1
|
Matza LS, Stewart KD, Fournier M, Rowen D, Lachmann R, Scarpa M, Mengel E, Obermeyer T, Ayik E, Laredo F, Pulikottil-Jacob R. Assessment of health state utilities associated with adult and pediatric acid sphingomyelinase deficiency (ASMD). THE EUROPEAN JOURNAL OF HEALTH ECONOMICS : HEPAC : HEALTH ECONOMICS IN PREVENTION AND CARE 2024; 25:1437-1448. [PMID: 38409492 PMCID: PMC11442559 DOI: 10.1007/s10198-023-01667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/21/2023] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Acid sphingomyelinase deficiency (ASMD) type B is a rare genetic disorder leading to enlargement of the spleen and liver, pulmonary dysfunction, and other symptoms. Cost-utility analyses are often conducted to quantify the value of new treatments, and these analyses require health state utilities. Therefore, the purpose of this study was to estimate utilities associated with varying levels of severity of adult and pediatric ASMD type B. METHODS Seven adult and seven child health state vignettes describing ASMD were developed based on published literature, clinical trial results, and interviews with clinicians, patients with ASMD, and parents of children with ASMD. The health states were valued in time trade-off interviews with adult general population respondents in the UK. RESULTS Interviews were completed with 202 participants (50.0% female; mean age = 41.3 years). The health state representing ASMD without impairment had the highest mean utility for both the adult and child health states (0.92/0.94), and severe ASMD had the lowest mean utility (0.33/0.45). Every child health state had a significantly greater utility than the corresponding adult health state. Differences between adult/child paired states ranged from 0.02 to 0.13. Subgroup analyses explored the impact of parenting status on valuation of child health states. DISCUSSION Greater severity of ASMD was associated with lower mean utility. Results have implications for valuation of pediatric health states. The resulting utilities may be useful in cost-utility modeling estimating the value of treatment for ASMD.
Collapse
Affiliation(s)
- Louis S Matza
- Patient-Centered Research, Evidera, 7101 Wisconsin Avenue, Suite 1400, Bethesda, MD, 20814, USA.
| | - Katie D Stewart
- Patient-Centered Research, Evidera, 7101 Wisconsin Avenue, Suite 1400, Bethesda, MD, 20814, USA
| | | | - Donna Rowen
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | | | - Maurizio Scarpa
- Centro Coordinamento Regionale Malattie Rare, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | - Eugen Mengel
- SphinCS-Institute of Clinical Science for Lysosomal Storage Diseases, Hochheim, Germany
| | | | | | | | | |
Collapse
|
2
|
Mengel E, Scarpa M, Guffon N, Jones SA, Goriya V, Msihid J, Dyevre V, Rodriguez C, Gasparic M, Nalysnyk L, Laredo F, Pulikottil-Jacob R. Natural history of acid sphingomyelinase deficiency among European patients during childhood and adolescence: A retrospective observational study. Eur J Med Genet 2024; 70:104954. [PMID: 38852770 DOI: 10.1016/j.ejmg.2024.104954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Acid sphingomyelinase deficiency (ASMD) is a rare, lysosomal storage disease with limited evidence on its natural history. This retrospective, medical record abstraction study aimed to characterize the natural history of ASMD (types B and A/B) during childhood and adolescence. Recruiting sites were European centers (i.e., France, Germany, Italy, and the United Kingdom) from the ASCEND-Peds trial (NCT02292654); these sites were targeted because of the rarity of ASMD and specialized care provided at these centers. The study population comprised ASMD trial patients (before exposure to treatment) and ASMD non-trial participants who were managed at the same trial sites. Overall, 18 patients were included (11 trials; 7 non-trials; median [Q1; Q3] age at ASMD diagnosis: 2.5 [1.0; 4.0] years). Median follow-up duration was 10.0 years. Frequently reported medical conditions were hepatobiliary (17 [94.4%]) and blood and lymphatic system disorders (16 [88.9%]). Adenoidectomy (3 [16.7%]) was the most commonly reported surgical procedure; gastroenteritis (5 [27.8%]) was the most frequently reported infection, and epistaxis (6 [33.3%]) was the most commonly reported bleeding event. Abnormal spleen (16 [88.9%]) and liver (15 [83.3%]) size and respiratory function (8 [44.4%]) were commonly reported during physical examination. Overall, 11 (61.1%) patients were hospitalized; 6 (33.3%) patients had emergency room visits. Findings were consistent with published literature and support the current understanding of natural history of ASMD.
Collapse
Affiliation(s)
- Eugen Mengel
- Institute of Clinical Science for LSD, SphinCS, Hochheim, Germany
| | - Maurizio Scarpa
- Regional Coordinating Center for Rare Diseases, MetabERN, Udine University Hospital, Udine, Italy
| | - Nathalie Guffon
- Reference Center for Inherited Metabolic Disorders, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron, France
| | - Simon A Jones
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Lipiński P, Tylki-Szymańska A. The Liver and Lysosomal Storage Diseases: From Pathophysiology to Clinical Presentation, Diagnostics, and Treatment. Diagnostics (Basel) 2024; 14:1299. [PMID: 38928715 PMCID: PMC11202662 DOI: 10.3390/diagnostics14121299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The liver, given its role as the central metabolic organ, is involved in many inherited metabolic disorders, including lysosomal storage diseases (LSDs). The aim of this manuscript was to provide a comprehensive overview on liver involvement in LSDs, focusing on clinical manifestation and its pathomechanisms. Gaucher disease, acid sphingomyelinase deficiency, and lysosomal acid lipase deficiency were thoroughly reviewed, with hepatic manifestation being a dominant clinical phenotype. The natural history of liver disease in the above-mentioned lysosomal disorders was delineated. The importance of Niemann-Pick type C disease as a cause of cholestatic jaundice, preceding neurological manifestation, was also highlighted. Diagnostic methods and current therapeutic management of LSDs were also discussed in the context of liver involvement.
Collapse
Affiliation(s)
- Patryk Lipiński
- Institute of Clinical Sciences, Maria Skłodowska-Curie Medical Academy, 00-136 Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| |
Collapse
|
4
|
Montanari C, Tagi VM, D’Auria E, Guaia V, Di Gallo A, Ghezzi M, Verduci E, Fiori L, Zuccotti G. Lung Diseases and Rare Disorders: Is It a Lysosomal Storage Disease? Differential Diagnosis, Pathogenetic Mechanisms and Management. CHILDREN (BASEL, SWITZERLAND) 2024; 11:668. [PMID: 38929247 PMCID: PMC11201433 DOI: 10.3390/children11060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Pulmonologists may be involved in managing pulmonary diseases in children with complex clinical pictures without a diagnosis. Moreover, they are routinely involved in the multidisciplinary care of children with rare diseases, at baseline and during follow-up, for lung function monitoring. Lysosomal storage diseases (LSDs) are a group of genetic diseases characterised by a specific lysosomal enzyme deficiency. Despite varying pathogen and organ involvement, they are linked by the pathological accumulation of exceeding substrates, leading to cellular toxicity and subsequent organ damage. Less severe forms of LSDs can manifest during childhood or later in life, sometimes being underdiagnosed. Respiratory impairment may stem from different pathogenetic mechanisms, depending on substrate storage in bones, with skeletal deformity and restrictive pattern, in bronchi, with obstructive pattern, in lung interstitium, with altered alveolar gas exchange, and in muscles, with hypotonia. This narrative review aims to outline different pulmonary clinical findings and a diagnostic approach based on key elements for differential diagnosis in some treatable LSDs like Gaucher disease, Acid Sphingomyelinase deficiency, Pompe disease and Mucopolysaccharidosis. Alongside their respiratory clinical aspects, which might overlap, we will describe radiological findings, lung functional patterns and associated symptoms to guide pediatric pulmonologists in differential diagnosis. The second part of the paper will address follow-up and management specifics. Recent evidence suggests that new therapeutic strategies play a substantial role in preventing lung involvement in early-treated patients and enhancing lung function and radiological signs in others. Timely diagnosis, driven by clinical suspicion and diagnostic workup, can help in treating LSDs effectively.
Collapse
Affiliation(s)
- Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Veronica Maria Tagi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Enza D’Auria
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Vincenzo Guaia
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
| | - Anna Di Gallo
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
| | - Michele Ghezzi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
| | - Elvira Verduci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy
- Metabolic Diseases Unit, Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy
| | - Laura Fiori
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| |
Collapse
|
5
|
Mengel E, Muschol N, Weinhold N, Ziagaki A, Neugebauer J, Antoni B, Langer L, Gasparic M, Guillonneau S, Fournier M, Laredo F, Pulikottil-Jacob R. A retrospective study of morbidity and mortality of chronic acid sphingomyelinase deficiency in Germany. Orphanet J Rare Dis 2024; 19:161. [PMID: 38615062 PMCID: PMC11015682 DOI: 10.1186/s13023-024-03174-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/30/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Acid sphingomyelinase deficiency (ASMD) is a rare, progressive, potentially fatal lysosomal storage disease that exhibits a broad spectrum of clinical phenotypes. There is a need to expand the knowledge of disease mortality and morbidity in Germany because of limited information on survival analysis in patients with chronic ASMD (type B or type A/B). METHODS This observational, multicentre, retrospective cohort study was conducted using medical records of patients with the first symptom onset/diagnosis of ASMD type B or type A/B between 1st January 1990 and 31st July 2021 from four German medical centres. Eligible medical records were abstracted to collect data on demographic characteristics, medical history, hospitalisation, mortality, and causes of death from disease onset to the last follow-up/death. Survival outcomes were estimated using the Kaplan-Meier analysis. Standardised mortality ratio (SMR) was also explored. RESULTS This study included 33 chart records of patients with ASMD type B (n = 24) and type A/B (n = 9), with a median (interquartile range [IQR]) age of 8.0 [3.0-20.0] years and 1.0 [1.0-2.0] years, respectively, at diagnosis. The commonly reported manifestations were related to spleen (100.0%), liver (93.9%), and respiratory (77.4%) abnormalities. Nine deaths were reported at a median [IQR] age of 17.0 [5.0-25.0] years, with 66.7% of overall patients deceased at less than 18 years of age; the median [IQR] age at death for patients with ASMD type B (n = 4) and type A/B (n = 5) was 31.0 [11.0-55.0] and 9.0 [4.0-18.0] years, respectively. All deaths were ASMD-related and primarily caused by liver or respiratory failures or severe progressive neurodegeneration (two patients with ASMD type A/B). The median (95% confidence interval [CI]) overall survival age since birth was 45.4 (17.5-65.0) years. Additionally, an SMR [95% CI] analysis (21.6 [9.8-38.0]) showed that age-specific deaths in the ASMD population were 21.6 times more frequent than that in the general German population. CONCLUSIONS This study highlights considerable morbidity and mortality associated with ASMD type B and type A/B in Germany. It further emphasises the importance of effective therapy for chronic ASMD to reduce disease complications.
