1
|
Morales-Romero B, Muñoz-Pujol G, Artuch R, García-Cazorla A, O'Callaghan M, Sykut-Cegielska J, Campistol J, Moreno-Lozano PJ, Oud MM, Wevers RA, Lefeber DJ, Esteve-Codina A, Yepez VA, Gagneur J, Wortmann SB, Prokisch H, Ribes A, García-Villoria J, Tort F. Genome and RNA sequencing were essential to reveal cryptic intronic variants associated to defective ATP6AP1 mRNA processing. Mol Genet Metab 2024; 142:108511. [PMID: 38878498 DOI: 10.1016/j.ymgme.2024.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
The diagnosis of Mendelian disorders has notably advanced with integration of whole exome and genome sequencing (WES and WGS) in clinical practice. However, challenges in variant interpretation and uncovered variants by WES still leave a substantial percentage of patients undiagnosed. In this context, integrating RNA sequencing (RNA-seq) improves diagnostic workflows, particularly for WES inconclusive cases. Additionally, functional studies are often necessary to elucidate the impact of prioritized variants on gene expression and protein function. Our study focused on three unrelated male patients (P1-P3) with ATP6AP1-CDG (congenital disorder of glycosylation), presenting with intellectual disability and varying degrees of hepatopathy, glycosylation defects, and an initially inconclusive diagnosis through WES. Subsequent RNA-seq was pivotal in identifying the underlying genetic causes in P1 and P2, detecting ATP6AP1 underexpression and aberrant splicing. Molecular studies in fibroblasts confirmed these findings and identified the rare intronic variants c.289-233C > T and c.289-289G > A in P1 and P2, respectively. Trio-WGS also revealed the variant c.289-289G > A in P3, which was a de novo change in both patients. Functional assays expressing the mutant alleles in HAP1 cells demonstrated the pathogenic impact of these variants by reproducing the splicing alterations observed in patients. Our study underscores the role of RNA-seq and WGS in enhancing diagnostic rates for genetic diseases such as CDG, providing new insights into ATP6AP1-CDG molecular bases by identifying the first two deep intronic variants in this X-linked gene. Additionally, our study highlights the need to integrate RNA-seq and WGS, followed by functional validation, in routine diagnostics for a comprehensive evaluation of patients with an unidentified molecular etiology.
Collapse
Affiliation(s)
- Blai Morales-Romero
- Section of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, ISCIII, Barcelona, Spain.
| | - Gerard Muñoz-Pujol
- Section of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, ISCIII, Barcelona, Spain.
| | - Rafael Artuch
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, CIBERER, Esplugues de Llobregat, Barcelona, Spain.
| | - Angels García-Cazorla
- Neurology Department, Hospital Sant Joan de Déu, Institut de Recerca Hospital Sant Joan de Déu, CIBERER and MetabERN, Esplugues de Llobregat, Barcelona, Spain.
| | - Mar O'Callaghan
- Neurology Department, Hospital Sant Joan de Déu, Institut de Recerca Hospital Sant Joan de Déu, CIBERER and MetabERN, Esplugues de Llobregat, Barcelona, Spain.
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | - Jaume Campistol
- Neurology Department, Hospital Sant Joan de Déu, Institut de Recerca Hospital Sant Joan de Déu, CIBERER and MetabERN, Esplugues de Llobregat, Barcelona, Spain.
| | - Pedro Juan Moreno-Lozano
- Inherited Metabolic Diseases and Muscle Disorders' Research Group, Department of Internal Medicine, Hospital Clinic de Barcelona, IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| | - Machteld M Oud
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Ron A Wevers
- Department of Human Genetics, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, the Netherlands; United for Metabolic Diseases, The Netherlands.
| | - Dirk J Lefeber
- Department of Human Genetics, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico (CNAG), Parc Científic de Barcelona, Barcelona, Spain.
| | - Vicente A Yepez
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany; TUM School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany.
| | - Julien Gagneur
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany; TUM School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany.
| | - Saskia B Wortmann
- University Children's Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria; Amalia Children's Hospital, Department of Pediatrics, Radboudumc, Nijmegen, the Netherlands.
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| | - Antonia Ribes
- Section of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, ISCIII, Barcelona, Spain.
| | - Judit García-Villoria
- Section of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, ISCIII, Barcelona, Spain.
| | - Frederic Tort
- Section of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, ISCIII, Barcelona, Spain.
| |
Collapse
|
2
|
Raynor A, Haouari W, Lebredonchel E, Foulquier F, Fenaille F, Bruneel A. Biochemical diagnosis of congenital disorders of glycosylation. Adv Clin Chem 2024; 120:1-43. [PMID: 38762238 DOI: 10.1016/bs.acc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Congenital disorders of glycosylation (CDG) are one of the fastest growing groups of inborn errors of metabolism, comprising over 160 described diseases to this day. CDG are characterized by a dysfunctional glycosylation process, with molecular defects localized in the cytosol, the endoplasmic reticulum, or the Golgi apparatus. Depending on the CDG, N-glycosylation, O-glycosylation and/or glycosaminoglycan synthesis can be affected. Various proteins, lipids, and glycosylphosphatidylinositol anchors bear glycan chains, with potential impacts on their folding, targeting, secretion, stability, and thus, functionality. Therefore, glycosylation defects can have diverse and serious clinical consequences. CDG patients often present with a non-specific, multisystemic syndrome including neurological involvement, growth delay, hepatopathy and coagulopathy. As CDG are rare diseases, and typically lack distinctive clinical signs, biochemical and genetic testing bear particularly important and complementary diagnostic roles. Here, after a brief introduction on glycosylation and CDG, we review historical and recent findings on CDG biomarkers and associated analytical techniques, with a particular emphasis on those with relevant use in the specialized clinical chemistry laboratory. We provide the reader with insights and methods which may help them properly assist the clinician in navigating the maze of glycosylation disorders.
Collapse
Affiliation(s)
- Alexandre Raynor
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France
| | - Walid Haouari
- INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | | | - François Foulquier
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France.
