse
|
24
|
El Haddad L, Khan M, Soufny R, Mummy D, Driehuys B, Mansour W, Kishnani PS, ElMallah MK. Monitoring and Management of Respiratory Function in Pompe Disease: Current Perspectives. Ther Clin Risk Manag 2023; 19:713-729. [PMID: 37680303 PMCID: PMC10480292 DOI: 10.2147/tcrm.s362871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Pompe disease (PD) is a neuromuscular disorder caused by a deficiency of acid alpha-glucosidase (GAA) - a lysosomal enzyme responsible for hydrolyzing glycogen. GAA deficiency leads to accumulation of glycogen in lysosomes, causing cellular disruption. The severity of PD is directly related to the extent of GAA deficiency - if no or minimal GAA is produced, symptoms are severe and manifest in infancy, known as infantile onset PD (IOPD). If left untreated, infants with IOPD experience muscle hypotonia and cardio-respiratory failure leading to significant morbidity and mortality in the first year of life. In contrast, late-onset PD (LOPD) patients have more GAA activity and present later in life, but also have significant respiratory function decline. Despite FDA-approved enzyme replacement therapy, respiratory insufficiency remains a major cause of morbidity and mortality, emphasizing the importance of early detection and management of respiratory complications. These complications include impaired cough and airway clearance, respiratory muscle weakness, sleep-related breathing issues, and pulmonary infections. This review aims to provide an overview of the respiratory pathology, monitoring, and management of PD patients. In addition, we discuss the impact of novel approaches and therapies on respiratory function in PD.
Collapse
Affiliation(s)
- Léa El Haddad
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Mainur Khan
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Rania Soufny
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - David Mummy
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Bastiaan Driehuys
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Wissam Mansour
- Division of Pulmonary and Sleep Medicine, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
25
|
Ditters IAM, van Kooten HA, van der Beek NAME, Hardon JF, Ismailova G, Brusse E, Kruijshaar ME, van der Ploeg AT, van den Hout JMP, Huidekoper HH. Home-Based Infusion of Alglucosidase Alfa Can Safely be Implemented in Adults with Late-Onset Pompe Disease: Lessons Learned from 18,380 Infusions. BioDrugs 2023; 37:685-698. [PMID: 37326923 PMCID: PMC10432339 DOI: 10.1007/s40259-023-00609-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Enzyme replacement therapy (ERT) with alglucosidase alfa is the treatment for patients with Pompe disease, a hereditary metabolic myopathy. Home-based ERT is unavailable in many countries because of the boxed warning alglucosidase alfa received due to the risk of infusion-associated reactions (IARs). Since 2008, home infusions have been provided in The Netherlands. OBJECTIVES This study aimed to provide an overview of our experience with home-based infusions with alglucosidase alfa in adult Pompe patients, focusing on safety, including management of IARs. METHOD We analysed infusion data and IARs from adult patients starting ERT between 1999 and 2018. ERT was initially given in the hospital during the first year. Patients were eligible for home treatment if they were without IARs for multiple consecutive infusions and if a trained home nurse, with on-call back-up by a doctor, was available. The healthcare providers graded IARs. RESULTS We analysed data on 18,380 infusions with alglucosidase alfa in 121 adult patients; 4961 infusions (27.0%) were given in hospital and 13,419 (73.0%) were given at home. IARs occurred in 144 (2.9%) hospital infusions and 113 (0.8%) home infusions; 115 (79.9% of 144) IARs in hospital and 104 (92.0% of 113) IARs at home were mild, 25 IARs (17.4%) in hospital and 8 IARs (7.1%) at home were moderate, and very few severe IARs occurred (4 IARs in hospital [2.8%] and 1 IAR at home [0.9%]). Only one IAR in the home situation required immediate clinical evaluation in the hospital. CONCLUSION Given the small numbers of IARs that occurred with the home infusions, of which only one was severe, we conclude that alglucosidase alfa can be administered safely in the home situation, provided the appropriate infrastructure is present.
Collapse
Affiliation(s)
- Imke A M Ditters
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Sophia Children's Hospital, PO Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - Harmke A van Kooten
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nadine A M E van der Beek
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jacqueline F Hardon
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Sophia Children's Hospital, PO Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - Gamida Ismailova
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Esther Brusse
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Michelle E Kruijshaar
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Sophia Children's Hospital, PO Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Sophia Children's Hospital, PO Box 2060, 3000 CB, Rotterdam, The Netherlands.
| | - Johanna M P van den Hout
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Sophia Children's Hospital, PO Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - Hidde H Huidekoper
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Sophia Children's Hospital, PO Box 2060, 3000 CB, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Gómez-Cebrián N, Gras-Colomer E, Poveda Andrés JL, Pineda-Lucena A, Puchades-Carrasco L. Omics-Based Approaches for the Characterization of Pompe Disease Metabolic Phenotypes. BIOLOGY 2023; 12:1159. [PMID: 37759559 PMCID: PMC10525434 DOI: 10.3390/biology12091159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Lysosomal storage disorders (LSDs) constitute a large group of rare, multisystemic, inherited disorders of metabolism, characterized by defects in lysosomal enzymes, accessory proteins, membrane transporters or trafficking proteins. Pompe disease (PD) is produced by mutations in the acid alpha-glucosidase (GAA) lysosomal enzyme. This enzymatic deficiency leads to the aberrant accumulation of glycogen in the lysosome. The onset of symptoms, including a variety of neurological and multiple-organ pathologies, can range from birth to adulthood, and disease severity can vary between individuals. Although very significant advances related to the development of new treatments, and also to the improvement of newborn screening programs and tools for a more accurate diagnosis and follow-up of patients, have occurred over recent years, there exists an unmet need for further understanding the molecular mechanisms underlying the progression of the disease. Also, the reason why currently available treatments lose effectiveness over time in some patients is not completely understood. In this scenario, characterization of the metabolic phenotype is a valuable approach to gain insights into the global impact of lysosomal dysfunction, and its potential correlation with clinical progression and response to therapies. These approaches represent a discovery tool for investigating disease-induced modifications in the complete metabolic profile, including large numbers of metabolites that are simultaneously analyzed, enabling the identification of novel potential biomarkers associated with these conditions. This review aims to highlight the most relevant findings of recently published omics-based studies with a particular focus on describing the clinical potential of the specific metabolic phenotypes associated to different subgroups of PD patients.
Collapse
Affiliation(s)
- Nuria Gómez-Cebrián
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Elena Gras-Colomer
- Pharmacy Department, Hospital Manises of Valencia, 46940 Valencia, Spain
| | | | - Antonio Pineda-Lucena
- Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, 31008 Pamplona, Spain
| | | |
Collapse
|
27
|
Labella B, Cotti Piccinelli S, Risi B, Caria F, Damioli S, Bertella E, Poli L, Padovani A, Filosto M. A Comprehensive Update on Late-Onset Pompe Disease. Biomolecules 2023; 13:1279. [PMID: 37759679 PMCID: PMC10526932 DOI: 10.3390/biom13091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Pompe disease (PD) is an autosomal recessive disorder caused by mutations in the GAA gene that lead to a deficiency in the acid alpha-glucosidase enzyme. Two clinical presentations are usually considered, named infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD), which differ in age of onset, organ involvement, and severity of disease. Assessment of acid alpha-glucosidase activity on a dried blood spot is the first-line screening test, which needs to be confirmed by genetic analysis in case of suspected deficiency. LOPD is a multi-system disease, thus requiring a multidisciplinary approach for efficacious management. Enzyme replacement therapy (ERT), which was introduced over 15 years ago, changes the natural progression of the disease. However, it has limitations, including a reduction in efficacy over time and heterogeneous therapeutic responses among patients. Novel therapeutic approaches, such as gene therapy, are currently under study. We provide a comprehensive review of diagnostic advances in LOPD and a critical discussion about the advantages and limitations of current and future treatments.