Collapse
Affiliation(s)
- Eugen Mengel
- Institute of Clinical Science for LSD, SphinCS, Hochheim, Germany
| | - Nicole Muschol
- International Center for Lysosomal Disorders (ICLD), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalie Weinhold
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Center of Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Athanasia Ziagaki
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Neugebauer
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Center of Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Benno Antoni
- IQVIA Commercial GmbH & Co. OHG, Frankfurt, Germany
| | - Laura Langer
- IQVIA Commercial GmbH & Co. OHG, Frankfurt, Germany
| | - Maja Gasparic
- Sanofi, AHTC Building Amsterdam, Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
6
|
Gul F, Begum S, Rasool P, Shah S, Waqar M. A Rare Case of Niemann-Pick Disease Type-A. Cureus 2024; 16:e59427. [PMID: 38826605 PMCID: PMC11140282 DOI: 10.7759/cureus.59427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Niemann-Pick disease is a rare lysosomal storage, autosomal recessive disorder that impairs the body's ability to metabolize fats, thus leading to accumulation within cells. It can affect various organs, most commonly the brain, liver, spleen, bone marrow and lungs. Hepatosplenomegaly, inability to thrive and varying neurological deficits are the defining features. The three main types of Niemann-Pick disease are: NPD-A (Niemann-Pick disease type A), NPD-B (Niemann-Pick disease type B) and NPD-C (Niemann-Pick disease type C). NPD-A and NPD-B are due to enzyme acid sphingomyelinase deficiency, caused by SMPD-1 (Sphingomyelin phosphodiesterase 1) gene mutation and NPD-C is due to NPC-1 and NPC-2 (Niemann-Pick C1 and C2 protein) gene mutation. This is the case report of an 11-month-old infant who presented to OPD (Outpatient Department) with failure to thrive, abdominal distension and developmental delay. On examination the infant was emaciated, pale, had hepatosplenomegaly and developmental delay. Bone marrow and liver biopsy showed characteristic lipid-laden foamy macrophages. Thus detailed history, examination and investigations confirmed NPD-A. NPD-A has a poor prognosis and is usually fatal by three years of age. The patient was provided supportive treatment like nutritional therapy and physiotherapy, and parents were counselled regarding the disease outcome. The patient is regularly followed up, and two episodes of chest infections were reported during an 8-month period of follow-up.
Collapse
Affiliation(s)
- Faiza Gul
- Paediatrics, Lady Reading Hospital Peshawar, Peshawar, PAK
| | - Sapna Begum
- Paediatrics, Lady Reading Hospital Peshawar, Peshawar, PAK
| | | | - Safdar Shah
- Paediatrics, Lady Reading Hospital Peshawar, Peshawar, PAK
| | - Muhammad Waqar
- Paediatrics, Lady Reading Hospital Peshawar, Peshawar, PAK
| |
Collapse
|
7
|
Giacomarra M, Colomba P, Francofonte D, Zora M, Caocci G, Diomede D, Giuffrida G, Fiori L, Montanari C, Sapuppo A, Scortechini AR, Vitturi N, Duro G, Zizzo C. Gaucher Disease or Acid Sphingomyelinase Deficiency? The Importance of Differential Diagnosis. J Clin Med 2024; 13:1487. [PMID: 38592326 PMCID: PMC10932152 DOI: 10.3390/jcm13051487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Gaucher disease is a lysosomal storage disorder caused by functional glucocerebrosidase enzyme deficiency. Hepatosplenomegaly and hematological complications are found in both Gaucher disease and Acid Sphingomyelinase Deficiency, which is caused by acid sphingomyelinase dysfunction. The possible overlap in clinical presentation can cause diagnostic errors in differential diagnosis. For this reason, in patients with an initial clinical suspicion of Gaucher disease, we aimed to carry out a parallel screening of acid sphingomyelinase and glucocerebrosidase. Methods: Peripheral blood samples of 627 patients were collected, and enzymatic activity analysis was performed on both glucocerebrosidase and acid sphingomyelinase. The specific gene was studied in samples with null or reduced enzymatic activity. Specific molecular biomarkers helped to achieve the correct diagnosis. Results: In 98.7% of patients, normal values of glucocerebrosidase activity excluded Gaucher disease. In 8 of 627 patients (1.3%), the glucocerebrosidase enzymatic activity assay was below the normal range, so genetic GBA1 analysis confirmed the enzymatic defect. Three patients (0.5%) had normal glucocerebrosidase activity, so they were not affected by Gaucher disease, and showed decreased acid sphingomyelinase activity. SMPD1 gene mutations responsible for Acid Sphingomyelinase Deficiency were found. The levels of specific biomarkers found in these patients further strengthened the genetic data. Conclusions: Our results suggest that in the presence of typical signs and symptoms of Gaucher disease, Acid Sphingomyelinase Deficiency should be considered. For this reason, the presence of hepatosplenomegaly, thrombocytopenia, leukocytopenia, and anemia should alert clinicians to analyze both enzymes by a combined screening. Today, enzyme replacement therapy is available for the treatment of both pathologies; therefore, prompt diagnosis is essential for patients to start accurate treatment and to avoid diagnostic delay.
Collapse
Affiliation(s)
- Miriam Giacomarra
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy; (M.G.); (P.C.); (D.F.); (M.Z.); (G.D.)
| | - Paolo Colomba
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy; (M.G.); (P.C.); (D.F.); (M.Z.); (G.D.)
| | - Daniele Francofonte
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy; (M.G.); (P.C.); (D.F.); (M.Z.); (G.D.)
| | - Marcomaria Zora
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy; (M.G.); (P.C.); (D.F.); (M.Z.); (G.D.)
| | - Giovanni Caocci
- Ematologia e Centro Trapianto di Midollo Osseo, Ospedale Businco, Via Jenner, 09124 Cagliari, Italy;
| | - Daniela Diomede
- U.O.C. Ematologia e Trapianto, Ospedale “Mons. R. Dimiccoli”, Viale Ippocrate 15, 70051 Barletta, Italy;
| | - Gaetano Giuffrida
- Divisione Clinicizzata di Ematologia Sezione Trapianto di Midollo Osseo, Policlinico Vittorio Emanuele-Presidio Ospedaliero Ferrarotto, Via Citelli 6, 95124 Catania, Italy;
| | - Laura Fiori
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Via Castevetro 32, 20154 Milan, Italy;
| | - Chiara Montanari
- Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157 Milan, Italy;
| | - Annamaria Sapuppo
- Regional Referral Centre for Inborn Errors Metabolism, Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy;
| | - Anna Rita Scortechini
- Azienda Ospedaliero Universitaria delle Marche, Clinica Ematologica, Via Conca 71, 60126 Ancona, Italy;
| | - Nicola Vitturi
- Department of Medicine-DIMED, Division of Metabolic Diseases, University Hospital, Via Giustiniani 2, 35128 Padova, Italy;
| | - Giovanni Duro
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy; (M.G.); (P.C.); (D.F.); (M.Z.); (G.D.)
| | - Carmela Zizzo
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy; (M.G.); (P.C.); (D.F.); (M.Z.); (G.D.)
| |
Collapse
|
8
|
Al Shahrani AM, Asiri W, Alqarni SAM, Al Murayeh LM. Novel Mutation in Chromosome 11p15.4 Causing Niemann-Pick Disease Type A in a Saudi Child. Cureus 2024; 16:e55883. [PMID: 38595885 PMCID: PMC11002711 DOI: 10.7759/cureus.55883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/11/2024] Open
Abstract
Niemann-Pick disease (NPD) encompasses a minimum of three lysosomal storage diseases, all of which are inherited in an autosomal recessive manner. Acid sphingomyelinase (ASM) deficiency is the cause of NPD types A and B. ASM is the enzyme that hydrolyzes the sphingolipid sphingomyelin. An 18-month-old patient with progressive painless abdominal distension with organomegaly and neurological deficits presented to our hospital. Brain imaging and laboratory findings did not show anything, but there was a millstone growth delay. The diagnosis of NPD type A was confirmed by a genetic examination, which revealed a twofold change on chromosome 11p15.4 in the region encoding the sphingomyelin phosphodiesterase-1 (SMPD1) gene. The patient was followed up with no specific treatment, and signs of respiratory infections were later reported.
Collapse
Affiliation(s)
- Adel M Al Shahrani
- Department of Pediatric Gastroenterology, Abha Maternity and Children Hospital, Abha, SAU
| | - Walaa Asiri
- Department of Pediatrics, Abha Maternity and Children Hospital, Abha, SAU
| | | | | |
Collapse
|
9
|
Doerr A, Farooq M, Faulkner C, Gould R, Perry K, Pulikottil-Jacob R, Rajasekhar P. Diagnostic odyssey for patients with acid sphingomyelinase deficiency (ASMD): Exploring the potential indicators of diagnosis using quantitative and qualitative data. Mol Genet Metab Rep 2024; 38:101052. [PMID: 38469089 PMCID: PMC10926222 DOI: 10.1016/j.ymgmr.2024.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 03/13/2024] Open
Abstract
Acid sphingomyelinase deficiency (ASMD) is a rare, progressive, and potentially fatal lysosomal storage disease. This two-part international study aimed to understand physician, patient, and caregivers' experiences during the ASMD diagnostic journey. Qualitative interviews were conducted with patients with ASMD type B or A/B, caregivers (for patients <18 years), and physicians (January 2018-May 2019). A quantitative patient chart review was then performed by physicians (1-3 charts per physician) (April to May 2020). Overall, 12 physicians and 27 patients (self-reported, n = 11; caregiver-reported, n = 16) completed qualitative interviews. Symptoms first presented at approximately 2 years, with physician visits 2 months-1 year later. On average, diagnosis took 3 years and average age at diagnosis was 5 years. During childhood, all patients reported abdominal enlargement and 67% had respiratory issues. Adult patients frequently reported fatigue (64%) and heart problems (36%). In the quantitative study, 86 physicians reviewed 193 ASMD patient charts. At initial presentation, most patients reported abdominal enlargement (pediatric, 55%; adolescents/adults, 39%). Time to diagnosis ranged 0-10 years for patients with ASMD type A/B or type B, and most patients (85%) received an incorrect initial diagnosis. Diagnosis of ASMD can be challenging, and is often delayed due to disease heterogeneity and misdiagnoses.