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France; INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
3
|
Barkin JA, Delk TB, Powell VJ. Symptoms, burden, and unmet needs of patients living with exocrine pancreatic insufficiency: a narrative review of the patient experience. BMC Gastroenterol 2024; 24:101. [PMID: 38481137 PMCID: PMC10938721 DOI: 10.1186/s12876-024-03188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
Exocrine pancreatic insufficiency (EPI) stems from a deficiency of functional pancreatic enzymes with consequent maldigestion and malnutrition. EPI shares clinical symptoms and manifestations with other disorders and is a considerable burden to individuals affected. In this narrative review, we analyzed the literature to identify relevant publications on living with EPI with the scope of individuating evidence gaps, including those related to symptoms, health-related quality of life (HRQoL), emotional functioning, disease burden, presence of comorbidities, and the use of pancreatic enzyme replacement therapy (PERT). Abdominal pain emerged as one of the most prominent symptoms. HRQoL was affected in EPI, but no articles examined emotional functioning. Comorbidities reported involved other pancreatic disorders, diabetes, gastrointestinal disorders, sarcopenia and osteopenia, cardiovascular disorders, bacterial overgrowth, and nutritional deficiencies. PERT was found to be effective in improving EPI symptoms and was well tolerated by most individuals. Our review revealed a dearth of literature evidence on patients' experience with EPI, such as emotional functioning and disease burden. We also revealed that studies on long-term effects of PERT are missing, as are studies that would help advance the understanding of the disease and its progression, risk/mitigating factors, and comorbidities. Future studies should address these identified gaps.
Collapse
Affiliation(s)
- Jodie A Barkin
- University of Miami Miller School of Medicine, 1120 NW 14th St., Clinical Research Building, Suite 1188 (D-49), 33136, Miami, FL, USA.
| | - Trudi B Delk
- Aimmune Therapeutics, a Nestlé Health Science Company, Brisbane, CA, USA
| | - Valerie J Powell
- CorEvitas, LLC, part of Thermo Fisher Scientific, Waltham, MA, USA
| |
Collapse
|
4
|
Zhang S, Wang Y, Zhang X, Wang M, Wu H, Tao Y, Fan W, Liu L, Wang B, Gao W. ATP6AP1 as a potential prognostic biomarker in CRC by comprehensive analysis and verification. Sci Rep 2024; 14:4018. [PMID: 38369634 PMCID: PMC10874971 DOI: 10.1038/s41598-024-54437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
The role of ATP6AP1 in colorectal cancer (CRC) remains elusive despite its observed upregulation in pan-cancer. Therefore, the current study aimed to assess the clinical significance of ATP6AP1 and its relationship with the immune infiltration in CRC. Transcriptome data of CRC were obtained from The Cancer Genome Atlas (TCGA) database and analyzed using the combination of R packages and tumor-related databases, including TIMER2, TISIDB, cBioPortal, and MethSurv. The tissue arrays and immunohistochemical staining were performed to verify the expression and clinical characteristics of ATP6AP1. The results revealed that ATP6AP1 expression was significantly elevated in CRC and associated with poor clinicopathological characteristics and prognosis. Furthermore, the analysis demonstrated ATP6AP1 expression was correlated with the infiltration of immune cells and cancer-associated fibroblasts in the microenvironment of CRC. Moreover, ATP6AP1 was found to be linked to various immune checkpoints and chemokines, with enrichment of cytoplasmic vesicle lumen, endopeptidase regulator activity, and endopeptidase inhibitor activity observed in the high ATP6AP1 expressional group. In conclusion, the findings of this study suggest that ATP6AP1 upregulation may serve as a biomarker for poor diagnosis in CRC and offer a potential target for immunotherapy in CRC.
Collapse
Affiliation(s)
- Shijie Zhang
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining, China
| | - Yan Wang
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining, China
| | - Xiaodong Zhang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, No.1000, He Feng Road, Wuxi, 214122, Jiangsu Province, China
| | - Min Wang
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Hao Wu
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Yuwen Tao
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Wentao Fan
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Li Liu
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Bangting Wang
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China.
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining, China.
| | - Wenqing Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
5
|
Himmelreich N, Kikul F, Zdrazilova L, Honzik T, Hecker A, Poschet G, Lüchtenborg C, Brügger B, Strahl S, Bürger F, Okun JG, Hansikova H, Thiel C. Complex metabolic disharmony in PMM2-CDG paves the way to new therapeutic approaches. Mol Genet Metab 2023; 139:107610. [PMID: 37245379 DOI: 10.1016/j.ymgme.2023.107610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
PMM2-CDG is the most common defect among the congenital disorders of glycosylation. In order to investigate the effect of hypoglycosylation on important cellular pathways, we performed extensive biochemical studies on skin fibroblasts of PMM2-CDG patients. Among others, acylcarnitines, amino acids, lysosomal proteins, organic acids and lipids were measured, which all revealed significant abnormalities. There was an increased expression of acylcarnitines and amino acids associated with increased amounts of calnexin, calreticulin and protein-disulfid-isomerase in combination with intensified amounts of ubiquitinylated proteins. Lysosomal enzyme activities were widely decreased as well as citrate and pyruvate levels indicating mitochondrial dysfunction. Main lipid classes such as phosphatidylethanolamine, cholesterol or alkyl-phosphatidylcholine, as well as minor lipid species like hexosylceramide, lysophosphatidylcholines or phosphatidylglycerol, were abnormal. Biotinidase and catalase activities were severely reduced. In this study we discuss the impact of metabolite abnormalities on the phenotype of PMM2-CDG. In addition, based on our data we propose new and easy-to-implement therapeutic approaches for PMM2-CDG patients.
Collapse
Affiliation(s)
- Nastassja Himmelreich
- Centre for Child and Adolescent Medicine, Department I, Heidelberg University, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| | - Frauke Kikul
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Lucie Zdrazilova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomáš Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Andreas Hecker
- Centre for Child and Adolescent Medicine, Department I, Heidelberg University, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Plant Molecular Biology, Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Christian Lüchtenborg
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Friederike Bürger
- Centre for Child and Adolescent Medicine, Department I, Heidelberg University, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| | - Jürgen G Okun
- Centre for Child and Adolescent Medicine, Department I, Heidelberg University, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Christian Thiel
- Centre for Child and Adolescent Medicine, Department I, Heidelberg University, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany.
| |
Collapse
|
6
|
Semenova N, Shatokhina O, Shchagina O, Kamenec E, Marakhonov A, Degtyareva A, Taran N, Strokova T. Clinical Presentation of a Patient with a Congenital Disorder of Glycosylation, Type IIs ( ATP6AP1), and Liver Transplantation. Int J Mol Sci 2023; 24:ijms24087449. [PMID: 37108612 PMCID: PMC10140882 DOI: 10.3390/ijms24087449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The congenital disorder of glycosylation type IIs (ATP6AP1-CDG; OMIM# 300972) is a rare X-linked recessive complex syndrome characterized by liver dysfunction, recurrent bacterial infections, hypogammaglobulinemia, and defective glycosylation of serum proteins. Here, we examine the case of a 1-year-old male patient of Buryat origin, who presented with liver dysfunction. At the age of 3 months, he was hospitalized with jaundice and hepatosplenomegaly. Whole-exome sequencing identified the ATP6AP1 gene missense variant NM_001183.6:c.938A>G (p.Tyr313Cys) in the hemizygous state, which was previously reported in a patient with immunodeficiency type 47. At the age of 10 months, the patient successfully underwent orthotopic liver transplantation. After the transplantation, the use of Tacrolimus entailed severe adverse effect (colitis with perforation). Replacing Tacrolimus with Everolimus led to improvement. Previously reported patients demonstrated abnormal N- and O-glycosylation, but these data were collected without any specific treatment. In contrast, in our patient, isoelectric focusing (IEF) of serum transferrin was performed only after the liver transplant and showed a normal IEF pattern. Thus, liver transplantation could be a curative option for patients with ATP6AP1-CDG.