Collapse
Affiliation(s)
- Beatrice Labella
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Stefano Cotti Piccinelli
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Barbara Risi
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Filomena Caria
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Simona Damioli
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Enrica Bertella
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Loris Poli
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| |
Collapse
|
28
|
Chan MY, Jalil JA, Yakob Y, Wahab SAA, Ali EZ, Khalid MKNM, Leong HY, Chew HB, Sivabalakrishnan JB, Ngu LH. Genotype, phenotype and treatment outcomes of 17 Malaysian patients with infantile-onset Pompe disease and the identification of 3 novel GAA variants. Orphanet J Rare Dis 2023; 18:231. [PMID: 37542277 PMCID: PMC10403872 DOI: 10.1186/s13023-023-02848-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/28/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Pompe disease is a rare glycogen storage disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA), leading to glycogen deposition in multiple tissues. Infantile-onset Pompe disease (IOPD) patients present within the first year of life with profound hypotonia and hypertrophic cardiomyopathy. Treatment with enzyme replacement therapy (ERT) has significantly improved survival for this otherwise lethal disorder. This study aims to describe the clinical and molecular spectrum of Malaysian IOPD patients, and to analyze their long term treatment outcomes. METHODS Seventeen patients diagnosed with IOPD between 2000 and 2020 were included in this retrospective cohort study. Clinical and biochemical data were collated and analyzed using descriptive statistics. GAA enzyme levels were performed on dried blood spots. Molecular analysis of the GAA gene was performed by polymerase chain reaction and Sanger sequencing. Structural modelling was used to predict the effect of the novel mutations on enzyme structure. RESULTS Our cohort had a median age of presentation of 3 months and median age of diagnosis of 6 months. Presenting features were hypertrophic cardiomyopathy (100%), respiratory insufficiency (94%), hypotonia (88%), failure to thrive (82%), feeding difficulties (76%), and hepatomegaly (76%). Fourteen different mutations in the GAA gene were identified, with three novel mutations, c.1552-14_1552-1del, exons 2-3 deletion and exons 6-10 deletion. The most common mutation identified was c.1935C > A p.(D645E), with an allele frequency of 33%. Sixteen patients received ERT at the median age of 7 months. Overall survival was 29%. Mean age of death was 17.5 months. Our longest surviving patient has atypical IOPD and is currently 20 years old. CONCLUSIONS This is the first study to analyze the genotype and phenotype of Malaysian IOPD patients, and has identified the c.1935C > A p.(D645E) as the most common mutation. The three novel mutations reported in this study expands the mutation spectrum for IOPD. Our low survival rate underscores the importance of early diagnosis and treatment in achieving better treatment outcomes.
Collapse
Affiliation(s)
- Mei-Yan Chan
- Department of Genetics, Hospital Kuala Lumpur, Ministry of Health Malaysia, Jalan Pahang, 50586, Kuala Lumpur, Malaysia.
| | - Julaina Abdul Jalil
- Unit of Biochemistry, Institute for Medical Research, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Yusnita Yakob
- Unit of Molecular Diagnostics, Specialised Diagnostics Centre, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Siti Aishah Abdul Wahab
- Unit of Molecular Diagnostics, Specialised Diagnostics Centre, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Ernie Zuraida Ali
- Unit of Inborn Errors of Metabolism and Genetic, Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Khairul Nizam Mohd Khalid
- Unit of Molecular Diagnostics, Specialised Diagnostics Centre, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Huey-Yin Leong
- Department of Genetics, Hospital Kuala Lumpur, Ministry of Health Malaysia, Jalan Pahang, 50586, Kuala Lumpur, Malaysia
| | - Hui-Bein Chew
- Department of Genetics, Hospital Kuala Lumpur, Ministry of Health Malaysia, Jalan Pahang, 50586, Kuala Lumpur, Malaysia
| | | | - Lock-Hock Ngu
- Department of Genetics, Hospital Kuala Lumpur, Ministry of Health Malaysia, Jalan Pahang, 50586, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Brassier A, Pichard S, Schiff M, Bouchereau J, Bérat CM, Caillaud C, Pion A, Khraiche D, Fauroux B, Oualha M, Barnerias C, Desguerre I, Hully M, Maquet M, Deladrière E, de Lonlay P, Gitiaux C. Motor outcomes in patients with infantile and juvenile Pompe disease: Lessons from neurophysiological findings. Mol Genet Metab 2023; 139:107650. [PMID: 37454519 DOI: 10.1016/j.ymgme.2023.107650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
In Infantile Onset Pompe Disease (IOPD), enzyme replacement therapy (ERT) may improve survival, cardiac function, and motor development. However, even with early enzyme replacement therapy, some patients experienced poor response to ERT and abnormal motor milestones that could be due to motor neuron involvement. In this long-term retrospective study, we analyzed concomitant clinical motor outcomes and electroneuromyography (ENMG) findings in patients with IOPD and Juvenile Onset Pompe Disease (JOPD). Twenty-nine pediatric patients were included and 20 surviving were analyzed for neuromotor studies: 12 had IOPD (group 1), 4 had JOPD (group 2) and 4 (group 3) received ERT in the first month of age. Motor nerve conduction studies were mostly normal. Needle EMG performed at diagnosis always indicated the existence of myopathy that responded to ERT. Two IOPD patients (group 1) presenting with mixed motor neuropathy and myopathy displayed a poor outcome and never walked. Two patients became non-walkers (one IOPD patient and one patient of group 3) at respectively 9 and 3 years of age. One JOPD patient is about to lose walking ability. This motor deterioration was associated with the development of a motor neuropathy. Patients older than 10 years of age develop a motor neuropathy. Initial or secondary motor neuron involvement seems to be associated with a poor motor outcome showing that ERT may fail to prevent the accumulation of glycogen in motor neuron. Neurophysiological findings are important to assess severity of motor neuron damage in all Pompe pediatric patients and should be systematically performed.
Collapse
Affiliation(s)
- Anaïs Brassier
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France.
| | - Samia Pichard
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France
| | - Manuel Schiff
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France; INSERM UMRS_1163, Imagine Institute, Paris, France
| | - Juliette Bouchereau
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France
| | - Claire-Marine Bérat
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France
| | - Catherine Caillaud
- Biochemistry Unit, Biology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Necker-Enfants-Malades University Hospital, Paris, France; Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Aude Pion
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France
| | - Diala Khraiche
- Department of Pediatric cardiology, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| | - Brigitte Fauroux
- Pediatric Noninvasive Ventilation and Sleep Unit, Necker University Hospital, Paris, Paris Descartes University, Paris, Research Unit INSERM U 955, Team 13, Creteil, France
| | - Mehdi Oualha
- Pediatric Intensive Care Unit, Necker-Enfants-Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Christine Barnerias
- Reference Center for neuromuscular diseases, Necker-Enfants-Malades University Hospital, APHP, FILNEMUS, Paris, France
| | - Isabelle Desguerre
- Reference Center for neuromuscular diseases, Necker-Enfants-Malades University Hospital, APHP, FILNEMUS, Paris, France
| | - Marie Hully
- Department of Pediatric Rehabilitation, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| | - Marion Maquet
- Department of Pediatric Rehabilitation, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| | - Elodie Deladrière
- Department of Pediatric Rehabilitation, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| | - Pascale de Lonlay
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France; INSERM U1151, Institut Necker Enfants-Malades (INEM), Paris, France
| | - Cyril Gitiaux
- Reference Center for neuromuscular diseases, Necker-Enfants-Malades University Hospital, APHP, FILNEMUS, Paris, France; Department of Pediatric Neurophysiology, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| |
Collapse
|
30
|
Smith EC, Hopkins S, Case LE, Xu M, Walters C, Dearmey S, Han SO, Spears TG, Chichester JA, Bossen EH, Hornik CP, Cohen JL, Bali D, Kishnani PS, Koeberl DD. Phase I study of liver depot gene therapy in late-onset Pompe disease. Mol Ther 2023; 31:1994-2004. [PMID: 36805083 PMCID: PMC10362382 DOI: 10.1016/j.ymthe.2023.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023] Open
Abstract
Gene therapy with an adeno-associated virus serotype 8 (AAV8) vector (AAV8-LSPhGAA) could eliminate the need for enzyme replacement therapy (ERT) by creating a liver depot for acid α-glucosidase (GAA) production. We report initial safety and bioactivity of the first dose (1.6 × 1012 vector genomes/kg) cohort (n = 3) in a 52-week open-label, single-dose, dose-escalation study (NCT03533673) in patients with late-onset Pompe disease (LOPD). Subjects discontinued biweekly ERT after week 26 based on the detection of elevated serum GAA activity and the absence of clinically significant declines per protocol. Prednisone (60 mg/day) was administered as immunoprophylaxis through week 4, followed by an 11-week taper. All subjects demonstrated sustained serum GAA activities from 101% to 235% of baseline trough activity 2 weeks following the preceding ERT dose. There were no treatment-related serious adverse events. No subject had anti-capsid T cell responses that decreased transgene expression. Muscle biopsy at week 24 revealed unchanged muscle glycogen content in two of three subjects. At week 52, muscle GAA activity for the cohort was significantly increased (p < 0.05). Overall, these initial data support the safety and bioactivity of AAV8-LSPhGAA, the safety of withdrawing ERT, successful immunoprophylaxis, and justify continued clinical development of AAV8-LSPhGAA therapy in Pompe disease.