Collapse
Affiliation(s)
- Andrew Doerr
- Fulcrum Research Group, Waltham, MA, United States
| | | | | | | | - Krista Perry
- Trinity Life Sciences, Waltham, MA, United States
| | | | | |
Collapse
|
10
|
Pulikottil-Jacob R, Dehipawala S, Smith B, Athavale A, Gusto G, Chandak A, Khachatryan A, Banon T, Fournier M, Guillonneau S, Pollissard L, Munoz-Rojas MV. Survival of patients with chronic acid sphingomyelinase deficiency (ASMD) in the United States: A retrospective chart review study. Mol Genet Metab Rep 2024; 38:101040. [PMID: 38188692 PMCID: PMC10767269 DOI: 10.1016/j.ymgmr.2023.101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
Background Acid sphingomyelinase deficiency (ASMD), historically known as Niemann-Pick disease type A, A/B, and B, is a rare lysosomal storage pathology with multisystemic clinical manifestations. The aims of this study were to estimate the survival probability in patients in the United States with chronic ASMD (ASMD types B and A/B), and to describe the disease characteristics of these patients. Methods This observational retrospective study included medical chart records of patients with chronic ASMD with retrievable data abstracted by 69 participating physicians from 25 medical centers in the United States. Included patients had a date of ASMD diagnosis or first presentation to a physician for ASMD symptoms (whichever occurred first) between January 01, 1990, and February 28, 2021. Medical chart records were excluded if patients were diagnosed with ASMD type A. Eligible medical chart records were abstracted to collect demographic, medical and developmental history, and mortality data. Survival outcomes were analyzed using Kaplan-Meier survival analyses from birth until death. Results The overall study population (N = 110) included 69 patients with ASMD type B, nine with type A/B, and 32 with ASMD "non-type A" (ASMD subtype was unknown, but patients were confirmed as not having ASMD type A). The majority of patients were male with a median age at diagnosis of 3.8 years. Thirty-eight patients died during the study observation period, at a median age of 6.8 years. The median (95% confidence interval) survival age from birth was 21.3 (10.2; 60.4) years. At diagnosis or first presentation, 42.7% patients had ≥1 ASMD-related complication; splenic (30.0%) and hepatobiliary (20.9%) being the most common, and 40.9% required ≥1 medical visit due to complications. Conclusion Patients with chronic ASMD in the United States have poor survival and significant burden of illness.
Collapse
|
11
|
Huang YN, Chiang SL, Huang JY, Lu WL, Bau DAT, Su PH, Wang CH. The Long-term Lung and Respiratory Outcomes of Acid Sphingomyelinase Deficiency: A 10- and 20-year Follow-up Study. In Vivo 2024; 38:437-444. [PMID: 38148059 PMCID: PMC10756436 DOI: 10.21873/invivo.13457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM Acid sphingomyelinase deficiency (ASMD) is a rare lysosomal storage disorder characterized by sphingomyelin accumulation causing progressive lung disease, respiratory failure, and death. PATIENTS AND METHODS This retrospective observational study used the TriNetX database of electronic health records for 15,108 patients with ASMD from 2000-2020. After exclusions, 8,980 individuals were followed for 10 or 20 years. Outcomes included incidence and prevalence of respiratory disorders. Associations of age, sex and race were assessed. RESULTS Nearly all respiratory outcomes increased significantly over 20 versus 10 years. Other respiratory disorders, specified respiratory disorders and secondary pulmonary hypertension exhibited the greatest increases, reflecting progressive lung damage in ASMD. While outcomes were poor overall, older age, male sex, and racial minority status associated with greater risks, indicating differences in disease progression or care. CONCLUSION This study confirms the progressive nature of ASMD and need for close monitoring and treatment of pulmonary complications to reduce long-term morbidity and mortality. Genetic testing enabling diagnosis even for milder, adult-onset forms is critical to optimize outcomes.
Collapse
Affiliation(s)
- Yu-Nan Huang
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Shang-Lun Chiang
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan, R.O.C
| | - Jing-Yang Huang
- Center for Health Data Science, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Wen-Li Lu
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan, Taiwan, R.O.C
| | - DA-Tian Bau
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C
| | - Pen-Hua Su
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C.;
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Chung-Hsing Wang
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C.;
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
- Division of Genetics and Metabolism, Children's Hospital of China Medical University, Taichung, Taiwan, R.O.C
- School of Medicine, China Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
12
|
Angeli O, Nagy Z, Schneider M. [Ocular manifestation of an adult Niemann-Pick disease type B]. Orv Hetil 2023; 164:1838-1844. [PMID: 37980614 DOI: 10.1556/650.2023.32927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/16/2023] [Indexed: 11/21/2023]
Abstract
Niemann-Pick disease is a rare, autosomal recessive inherited lysosomal storage disorder. The pathophysiological background for this condition is the deficiency or reduced function of the enzyme sphingomyelinase, as well as a deficiency in the intracellular cholesterol transporter protein. Due to the breakdown defect, sphingomyelin and cholesterol accumulate in the lysosomes of cells. The disease is divided into 5 subtypes (A, A/B, B, C, D). The authors present the case of a 24-year-old young man diagnosed with Niemann-Pick disease type B as a child, focusing on the ophthalmic manifestation of the disease. During the examination of the patient, fundus photographs and fundus autofluorescence imaging were taken, and optical coherence tomography (OCT), optical coherence tomography angiography (OCTA), and visual field (perimetry) examinations were performed. The characteristic macular halo and the cherry-red spot in the fovea were clearly visible during ophthalmoscopy and on the fundus photographs. The OCT images showed focal thickening with high reflectivity in the ganglion cell layer corresponding to the macular halo, and the area of the foveola was spared. With visual field examination, an intact field of vision was found on both eyes. Similar to the presented patient, symptoms in patients with the B subtype are milder, and besides the visceral symptoms, there are no neurological symptoms, and the specific ophthalmic abnormalities do not cause visual impairment. Currently, Niemann-Pick disease is considered a rare disease, and the diagnosis of the patients is often delayed or even missed due to non-specific or mild symptoms. Through consultation between medical specialties, ophthalmological examination can also contribute to the correct diagnosis in cases with mild general symptoms. Timely diagnosis can potentially lead to mitigation of symptoms thanks to the ever-expanding therapeutic options, stabilization of the disease progression, and increase of the patients' life expectancy. Orv Hetil. 2023; 164(46): 1838-1844.
Collapse
Affiliation(s)
- Orsolya Angeli
- 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Szemészeti Klinika Budapest Magyarország
| | - Zoltán Nagy
- 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Szemészeti Klinika Budapest Magyarország
| | - Miklós Schneider
- 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Szemészeti Klinika Budapest Magyarország
- 2 Department of Ophthalmology, Rigshospitalet Valdemar Hansens Vej 1-23, DK-2600 Glostrup Denmark
| |
Collapse
|
13
|
Di Rocco M, Vici CD, Burlina A, Venturelli F, Fiumara A, Fecarotta S, Donati MA, Spada M, Concolino D, Pession A. Screening for lysosomal diseases in a selected pediatric population: the case of Gaucher disease and acid sphingomyelinase deficiency. Orphanet J Rare Dis 2023; 18:197. [PMID: 37480063 PMCID: PMC10362631 DOI: 10.1186/s13023-023-02797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 07/05/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND GD and ASMD are lysosomal storage disorders that enter into differential diagnosis due to the possible overlap in their clinical manifestations. The availability of safe and effective enzymatic therapies has recently led many investigators to develop and validate new screening tools, such as algorithms, for the diagnosis of LSDs where the lack of disease awareness or failure to implement newborn screening results in a delayed diagnosis. RESULTS the proposed algorithm allows for the clinical and biochemical differentiation between GD and ASMD. It is based on enzyme activity assessed on dried blood spots by multiplexed tandem mass spectrometry (MS/MS) coupled to specific biomarkers as second-tier analysis. CONCLUSIONS we believe that this method will provide a simple, convenient and sensitive tool for the screening of a selected population that can be used by pediatricians and other specialists (such as pediatric hematologists and pediatric hepatologists) often engaged in diagnosing these disorders.
Collapse
Affiliation(s)
- Maja Di Rocco
- Department of Pediatrics, Unit of Rare Diseases IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Francesco Venturelli
- Pediatric Unit, Istituti di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliero- Universitaria di Bologna, University of Bologna, Bologna, Italy.
| | - Agata Fiumara
- Referral Center for Inherited Metabolic Disorders, Pediatric Clinical, University-Hospital "Gaspare Rodolico - San Marco", Catania, Italy
- Clinical and Experimental Medicine Department, University of Catania, Catania, Italy
| | | | | | - Marco Spada
- Department of Pediatrics, University of Torino, Torino, Italy
| | - Daniela Concolino
- Department of Science of Health, Pediatric Unit, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Andrea Pession
- Pediatric Unit, Istituti di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliero- Universitaria di Bologna, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Arslan N, Coker M, Gokcay GF, Kiykim E, Onenli Mungan HN, Ezgu F. Expert opinion on patient journey, diagnosis and clinical monitoring in acid sphingomyelinase deficiency in Turkey: a pediatric metabolic disease specialist's perspective. Front Pediatr 2023; 11:1113422. [PMID: 37435168 PMCID: PMC10330960 DOI: 10.3389/fped.2023.1113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
This review by a panel of pediatric metabolic disease specialists aimed to provide a practical and implementable guidance document to assist clinicians in best clinical practice in terms of recognition, diagnosis and management of patients with acid sphingomyelinase deficiency (ASMD). The participating experts consider the clinical suspicion of ASMD by the physician to be of utmost importance in the prevention of diagnostic delay and strongly suggest the use of a diagnostic algorithm including/starting with dried blood spots assay in the timely diagnosis of ASMD in patients presenting with hepatosplenomegaly and a need for increased awareness among physicians in this regard to consider ASMD in the differential diagnosis. In anticipation of the introduction of enzyme replacement therapy, raising awareness of the disease among physicians to prevent diagnostic delay and further investigation addressing natural history of ASMD across the disease spectrum, potential presenting characteristics with a high index of suspicion, as well as biomarkers and genotype-phenotype correlations suggestive of poor prognosis seem important in terms of implementation of best practice patterns.
Collapse
Affiliation(s)
- Nur Arslan
- Division of Pediatric Metabolism, Department of Pediatrics, Dokuz Eylul University Faculty of Medicine, Izmir, Türkiye
| | - Mahmut Coker
- Division of Pediatric Metabolism, Department of Pediatrics, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Gulden Fatma Gokcay
- Division of Pediatric Metabolism, Department of Pediatrics, Istanbul University Istanbul Faculty of Medicine, Istanbul, Türkiye
| | - Ertugrul Kiykim
- Division of Pediatric Metabolism, Department of Pediatrics, Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | | | - Fatih Ezgu
- Division of Pediatric Metabolism and Pediatric Genetics, Department of Pediatrics, Gazi University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
15
|
Syed YY. Olipudase Alfa in Non-CNS Manifestations of Acid Sphingomyelinase Deficiency: A Profile of Its Use. Clin Drug Investig 2023; 43:369-377. [PMID: 37133675 PMCID: PMC10361862 DOI: 10.1007/s40261-023-01270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/04/2023]
Abstract
Olipudase alfa (Xenpozyme™) is an intravenously administered acid sphingomyelinase enzyme replacement therapy indicated to treat non-CNS manifestations of acid sphingomyelinase deficiency (ASMD) in adult and paediatric patients. It is the first and currently the only disease-modifying treatment for ASMD. Olipudase alfa treatment improves hepatosplenomegaly, lung function and platelet counts, along with multiple other pathological features of ASMD in adult and paediatric patients with ASMD. These benefits are sustained through at least 24 months of treatment. Olipudase alfa is generally well tolerated; infusion-associated reactions (mostly mild) were the most common treatment-related adverse events. Other warnings and precautions associated with its use include risks of hypersensitivity reactions (including anaphylaxis) and elevated transaminase levels seen in clinical trials, and foetal malformation based on animal studies. All these risks are generally manageable. A gradual dose escalation of olipudase alfa, followed by a maintenance phase, is required to reduce the risks of toxic sphingomyelin catabolites build up, infusion-associated reactions and transient transaminase elevations.