Collapse
Affiliation(s)
| | | | - Olga Shchagina
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Elena Kamenec
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | | | - Anna Degtyareva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after V.I. Kulakov, Ministry of Health of the Russian Federation, 127994 Moscow, Russia
- Department of Neonatology, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Natalia Taran
- Federal Research Center of Nutrition and Biotechnology, 109240 Moscow, Russia
| | - Tatiana Strokova
- Federal Research Center of Nutrition and Biotechnology, 109240 Moscow, Russia
| |
Collapse
|
7
|
Alharbi H, Daniel EJP, Thies J, Chang I, Goldner DL, Ng BG, Witters P, Aqul A, Velez-Bartolomei F, Enns GM, Hsu E, Kichula E, Lee E, Lourenco C, Poskanzer SA, Rasmussen S, Saarela K, Wang YM, Raymond KM, Schultz MJ, Freeze HH, Lam C, Edmondson AC, He M. Fractionated plasma N-glycan profiling of novel cohort of ATP6AP1-CDG subjects identifies phenotypic association. J Inherit Metab Dis 2023; 46:300-312. [PMID: 36651831 PMCID: PMC10047170 DOI: 10.1002/jimd.12589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
ATP6AP1-CDG is an X-linked disorder typically characterized by hepatopathy, immunodeficiency, and an abnormal type II transferrin glycosylation pattern. Here, we present 11 new patients and clinical updates with biochemical characterization on one previously reported patient. We also document intrafamilial phenotypic variability and atypical presentations, expanding the symptomatology of ATP6AP1-CDG to include dystonia, hepatocellular carcinoma, and lysosomal abnormalities on hepatic histology. Three of our subjects received successful liver transplantation. We performed N-glycan profiling of total and fractionated plasma proteins for six patients and show associations with varying phenotypes, demonstrating potential diagnostic and prognostic value of fractionated N-glycan profiles. The aberrant N-linked glycosylation in purified transferrin and remaining plasma glycoprotein fractions normalized in one patient post hepatic transplant, while the increases of Man4GlcNAc2 and Man5GlcNAc2 in purified immunoglobulins persisted. Interestingly, in the single patient with isolated immune deficiency phenotype, elevated high-mannose glycans were detected on purified immunoglobulins without glycosylation abnormalities on transferrin or the remaining plasma glycoprotein fractions. Given the diverse and often tissue specific clinical presentations and the need of clinical management post hepatic transplant in ATP6AP1-CDG patients, these results demonstrate that fractionated plasma N-glycan profiling could be a valuable tool in diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Hana Alharbi
- Department of Pediatrics, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Earnest James Paul Daniel
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jenny Thies
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - Irene Chang
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Dana L Goldner
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Columbia University Medical Center, New York, New York, USA
| | - Bobby G Ng
- Human Genetics Program, Sanford Burnham Prebys, La Jolla, California, USA
| | - Peter Witters
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Center for Metabolic Diseases, University Hospital Leuven, Leuven, Belgium
- Department of Development and Regeneration, Faculty of Medicine, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Amal Aqul
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Texas Southwestern/Children's Medical Center, Dallas, Texas, USA
| | - Frances Velez-Bartolomei
- Genetics Section, San Jorge Children and Women's Hospital in San Juan, San Juan, Puerto Rico, USA
- Division of Medical Genetics, Department of Pediatrics, Lucile Packard Children's Hospital and Stanford University, Stanford, California, USA
| | - Gregory M Enns
- Division of Medical Genetics, Department of Pediatrics, Lucile Packard Children's Hospital and Stanford University, Stanford, California, USA
| | - Evelyn Hsu
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elizabeth Kichula
- Division of Neurology, Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Esther Lee
- Genetic Services, Kaiser Permanente of Washington, Seattle, Washington, USA
| | - Charles Lourenco
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São Jose do Rio Preto - São Paulo, Brazil
- Personalized Medicine area, Special Education Sector at DLE/Grupo Pardini, Belo Horizonte - MG, Brazil
| | - Sheri A Poskanzer
- St. Luke's Health System, Boise, Idaho, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Sara Rasmussen
- Transplant Center, Department of Surgery, Seattle Children's Hospital University of Washington School of Medicine Seattle, Seattle, Washington, USA
| | - Katelyn Saarela
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Washington, USA
| | - YunZu M Wang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kimiyo M Raymond
- Department of Laboratory Medicine and Pathology, Laboratory Genetics and Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew J Schultz
- Department of Laboratory Medicine and Pathology, Laboratory Genetics and Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys, La Jolla, California, USA
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Andrew C Edmondson
- Department of Pediatrics, Division of Human Genetics, Section of Metabolism, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Miao He
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Dang Do AN, Chang IJ, Jiang X, Wolfe LA, Ng BG, Lam C, Schnur RE, Allis K, Hansikova H, Ondruskova N, O’Connor SD, Sanchez-Valle A, Vollo A, Wang RY, Wolfenson Z, Perreault J, Ory DS, Freeze HH, Merritt JL, Porter FD. Elevated oxysterol and N-palmitoyl-O-phosphocholineserine levels in congenital disorders of glycosylation. J Inherit Metab Dis 2023; 46:326-334. [PMID: 36719165 PMCID: PMC10023375 DOI: 10.1002/jimd.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
Congenital disorders of glycosylation (CDG) and Niemann-Pick type C (NPC) disease are inborn errors of metabolism that can both present with infantile-onset severe liver disease and other multisystemic manifestations. Plasma bile acid and N-palmitoyl-O-phosphocholineserine (PPCS) are screening biomarkers with proposed improved sensitivity and specificity for NPC. We report an infant with ATP6AP1-CDG who presented with cholestatic liver failure and elevated plasma oxysterols and bile acid, mimicking NPC clinically and biochemically. On further investigation, PPCS, but not the bile acid derivative N-(3β,5α,6β-trihydroxy-cholan-24-oyl) glycine (TCG), were elevated in plasma samples from individuals with ATP6AP1-, ALG1-, ALG8-, and PMM2-CDG. These findings highlight the importance of keeping CDG within the diagnostic differential when evaluating children with early onset severe liver disease and elevated bile acid or PPCS to prevent delayed diagnosis and treatment.