Collapse
Affiliation(s)
- Edward C Smith
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Sam Hopkins
- Asklepios Biopharmaceutical, Inc. (Askbio), Durham, NC, USA
| | - Laura E Case
- Department of Orthopedics, Duke University School of Medicine, Durham, NC, USA
| | - Ming Xu
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Crista Walters
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Stephanie Dearmey
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Sang-Oh Han
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Tracy G Spears
- Clinical Trials Statistics, Duke Clinical Research Institute, Durham, NC, USA
| | - Jessica A Chichester
- Immunology Core, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward H Bossen
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Christoph P Hornik
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Jennifer L Cohen
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Deeksha Bali
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Priya S Kishnani
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Dwight D Koeberl
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
31
|
Placci M, Giannotti MI, Muro S. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Adv Drug Deliv Rev 2023; 197:114683. [PMID: 36657645 PMCID: PMC10629597 DOI: 10.1016/j.addr.2022.114683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 01/18/2023]
Abstract
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that constitute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their performance, and important items to consider for their clinical translation. Overall, polymeric nanoconstructs hold considerable promise to advance treatment for LSDs.
Collapse
Affiliation(s)
- Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; CIBER-BBN, ISCIII, Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Institute of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
32
|
Ditters IAM, van der Beek NAME, Brusse E, van der Ploeg AT, van den Hout JMP, Huidekoper HH. Home-based enzyme replacement therapy in children and adults with Pompe disease; a prospective study. Orphanet J Rare Dis 2023; 18:108. [PMID: 37158969 PMCID: PMC10169363 DOI: 10.1186/s13023-023-02715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Pompe disease is a lysosomal storage disease treated with life-long enzyme replacement therapy (ERT). Home-based ERT has been provided in the Netherlands since 2008 because it diminishes the burden of treatment, increases patient flexibility and autonomy, and is thus a more patient-centred approach to ERT. METHODS All Dutch Pompe patients receiving alglucosidase alfa infusions at home were approached to participate in a questionnaire to validate the safety of home-based ERT. Prospective data on symptoms occurring during or within 48 h after infusion and retrospective data on infusion associated reactions (IARs) in the last three months were collected four times during one year. RESULTS In total, 116 out of 120 eligible patients (17 classic infantile, 2 atypical infantile, 15 childhood onset and 82 adult) filled out 423 questionnaires (response rate: 88.1%). Symptoms during or after infusion were reported 27 times in 17 patients. Fatigue was the most commonly reported health complaint (in 9.5% of patients). Four health complaints were judged to be IARs and reported to the Erasmus MC University Medical Center. None of the IARs reported in this study warranted emergency clinical care. CONCLUSIONS Our data demonstrate that home-based ERT in Pompe disease can be safely implemented as few, mostly mild, symptoms were reported during or after infusion. Insights from this study can be used as a base for implementing home-based ERT in other countries and to further optimize patient care, as unreported mild symptoms do not pose a health risk but may still be relevant to the patient.
Collapse
Affiliation(s)
- Imke A M Ditters
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Sophia Children's Hospital, PO Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - Nadine A M E van der Beek
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Esther Brusse
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Sophia Children's Hospital, PO Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - Johanna M P van den Hout
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Sophia Children's Hospital, PO Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - Hidde H Huidekoper
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Sophia Children's Hospital, PO Box 2060, 3000 CB, Rotterdam, The Netherlands.
| |
Collapse
|
33
|
Sasaki K, Uchimura T, Inaba A, Otani M, Hanakawa J, Ito S. Aggressive immunotherapy combined with bortezomib and rituximab for membranous nephropathy associated with enzyme replacement therapy in Pompe disease. Pediatr Nephrol 2023; 38:921-925. [PMID: 35864224 DOI: 10.1007/s00467-022-05672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Pompe disease (PD) is a lysosomal glycogen storage disorder caused by a deficiency in acid α-glucosidase (GAA) activity. Various organs, including the skeletal muscle, cardiac muscle, and liver, are commonly involved. Early initiation of enzyme replacement therapy (ERT) with recombinant human α-glucosidase (rhGAA) can improve the outcome. However, some patients experience a poor clinical course despite ERT because of the emergence of anti-rhGAA antibodies that neutralize rhGAA. Treatment against anti-rhGAA antibodies is challenging. CASE-DIAGNOSIS/TREATMENT A 14-year-old boy with late-onset PD was referred to our hospital with proteinuria detected by school urinalysis screening. He was diagnosed with PD at the age of 4 years based on muscle biopsy and decreased GAA activity. Treatment with rhGAA was initiated, but anaphylaxis occurred frequently. Anti-rhGAA antibodies were detected and immune tolerance therapy was therefore given, but his antibody titer remained high. Kidney biopsy revealed stage II membranous nephropathy. Immunohistochemistry staining revealed anti-rhGAA antibody/rhGAA immune complexes along the glomerular capillary loop. Aggressive immunotherapy combined with bortezomib and rituximab was then initiated. Serum levels of anti-rhGAA antibodies decreased significantly and his proteinuria finally resolved. CONCLUSIONS There have been few reports of membranous nephropathy associated with ERT for PD. We clarified the cause in the current patient. Bortezomib and rituximab effectively suppressed anti-rhGAA antibody production resulting in the resolution of proteinuria and maintenance of ERT efficacy.
Collapse
Affiliation(s)
- Keigo Sasaki
- Department of Pediatrics, Yokohama City University Medical Center, Yokohama, Japan
| | - Toru Uchimura
- Department of Pediatrics, Yokohama City University Medical Center, Yokohama, Japan
| | - Aya Inaba
- Department of Pediatrics, Yokohama City University Medical Center, Yokohama, Japan
| | - Masako Otani
- Division of Diagnostic Pathology, Yokohama City University Medical Center, Yokohama, Japan
| | - Junko Hanakawa
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Shuichi Ito
- Department of Pediatrics, Yokohama City University Medical Center, Yokohama, Japan.
| |
Collapse
|
34
|
Kishnani PS, Kronn D, Brassier A, Broomfield A, Davison J, Hahn SH, Kumada S, Labarthe F, Ohki H, Pichard S, Prakalapakorn SG, Haack KA, Kittner B, Meng X, Sparks S, Wilson C, Zaher A, Chien YH. Safety and efficacy of avalglucosidase alfa in individuals with infantile-onset Pompe disease enrolled in the phase 2, open-label Mini-COMET study: The 6-month primary analysis report. Genet Med 2023; 25:100328. [PMID: 36542086 DOI: 10.1016/j.gim.2022.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Mini-COMET (NCT03019406; Sanofi) is a phase 2, open-label, ascending-dose, 3-cohort study, evaluating avalglucosidase alfa safety, pharmacokinetics, and efficacy in individuals with infantile-onset Pompe disease aged <18 years who previously received alglucosidase alfa and showed clinical decline (cohorts 1 and 2) or suboptimal response (cohort 3). METHODS During a 25-week primary analysis period, cohorts 1 and 2 received avalglucosidase alfa 20 and 40 mg/kg every other week, respectively, for 6 months, whereas cohort 3 individuals were randomized (1:1) to receive avalglucosidase alfa 40 mg/kg every other week or alglucosidase alfa (current stable dose) for 6 months. RESULTS In total, 22 individuals were enrolled (cohort 1 [n = 6], cohort 2 [n = 5], cohort 3-avalglucosidase alfa [n = 5], and cohort 3-alglucosidase alfa [n = 6]). Median treatment compliance was 100%. None of the individuals discontinued treatment or died. Percentages of individuals with treatment-emergent adverse events were similar across dose and treatment groups. No serious or severe treatment-related treatment-emergent adverse events occurred. Trends for better motor function from baseline to week 25 were observed for 40 mg/kg every other week avalglucosidase alfa compared with either 20 mg/kg every other week avalglucosidase alfa or alglucosidase alfa up to 40 mg/kg weekly. CONCLUSION These data support the positive clinical effect of avalglucosidase alfa in patients with infantile-onset Pompe disease previously declining on alglucosidase alfa.