Collapse
Affiliation(s)
- Yahiya Y Syed
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| |
Collapse
|
16
|
Pulikottil-Jacob R, Ganz ML, Fournier M, Petruski-Ivleva N. Healthcare Service Use Patterns Among Patients with Acid Sphingomyelinase Deficiency Type B: A Retrospective US Claims Analysis. Adv Ther 2023; 40:2234-2248. [PMID: 36897522 PMCID: PMC10129952 DOI: 10.1007/s12325-023-02453-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Acid sphingomyelinase deficiency (ASMD) is a rare lysosomal storage disease. Patients with ASMD type B experience multiple morbidities, potentially leading to early mortality. Before the 2022 approval of olipudase alfa for non-neuronopathic ASMD manifestations, only symptom management was offered. Data on healthcare services used by patients with ASMD type B are limited. This analysis used medical claims data to evaluate real-world healthcare service use by patients with ASMD type B in the United States of America (USA). METHODS The IQVIA Open Claims patient-level database (2010-2019) was cross-examined. Two patient cohorts were identified: the primary analysis cohort, which included patients with at least two claims associated with ASMD type B (ICD-10 code E75.241) and more total claims with ASMD type B than any other ASMD types, and the sensitivity analysis cohort, which included patients with a high probability of having ASMD type B identified using a validated machine-learning algorithm. Claims for ASMD-associated healthcare services were recorded, including outpatient visits, emergency department (ED) visits, and inpatient hospitalizations. RESULTS The primary analysis cohort included 47 patients; a further 59 patients made up the sensitivity analysis cohort. Patient characteristics and healthcare service use were similar in both cohorts and were consistent with established characteristics of ASMD type B. Overall, 70% of the primary analysis cohort from this study were aged < 18 years, and the liver, spleen, and lungs were the most frequently affected organs. Cognitive, developmental, and/or emotional problems and respiratory/lung disorders caused most outpatient visits; respiratory/lung disorders accounted for most ED visits and hospitalizations. CONCLUSION This retrospective analysis of medical claims data identified patients with ASMD type B who had characteristics typical of this condition. A machine-learning algorithm detected further cases with a high probability of having ASMD type B. High use of ASMD-related healthcare services and medications was observed in both cohorts.
Collapse
Affiliation(s)
- Ruth Pulikottil-Jacob
- Health Economics and Value Assessment Business Partner-Rare Diseases, Sanofi, Thames Valley Park, Reading, UK.
| | | | | | | |
Collapse
|
17
|
Geberhiwot T, Wasserstein M, Wanninayake S, Bolton SC, Dardis A, Lehman A, Lidove O, Dawson C, Giugliani R, Imrie J, Hopkin J, Green J, de Vicente Corbeira D, Madathil S, Mengel E, Ezgü F, Pettazzoni M, Sjouke B, Hollak C, Vanier MT, McGovern M, Schuchman E. Consensus clinical management guidelines for acid sphingomyelinase deficiency (Niemann-Pick disease types A, B and A/B). Orphanet J Rare Dis 2023; 18:85. [PMID: 37069638 PMCID: PMC10108815 DOI: 10.1186/s13023-023-02686-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/02/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Acid Sphingomyelinase Deficiency (ASMD) is a rare autosomal recessive disorder caused by mutations in the SMPD1 gene. This rarity contributes to misdiagnosis, delayed diagnosis and barriers to good care. There are no published national or international consensus guidelines for the diagnosis and management of patients with ASMD. For these reasons, we have developed clinical guidelines that defines standard of care for ASMD patients. METHODS The information contained in these guidelines was obtained through a systematic literature review and the experiences of the authors in their care of patients with ASMD. We adopted the Appraisal of Guidelines for Research and Evaluation (AGREE II) system as method of choice for the guideline development process. RESULTS The clinical spectrum of ASMD, although a continuum, varies substantially with subtypes ranging from a fatal infantile neurovisceral disorder to an adult-onset chronic visceral disease. We produced 39 conclusive statements and scored them according to level of evidence, strengths of recommendations and expert opinions. In addition, these guidelines have identified knowledge gaps that must be filled by future research. CONCLUSION These guidelines can inform care providers, care funders, patients and their carers about best clinical practice and leads to a step change in the quality of care for patients with ASMD with or without enzyme replacement therapy (ERT).
Collapse
Affiliation(s)
- Tarekegn Geberhiwot
- University Hospital Birmingham NHS Foundation Trust, Birmingham, UK.
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK.
| | - Melissa Wasserstein
- Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | - Andrea Dardis
- Regional Coordinator Centre for Rare Disease, AMC Hospital of Udine, Udine, Italy
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Olivier Lidove
- Department of Internal Medicine, Hôpital de La Croix Saint Simon, Paris, France
| | - Charlotte Dawson
- University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Roberto Giugliani
- BioDiscovery and DR BRASIL Research Group, HCPA, Department of Genetics and PPGBM, UFRGS, INAGEMP, DASA, and Casa Dos Raros, Porto Alegre, Brazil
| | - Jackie Imrie
- International Niemann-Pick Disease Registry, Newcastle, UK
| | - Justin Hopkin
- National Niemann-Pick Disease Foundation, Fort Atkinson, WI, USA
| | - James Green
- International Niemann-Pick Disease Registry, Newcastle, UK
| | | | - Shyam Madathil
- Department of Respiratory Medicine, University Hospital Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
| | - Eugen Mengel
- Institute of Clinical Science in LSD, SphinCS, Hochheim, Germany
| | - Fatih Ezgü
- Division of Pediatric Metabolism and Division of Pediatric Genetics, Department of Pediatrics, Gazi University Faculty of Medicine, 06560, Ankara, Turkey
| | - Magali Pettazzoni
- Biochemistry and Molecular Biology and Reference Center for Inherited Metabolic Disorders, Hospices Civils de Lyon, 59 Boulevard Pinel, 69677, Bron Cedex, France
| | - Barbara Sjouke
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, F5-169, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - Carla Hollak
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, F5-169, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | | | | | - Edward Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Room 14-20A, New York, NY, 10029, USA
| |
Collapse
|
18
|
Scarpa M, Barbato A, Bisconti A, Burlina A, Concolino D, Deodato F, Di Rocco M, Dionisi-Vici C, Donati MA, Fecarotta S, Fiumara A, Galeone C, Giona F, Giuffrida G, Manna R, Mariani P, Pession A, Scopinaro A, Spada M, Spandonaro F, Trifirò G, Carubbi F, Cappellini MD. Acid sphingomyelinase deficiency (ASMD): addressing knowledge gaps in unmet needs and patient journey in Italy-a Delphi consensus. Intern Emerg Med 2023; 18:831-842. [PMID: 36882619 DOI: 10.1007/s11739-023-03238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/17/2023] [Indexed: 03/09/2023]
Abstract
Acid sphingomyelinase deficiency (ASMD) is an ultra-rare disease, and several gaps of knowledge on various issues remain, particularly at a regional/national level. Expert opinions collected through well-defined consensus methodologies are increasingly used to make available reliable information in the context of rare/ultra-rare diseases. With the aim to provide indications on infantile neurovisceral ASMD (also formerly known as Niemann-Pick disease type A), chronic neurovisceral ASMD (formerly known as Niemann-Pick disease type A/B) and chronic visceral ASMD (formerly known as Niemann-Pick disease type B) in Italy, we conducted a Delphi consensus of experts focused on five main areas: (i) patients and disease characteristics; (ii) unmet needs and quality of life; (iii) diagnostic issues; (iv) treatment-related aspects; and (v) patient journey. Pre-specified, objective criteria were used to outline the multidisciplinary panel, based on 19 Italian experts in ASMD in paediatric and adult patients from different Italian Regions, including both clinicians (n = 16) and ASMD patients' advocacy or payors with expertise in rare diseases (n = 3). During two Delphi rounds, a high ratio of agreement was found on several topics related to ASMD characteristics, diagnosis, management and disease burden. Our findings may provide valuable indications for management of ASMD at a public health level in Italy.
Collapse
Affiliation(s)
- Maurizio Scarpa
- Regional Coordinator Centre for Rare Diseases, Azienda Ospedaliero-Universitaria "Santa Maria Della Misericordia", University Hospital of Udine, Piazzale Santa Maria Della Misericordia 15, 33100, Udine, Italy.