Collapse
Affiliation(s)
- An N. Dang Do
- Office of the Clinical Director, NICHD, NIH, Bethesda, MD, USA
- Correspondence An Ngoc Dang Do, MD PhD, , 10 Center Drive, MSC 1103, Bethesda, MD 20892
| | - Irene J. Chang
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Xutian Jiang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lynne A. Wolfe
- Undiagnosed Diseases Program, Common Fund, National Institutes of Health, Bethesda, MD, USA
| | - Bobby G. Ng
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | | | | | - Hana Hansikova
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Nina Ondruskova
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Shawn D. O’Connor
- Department of Pediatrics, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA
| | | | - Arve Vollo
- Department of Paediatrics, Sykehuset Ostfold HF, Fredrikstad, Norway
| | - Raymond Y. Wang
- Children’s Hospital of Orange County, Orange County, CA, USA
- University of California-Irvine School of Medicine, Irvine, CA, USA
| | - Zoe Wolfenson
- Undiagnosed Diseases Program, Common Fund, National Institutes of Health, Bethesda, MD, USA
| | - John Perreault
- Office of the Clinical Director, NICHD, NIH, Bethesda, MD, USA
| | - Daniel S. Ory
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - J Lawrence Merritt
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Forbes D. Porter
- Section on Molecular Dysmorphology, NICHD, NIH, Bethesda, MD, USA
| |
Collapse
|
9
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
SARS-CoV-2 Pattern Provides a New Scoring System and Predicts the Prognosis and Immune Therapeutic Response in Glioma. Cells 2022; 11:cells11243997. [PMID: 36552760 PMCID: PMC9777143 DOI: 10.3390/cells11243997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Glioma is the most common primary malignancy of the adult central nervous system (CNS), with a poor prognosis and no effective prognostic signature. Since late 2019, the world has been affected by the rapid spread of SARS-CoV-2 infection. Research on SARS-CoV-2 is flourishing; however, its potential mechanistic association with glioma has rarely been reported. The aim of this study was to investigate the potential correlation of SARS-CoV-2-related genes with the occurrence, progression, prognosis, and immunotherapy of gliomas. METHODS SARS-CoV-2-related genes were obtained from the human protein atlas (HPA), while transcriptional data and clinicopathological data were obtained from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. Glioma samples were collected from surgeries with the knowledge of patients. Differentially expressed genes were then identified and screened, and seven SARS-CoV-2 related genes were generated by LASSO regression analysis and uni/multi-variate COX analysis. A prognostic SARS-CoV-2-related gene signature (SCRGS) was then constructed based on these seven genes and validated in the TCGA validation cohort and CGGA cohort. Next, a nomogram was established by combining critical clinicopathological data. The correlation between SCRGS and glioma related biological processes was clarified by Gene set enrichment analysis (GSEA). In addition, immune infiltration and immune score, as well as immune checkpoint expression and immune escape, were further analyzed to assess the role of SCRGS in glioma-associated immune landscape and the responsiveness of immunotherapy. Finally, the reliability of SCRGS was verified by quantitative real-time polymerase chain reaction (qRT-PCR) on glioma samples. RESULTS The prognostic SCRGS contained seven genes, REEP6, CEP112, LARP4B, CWC27, GOLGA2, ATP6AP1, and ERO1B. Patients were divided into high- and low-risk groups according to the median SARS-CoV-2 Index. Overall survival was significantly worse in the high-risk group than in the low-risk group. COX analysis and receiver operating characteristic (ROC) curves demonstrated excellent predictive power for SCRGS for glioma prognosis. In addition, GSEA, immune infiltration, and immune scores indicated that SCRGS could potentially predict the tumor microenvironment, immune infiltration, and immune response in glioma patients. CONCLUSIONS The SCRGS established here can effectively predict the prognosis of glioma patients and provide a potential direction for immunotherapy.
Collapse
|
11
|
Himmelreich N, Dimitrov B, Zielonka M, Hüllen A, Hoffmann GF, Juenger H, Müller H, Lorenz I, Busse B, Marschall C, Schlüter G, Thiel C. Missense variant c.1460 T > C (p.L487P) enhances protein degradation of ER mannosyltransferase ALG9 in two new ALG9-CDG patients presenting with West syndrome and review of the literature. Mol Genet Metab 2022; 136:274-281. [PMID: 35839600 DOI: 10.1016/j.ymgme.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/01/2022]
Abstract
ALG9-CDG is a CDG-I defect within the group of Congenital Disorders of Glycosylation (CDG). We here describe the clinical symptoms of two new and unrelated ALG9-CDG patients, both carrying the novel homozygous missense variant c.1460 T > C (p.L487P) in the ALG9 gene which led to global developmental delay, psychomotor disability, facial dysmorphisms, brain and heart defects, hearing loss, hypotonia, as well as feeding problems. New clinical symptoms comprised West syndrome with hypsarrhythmia. Quantitative RT-PCR analysis revealed a significantly enhanced ALG9 mRNA transcript level, whereas the protein amount in fibroblasts was significantly reduced. This could be ascribed to a stronger degradation of the mutated ALG9 protein in patient fibroblasts. Lipid-linked oligosaccharide analysis showed an ALG9-CDG characteristic accumulation of Man6GlcNAc2-PP-dolichol and Man8GlcNAc2-PP-dolichol in patient cells. The clinical findings of our patients and of all previously published ALG9-CDG patients are brought together to further expand the knowledge about this rare N-glycosylation disorder. SYNOPSIS: Homozygosity for p.L487P in ALG9 causes protein degradation and leads to West syndrome.
Collapse
Affiliation(s)
- Nastassja Himmelreich
- Center for Child and Adolescent Medicine, Pediatrics I, University of Heidelberg, Analysezentrum 3, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| | - Bianca Dimitrov
- Center for Child and Adolescent Medicine, Pediatrics I, University of Heidelberg, Analysezentrum 3, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| | - Matthias Zielonka
- Center for Child and Adolescent Medicine, Pediatrics I, University of Heidelberg, Analysezentrum 3, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| | - Andreas Hüllen
- Center for Child and Adolescent Medicine, Pediatrics I, University of Heidelberg, Analysezentrum 3, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| | - Georg Friedrich Hoffmann
- Center for Child and Adolescent Medicine, Pediatrics I, University of Heidelberg, Analysezentrum 3, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| | - Hendrik Juenger
- Klinik für Kinderheilkunde und Jugendmedizin, Neonatologie, Klinikum Kempten, Robert-Weixler-Straße 50, 87439 Kempten, Germany
| | - Herbert Müller
- Klinik für Kinderheilkunde und Jugendmedizin, Neonatologie, Klinikum Kempten, Robert-Weixler-Straße 50, 87439 Kempten, Germany
| | - Imke Lorenz
- Klinik für Kinder und Jugendliche der Universität Erlangen, Abteilung für Neuropädiatrie und Sozialpädiatrie, Loschgestraße 15, 91054 Erlangen, Germany
| | - Birgit Busse
- MVZ Martinsried, Lochhamer Str.29, 82152 Martinsried, Germany
| | | | - Gregor Schlüter
- Pränatalmedizin, Gynäkologie und Genetik (MVZ), Bankgasse 3, 90402 Nürnberg, Germany
| | - Christian Thiel
- Center for Child and Adolescent Medicine, Pediatrics I, University of Heidelberg, Analysezentrum 3, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany.