Collapse
Affiliation(s)
- Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC.
| | - David Kronn
- Departments of Pathology and Pediatrics, New York Medical College, Valhalla, NY
| | - Anaïs Brassier
- Reference Center of Inherited Metabolic Diseases, Imagine Institute, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Alexander Broomfield
- Willink Biochemical Genetics Unit, Manchester Center for Genomic Medicine, St Mary's Hospital, Central Manchester Foundation Trust, Manchester, United Kingdom
| | - James Davison
- Great Ormond Street Hospital NHS Foundation Trust, London, UK and National Institute of Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Si Houn Hahn
- Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA
| | - Satoko Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - François Labarthe
- Pediatrics Department, Center for Inborn Errors of Metabolism ToTeM, CHU Tours, and N2C, INSERM U1069, Tours University, Tours, France
| | - Hirotaka Ohki
- Department of Cardiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Samia Pichard
- Reference Center of Inherited Metabolic Diseases, Imagine Institute, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | - Yin-Hsiu Chien
- Departments of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
35
|
Treatment Dilemma in Children with Late-Onset Pompe Disease. Genes (Basel) 2023; 14:genes14020362. [PMID: 36833288 PMCID: PMC9957524 DOI: 10.3390/genes14020362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, there has been a significant increase in the diagnosis of asymptomatic Late-Onset Pompe Disease (LOPD) patients, who are detected via family screening or Newborn Screening (NBS). The dilemma is when to start Enzyme Replacement Therapy (ERT) in patients without any clinical sign of the disease, considering its important benefits in terms of loss of muscle but also its very high cost, risk of side effects, and long-term immunogenicity. Muscle Magnetic Resonance Imaging (MRI) is accessible, radiation-free, and reproducible; therefore, it is an important instrument for the diagnosis and follow-up of patients with LOPD, especially in asymptomatic cases. European guidelines suggest monitoring in asymptomatic LOPD cases with minimal MRI findings, although other guidelines consider starting ERT in apparently asymptomatic cases with initial muscle involvement (e.g., paraspinal muscles). We describe three siblings affected by LOPD who present compound heterozygosis and wide phenotypic variability. The three cases differ in age at presentation, symptoms, urinary tetrasaccharide levels, and MRI findings, confirming the significant phenotypic variability of LOPD and the difficulty in deciding when to start therapy.
Collapse
|
36
|
Riedy M, Zhang JF, Huang T, Swayampakula AK. Infantile-onset Pompe disease with neutropenia: Treatment decisions in the face of a unique phenotype. JIMD Rep 2023; 64:17-22. [PMID: 36636589 PMCID: PMC9830011 DOI: 10.1002/jmd2.12337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 02/01/2023] Open
Abstract
Infantile-onset Pompe disease manifests with early signs of cardiomyopathy during the first few days to weeks of life. We present the case of a newborn born via emergency cesarean section with atrial flutter and moderate biventricular hypertrophy who was diagnosed with Pompe disease on New York State newborn screen. Diagnosis was confirmed with repeat leukocyte acid alpha-glucosidase (GAA) enzyme activity, GAA gene sequencing, urine Hex4, and evaluation of Cross-Reactive Immunological Material (CRIM) status. The patient was also found to be persistently neutropenic which to our knowledge has not been previously reported in the literature in association with Pompe disease. This report highlights the impact that newborn screening had on time to diagnosis and initiation of treatment with enzyme replacement therapy. We also discuss how our patient's concurrent neutropenia impacted decision making related to immune tolerance induction prior to starting enzyme replacement therapy.
Collapse
Affiliation(s)
- Mary Riedy
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical SciencesUniversity at BuffaloBuffaloNew YorkUSA
| | - Jeff F. Zhang
- Jacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNew YorkUSA
| | - Taosheng Huang
- Division of Genetics, Department of PediatricsUniversity at BuffaloBuffaloNew YorkUSA
| | - Anil Kumar Swayampakula
- Division of Critical Care Medicine, Department of Pediatrics, John R. Oishei Children's HospitalUniversity at BuffaloBuffaloNew YorkUSA
| |
Collapse
|
37
|
Bolano-Diaz C, Diaz-Manera J. Therapeutic Options for the Management of Pompe Disease: Current Challenges and Clinical Evidence in Therapeutics and Clinical Risk Management. Ther Clin Risk Manag 2022; 18:1099-1115. [PMID: 36536827 PMCID: PMC9759116 DOI: 10.2147/tcrm.s334232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/21/2022] [Indexed: 08/22/2023] Open
Abstract
Pompe disease is a genetic disorder produced by mutations in the GAA gene leading to absence or reduced expression of acid alpha-glucosidase, an enzyme that metabolizes the breakdown of glycogen into glucose. There are two main phenotypes, the infantile consisting of early onset severe weakness and cardiomyopathy, and the adult which is characterized by slowly progressive skeletal and respiratory muscle weakness. Enzymatic replacement therapy (ERT) has been available for Pompe disease for more than 15 years. Although the treatment has improved many aspects of the disease, such as prolonged survival through improved cardiomyopathy and acquisition of motor milestones in infants and slower progression rate in adults, ERT is far from being a cure as both infantile and adult patients continue to progress. This fact has prompted the development of improved or new enzymes and other treatments such as gene therapy or substrate reduction strategies. Here, we review the data obtained from randomized clinical trials but also from open-label studies published so far that have assessed the advantages and limitations of this therapy. Moreover, we also review the new therapeutic strategies that are under development and provide our opinion on which are the unmet needs for patients with this disease.
Collapse
Affiliation(s)
- Carla Bolano-Diaz
- The John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Jordi Diaz-Manera
- The John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
- Laboratori de Malalties Neuromusculars, Insitut de Recerca de l’Hospital de la Santa Creu i Sant Pau de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
38
|
Cohen JL, Chakraborty P, Fung-Kee-Fung K, Schwab ME, Bali D, Young SP, Gelb MH, Khaledi H, DiBattista A, Smallshaw S, Moretti F, Wong D, Lacroix C, El Demellawy D, Strickland KC, Lougheed J, Moon-Grady A, Lianoglou BR, Harmatz P, Kishnani PS, MacKenzie TC. In Utero Enzyme-Replacement Therapy for Infantile-Onset Pompe's Disease. N Engl J Med 2022; 387:2150-2158. [PMID: 36351280 PMCID: PMC10794051 DOI: 10.1056/nejmoa2200587] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Patients with early-onset lysosomal storage diseases are ideal candidates for prenatal therapy because organ damage starts in utero. We report the safety and efficacy results of in utero enzyme-replacement therapy (ERT) in a fetus with CRIM (cross-reactive immunologic material)-negative infantile-onset Pompe's disease. The family history was positive for infantile-onset Pompe's disease with cardiomyopathy in two previously affected deceased siblings. After receiving in utero ERT and standard postnatal therapy, the current patient had normal cardiac and age-appropriate motor function postnatally, was meeting developmental milestones, had normal biomarker levels, and was feeding and growing well at 13 months of age.