| | - Antonio Barbato
- Department of Clinical Medicine and Surgery, "Federico II" University Hospital, Naples, Italy
| | - Annalisa Bisconti
- Associazione Italiana Niemann Pick e Malattie Affini-ONLUS, Lanzo Torinese, TO, Italy
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, Reference Centre Expanded Newborn Screening, University Hospital, Padua, Italy
| | - Daniela Concolino
- Pediatrics-Science of Health Department, University "Magna Graecia", Catanzaro, Italy
| | - Federica Deodato
- Division of Metabolism, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Maja Di Rocco
- Department of Pediatrics, Unit of Rare Diseases, Giannina Gaslini Institute, Genoa, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Maria Alice Donati
- Metabolic and Neuromuscular Unit, Meyer Children Hospital-University of Florence, Florence, Italy
| | - Simona Fecarotta
- Department of Maternal and Child Health, Federico II University Hospital, 80131, Naples, Italy
| | - Agata Fiumara
- Regional Referral Centre for Metabolic Diseases (CRR-MET), UOC Pediatric Clinic-Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carlotta Galeone
- Bicocca Applied Statistics Center (B-ASC), Department of Economics, Management and Statistics, University of Milano-Bicocca, Milan, Italy
| | - Fiorina Giona
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Gaetano Giuffrida
- Regional Reference Center for Rare Diseases, Clinical Division of Haematology and Transplantation, Azienda Ospedaliera-Universitaria Policlinico-S. Marco, Catania, Italy
| | - Raffaele Manna
- Institute of Internal Medicine, Periodic Fever and Rare Diseases Research Centre, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Paolo Mariani
- Bicocca Applied Statistics Center (B-ASC), Department of Economics, Management and Statistics, University of Milano-Bicocca, Milan, Italy
| | - Andrea Pession
- Pediatric Unit, Department of Medical and Surgical Sciences, University of Bologna, IRCCS Azienda Ospedaliero-Universitaria, Bologna, Italy
| | - Annalisa Scopinaro
- Italian Federation of Rare Diseases Patients Associations (UNIAMO FIMR), Rome, Italy
| | - Marco Spada
- Department of Pediatrics, AOU Città della Salute e della Scienza di Torino, University of Torino, Turin, Italy
| | | | - Gianluca Trifirò
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, Verona, Italy
| | - Francesca Carubbi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Metabolic Medicine Unit, University Hospital, Modena, Italy
| | - Maria Domenica Cappellini
- Rare Diseases Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
20
|
Pan YW, Tsai MC, Yang CY, Yu WH, Wang B, Yang YJ, Chou YY. Enzyme replacement therapy for children with acid sphingomyelinase deficiency in the real world: A single center experience in Taiwan. Mol Genet Metab Rep 2023; 34:100957. [PMID: 36873248 PMCID: PMC9979262 DOI: 10.1016/j.ymgmr.2023.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Background Acid sphingomyelinase deficiency (ASMD) is a lysosomal storage disease with multi-systemic involvement, with no disease-modifying treatment available. Olipudase alfa is an investigational enzyme product developed to replace the deficient acid sphingomyelinase in ASMD patients. Several clinical trials have reported promising safety and efficacy results in adult and pediatric patients. However, no data have been reported outside of the clinical trial setting yet. This study aimed to evaluate major outcomes in pediatric chronic ASMD patients receiving olipudase alfa in the real-world setting. Materials and methods Two children with type A/B (chronic neuropathic) ASMD have received olipudase alfa treatment since May 2021. Clinical parameters, including height, weight, complete blood count, liver function tests, lipid profiles, biomarkers, abdominal ultrasonography with shear wave elastography, chest computed tomography, nerve conduction studies, neurodevelopmental evaluations, and six-minute walk tests, were checked at baseline and every three to six months in the first year of enzyme replacement therapy (ERT) to assess its efficacy and safety. Results The two patients in our study started olipudase alfa treatment at the age of 5 years and 8 months and 2 years and 6 months. During the first year of treatment, both patients saw a reduction in their hepatic and splenic volumes as well as liver stiffness. Height z-score, weight z-score, lipid profiles, biomarker levels, interstitial lung disease scores, and bone mineral densities also improved over time. The six-minute walk test showed a gradual increase in walking distance in both patients. There were no obvious improvements or deterioration in neurocognitive function and peripheral nerve conduction velocities after treatment. No severe infusion-associated reactions were noted during the first year of treatment. One patient had two episodes of transient but significantly elevated liver enzymes during the dose-escalation phase. The patient was asymptomatic, and the impaired liver function resolved spontaneously within two weeks. Conclusion Our results provide real-world experience that olipudase alfa is safe and effective in improving major systemic clinical outcomes for pediatric chronic ASMD patients. Monitoring of liver stiffness by shear wave elastography is a noninvasive procedure that can monitor treatment efficacy during ERT.
Collapse
Affiliation(s)
- Yu-Wen Pan
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Rd., North Dist., Tainan City, Taiwan, ROC
| | - Meng-Che Tsai
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Rd., North Dist., Tainan City, Taiwan, ROC
| | - Chiao-Yu Yang
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Rd., North Dist., Tainan City, Taiwan, ROC.,Department of Pediatrics, An-Nan Hospital, China Medical University, No. 66, Sec. 2, Changhe Rd., Annan Dist., Tainan City, Taiwan, ROC
| | - Wen-Hao Yu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Rd., North Dist., Tainan City, Taiwan, ROC
| | - Bow Wang
- Department of Radiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Rd., North Dist., Tainan City, Taiwan, ROC
| | - Yao-Jong Yang
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Rd., North Dist., Tainan City, Taiwan, ROC
| | - Yen-Yin Chou
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Rd., North Dist., Tainan City, Taiwan, ROC
| |
Collapse
|
21
|
Sultan W, Siddiqui T. Novel breakthrough in the treatment of sphingomyelinase deficiency. Int J Surg 2023; 109:141-142. [PMID: 36799829 PMCID: PMC10389466 DOI: 10.1097/js9.0000000000000102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/16/2022] [Indexed: 02/18/2023]
Affiliation(s)
- Wania Sultan
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | |
Collapse
|
22
|
Muacevic A, Adler JR, Colina Arteaga PA, Arevalo Cordova TD. Niemann-Pick Disease: A Case Report and Literature Review. Cureus 2023; 15:e33534. [PMID: 36779112 PMCID: PMC9906968 DOI: 10.7759/cureus.33534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
Niemann-Pick disease (NPD) A/B is a lysosomal storage disease (LSD), caused by an autosomal recessive disorder that causes variation in sphingomyelin phosphodiesterase-1 (SMPD1). Systemic signs are cholestatic jaundice in the neonatal period or hepatosplenomegaly in infancy. The clinical course experienced by our patient did not correspond to the classic phenotypes. The diagnosis was effectively made at four years and three months of age when different signs such as abdominal distension, hepatosplenomegaly, and chronic malnutrition were present. Given the high suspicion of metabolic storage disease, an enzyme activity study, liver and bone marrow biopsies, and molecular studies were performed. In the bone marrow biopsy, pseudo-Gaucher foam cells were observed. Additionally, the liver biopsy showed dispersed ballooned cells with deposit material and nested cells with granular material. The double enzymatic assay was ordered to determine if the cause of these findings was due to Niemann-Pick or Gaucher disease; decreased sphingomyelinase activity values were obtained (0.28 mcoml/L/h). Subsequently, the molecular genetics study reported a double alteration in the sequence that encodes the SMPD1 gene, located on chromosome 11p15.4, which confirmed NPD type A or B. The overlap and the lack of some findings made the diagnosis very difficult. Diagnosis is crucial due to the multisystem involvement that this LSD can have.
Collapse
|
23
|
Diaz GA, Giugliani R, Guffon N, Jones SA, Mengel E, Scarpa M, Witters P, Yarramaneni A, Li J, Armstrong NM, Kim Y, Ortemann-Renon C, Kumar M. Long-term safety and clinical outcomes of olipudase alfa enzyme replacement therapy in pediatric patients with acid sphingomyelinase deficiency: two-year results. Orphanet J Rare Dis 2022; 17:437. [PMID: 36517856 PMCID: PMC9749157 DOI: 10.1186/s13023-022-02587-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Olipudase alfa is a recombinant human acid sphingomyelinase (ASM) enzyme replacement therapy (ERT) for non-central-nervous-system manifestations of acid sphingomyelinase deficiency (ASMD). We report 2-year cumulative safety and efficacy data after olipudase alfa treatment in 20 children (four adolescents [12-17 year], nine children [6-11 year], and seven infants/early child [1-5 year]) with baseline splenomegaly and growth deficits who completed the 1-year ASCEND-Peds clinical trial (NCT02292654) and who continue to receive olipudase alfa in a long-term study (NCT02004704). Efficacy endpoints include spleen and liver volumes, diffusing capacity of the lung for carbon monoxide (DLCO), high-resolution computed tomography (HRCT) lung imaging, lipid profiles, liver function tests, and height Z-scores. RESULTS All 20 former ASCEND-Peds patients completed at least 2 years of olipudase alfa treatment. No patient discontinued and no new safety issue arose during the second year of treatment; 99% of adverse events were mild or moderate. During year 2, one patient had two treatment-related serious events of hypersensitivity that resolved. Mean reductions from baseline in spleen and liver volumes were 61% and 49%, respectively (p < 0.0001) and mean percent-predicted-DLCO increased by 46.6% (p < 0.0001) in nine patients who performed the test at baseline. Lipid profiles and elevated liver transaminase levels that improved or normalized by 1 year remained stable. Mean height Z-scores improved in all age groups (mean change from baseline 1.17, P < 0.0001). CONCLUSION Olipudase alfa was generally well-tolerated during 2 years of treatment. Improvements in clinically relevant disease endpoints observed during the first year of treatment were maintained or augmented in the second year. Trial registration NCT02004704 registered 26 Nov 2013, https://clinicaltrials.gov/ct2/show/record/NCT02004704 .
Collapse
Affiliation(s)
- George A Diaz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Roberto Giugliani
- Medical Genetics Service HCPA, Department of Genetics UFRGS, DASA and Casa dos Raros, Porto Alegre, Brazil
| | - Nathalie Guffon
- Reference Centre of Inherited Metabolic Disease in Femme Mère Enfant Hospital, Hospices Civils of Lyon, Lyon, France
| | - Simon A Jones
- Manchester University National Health Service Trust, St Mary's Hospital, Manchester, UK
| | - Eugen Mengel
- Institute of Clinical Science for Lysosomal Storage Disorders, SphinCS GmbH, Mainz, Germany
| | | | | | | | - Jing Li
- Sanofi, Bridgewater, NJ, USA
| | | | | | | | | |
Collapse
|
24
|
Kubaski F, Burlina A, Pereira D, Silva C, Herbst ZM, Trapp FB, Michelin-Tirelli K, Lopes FF, Burin MG, Brusius-Facchin AC, Netto ABO, Poletto E, Bernardes TM, Carvalho GS, Sorte NB, Ferreira FN, Perin N, Clivati MR, de Santana MTS, Lobos SFG, Leão EKEA, Coutinho MP, Pinos PV, Santos MLSF, Penatti DA, Lourenço CM, Polo G, Giugliani R. Quantification of lysosphingomyelin and lysosphingomyelin-509 for the screening of acid sphingomyelinase deficiency. Orphanet J Rare Dis 2022; 17:407. [PMID: 36348386 PMCID: PMC9641838 DOI: 10.1186/s13023-022-02560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acid sphingomyelinase deficiency (ASMD) is a lysosomal disorder caused by deficiency of acid sphingomyelinase (ASM) leading to the accumulation of sphingomyelin (SM) in a variety of cell types. Lysosphingomyelin (LysoSM) is the de-acetylated form of SM and it has been shown as a biomarker for ASMD in tissues, plasma, and dried blood spots (DBS) and lysosphingomyelin-509 (LysoSM509) is the carboxylated analogue of LysoSM. High levels of Lysosphingomyelin 509 (LysoSM509) have also been shown in ASMD patients. In this study, we report the utility of the quantification of LysoSM and LysoSM509 in DBS of patients from Latin America with ASMD by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). RESULTS DBS samples from 14 ASMD patients were compared with 15 controls, and 44 general newborns. All patients had their diagnosis confirmed by the quantification of ASM and the measurement of the activity of chitotriosidase. All patients had significantly higher levels of lysoSM and lysoSM509 compared to controls and general newborns. CONCLUSIONS The quantification of lysosphingolipids in DBS is a valuable tool for the diagnosis of ASMD patients and lysoSM can be useful in the differential diagnosis with NPC. This method is also valuable in the ASMD newborn screening process.