| |
Collapse
|
12
|
Fekrvand S, Khanmohammadi S, Abolhassani H, Yazdani R. B- and T-Cell Subset Abnormalities in Monogenic Common Variable Immunodeficiency. Front Immunol 2022; 13:912826. [PMID: 35784324 PMCID: PMC9241517 DOI: 10.3389/fimmu.2022.912826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a heterogeneous group of inborn errors of immunity characterized by reduced serum concentrations of different immunoglobulin isotypes. CVID is the most prevalent symptomatic antibody deficiency with a broad range of infectious and non-infectious clinical manifestations. Various genetic and immunological defects are known to be involved in the pathogenesis of CVID. Monogenic defects account for the pathogenesis of about 20-50% of CVID patients, while a variety of cases do not have a defined genetic background. Deficiencies in molecules of B cell receptor signaling or other pathways involving B-cell development, activation, and proliferation could be associated with monogenetic defects of CVID. Genetic defects damping different B cell developmental stages can alter B- and even other lymphocytes’ differentiation and might be involved in the clinical and immunologic presentations of the disorder. Reports concerning T and B cell abnormalities have been published in CVID patients, but such comprehensive data on monogenic CVID patients is few and no review article exists to describe the abrogation of lymphocyte subsets in these disorders. Hence, we aimed to review the role of altered B- and T-cell differentiation in the pathogenesis of CVID patients with monogenic defects.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Reza Yazdani, ;
| |
Collapse
|
13
|
Barua S, Berger S, Pereira EM, Jobanputra V. Expanding the phenotype of ATP6AP1 deficiency. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006195. [PMID: 35732497 PMCID: PMC9235842 DOI: 10.1101/mcs.a006195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Vacuolar ATPases (V-ATPases) are large multisubunit proton pumps conserved among all eukaryotic cells that are involved in diverse functions including acidification of membrane-bound intracellular compartments. The ATP6AP1 gene encodes an accessory subunit of the vacuolar (V)-ATPase protein pump. Pathogenic variants in ATP6AP1 have been described in association with a congenital disorder of glycosylation (CDG), which are highly variable, but often characterized by immunodeficiency, hepatopathy, and neurologic manifestations. Although the most striking and common clinical feature is hepatopathy, the phenotypic and genotypic spectrum of ATP6AP1-CDG continues to expand. Here, we report identical twins who presented with acute liver failure and jaundice. Prenatal features included cystic hygroma, atrial septal defect, and ventriculomegaly. Postnatal features included pectus carinatum, connective tissue abnormalities, and hypospadias. Whole-exome sequencing (WES) revealed a novel de novo in-frame deletion in the ATP6AP1 gene (c.230_232delACT;p.Tyr77del). Although both twins have the commonly reported clinical feature of hepatopathy seen in other individuals with ATP6AP1-CDG-related disorder, they do not have neurological sequelae. This report expands the phenotypic spectrum of ATP6AP1-CDG-related disorder with both probands exhibiting unique prenatal and postnatal features, including fetal ventriculomegaly, umbilical hernia, pectus carinatum, micropenis, and hypospadias. Furthermore, this case affirms that neurological features described in the initial case series on ATP6AP1-CDG do not appear to be central, whereas the prenatal and connective tissue manifestations may be more common than previously thought. This emphasizes the importance of long-term clinical follow-up and variant interpretation using current updated recommendations.
Collapse
Affiliation(s)
- Subit Barua
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Sara Berger
- Division of Clinical Genetics, Department of Pediatrics, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York 10032, USA
| | - Elaine M Pereira
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York 10032, USA
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
14
|
Redmond MT, Scherzer R, Prince BT. Novel Genetic Discoveries in Primary Immunodeficiency Disorders. Clin Rev Allergy Immunol 2022; 63:55-74. [PMID: 35020168 PMCID: PMC8753955 DOI: 10.1007/s12016-021-08881-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2021] [Indexed: 01/12/2023]
Abstract
The field of Immunology is one that has undergone great expansion in recent years. With the advent of new diagnostic modalities including a variety of genetic tests (discussed elsewhere in this journal), the ability to diagnose a patient with a primary immunodeficiency disorder (PIDD) has become a more streamlined process. With increased availability of genetic testing for those with suspected or known PIDD, there has been a significant increase in the number of genes associated with this group of disorders. This is of great importance as a misdiagnosis of these rare diseases can lead to a delay in what can be critical treatment options. At times, those options can include life-saving medications or procedures. Presentation of patients with PIDD can vary greatly based on the specific genetic defect and the part(s) of the immune system that is affected by the variation. PIDD disorders lead to varying levels of increased risk of infection ranging from a mild increase such as with selective IgA deficiency to a profound risk with severe combined immunodeficiency. These diseases can also cause a variety of other clinical findings including autoimmunity and gastrointestinal disease.
Collapse
Affiliation(s)
- Margaret T. Redmond
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH USA
| | - Rebecca Scherzer
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH USA
| | - Benjamin T. Prince
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH USA
| |
Collapse
|
15
|
Liver Involvement in Congenital Disorders of Glycosylation: A Systematic Review. J Pediatr Gastroenterol Nutr 2021; 73:444-454. [PMID: 34173795 PMCID: PMC9255677 DOI: 10.1097/mpg.0000000000003209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
An ever-increasing number of disturbances in glycosylation have been described to underlie certain unexplained liver diseases presenting either almost isolated or in a multi-organ context. We aimed to update previous literature screenings which had identified up to 23 forms of congenital disorders of glycosylation (CDG) with associated liver disease. We conducted a comprehensive literature search of three scientific electronic databases looking at articles published during the last 20 years (January 2000-October 2020). Eligible studies were case reports/series reporting liver involvement in CDG patients. Our systematic review led us to point out 41 forms of CDG where the liver is primarily affected (n = 7) or variably involved in a multisystem disease with mandatory neurological abnormalities (n = 34). Herein we summarize individual clinical and laboratory presentation characteristics of these 41 CDG and outline their main presentation and diagnostic cornerstones with the aid of two synoptic tables. Dietary supplementation strategies have hitherto been investigated only in seven of these CDG types with liver disease, with a wide range of results. In conclusion, the systematic review recognized a liver involvement in a somewhat larger number of CDG variants corresponding to about 30% of the total of CDG so far reported, and it is likely that the number may increase further. This information could assist in an earlier correct diagnosis and a possibly proper management of these disorders.