Collapse
Affiliation(s)
- Jennifer L Cohen
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Pranesh Chakraborty
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Karen Fung-Kee-Fung
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Marisa E Schwab
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Deeksha Bali
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Sarah P Young
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Michael H Gelb
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Hamid Khaledi
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Alicia DiBattista
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Stacey Smallshaw
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Felipe Moretti
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Derek Wong
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Catherine Lacroix
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Dina El Demellawy
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Kyle C Strickland
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Jane Lougheed
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Anita Moon-Grady
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Billie R Lianoglou
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Paul Harmatz
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Priya S Kishnani
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Tippi C MacKenzie
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| |
Collapse
|
39
|
Rana J, Muñoz MM, Biswas M. Oral tolerance to prevent anti-drug antibody formation in protein replacement therapies. Cell Immunol 2022; 382:104641. [PMID: 36402002 PMCID: PMC9730862 DOI: 10.1016/j.cellimm.2022.104641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Protein based therapeutics have successfully improved the quality of life for patients of monogenic disorders like hemophilia, Pompe and Fabry disease. However, a significant proportion of patients develop immune responses towards intravenously infused therapeutic protein, which can complicate or neutralize treatment and compromise patient safety. Strategies aimed at circumventing immune responses following therapeutic protein infusion can greatly improve therapeutic efficacy. In recent years, antigen-based oral tolerance induction has shown promising results in the prevention and treatment of autoimmune diseases, food allergies and can prevent anti-drug antibody formation to protein replacement therapies. Oral tolerance exploits regulatory mechanisms that are initiated in the gut associated lymphoid tissue (GALT) to promote active suppression of orally ingested antigen. In this review, we outline general perceptions and current knowledge about the mechanisms of oral tolerance, including tissue specific sites of tolerance induction and the cells involved, with emphasis on antigen presenting cells and regulatory T cells. We define several factors, such as cytokines and metabolites that impact the stability and expansion potential of these immune modulatory cells. We highlight preclinical studies that have been performed to induce oral tolerance to therapeutic proteins or enzymes for single gene disorders, such as hemophilia or Pompe disease. These studies mainly utilize a transgenic plant-based system for oral delivery of antigen in conjugation with fusion protein technology that favors the prevention of antigen degradation in the stomach while enhancing uptake in the small intestine by antigen presenting cells and regulatory T cell induction, thereby promoting antigen specific systemic tolerance.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maite Melero Muñoz
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
40
|
Al-Hassnan Z, Hashmi NA, Makhseed N, Omran TB, Al Jasmi F, Teneiji AA. Expert Group Consensus on early diagnosis and management of infantile-onset pompe disease in the Gulf Region. Orphanet J Rare Dis 2022; 17:388. [PMID: 36303251 PMCID: PMC9615381 DOI: 10.1186/s13023-022-02545-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/09/2022] [Accepted: 10/04/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Infantile-onset Pompe disease (IOPD) is a rare and devastating, autosomal recessive lysosomal storage disorder that manifests immediately after birth. In severe IOPD cases, complete/almost-complete acid alpha-glucosidase enzyme deficiency is observed. Considering the rapid progression of the disease, timely diagnosis and treatment are important; even slight delays can remarkably alter the course of the disease. Enzyme replacement therapy (ERT) with recombinant human acid alpha-glucosidase is safe and beneficial for IOPD patients. However, there is heterogeneity in the patient response to ERT. The factors influencing treatment effectiveness include the patient's age at the time of treatment initiation, pre-existing muscle damage, and cross-reactive immunologic material (CRIM) status at baseline. Immunomodulation along with ERT is the recently developed therapeutic approach that has been included in the therapeutic armamentarium of IOPD for optimizing clinical benefits, particularly in CRIM-negative IOPD patients. However, there is a dearth of published data on the early diagnosis and clinical position of the immunomodulation protocol along with ERT in the treatment of IOPD in the Gulf region. METHODS AND RESULTS Expert panel meetings, involving six experts from the Kingdom of Saudi Arabia, Kuwait, Oman, Qatar, and the United Arab Emirates, were convened to develop consensus-based recommendations addressing current diagnostic and management challenges for patients with IOPD in the Gulf region. Furthermore, this consensus guideline may be implemented in clinical practice for the timely diagnosis and management of patients with IOPD. CONCLUSION The expert consensus will help clinicians to make appropriate and timely decisions regarding immunomodulation initiation and ERT treatment in IOPD patients in the Gulf region.
Collapse
Affiliation(s)
- Zuhair Al-Hassnan
- Department of Medical Genetics, MBC-75 King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.
| | - Nadia Al Hashmi
- Department of Child Health, National Genetic Center, Royal Hospital, Muscat, Sultanate of Oman
| | - Nawal Makhseed
- Pediatric Department, Al-Farwaniya Hospital, and Maternity Hospital, Al-Jahra Hospital, Kuwait, Kuwait
| | - Tawfeg Ben Omran
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar
| | - Fatma Al Jasmi
- Department of Genetics and Genomic Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- Division of Metabolic Genetics, Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Amal Al Teneiji
- Division of Metabolic Genetics, Department of Pediatrics, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| |
Collapse
|
41
|
Mauhin W, Brassier A, London J, Subran B, Zeggane A, Besset Q, Jammal C, Montardi C, Mellot C, Strauss C, Borie R, Lidove O. Manifestations pulmonaires des maladies héréditaires du métabolisme. Rev Mal Respir 2022; 39:758-777. [DOI: 10.1016/j.rmr.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/11/2022] [Indexed: 11/05/2022]
|
42
|
Curelaru S, Desai AK, Fink D, Zehavi Y, Kishnani PS, Spiegel R. A favorable outcome in an infantile-onset Pompe patient with cross reactive immunological material (CRIM) negative disease with high dose enzyme replacement therapy and adjusted immunomodulation. Mol Genet Metab Rep 2022; 32:100893. [PMID: 35813979 PMCID: PMC9263520 DOI: 10.1016/j.ymgmr.2022.100893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/30/2022] Open
Abstract
Infantile onset Pompe disease (IOPD) is a rare devastating disease that presents in early infancy with rapidly progressive hypertrophic cardiomyopathy, severe generalized myopathy and death within the first year of life. The emergence of enzyme replacement therapy (ERT) with recombinant human acid alpha glucosidase (rhGAA) has improved the natural course of IOPD with a significant impact on cardiomyopathy but has a more limited effect on the progression of myopathy and consequently the later deterioration of the disease. Possible reasons for reduced ERT efficacy include insufficient enzyme, partial targeting of skeletal muscle and the development of IgG rhGAA antibodies especially in patients who are cross-reactive immunological material (CRIM) negative. We report a CRIM-negative IOPD female patient who started treatment upon diagnosis at 4.5 months with ERT at 20 mg/kg every other week and a course of combined immunomodulation with rituximab, methotrexate and IVIG according to the published Duke protocol and increased ERT within a month to 40 mg/kg/week. Despite initial good clinical response to ERT and immunomodulation, monthly monitoring identified a gradual increase of serum antibody titers to rhGAA necessitating a second course of immunomodulation with bortezomib and maintenance rituximab and methotrexate. A gradual reduction in frequency of immunotherapy was instituted and over a period of 14 months was discontinued. Serum anti-rhGAA antibody titers remained negative for 5 months since cessation of immunomodulation and the patient is now immune tolerant with recovery of CD19. At the age of 30 months the patient is walking independently and has normal cardiac function and anatomy. We recommend initiating ERT at 40 mg/kg/week in CRIM-negative IOPD patients, concomitant with immunomodulation and monthly monitoring of serum anti-rhGAA IgG titers upon confirmation of the diagnosis.