Collapse
Affiliation(s)
- Francyne Kubaski
- grid.414449.80000 0001 0125 3761Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil ,grid.8532.c0000 0001 2200 7498PPGMB, UFRGS, Porto Alegre, Brazil
| | - Alberto Burlina
- grid.411474.30000 0004 1760 2630Division of Inherited Metabolic Diseases, Regional Center for Expanded Neontal Screening, Department of Women and Children’s Health, DIDAS Servizi di Diagnostica Integrata, University Hospital Padova, Padua, Italy
| | - Danilo Pereira
- Waters Technologies Brazil, São Paulo, Brazil ,Innovatox, São Paulo, Brazil
| | | | - Zackary M. Herbst
- grid.34477.330000000122986657Department of Chemistry, University of Washington, Seattle, USA
| | - Franciele B. Trapp
- grid.414449.80000 0001 0125 3761Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Kristiane Michelin-Tirelli
- grid.414449.80000 0001 0125 3761Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Franciele F. Lopes
- grid.414449.80000 0001 0125 3761Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Maira G. Burin
- grid.414449.80000 0001 0125 3761Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Ana Carolina Brusius-Facchin
- grid.414449.80000 0001 0125 3761Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Alice B. O. Netto
- grid.414449.80000 0001 0125 3761Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil ,grid.8532.c0000 0001 2200 7498PPGMB, UFRGS, Porto Alegre, Brazil
| | - Edina Poletto
- grid.414449.80000 0001 0125 3761Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil ,grid.8532.c0000 0001 2200 7498PPGMB, UFRGS, Porto Alegre, Brazil
| | | | | | | | | | - Nilza Perin
- grid.414705.3Hospital Infantil Joana Gusmão, Florianópolis, Brazil
| | | | | | | | | | | | | | | | | | | | - Giulia Polo
- grid.411474.30000 0004 1760 2630Division of Inherited Metabolic Diseases, Regional Center for Expanded Neontal Screening, Department of Women and Children’s Health, DIDAS Servizi di Diagnostica Integrata, University Hospital Padova, Padua, Italy
| | - Roberto Giugliani
- grid.414449.80000 0001 0125 3761Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil ,grid.8532.c0000 0001 2200 7498PPGMB, UFRGS, Porto Alegre, Brazil ,Dasa, São Paulo, Brazil ,Casa dos Raros, Porto Alegre, Brazil
| |
Collapse
|
25
|
Diaz GA, Crowe J, Hopkin J. Health insurance literacy and health services access barriers in Niemann-Pick disease: the patient and caregiver voice. Orphanet J Rare Dis 2022; 17:332. [PMID: 36056366 PMCID: PMC9438239 DOI: 10.1186/s13023-022-02490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background Major challenges to health care access include low health insurance literacy, prohibitive costs, and insurance barriers. Niemann–Pick disease (NPD), comprising acid sphingomyelinase deficiency (ASMD) and Niemann–Pick type C (NPC), is a group of rare, autosomal recessive, highly heterogeneous, neurovisceral, life-threatening, relentlessly progressive lysosomal disorders. Patients experience debilitating systemic and neurological symptoms and substantial emotional and financial stress. Currently, these multifaceted disorders are managed symptomatically as there are no approved therapies. Given the considerable disease burden of NPD, timely access to quality health care is paramount for improving outcomes in these life-threatening disorders. Understanding health insurance literacy and access challenges among patients with NPD and their caregivers is a first step to overcoming treatment barriers. Results Patients from the Niemann–Pick community participated in a health insurance literacy survey and follow-up telephone interviews on perceived access challenges. Of the 79 respondents who completed the survey, 67 participated in interviews. All respondents had stable health insurance coverage. However, 61% of respondents were unaware of Medicaid waivers and did not avail of them. Overall, 50% of respondents with childhood onset NPC selected Medicaid/Medicare and private insurance; 35% utilized Medicaid waivers. Most respondents with ASMD had private insurance only. Although the Niemann–Pick community demonstrated greater health insurance literacy than the general population, knowledge gaps exist in calculating insurance coverage, out-of-pocket maximums, and defining a formulary. The most frequently cited access burden was the process of obtaining medical care and services. Among respondents with ASMD, the greatest access burden was fear of unavailability of or access to medications and treatment. Access challenges adversely impacted patients’ mental health and exacerbated physical symptoms. Delays and denials in obtaining essential medication, equipment, and services contributed to disease progression. Caregivers faced burnout and often questioned the utility of their advocacy. Conclusions This study identified knowledge gaps in health insurance literacy and challenges to access medication and health care services among individuals impacted by NPD. Patients and caregivers need the knowledge and skills to navigate a complicated health care system, understand their rights to medication and services and, ultimately, benefit from improved outcomes, especially in a post–drug approval era.
Collapse
Affiliation(s)
- George A Diaz
- Division of Medical Genetics and Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1428 Madison Avenue, 1st Floor, Room AB1-12, New York, NY, 10029, USA.
| | - Joslyn Crowe
- National Niemann-Pick Disease Foundation, Fort Atkinson, WI, USA
| | - Justin Hopkin
- National Niemann-Pick Disease Foundation, Fort Atkinson, WI, USA
| |
Collapse
|
26
|
Acid sphingomyelinase deficiency: The clinical spectrum of 2 patients who carry the Q294K mutation and diagnostic challenges. Mol Genet Metab Rep 2022; 32:100900. [PMID: 36046391 PMCID: PMC9421469 DOI: 10.1016/j.ymgmr.2022.100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022] Open
Abstract
Acid sphingomyelinase deficiency (ASMD) is caused by pathogenic variants in the SMPD1 gene. This chronic, progressive, and potentially fatal condition requires prompt specialist care. The diagnosis of ASMD can be delayed or missed if patients that harbor the Q294K mutation undergo enzyme activity assessments that employ synthetic fluorometric substrates. Two case studies are presented, which illustrate the spectrum of disease in patients with a compound heterozygous Q294K pathogenic variant and the impact of false normal ASM activity results.
Collapse
|
27
|
Abstract
Olipudase alfa (XENPOZYME®) is a recombinant human acid sphingomyelinase that has been developed by Sanofi, for the treatment of acid sphingomyelinase deficiency (ASMD). Olipudase alfa catalyses the hydrolysis of sphingomyelin accumulated in hepatocytes and in mononuclear-macrophage cells, such as the lungs, liver, spleen, kidneys and bone marrow. Olipudase alfa was approved in Japan under the SAKIGAKE designation on 28 March 2022 for use in adult and paediatric patients with non-CNS manifestations of ASMD and has received a positive Committee for Medicinal Products for Human Use opinion in the EU. Regulatory review in the USA is underway. This article summarizes the milestones in the development of olipudase alfa leading to this first approval for the treatment of patients with ASMD.
Collapse
Affiliation(s)
- Susan J Keam
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
28
|
Wang NL, Lin J, Chen L, Lu Y, Xie XB, Abuduxikuer K, Wang JS. Neonatal cholestasis is an early liver manifestation of children with acid sphingomyelinase deficiency. BMC Gastroenterol 2022; 22:227. [PMID: 35534800 PMCID: PMC9088046 DOI: 10.1186/s12876-022-02310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/25/2022] [Indexed: 11/12/2022] Open
Abstract
Background Patients with acid sphingomyelinase deficiency (ASMD) may be referred to a hepatologist for liver manifestations. This study summarized the liver manifestations of patients with ASMD in the early disease course. Methods This study enrolled ASMD patients diagnosed by genetic tests between July 2016 and December 2020 in a national pediatric liver center. The significance of low High-density lipoprotein cholesterol (HDL-C) for aid diagnosis of ASMD in infancy was explored by reviewing 160 consecutive infants with liver manifestations, who underwent both genetic tests and lipid profile studies, between January 2020 and December 2020. Results A total of 7 patients were diagnosed as ASMD, and 10 known disease-causing variants were identified. Hepatosplenomegaly, elevated transaminases, and liver foam cells were observed in all the 7 patients at age ranging from 4 to 31 months. Low HDL-C was detected in 5 patients, cherry red spot in 4 patients, development delay in 3 patients, and interstitial lung diseases in 1 patient. Three ASMD patients developed cholestasis around 1 month of age, and bilirubin levels normalized at age ranging from 3 to 10 months. They had persistently elevated transaminases and hepatosplenomegaly, and died within 4 years of age. Among the 160 infants with liver manifestations, 125 (78.1%) had low HDL-C. Fifty-four had both low HDL-C and splenomegaly, including 48 cholestatic infants, but only 1 (1.9%, 1/54) infant without cholestasis was diagnosed as ASMD. Conclusions ASMD can manifest as neonatal cholestasis in the early disease course. Cholestasis is a pitfall when low HDL-C is used for aid diagnosis of ASMD in infants with splenomegaly.
Collapse
Affiliation(s)
- Neng-Li Wang
- Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jing Lin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lian Chen
- Department of Pathology, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Lu
- Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Xin-Bao Xie
- Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | | | - Jian-She Wang
- Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Wasserstein M, Lachmann R, Hollak C, Arash-Kaps L, Barbato A, Gallagher RC, Giugliani R, Guelbert NB, Ikezoe T, Lidove O, Mabe P, Mengel E, Scarpa M, Senates E, Tchan M, Villarrubia J, Chen Y, Furey S, Thurberg BL, Zaher A, Kumar M. A randomized, placebo-controlled clinical trial evaluating olipudase alfa enzyme replacement therapy for chronic acid sphingomyelinase deficiency (ASMD) in adults: One-year results. Genet Med 2022; 24:1425-1436. [PMID: 35471153 DOI: 10.1016/j.gim.2022.03.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022] Open
Abstract
PURPOSE This trial aimed to assess the efficacy and safety of olipudase alfa enzyme replacement therapy for non-central nervous system manifestations of acid sphingomyelinase deficiency (ASMD) in adults. METHODS A phase 2/3, 52 week, international, double-blind, placebo-controlled trial (ASCEND; NCT02004691/EudraCT 2015-000371-26) enrolled 36 adults with ASMD randomized 1:1 to receive olipudase alfa or placebo intravenously every 2 weeks with intrapatient dose escalation to 3 mg/kg. Primary efficacy endpoints were percent change from baseline to week 52 in percent predicted diffusing capacity of the lung for carbon monoxide and spleen volume (combined with splenomegaly-related score in the United States). Other outcomes included liver volume/function/sphingomyelin content, pulmonary imaging/function, platelet levels, lipid profiles, and pharmacodynamics. RESULTS Least square mean percent change from baseline to week 52 favored olipudase alfa over placebo for percent predicted diffusing capacity of the lung for carbon monoxide (22% vs 3.0% increases, P = .0004), spleen volume (39% decrease vs 0.5% increase, P < .0001), and liver volume (28% vs 1.5% decreases, P < .0001). Splenomegaly-related score decreased in both groups (P = .64). Other clinical outcomes improved in the olipudase alfa group compared with the placebo group. There were no treatment-related serious adverse events or adverse event-related discontinuations. Most adverse events were mild. CONCLUSION Olipudase alfa was well tolerated and associated with significant and comprehensive improvements in disease pathology and clinically relevant endpoints compared with placebo in adults with ASMD.