Collapse
|
16
|
Yang X, Lv ZL, Tang Q, Chen XQ, Huang L, Yang MX, Lan LC, Shan QW. Congenital disorder of glycosylation caused by mutation of ATP6AP1 gene (c.1036G>A) in a Chinese infant: A case report. World J Clin Cases 2021; 9:7876-7885. [PMID: 34621841 PMCID: PMC8462236 DOI: 10.12998/wjcc.v9.i26.7876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The ATP6AP1 gene coding for the accessory protein Ac45 of the vacuolar-type adenosine triphosphatases (V-ATPase) is located on chromosome Xq28. Defects in certain subunits or accessory subunits of the V-ATPase can lead to congenital disorders of glycosylation (CDG). CDG is a group of metabolic disorders in which defective protein and lipid glycosylation processes affect multiple tissues and organs. Therefore, the clinical presentation of patients with ATP6AP1-CDG varies widely. In this report, we present a case of ATP6AP1-CDG in a Chinese infant, with clinical features and genotype.
CASE SUMMARY An 8-mo-old boy was admitted to our hospital because unexplained hepatosplenomegaly and elevated transaminases that had been noted while he was being treated for a cough at a local hospital. A post-admission examination at our hospital revealed abnormalities in the infant’s liver, brain, and immune system. Trio-based whole exome gene analysis identified a hemizygous pathogenic mutation c.1036G>A (p.E346K) in exon 9 of the ATP6AP1 gene. This variant of the ATP6AP1 gene has not been reported in East Asian countries until now.
CONCLUSION Based on the infant’s clinical manifestations and the results of genetic detection, he was clearly diagnosed with ATP6AP1-CDG. The clinical manifestations of children with CDG vary widely. Genetic testing analysis helps in the clinical diagnosis of children with CDG.
Collapse
Affiliation(s)
- Xia Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zi-Li Lv
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Qing Tang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiu-Qi Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Li Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Mei-Xiong Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lian-Cheng Lan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Qing-Wen Shan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
17
|
Novel vertebrate- and brain-specific driver of neuronal outgrowth. Prog Neurobiol 2021; 202:102069. [PMID: 33933532 DOI: 10.1016/j.pneurobio.2021.102069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022]
Abstract
During the process of neuronal outgrowth, developing neurons produce new projections, neurites, that are essential for brain wiring. Here, we discover a relatively late-evolved protein that we denote Ac45-related protein (Ac45RP) and that, surprisingly, drives neuronal outgrowth. Ac45RP is a paralog of the Ac45 protein that is a component of the vacuolar proton ATPase (V-ATPase), the main pH regulator in eukaryotic cells. Ac45RP mRNA expression is brain specific and coincides with the peak of neurogenesis and the onset of synaptogenesis. Furthermore, Ac45RP physically interacts with the V-ATPase V0-sector and colocalizes with V0 in unconventional, but not synaptic, secretory vesicles of extending neurites. Excess Ac45RP enhances the expression of V0-subunits, causes a more elaborate Golgi, and increases the number of cytoplasmic vesicular structures, plasma membrane formation and outgrowth of actin-containing neurites devoid of synaptic markers. CRISPR-cas9n-mediated Ac45RP knockdown reduces neurite outgrowth. We conclude that the novel vertebrate- and brain-specific Ac45RP is a V0-interacting constituent of unconventional vesicular structures that drives membrane expansion during neurite outgrowth and as such may furnish a tool for future neuroregenerative treatment strategies.
Collapse
|
18
|
Bogdańska A, Lipiński P, Szymańska-Rożek P, Jezela-Stanek A, Rokicki D, Socha P, Tylki-Szymańska A. Clinical, biochemical and molecular phenotype of congenital disorders of glycosylation: long-term follow-up. Orphanet J Rare Dis 2021; 16:17. [PMID: 33407696 PMCID: PMC7789416 DOI: 10.1186/s13023-020-01657-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Background Congenital disorders of glycosylation (CDG) result from defects in the synthesis of glycans and the attachment of glycans to proteins and lipids. Our study aimed to describe the clinical, biochemical, and molecular findings of CDG patients, and to present the long-term follow-up. Material and methods A single-center study (1995–2019 years) of patients with congenital disorders of N-glycosylation and combined N- and O-hypoglycosylation was performed. Results Among 32 patients included into the study, there were 12 PMM2-CDG, 3 ALG13-CDG, 3 ALG1-CDG, 1 ALG3-CDG, 3 MPI-CDG, 1 PGM1-CDG, 4 SRD5A3-CDG, 1 DPAGT1-CDG, 3 ATP6AP1-CDG, 1 ATP6V0A2-CDG. The phenotypic and genotypic spectrum during long-term (in some cases over 20 years) observation was characterised and several measurements of serum Tf isoforms taken. Statistical analysis revealed strong negative correlation between asialo-Tf and tetrasialo-Tf, as well as between disialo-Tf and tetrasialo-Tf. Within CDG type I, no difference in % Tf isoforms was revealed between PMM2-CDG and non-PMM2-CDG patients. However, these two groups differed significantly in such diagnostic features as: cerebellar ataxia, failure to thrive, hypothyroidism, pericardial effusion, cardiomyopathy, inverted nipples, prolonged INR. The effect of treatment with mannose in 2 patients with MPI-CDG was assessed and we found that % of asialo-Tf, monosialo-Tf, and disialo-Tf was significantly lowered, whereas tetrasialo-Tf and pentasialo-Tf rose, coming closer or falling into the reference range. Conclusions The novel finding was an abnormal Tf IEF pattern in two ALG13-CDG patients and normal in one ALG1-CDG patient. Clinical manifestation of presented CDG patients was similar to that reported in the literature. Mannose supplementation in MPI-CDG patients, as well as galactose supplementation in PGM1-CDG patient, improved patients’ clinical picture and Tf isoform profiles.