Collapse
Affiliation(s)
- Shiri Curelaru
- Department of Pediatrics B, Emek Medical Center, Afula, Israel
| | - Ankit K. Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, United States
| | - Daniel Fink
- Pediatric Cardiology Unit, Emek Medical Center, Afula, Israel
| | - Yoav Zehavi
- Department of Pediatrics B, Emek Medical Center, Afula, Israel
- Rappaport School of Medicine, Technion, Haifa, Israel
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, United States
| | - Ronen Spiegel
- Department of Pediatrics B, Emek Medical Center, Afula, Israel
- Rappaport School of Medicine, Technion, Haifa, Israel
- Corresponding author at: Department of Pediatrics B, Emek Medical Center, Afula 1834111, Israel.
| |
Collapse
|
43
|
Nilsson MI, Crozier M, Di Carlo A, Xhuti D, Manta K, Roik LJ, Bujak AL, Nederveen JP, Tarnopolsky MG, Hettinga B, Meena NK, Raben N, Tarnopolsky MA. Nutritional co-therapy with 1,3-butanediol and multi-ingredient antioxidants enhances autophagic clearance in Pompe disease. Mol Genet Metab 2022; 137:228-240. [PMID: 35718712 DOI: 10.1016/j.ymgme.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
Alglucosidase alpha is an orphan drug approved for enzyme replacement therapy (ERT) in Pompe disease (PD); however, its efficacy is limited in skeletal muscle because of a partial blockage of autophagic flux that hinders intracellular trafficking and enzyme delivery. Adjunctive therapies that enhance autophagic flux and protect mitochondrial integrity may alleviate autophagic blockage and oxidative stress and thereby improve ERT efficacy in PD. In this study, we compared the benefits of ERT combined with a ketogenic diet (ERT-KETO), daily administration of an oral ketone precursor (1,3-butanediol; ERT-BD), a multi-ingredient antioxidant diet (ERT-MITO; CoQ10, α-lipoic acid, vitamin E, beetroot extract, HMB, creatine, and citrulline), or co-therapy with the ketone precursor and multi-ingredient antioxidants (ERT-BD-MITO) on skeletal muscle pathology in GAA-KO mice. We found that two months of 1,3-BD administration raised circulatory ketone levels to ≥1.2 mM, attenuated autophagic buildup in type 2 muscle fibers, and preserved muscle strength and function in ERT-treated GAA-KO mice. Collectively, ERT-BD was more effective vs. standard ERT and ERT-KETO in terms of autophagic clearance, dampening of oxidative stress, and muscle maintenance. However, the addition of multi-ingredient antioxidants (ERT-BD-MITO) provided the most consistent benefits across all outcome measures and normalized mitochondrial protein expression in GAA-KO mice. We therefore conclude that nutritional co-therapy with 1,3-butanediol and multi-ingredient antioxidants may provide an alternative to ketogenic diets for inducing ketosis and enhancing autophagic flux in PD patients.
Collapse
Affiliation(s)
- Mats I Nilsson
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada
| | - Michael Crozier
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Alessia Di Carlo
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Donald Xhuti
- Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada
| | - Katherine Manta
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Liza J Roik
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Adam L Bujak
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Joshua P Nederveen
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | - Bart Hettinga
- Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada
| | - Naresh K Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
44
|
Zhu D, Zhu J, Qiu W, Wang B, Liu L, Yu X, Ou Z, Shan G, Wang J, Li B, Chen X, Liu C, Li Z, Fu L. A Multi-Centre Prospective Study of the Efficacy and Safety of Alglucosidase Alfa in Chinese Patients With Infantile-Onset Pompe Disease. Front Pharmacol 2022; 13:903488. [PMID: 35833019 PMCID: PMC9271607 DOI: 10.3389/fphar.2022.903488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background: A high prevalence of infantile-onset Pompe disease (IOPD) in the Chinese population has been noted, but there are currently no reported clinical trials of enzyme replacement therapy (ERT) for IOPD in this population. The purpose of this study was to evaluate the efficacy and safety of alglucosidase alfa in Chinese patients with IOPD. Materials and Methods: A multicentre, single-arm, prospective, open-label clinical trial was performed at 4 sites in China. Eligible Chinese subjects with IOPD received an infusion of alglucosidase alfa at a dose of 20 mg/kg every 2 weeks for up to 52 weeks. The primary endpoints of clinical efficacy were the survival rate and changes in the left ventricular mass index (LVMI). The safety assessment was based on the incidence of adverse events (AEs). Results: A total of 10 eligible subjects were enrolled in the study. The mean age at the start of ERT was 5.36 ± 1.56 months. Nine subjects had survived after 52 weeks of treatment. One subject discontinued the study and died after mechanical ventilation was withdrawn. The intent-to-treat analysis demonstrated that the survival rate was 90.0% (95% confidence interval: 55.5–99.7%). The mean LVMI at week 52 was 70.59 ± 39.93 g/m2 compared to that of 298.02 ± 178.43 g/m2 at baseline, with a difference of -227.60 ± 155.99 g/m2. All subjects had left ventricular mass (LVM) Z scores >10 at baseline, and eight subjects (80%) achieved Z scores <5 at week 52. No treatment-related AEs were observed, and no AEs led to the discontinuation of treatment. Conclusions: This clinical trial is the first study of ERT for IOPD in China, indicating that alglucosidase alfa has favourable efficacy and safety for the treatment of Chinese patients with IOPD (ClinicalTrials.gov number, NCT03687333).
Collapse
Affiliation(s)
- Diqi Zhu
- Department of Cardiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiacong Zhu
- Department of Cardiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pediatrics, The Second Hospital of Jiaxing, Jiaxing, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benzhen Wang
- Heart Center, Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Lin Liu
- Department of Pediatric Cardiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xiaodan Yu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenheng Ou
- Department of Pediatric Cardiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Guangsong Shan
- Heart Center, Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Jian Wang
- Research Division of Birth Defects, Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Medical Department, Sanofi Investment Co., Ltd., Shanghai, China
| | - Xiaokang Chen
- Medical Department, Sanofi Investment Co., Ltd., Shanghai, China
| | - Cong Liu
- Department of Pediatric Cardiology, Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Lijun Fu, ; Zipu Li, ; Cong Liu,
| | - Zipu Li
- Heart Center, Women and Children’s Hospital, Qingdao University, Qingdao, China
- *Correspondence: Lijun Fu, ; Zipu Li, ; Cong Liu,
| | - Lijun Fu
- Department of Cardiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Clinical Research Center for Rare Pediatric Disease, Shanghai, China
- *Correspondence: Lijun Fu, ; Zipu Li, ; Cong Liu,
| |
Collapse
|
45
|
Liang Q, Vlaar EC, Catalano F, Pijnenburg JM, Stok M, van Helsdingen Y, Vulto AG, Unger WW, van der Ploeg AT, Pijnappel WP, van Til NP. Lentiviral gene therapy prevents anti-human acid α-glucosidase antibody formation in murine Pompe disease. Mol Ther Methods Clin Dev 2022; 25:520-532. [PMID: 35662813 PMCID: PMC9127119 DOI: 10.1016/j.omtm.2022.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/29/2022] [Indexed: 01/20/2023]
Abstract
Enzyme replacement therapy (ERT) is the current standard treatment for Pompe disease, a lysosomal storage disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). ERT has shown to be lifesaving in patients with classic infantile Pompe disease. However, a major drawback is the development of neutralizing antibodies against ERT. Hematopoietic stem and progenitor cell-mediated lentiviral gene therapy (HSPC-LVGT) provides a novel, potential lifelong therapy with a single intervention and may induce immune tolerance. Here, we investigated whether ERT can be safely applied as additional or alternative therapy following HSPC-LVGT in a murine model of Pompe disease. We found that lentiviral expression at subtherapeutic dose was sufficient to induce tolerance to the transgene product, as well as to subsequently administered ERT. Immune tolerance was established within 4–6 weeks after gene therapy. The mice tolerated ERT doses up to 100 mg/kg, allowing ERT to eliminate glycogen accumulation in cardiac and skeletal muscle and normalizing locomotor function. The presence of HSPC-derived cells expressing GAA in the thymus suggested the establishment of central immune tolerance. These findings demonstrate that lentiviral gene therapy in murine Pompe disease induced robust and long-term immune tolerance to GAA either expressed by a transgene or supplied as ERT.