Collapse
Affiliation(s)
- Melissa Wasserstein
- Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY.
| | - Robin Lachmann
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Carla Hollak
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Laila Arash-Kaps
- Villa Metabolica, Department of Pediatric and Adolescent Medicine, University Medical Center Mainz, Mainz, Germany; Clinical Science for LSD, SphinCS, Hochheim, Germany
| | - Antonio Barbato
- Department of Clinical Medicine and Surgery, "Federico II" University Hospital, Naples, Italy
| | - Renata C Gallagher
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA
| | - Roberto Giugliani
- Medical Genetics Service and DR BRASIL Research Group, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; Department of Genetics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; National Institute on Population Medical Genetics (INAGEMP), Porto Alegre, Brazil
| | | | - Takayuki Ikezoe
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Olivier Lidove
- Service de Médecine Interne, Diaconesses Croix Saint-Simon Hospital, Paris, France
| | - Paulina Mabe
- Servicio de Pediatría, Clínica Santa María, Santiago, Chile
| | - Eugen Mengel
- Clinical Science for LSD, SphinCS, Hochheim, Germany
| | - Maurizio Scarpa
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, Udine, Italy
| | - Eubekir Senates
- Department of Gastroenterology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Michel Tchan
- Department of Genetic Medicine, Westmead Hospital, Sydney, Australia
| | - Jesus Villarrubia
- Hematology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Yixin Chen
- Clinical Development, Sanofi, Bridgewater, NJ
| | - Sandy Furey
- Clinical Development, Sanofi, Bridgewater, NJ
| | | | - Atef Zaher
- Clinical Development, Sanofi, Bridgewater, NJ
| | | |
Collapse
|
30
|
Scaramellini N, Croci G, De Magistris C, Panzieri DL, Cassinerio E, Marcon A, Nascimbeni F, Quarta A, Cappellini MD, Motta I. Splenomegaly: Dare to think rare. Am J Hematol 2022; 97:1259-1265. [PMID: 35384034 DOI: 10.1002/ajh.26559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Natalia Scaramellini
- Rare Diseases Center, General Medicine Unit Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
- Università degli Studi di Milano Milan Italy
| | - Giorgio Croci
- Division of Pathology Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
- Department of Pathophysiology and Transplantation Università degli Studi di Milano Milan Italy
| | - Claudio De Magistris
- Rare Diseases Center, General Medicine Unit Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
- Università degli Studi di Milano Milan Italy
| | - Daniele Lello Panzieri
- Rare Diseases Center, General Medicine Unit Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
- Università degli Studi di Milano Milan Italy
| | - Elena Cassinerio
- Rare Diseases Center, General Medicine Unit Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| | - Alessia Marcon
- Rare Diseases Center, General Medicine Unit Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
- Department of Clinical Sciences and Community Health Università degli Studi di Milano Milan Italy
| | - Fabio Nascimbeni
- Regional Referral Centre for Lysosomal Storage Diseases, Division of Internal Medicine and Metabolism University Hospital of Baggiovara, AOU of Modena Modena Italy
| | - Antonella Quarta
- Microcythemia Center Hematology with Transplant Unit, “A. Perrino” Hospital Brindisi Italy
| | - Maria Domenica Cappellini
- Rare Diseases Center, General Medicine Unit Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| | - Irene Motta
- Rare Diseases Center, General Medicine Unit Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
- Department of Clinical Sciences and Community Health Università degli Studi di Milano Milan Italy
| |
Collapse
|
31
|
Evelina M, Roberto F, Caterina R, Federica D, Giovanni P, Vincenza G, Alberto B, Massimo S. ATHEROGENIC LIPID PROFILE IN PATIENTS WITH NIEMANN-PICK DISEASE TYPE B: WHAT TREATMENT STRATEGIES? J Clin Lipidol 2022; 16:143-154. [DOI: 10.1016/j.jacl.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/05/2021] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
|
32
|
Bittel DC, Sreetama SC, Chandra G, Ziegler R, Nagaraju K, Van der Meulen JH, Jaiswal JK. Secreted acid sphingomyelinase as a potential gene therapy for limb girdle muscular dystrophy 2B. J Clin Invest 2022; 132:e141295. [PMID: 34981776 PMCID: PMC8718136 DOI: 10.1172/jci141295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Efficient sarcolemmal repair is required for muscle cell survival, with deficits in this process leading to muscle degeneration. Lack of the sarcolemmal protein dysferlin impairs sarcolemmal repair by reducing secretion of the enzyme acid sphingomyelinase (ASM), and causes limb girdle muscular dystrophy 2B (LGMD2B). The large size of the dysferlin gene poses a challenge for LGMD2B gene therapy efforts aimed at restoring dysferlin expression in skeletal muscle fibers. Here, we present an alternative gene therapy approach targeting reduced ASM secretion, the consequence of dysferlin deficit. We showed that the bulk endocytic ability is compromised in LGMD2B patient cells, which was addressed by extracellularly treating cells with ASM. Expression of secreted human ASM (hASM) using a liver-specific adeno-associated virus (AAV) vector restored membrane repair capacity of patient cells to healthy levels. A single in vivo dose of hASM-AAV in the LGMD2B mouse model restored myofiber repair capacity, enabling efficient recovery of myofibers from focal or lengthening contraction-induced injury. hASM-AAV treatment was safe, attenuated fibro-fatty muscle degeneration, increased myofiber size, and restored muscle strength, similar to dysferlin gene therapy. These findings elucidate the role of ASM in dysferlin-mediated plasma membrane repair and to our knowledge offer the first non-muscle-targeted gene therapy for LGMD2B.
Collapse
Affiliation(s)
- Daniel C. Bittel
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Sen Chandra Sreetama
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Goutam Chandra
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Robin Ziegler
- Rare and Neurologic Diseases Research, Sanofi, Framingham, Massachusetts, USA
| | - Kanneboyina Nagaraju
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Binghamton, New York, USA
| | | | - Jyoti K. Jaiswal
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
33
|
Acid Sphingomyelinase Deficiency: A Clinical and Immunological Perspective. Int J Mol Sci 2021; 22:ijms222312870. [PMID: 34884674 PMCID: PMC8657623 DOI: 10.3390/ijms222312870] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Acid sphingomyelinase deficiency (ASMD) is a lysosomal storage disease caused by deficient activity of acid sphingomyelinase (ASM) enzyme, leading to the accumulation of varying degrees of sphingomyelin. Lipid storage leads to foam cell infiltration in tissues, and clinical features including hepatosplenomegaly, pulmonary insufficiency and in some cases central nervous system involvement. ASM enzyme replacement therapy is currently in clinical trial being the first treatment addressing the underlying pathology of the disease. Therefore, presently, it is critical to better comprehend ASMD to improve its diagnose and monitoring. Lung disease, including recurrent pulmonary infections, are common in ASMD patients. Along with lung disease, several immune system alterations have been described both in patients and in ASMD animal models, thus highlighting the role of ASM enzyme in the immune system. In this review, we summarized the pivotal roles of ASM in several immune system cells namely on macrophages, Natural Killer (NK) cells, NKT cells, B cells and T cells. In addition, an overview of diagnose, monitoring and treatment of ASMD is provided highlighting the new enzyme replacement therapy available.
Collapse
|
34
|
Montgomery MK, Taddese AZ, Bayliss J, Nie S, Williamson NA, Watt MJ. Hexosaminidase A (HEXA) regulates hepatic sphingolipid and lipoprotein metabolism in mice. FASEB J 2021; 35:e22046. [PMID: 34800307 DOI: 10.1096/fj.202101186r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 02/03/2023]
Abstract
Hexosaminidase A (HexA), a heterodimer consisting of HEXA and HEXB, converts the ganglioside sphingolipid GM2 to GM3 by removing a terminal N-acetyl-d-galactosamine. HexA enzyme deficiency in humans leads to GM2 accumulation in cells, particularly in neurons, and is associated with neurodegeneration. While HexA and sphingolipid metabolism have been extensively investigated in the context of neuronal lipid metabolism, little is known about the metabolic impact of HexA and ganglioside degradation in other tissues. Here, we focussed on the role of HexA in the liver, which is a major regulator of systemic lipid metabolism. We find that hepatic Hexa expression is induced by lipid availability and increased in the presence of hepatic steatosis, which is associated with increased hepatic GM3 content. To assess the impact of HEXA on hepatic lipid metabolism, we used an adeno-associated virus to overexpress HEXA in the livers of high-fat diet fed mice. HEXA overexpression was associated with increased hepatic GM3 content and increased expression of enzymes involved in the degradation of glycated sphingolipids, ultimately driving sphingomyelin accumulation in the liver. In addition, HEXA overexpression led to substantial proteome remodeling in cell surface lipid rafts, which was associated with increased VLDL processing and secretion, hypertriglyceridemia and ectopic lipid accumulation in peripheral tissues. This study established an important role of HEXA in modulating hepatic sphingolipid and lipoprotein metabolism.
Collapse
Affiliation(s)
- Magdalene K Montgomery
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amanuiel Z Taddese
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jacqueline Bayliss
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas A Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Mauhin W, Levade T, Vanier MT, Froissart R, Lidove O. Prevalence of Cancer in Acid Sphingomyelinase Deficiency. J Clin Med 2021; 10:jcm10215029. [PMID: 34768550 PMCID: PMC8584997 DOI: 10.3390/jcm10215029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/07/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
Acid sphingomyelinase deficiency (ASMD) is an inherited lysosomal disease characterised by a diffuse accumulation of sphingomyelin that cannot be catabolised into ceramide and phosphocholine. We studied the incidence of cancer in ASMD patients. We retrospectively reviewed the medical records of the adult chronic visceral ASMD patients in our cohort. Thirty-one patients (12 females, 19 males) were included with a median age of 48.7 y. (IQ: 30.3–55.1). Five cancers were observed in 1 female (breast cancer) and 4 males (two lung cancers, one thyroid cancer and one bladder cancer), resulting in a prevalence of 16.1%. The existence of cancer was associated with a more severe ASMD characterised by a larger spleen (25 cm (22.5–25) vs. 18 cm (17–20); p = 0.042); lower diffusing capacity of the lung for carbon monoxide (DLCO; 29.5 % (17.8–43.0) vs. 58.5 % (49.8–69.5%); p = 0.01) and tobacco use (100% vs. 45%; p = 0.04). Three patients died, all from cancer (p = 0.002). The prevalence of cancer appeared to be strikingly elevated in our cohort of patients, without any specificity in the type of cancer. Systematic screening for cancer should be performed, and carcinogenic substances such as tobacco should be avoided in patients with ASMD.