Collapse
Affiliation(s)
- Anna Bogdańska
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | - Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Dariusz Rokicki
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Piotr Socha
- Department of Gastroenterology, Hepatology, Feeding Difficulties and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland.
| |
Collapse
|
19
|
Lipiński P, Tylki-Szymańska A. Congenital Disorders of Glycosylation: What Clinicians Need to Know? Front Pediatr 2021; 9:715151. [PMID: 34540767 PMCID: PMC8446601 DOI: 10.3389/fped.2021.715151] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) are a group of clinically heterogeneous disorders characterized by defects in the synthesis of glycans and their attachment to proteins and lipids. This manuscript aims to provide a classification of the clinical presentation, diagnostic methods, and treatment of CDG based on the literature review and our own experience (referral center in Poland). A diagnostic algorithm for CDG was also proposed. Isoelectric focusing (IEF) of serum transferrin (Tf) is still the method of choice for diagnosing N-glycosylation disorders associated with sialic acid deficiency. Nowadays, high-performance liquid chromatography, capillary zone electrophoresis, and mass spectrometry techniques are used, although they are not routinely available. Since next-generation sequencing became more widely available, an improvement in diagnostics has been observed, with more patients and novel CDG subtypes being reported. Early and accurate diagnosis of CDG is crucial for timely implementation of appropriate therapies and improving clinical outcomes. However, causative treatment is available only for few CDG types.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
20
|
Gumm AJ, Basel DG, Thakrar P, Suchi M, Telega G. Liver failure and x-linked immunodeficiency type 47. Pediatr Transplant 2020; 24:e13808. [PMID: 32790950 DOI: 10.1111/petr.13808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
Patients with defects in the ATP6AP1 gene have rarely been described. ATP6AP1-related disorders are a subtype of CDG, which result in enzyme deficiencies affecting multiple organ systems ranging from mild to life-threatening. Of the 13 patients described, all had hepatopathy, but this is the first case to be successfully transplanted. We describe two brothers who developed hyperbilirubinemia shortly after birth and progressed to liver failure, case 1 by 12 months of age, with successful transplant 2 years later, and case 2 by 4 months of age, who passed away while awaiting liver transplant. Both boys were found to have a new variant in the ATP6AP1 gene: c.932/p.Leu311Gln. Although the identified ATP6AP1 gene variant was classified as unknown significance at the time, both children's phenotypes fit with what has been described for ATP6AP1-related disorders. Therefore, this result appears to have been diagnostic for both boys. This rare type of CDG, X-linked immunodeficiency type 47 (OMIM #300972), particularly in patients who progress to liver failure requiring transplant, should be included on the differential of liver failure in infants and toddlers, and its gene should be added to the diagnostic workup for such cases.
Collapse
Affiliation(s)
- Alexis J Gumm
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Donald G Basel
- Division of Pediatric Genetics, Department of Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Pooja Thakrar
- Division of Pediatric Radiology, Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mariko Suchi
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Grzegorz Telega
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
21
|
Görlacher M, Panagiotou E, Himmelreich N, Hüllen A, Beedgen L, Dimitrov B, Geiger V, Zielonka M, Peters V, Strahl S, Vázquez-Jiménez J, Kerst G, Thiel C. Fatal outcome after heart surgery in PMM2-CDG due to a rare homozygous gene variant with double effects. Mol Genet Metab Rep 2020; 25:100673. [PMID: 33209585 PMCID: PMC7658698 DOI: 10.1016/j.ymgmr.2020.100673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
Variants in Phosphomannomutase 2 (PMM2) lead to PMM2-CDG, the most frequent congenital disorder of glycosylation (CDG). We here describe the disease course of a ten-month old patient who presented with the classical PMM2-CDG symptoms as cerebellar hypoplasia, retinitis pigmentosa, seizures, short stature, hepato- and splenomegaly, anaemia, recurrent vomiting and inverted mamillae. A severe form of tetralogy of Fallot was diagnosed and corrective surgery was performed at the age of 10 months. At the end of the cardiopulmonary bypass, a sudden oedematous reaction of the myocardium accompanied by biventricular pump failure was observed immediately after heparin antagonization with protamine sulfate. The patient died seven days after surgery, since myocardial function did not recover on ECMO support. We here describe the first patient carrying the homozygous variant g.18313A > T in the PMM2 gene (NG_009209.1) that either can lead to c.394A > T (p.I132F) or even loss of 100 bp due to exon 5 skipping (c.348_447del; p.G117Rfs*4) which is comparable to a null allele. Proliferation and doubling time of the patient's fibroblasts were affected. In addition, we show that the induction of cellular stress by elevating the cell culture temperature to 40 °C led to a decrease of the patients' PMM2 transcript as well as PMM2 protein levels and subsequently to a significant loss of residual activity. We assume that metabolic stressful processes occurring after cardiac surgery led to the drop of the patient's PMM activity below a life-sustaining niveau which paved the way for the fatal outcome.
Collapse
Affiliation(s)
- Marlen Görlacher
- Centre for Child and Adolescent Medicine, Department I, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Nastassja Himmelreich
- Centre for Child and Adolescent Medicine, Department I, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Hüllen
- Centre for Child and Adolescent Medicine, Department I, University Hospital Heidelberg, Heidelberg, Germany
| | - Lars Beedgen
- Centre for Child and Adolescent Medicine, Department I, University Hospital Heidelberg, Heidelberg, Germany
| | - Bianca Dimitrov
- Centre for Child and Adolescent Medicine, Department I, University Hospital Heidelberg, Heidelberg, Germany
| | - Virginia Geiger
- Centre for Child and Adolescent Medicine, Department I, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Zielonka
- Centre for Child and Adolescent Medicine, Department I, University Hospital Heidelberg, Heidelberg, Germany
| | - Verena Peters
- Centre for Child and Adolescent Medicine, Department I, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, Heidelberg, Germany
| | | | - Gunter Kerst
- Department of Pediatric Cardiology, University Hospital RWTH, Aachen, Germany
| | - Christian Thiel
- Centre for Child and Adolescent Medicine, Department I, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
22
|
Ondruskova N, Honzik T, Vondrackova A, Stranecky V, Tesarova M, Zeman J, Hansikova H. Severe phenotype of ATP6AP1-CDG in two siblings with a novel mutation leading to a differential tissue-specific ATP6AP1 protein pattern, cellular oxidative stress and hepatic copper accumulation. J Inherit Metab Dis 2020; 43:694-700. [PMID: 32216104 PMCID: PMC7383996 DOI: 10.1002/jimd.12237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
Congenital disorders of glycosylation (CDG) represent a wide range of >140 inherited metabolic diseases, continually expanding not only with regards to the number of newly identified causative genes, but also the heterogeneity of the clinical and molecular presentations within each subtype. The deficiency of ATP6AP1, an accessory subunit of the vacuolar H+ -ATPase, is a recently characterised N- and O-glycosylation defect manifesting with immunodeficiency, hepatopathy and cognitive impairment. At the cellular level, the latest studies demonstrate a complex disturbance of metabolomics involving peroxisomal function and lipid homeostasis in the patients. Our study delineates a case of two severely affected siblings with a new hemizygous variant c.221T>C (p.L74P) in ATP6AP1 gene, who both died due to liver failure before reaching 1 year of age. We bring novel pathobiochemical observations including the finding of increased reactive oxygen species in the cultured fibroblasts from the older boy, a striking copper accumulation in his liver, as well as describe the impact of the mutation on the protein in different organs, showing a tissue-specific pattern of ATP6AP1 level and its posttranslational modification.