Collapse
Affiliation(s)
- Qiushi Liang
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Eva C. Vlaar
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Fabio Catalano
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Joon M. Pijnenburg
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Merel Stok
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Hematology, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Yvette van Helsdingen
- Department of Hematology, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Arnold G. Vulto
- Hospital Pharmacy, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Wendy W.J. Unger
- Laboratory of Pediatrics, Erasmus MC University Medical Center-Sophia Children’s Hospital, 3015GE Rotterdam, the Netherlands
| | - Ans T. van der Ploeg
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - W.W.M. Pim Pijnappel
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Corresponding author W.W.M. Pim Pijnappel, PhD, Erasmus University Medical Center, 3015GE Rotterdam, the Netherlands.
| | - Niek P. van Til
- Department of Hematology, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| |
Collapse
|
46
|
Aguilar-González A, González-Correa JE, Barriocanal-Casado E, Ramos-Hernández I, Lerma-Juárez MA, Greco S, Rodríguez-Sevilla JJ, Molina-Estévez FJ, Montalvo-Romeral V, Ronzitti G, Sánchez-Martín RM, Martín F, Muñoz P. Isogenic GAA-KO Murine Muscle Cell Lines Mimicking Severe Pompe Mutations as Preclinical Models for the Screening of Potential Gene Therapy Strategies. Int J Mol Sci 2022; 23:6298. [PMID: 35682977 PMCID: PMC9181599 DOI: 10.3390/ijms23116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Pompe disease (PD) is a rare disorder caused by mutations in the acid alpha-glucosidase (GAA) gene. Most gene therapies (GT) partially rely on the cross-correction of unmodified cells through the uptake of the GAA enzyme secreted by corrected cells. In the present study, we generated isogenic murine GAA-KO cell lines resembling severe mutations from Pompe patients. All of the generated GAA-KO cells lacked GAA activity and presented an increased autophagy and increased glycogen content by means of myotube differentiation as well as the downregulation of mannose 6-phosphate receptors (CI-MPRs), validating them as models for PD. Additionally, different chimeric murine GAA proteins (IFG, IFLG and 2G) were designed with the aim to improve their therapeutic activity. Phenotypic rescue analyses using lentiviral vectors point to IFG chimera as the best candidate in restoring GAA activity, normalising the autophagic marker p62 and surface levels of CI-MPRs. Interestingly, in vivo administration of liver-directed AAVs expressing the chimeras further confirmed the good behaviour of IFG, achieving cross-correction in heart tissue. In summary, we generated different isogenic murine muscle cell lines mimicking the severe PD phenotype, as well as validating their applicability as preclinical models in order to reduce animal experimentation.
Collapse
Affiliation(s)
- Araceli Aguilar-González
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS Granada-Avenida de la Ilustración 114, 18016 Granada, Spain; (A.A.-G.); (J.E.G.-C.); (E.B.-C.); (I.R.-H.); (S.G.); (J.J.R.-S.); (F.J.M.-E.); (R.M.S.-M.)
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Juan Elías González-Correa
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS Granada-Avenida de la Ilustración 114, 18016 Granada, Spain; (A.A.-G.); (J.E.G.-C.); (E.B.-C.); (I.R.-H.); (S.G.); (J.J.R.-S.); (F.J.M.-E.); (R.M.S.-M.)
| | - Eliana Barriocanal-Casado
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS Granada-Avenida de la Ilustración 114, 18016 Granada, Spain; (A.A.-G.); (J.E.G.-C.); (E.B.-C.); (I.R.-H.); (S.G.); (J.J.R.-S.); (F.J.M.-E.); (R.M.S.-M.)
| | - Iris Ramos-Hernández
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS Granada-Avenida de la Ilustración 114, 18016 Granada, Spain; (A.A.-G.); (J.E.G.-C.); (E.B.-C.); (I.R.-H.); (S.G.); (J.J.R.-S.); (F.J.M.-E.); (R.M.S.-M.)
| | - Miguel A. Lerma-Juárez
- Instituto de Investigación del Hospital Universitario La Paz, IdiPAZ, 28029 Madrid, Spain;
| | - Sara Greco
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS Granada-Avenida de la Ilustración 114, 18016 Granada, Spain; (A.A.-G.); (J.E.G.-C.); (E.B.-C.); (I.R.-H.); (S.G.); (J.J.R.-S.); (F.J.M.-E.); (R.M.S.-M.)
| | - Juan José Rodríguez-Sevilla
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS Granada-Avenida de la Ilustración 114, 18016 Granada, Spain; (A.A.-G.); (J.E.G.-C.); (E.B.-C.); (I.R.-H.); (S.G.); (J.J.R.-S.); (F.J.M.-E.); (R.M.S.-M.)
| | - Francisco Javier Molina-Estévez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS Granada-Avenida de la Ilustración 114, 18016 Granada, Spain; (A.A.-G.); (J.E.G.-C.); (E.B.-C.); (I.R.-H.); (S.G.); (J.J.R.-S.); (F.J.M.-E.); (R.M.S.-M.)
- Fundación para la Investigación Biosanitaria de Andalucía Oriental-Alejandro Otero (FIBAO), 18012 Granada, Spain
| | - Valle Montalvo-Romeral
- Généthon, Integrare Research Unit UMR_S951, INSERM, Université Paris-Saclay, Univ Evry, 91002 Evry, France; (V.M.-R.); (G.R.)
| | - Giuseppe Ronzitti
- Généthon, Integrare Research Unit UMR_S951, INSERM, Université Paris-Saclay, Univ Evry, 91002 Evry, France; (V.M.-R.); (G.R.)
| | - Rosario María Sánchez-Martín
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS Granada-Avenida de la Ilustración 114, 18016 Granada, Spain; (A.A.-G.); (J.E.G.-C.); (E.B.-C.); (I.R.-H.); (S.G.); (J.J.R.-S.); (F.J.M.-E.); (R.M.S.-M.)
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Francisco Martín
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS Granada-Avenida de la Ilustración 114, 18016 Granada, Spain; (A.A.-G.); (J.E.G.-C.); (E.B.-C.); (I.R.-H.); (S.G.); (J.J.R.-S.); (F.J.M.-E.); (R.M.S.-M.)
- Departamento de Bioquímica y Biología Molecular 3 e Inmunología, Facultad de Medicina, Universidad de Granada, Avda. de la Investigación 11, 18071 Granada, Spain
| | - Pilar Muñoz
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS Granada-Avenida de la Ilustración 114, 18016 Granada, Spain; (A.A.-G.); (J.E.G.-C.); (E.B.-C.); (I.R.-H.); (S.G.); (J.J.R.-S.); (F.J.M.-E.); (R.M.S.-M.)
- Departmento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain
| |
Collapse
|
47
|
Cerón-Rodríguez M, Castillo-García D, Acosta-Rodríguez-Bueno CP, Aguirre-Hernández J, Murillo-Eliosa JR, Valencia-Mayoral P, Escobar-Sánchez A, Salgado-Loza JL. Classic infantile-onset Pompe disease with histopathological neurologic findings linked to a novel GAA gene 4 bp deletion: A case study. Mol Genet Genomic Med 2022; 10:e1957. [PMID: 35532199 PMCID: PMC9266604 DOI: 10.1002/mgg3.1957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 11/12/2022] Open
Abstract
Pompe disease (PD) is an autosomal recessive disorder by a deficiency of acid α‐glucosidase (GAA) with intralysosomal glycogen accumulation in multiple tissues. We present the case of a 5‐month‐old male with hypertrophic cardiomyopathy, hypotony, feeding difficulties, and oxygen requirement since birth. At 3 months of age, he develops heart failure, respiratory impairment, and neurological deterioration. The echocardiogram revealed concentric hypertrophic cardiomyopathy with left‐diastolic dysfunction. We found increased creatine‐phosphokinase, lactate dehydrogenase, and urinary glucose tetrasaccharide levels, 50% of PAS‐positive vacuolated lymphocytes in the peripheral blood smear, and low GAA activity. Sequencing of coding exons and flanking intronic sequences revealed a novel homozygous 4 bp deletion in exon 15 of the GAA gene (c.2066_2069delAGCC/p.Glu689Glyfs*6). IOPD was diagnosed. At 5 months old, we started enzyme replacement therapy with an alpha‐alglucosidase of 20 mg/kg weekly and immunomodulation with intravenous immunoglobulin. He developed two cardiorespiratory arrests with subsequent neurologic deterioration, convulsive crisis, and respiratory failure and died at 9 months old. We found the usual PD hallmarks in the heart, striated muscle, and liver but also we found neuronal lesions characterized by cytoplasm vacuolization with PAS‐positive granules in the central nervous system and myenteric plexus. We describe a novel GAA gene pathogenic variant with a particular phenotype characterized by classic IOPD and neurologic histopathological findings. Enhancing the knowledge of lysosomal diseases is critical to improving the diagnosis and treatment of these patients.
Collapse
Affiliation(s)
- Magdalena Cerón-Rodríguez
- Department of Lysosomal Diseases, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Daniela Castillo-García
- Department of Lysosomal Diseases, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | | | - Jesús Aguirre-Hernández
- Laboratory of Genomics, Genetics and Bioinformatics, Department of Genetics, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | | | - Pedro Valencia-Mayoral
- Department of Pathology, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Argelia Escobar-Sánchez
- Department of Pathology, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | | |
Collapse
|
48
|
Gragnaniello V, Deodato F, Gasperini S, Donati MA, Canessa C, Fecarotta S, Pascarella A, Spadaro G, Concolino D, Burlina A, Parenti G, Strisciuglio P, Fiumara A, Casa RD. Immune responses to alglucosidase in infantile Pompe disease: recommendations from an Italian pediatric expert panel. Ital J Pediatr 2022; 48:41. [PMID: 35248118 PMCID: PMC8898438 DOI: 10.1186/s13052-022-01219-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background Classic infantile onset of Pompe disease (c-IOPD) leads to hypotonia and hypertrophic cardiomyopathy within the first days to weeks of life and, without treatment, patients die of cardiorespiratory failure in their first 1–2 years of life. Enzymatic replacement therapy (ERT) with alglucosidase alfa is the only available treatment, but adverse immune reactions can reduce ERT’s effectiveness and safety. It is therefore very important to identify strategies to prevent and manage these complications. Several articles have been written on this disease over the last 10 years, but no univocal indications have been established. Methods Our study presents a review of the current literature on management of immune responses to ERT in c-IOPD as considered by an Italian study group of pediatric metabolists and immunologists in light of our shared patient experience. Results We summarize the protocols for the management of adverse reactions to ERT, analyzing their advantages and disadvantages, and provide expert recommendations for their optimal management, to the best of current knowledge. However, further studies are needed to improve actual management protocols, which still have several limitations.
Collapse
|
49
|
Abstract
Pompe disease results from lysosomal acid α-glucosidase deficiency, which leads to cardiomyopathy in all infantile-onset and occasional late-onset patients. Cardiac assessment is important for its diagnosis and management. This article presents unpublished cardiac findings, concomitant medications, and cardiac efficacy and safety outcomes from the ADVANCE study; trajectories of patients with abnormal left ventricular mass z score at enrolment; and post hoc analyses of on-treatment left ventricular mass and systolic blood pressure z scores by disease phenotype, GAA genotype, and "fraction of life" (defined as the fraction of life on pre-study 160 L production-scale alglucosidase alfa). ADVANCE evaluated 52 weeks' treatment with 4000 L production-scale alglucosidase alfa in ≥1-year-old United States of America patients with Pompe disease previously receiving 160 L production-scale alglucosidase alfa. M-mode echocardiography and 12-lead electrocardiography were performed at enrolment and Week 52. Sixty-seven patients had complete left ventricular mass z scores, decreasing at Week 52 (infantile-onset patients, change -0.8 ± 1.83; 95% confidence interval -1.3 to -0.2; all patients, change -0.5 ± 1.71; 95% confidence interval -1.0 to -0.1). Patients with "fraction of life" <0.79 had left ventricular mass z score decreasing (enrolment: +0.1 ± 3.0; Week 52: -1.1 ± 2.0); those with "fraction of life" ≥0.79 remained stable (enrolment: -0.9 ± 1.5; Week 52: -0.9 ± 1.4). Systolic blood pressure z scores were stable from enrolment to Week 52, and no cohort developed systemic hypertension. Eight patients had Wolff-Parkinson-White syndrome. Cardiac hypertrophy and dysrhythmia in ADVANCE patients at or before enrolment were typical of Pompe disease. Four-thousand L alglucosidase alfa therapy maintained fractional shortening, left ventricular posterior and septal end-diastolic thicknesses, and improved left ventricular mass z score.Trial registry: ClinicalTrials.gov Identifier: NCT01526785 https://clinicaltrials.gov/ct2/show/NCT01526785.Social Media Statement: Post hoc analyses of the ADVANCE study cohort of 113 children support ongoing cardiac monitoring and concomitant management of children with Pompe disease on long-term alglucosidase alfa to functionally improve cardiomyopathy and/or dysrhythmia.
Collapse
|
50
|
van Kooten HA, Ditters IAM, Hoogeveen-Westerveld M, Jacobs EH, van den Hout JMP, van Doorn PA, Pijnappel WWMP, van der Ploeg AT, van der Beek NAME. Antibodies against recombinant human alpha-glucosidase do not seem to affect clinical outcome in childhood onset Pompe disease. Orphanet J Rare Dis 2022; 17:31. [PMID: 35109913 PMCID: PMC8812154 DOI: 10.1186/s13023-022-02175-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/16/2022] [Indexed: 01/16/2023] Open
Abstract
Background Enzyme replacement therapy (ERT) with recombinant human alpha-glucosidase (rhGAA, alglucosidase alfa) has improved survival, motor outcomes, daily life activity and quality of life in Pompe patients. However, ERT in Pompe disease often induces formation of antibodies, which may reduce the efficacy of treatment and can lead to adverse events. In this study antibody formation and their effect on clinical outcome in patients with childhood onset Pompe disease treated with enzyme replacement therapy (ERT) with recombinant human alpha-glucosidase (rhGAA) are analyzed. Methods Enzyme-linked immunosorbent assay (ELISA) was used to determine anti-rhGAA antibody titers at predefined time points. The effect of antibodies on rhGAA activity (neutralizing effects) was measured in vitro. Clinical effects were evaluated by assessing muscle strength (MRC score) and function (QMFT-score), pulmonary function and infusion associated reactions (IARs). Results Twenty-two patients were included (age at start ERT 1.1–16.4 years, median treatment duration 12.4 years). Peak antibody titers were low (< 1:1250) in 9%, intermediate (1:1250–1:31,250) in 68% and high (≥ 1:31250) in 23% of patients; three patients (14%) had more than one titer of ≥ 1:31,250. Four patients (18%) experienced IARs; two patients from the high titer group had 86% of all IARs. Inhibition of intracellular GAA activity (58%) in vitro was found in one sample. The clinical course did not appear to be influenced by antibody titers. Conclusions Ninety-one percent of childhood onset Pompe patients developed anti-rhGAA antibodies (above background level), a minority of whom had high antibody titers at repeated time points, which do not seem to interfere with clinical outcome. High antibody titers may be associated with the occurrence of IARs. Although the majority of patients does not develop high titers; antibody titers should be determined in case of clinical deterioration. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02175-2.
Collapse
Affiliation(s)
- Harmke A van Kooten
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Imke A M Ditters
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marianne Hoogeveen-Westerveld
- Department of Pediatrics, Department of Clinical Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Edwin H Jacobs
- Department of Pediatrics, Department of Clinical Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Johanna M P van den Hout
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Pieter A van Doorn
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Department of Clinical Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nadine A M E van der Beek
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. .,Department of Neurology, Erasmus University Medical Center, Mailbox 2040, 3000 CA, Rotterdam, the Netherlands.
| |
Collapse
|