Collapse
Affiliation(s)
- Nina Ondruskova
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Tomas Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Alzbeta Vondrackova
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Viktor Stranecky
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Marketa Tesarova
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Jiri Zeman
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| |
Collapse
|
23
|
Lipiński P, Rokicki D, Bogdańska A, Lesiak J, Lefeber DJ, Tylki‐Szymańska A. ATP6AP1-CDG: Follow-up and female phenotype. JIMD Rep 2020; 53:80-82. [PMID: 32395412 PMCID: PMC7203642 DOI: 10.1002/jmd2.12104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/27/2022] Open
Abstract
In 2016, 11 male patients were reported with immunodeficiency and hepatic, gastric and (in some) neurological disease due to X-linked ATP6AP1 deficiency (ATP6AP1-CDG). In 2018, three other patients were reported with additional features: connective tissue abnormalities, sensorineural hearing loss, hyperopia, glomerular and tubular dysfunction, exocrine pancreatic insufficiency and altered amino acid and lipid metabolism. We here present a follow-up of three reported siblings showing progression of deafness to total hearing loss, progressive loss of hair up to alopecia, chestnut skin and, at last follow-up, in some of them proteinuria. Three female carriers showed a normal serum transferrin isoelectrofocusing but in two of them there was a persistent proteinuria.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic DiseasesThe Children's Memorial Health InstituteWarsawPoland
| | - Dariusz Rokicki
- Department of Pediatrics, Nutrition and Metabolic DiseasesThe Children's Memorial Health InstituteWarsawPoland
| | - Anna Bogdańska
- Department of Biochemistry, Radioimmunology and Experimental MedicineThe Children's Memorial Health InstituteWarsawPoland
| | - Justyna Lesiak
- Department of Nephrology, Kidney Transplantation and HypertensionChildren's Memorial Health InstituteWarsawPoland
| | - Dirk J. Lefeber
- Department of Laboratory Medicine, Translational Metabolic LaboratoryRadboud University Medical CenterNijmegenThe Netherlands
| | - Anna Tylki‐Szymańska
- Department of Pediatrics, Nutrition and Metabolic DiseasesThe Children's Memorial Health InstituteWarsawPoland
| |
Collapse
|
24
|
Tvina A, Thomsen A, Palatnik A. Prenatal and postnatal phenotype of a pathologic variant in the ATP6AP1 gene. Eur J Med Genet 2020; 63:103881. [PMID: 32058063 DOI: 10.1016/j.ejmg.2020.103881] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/19/2020] [Accepted: 02/09/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The ATP6AP1 gene encodes for ATPase H+ transporting protein. ATP6AP1 gene mutations are associated with congenital disorders of glycosylation (CDG) and can affect multiple organ system. Descriptions of postnatal phenotype include immunodeficiency, hepatopathy and cognitive impairment. No prenatal phenotype of these gene mutations has been described to date. CASE This is a description of the prenatal workup of an infant diagnosed with a X-linked ATP6AP1 gene mutation. First trimester ultrasound demonstrated a thickened nuchal translucency measured at 3.27 mm and dysmorphic spinal canal, corresponding to kyphoscoliosis finding postnatally. Findings from amniocentesis at 15 weeks included elevated amniotic fluid alpha-fetoprotein (AF-AFP) and positive acetylcholinesterase (AchE). Dilation of the aortic arch was seen on fetal echocardiogram at 20 weeks. Throughout the second trimester, a rim of fluid collection was seen under the skin covering the thoracic and lumbar fetal spine, consistent with a large Aplasia Cutis below the right scapula present at birth. CONCLUSION To our knowledge, this is the first description of prenatal phenotype of an X-linked ATP6AP1 gene mutation, and the association of this gene mutation with increased NT, elevated AF-AFP and AchE and Aplasia Cutis Congenita. This variant was submitted to ClinVar public database, submission ID: SUB6537411.
Collapse
Affiliation(s)
- Alina Tvina
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Allison Thomsen
- Department of Obstetrics and Gynecology, Division of Medical Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anna Palatnik
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
25
|
Pascoal C, Francisco R, Ferro T, Dos Reis Ferreira V, Jaeken J, Videira PA. CDG and immune response: From bedside to bench and back. J Inherit Metab Dis 2020; 43:90-124. [PMID: 31095764 DOI: 10.1002/jimd.12126] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
Abstract
Glycosylation is an essential biological process that adds structural and functional diversity to cells and molecules, participating in physiological processes such as immunity. The immune response is driven and modulated by protein-attached glycans that mediate cell-cell interactions, pathogen recognition and cell activation. Therefore, abnormal glycosylation can be associated with deranged immune responses. Within human diseases presenting immunological defects are congenital disorders of glycosylation (CDG), a family of around 130 rare and complex genetic diseases. In this review, we have identified 23 CDG with immunological involvement, characterized by an increased propensity to-often life-threatening-infection. Inflammatory and autoimmune complications were found in 7 CDG types. CDG natural history(ies) and the mechanisms behind the immunological anomalies are still poorly understood. However, in some cases, alterations in pathogen recognition and intracellular signaling (eg, TGF-β1, NFAT, and NF-κB) have been suggested. Targeted therapies to restore immune defects are only available for PGM3-CDG and SLC35C1-CDG. Fostering research on glycoimmunology may elucidate the involved pathophysiological mechanisms and open new therapeutic avenues, thus improving CDG patients' quality of life.
Collapse
Affiliation(s)
- Carlota Pascoal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rita Francisco
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Tiago Ferro
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- Center for Metabolic Diseases, Department of Development and Regeneration, UZ and KU Leuven, Leuven, Belgium
| | - Paula A Videira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
26
|
Fischer-Zirnsak B, Koenig R, Alisch F, Güneş N, Hausser I, Saha N, Beck-Woedl S, Haack TB, Thiel C, Kamrath C, Tüysüz B, Henning S, Mundlos S, Hoffmann K, Horn D, Kornak U. SOPH syndrome in three affected individuals showing similarities with progeroid cutis laxa conditions in early infancy. J Hum Genet 2019; 64:609-616. [DOI: 10.1038/s10038-019-0602-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/26/2019] [Accepted: 04/05/2019] [Indexed: 02/08/2023]
|