Collapse
Affiliation(s)
- Wladimir Mauhin
- Internal Medicine Department, Groupe Hospitalier Diaconesses Croix Saint Simon, 75020 Paris, France;
- Correspondence: ; Tel.: +33-1-4464-1602
| | - Thierry Levade
- Metabolic Biochemistry Laboratory, Reference Center for Hereditary Metabolic Disorders, Biology Institute, Toulouse University Hospital, 31000 Toulouse, France;
- Toulouse Cancer Research Center, INSERM-University of Toulouse Paul Sabatier, 31000 Toulouse, France
| | | | - Roseline Froissart
- Biochemical and Molecular Biology Department, Lyon University Hospital, 69500 Bron, France;
| | - Olivier Lidove
- Internal Medicine Department, Groupe Hospitalier Diaconesses Croix Saint Simon, 75020 Paris, France;
| |
Collapse
|
36
|
Diaz GA, Jones SA, Scarpa M, Mengel KE, Giugliani R, Guffon N, Batsu I, Fraser PA, Li J, Zhang Q, Ortemann-Renon C. One-year results of a clinical trial of olipudase alfa enzyme replacement therapy in pediatric patients with acid sphingomyelinase deficiency. Genet Med 2021; 23:1543-1550. [PMID: 33875845 PMCID: PMC8354848 DOI: 10.1038/s41436-021-01156-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To assess olipudase alfa enzyme replacement therapy for non-central nervous system manifestations of acid sphingomyelinase deficiency (ASMD) in children. METHODS This phase 1/2, international, multicenter, open-label trial (ASCEND-Peds/NCT02292654) administered intravenous olipudase alfa every 2 weeks with intrapatient dose escalation to 3 mg/kg. Primary outcome was safety through week 64. Secondary outcomes included pharmacokinetics, spleen and liver volumes, lung diffusing capacity (DLCO), lipid profiles, and height through week 52. RESULTS Twenty patients were enrolled: four adolescents (12-17 years), nine children (6-11 years), and seven infants/early child (1-5 years). Most adverse events were mild or moderate, including infusion-associated reactions (primarily urticaria, pyrexia, and/or vomiting) in 11 patients. Three patients had serious treatment-related events: one with transient asymptomatic alanine aminotransferase increases, another with urticaria and rash (antidrug antibody positive [ADA+]), and a third with an anaphylactic reaction (ADA+) who underwent desensitization and reached the 3 mg/kg maintenance dose. Mean splenomegaly and hepatomegaly improved by >40% (p < 0.0001). Mean % predicted DLCO improved by 32.9% (p = 0.0053) in patients able to perform the test. Lipid profiles and elevated liver transaminase levels normalized. Mean height Z-scores improved by 0.56 (p < 0.0001). CONCLUSION In this study in children with chronic ASMD, olipudase alfa was generally well-tolerated with significant, comprehensive improvements in disease pathology across a range of clinically relevant endpoints.
Collapse
Affiliation(s)
- George A Diaz
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Simon A Jones
- St Mary's Hospital, Manchester University Foundation Trust, University of Manchester, Manchester, UK
| | - Maurizio Scarpa
- Regional Coordinating Center for Rare Diseases, University Hospital Udine, Udine, Italy
| | | | - Roberto Giugliani
- Dept Genetics, UFRGS, Medical Genetics Clinical Research Group, HCPA, and INAGEMP, Porto Alegre, Brazil
| | - Nathalie Guffon
- Reference Center for Inherited Metabolic Disorders, Femme Mère Enfant Hospital, Lyon, France
| | | | | | - Jing Li
- Sanofi, Bridgewater, NJ, USA
| | | | | |
Collapse
|
37
|
A molecular genetics view on Mucopolysaccharidosis Type II. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108392. [PMID: 34893157 DOI: 10.1016/j.mrrev.2021.108392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Mucopolysaccharidosis Type II (MPS II) is an X-linked recessive genetic disorder that primarily affects male patients. With an incidence of 1 in 100,000 male live births, the disease is one of the orphan diseases. MPS II symptoms are caused by mutations in the lysosomal iduronate-2-sulfatase (IDS) gene. The mutations cause a loss of enzymatic performance and result in the accumulation of glycosaminoglycans (GAGs), heparan sulfate and dermatan sulfate, which are no longer degradable. This inadvertent accumulation causes damage in multiple organs and leads either to a severe neurological course or to an attenuated course of the disease, although the exact relationship between mutation, extent of GAG accumulation and disease progression is not yet fully understood. This review is intended to present current diagnostic procedures and therapeutic interventions. In times when the genetic profile of patients plays an increasingly important role in the assessment of therapeutic success and future drug design, we chose to further elucidate the impact of genetic diversity within the IDS gene on disease phenotype and potential implications in current diagnosis, prognosis and therapy. We report recent advances in the structural biological elucidation of I2S enzyme that that promises to improve our future understanding of the molecular damage of the hundreds of IDS gene variants and will aid damage prediction of novel mutations in the future.
Collapse
|
38
|
Marchetti M, Faggiano S, Mozzarelli A. Enzyme Replacement Therapy for Genetic Disorders Associated with Enzyme Deficiency. Curr Med Chem 2021; 29:489-525. [PMID: 34042028 DOI: 10.2174/0929867328666210526144654] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
Mutations in human genes might lead to loss of functional proteins, causing diseases. Among these genetic disorders, a large class is associated with the deficiency in metabolic enzymes, resulting in both an increase in the concentration of substrates and a loss in the metabolites produced by the catalyzed reactions. The identification of therapeutic actions based on small molecules represents a challenge to medicinal chemists because the target is missing. Alternative approaches are biology-based, ranging from gene and stem cell therapy, CRISPR/Cas9 technology, distinct types of RNAs, and enzyme replacement therapy (ERT). This review will focus on the latter approach that since the 1990s has been successfully applied to cure many rare diseases, most of them being lysosomal storage diseases or metabolic diseases. So far, a dozen enzymes have been approved by FDA/EMA for lysosome storage disorders and only a few for metabolic diseases. Enzymes for replacement therapy are mainly produced in mammalian cells and some in plant cells and yeasts and are further processed to obtain active, highly bioavailable, less degradable products. Issues still under investigation for the increase in ERT efficacy are the optimization of enzymes interaction with cell membrane and internalization, the reduction in immunogenicity, and the overcoming of blood-brain barrier limitations when neuronal cells need to be targeted. Overall, ERT has demonstrated its efficacy and safety in the treatment of many genetic rare diseases, both saving newborn lives and improving patients' life quality, and represents a very successful example of targeted biologics.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Biopharmanet-TEC Interdepartmental Center, University of Parma, Parco Area delle Scienze, Bldg 33., 43124, Parma, Italy
| | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Andrea Mozzarelli
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
39
|
Carubbi F, Barbato A, Burlina AB, Francini F, Mignani R, Pegoraro E, Landini L, De Danieli G, Bruni S, Strazzullo P. Nutrition in adult patients with selected lysosomal storage diseases. Nutr Metab Cardiovasc Dis 2021; 31:733-744. [PMID: 33589321 DOI: 10.1016/j.numecd.2020.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of clinically heterogeneous disorders affecting the function of lysosomes and are characterized by an accumulation of undigested substrates within several cell types. In recent years there have been substantial advances in supportive care and drug treatment for some LSDs, leading to improved patient survival, as seen in Gaucher, Pompe and Fabry disease and some Mucopolysaccharidoses; however, many symptoms still persist. Thus it is now even more important to improve patients' quality of life and reduce symptoms and comorbidities. One potential way of achieving this goal is through adjunct nutritional therapy, which is challenging as patients may be overweight with associated consequences, or malnourished, or underweight. Furthermore, drugs used to treat LSDs can modify the metabolic status and needs of patients. There are currently not enough data to make specific dietary recommendations for individual LSDs; however, suggestions can be made for managing clinical manifestations of the diseases, as well as treatment-associated adverse events. The metabolic and nutritional status of adult patients must be regularly assessed and individualized dietary plans may be created to cater to a patient's specific needs. Damage to the autophagic process is a common feature in LSDs that is potentially sensitive to dietary manipulation and needs to be assessed in clinical studies.
Collapse
Affiliation(s)
- Francesca Carubbi
- U.O.C. Medicina metabolica AOU Modena, Metabolic Medicine Unit, Modena University Hospital, Modena, Italy.
| | - Antonio Barbato
- Department of Clinical Medicine and Surgery, "Federico II" University Hospital, Naples, Italy
| | - Alberto B Burlina
- U.O.C. Malattie Metaboliche Ereditarie, Major Operational Unit of Hereditary Metabolic Diseases, Azienda Ospedaliera di Padova, Padua, Italy
| | - Francesco Francini
- U.O. Nutrizione Clinica, Department of Medicine, Azienda Ospedaliera di Padova, Padua, Italy
| | - Renzo Mignani
- U.O. di Nefrologia e Dialisi dell'Ospedale Infermi di Rimini, Nephrology Operational Unit of the Infermi Hospital in Rimini, Rimini, Italy
| | - Elena Pegoraro
- Department of Neuroscience, University of Padova, Padua, Italy
| | - Linda Landini
- S.S.D. Dietetics and Clinical Nutrition ASL 4 Chiavarese Liguria - Sestri Levante Hospital, Italy
| | | | | | - Pasquale Strazzullo
- Department of Clinical Medicine and Surgery, "Federico II" University Hospital, Naples, Italy
| |
Collapse
|
40
|
Bitencourt FV, Bender CV, Fiorini T, Gomes SC, Visioli F, Angst PDM. Periodontal condition and treatment in a patient with rare systemic condition: A case report for acid sphingomyelinase deficiency. SPECIAL CARE IN DENTISTRY 2020; 41:103-110. [PMID: 33179797 DOI: 10.1111/scd.12540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Acid sphingomyelinase deficiency (ASMD) is a rare group of autosomal recessive disorders. This report provides the first detailed description of the periodontal condition and treatment response in a patient with chronic visceral ASMD. CASE DESCRIPTION A 49-year-old white woman with ASMD showed elevated visible plaque index (VPI), gingival bleeding index (GBI), and bleeding on probing (BOP) at 100% of sites. Periodontal pocket depths (PPD) were mostly shallow to moderate (at 96% of sites), whereas the loss of clinical attachment (CAL) was moderate to severe (54% and 46% of sites, respectively, at 4-6 mm and ≥7 mm categories). Periapical radiographs revealed the presence of furcation involvement and intra-bony defects. The periodontal diagnosis was periodontitis stage IV, generalized, grade C. Ninety days after the end of the supra and subgingival control (e.g., cause-related therapy), marked reduction was observed for all periodontal indicators: VPI (-83%), GBI (-79%), BOP (-85%), elimination of sites PPD ≥7 mm, 27% increase in sites PPD 1-3 mm (from 64% to 91%), and gain of clinical attachment (gain of 11% CAL 1-3 mm and 25% CAL 4-6 mm; and a reduction of 36% CAL ≥7 mm). PRACTICAL IMPLICATIONS Despite the severity of the initial periodontal condition, the patient with chronic visceral ASMD responded well to the non-surgical periodontal treatment.
Collapse
Affiliation(s)
- Fernando Valentim Bitencourt
- Department of Conservative Dentistry - Periodontology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cláubia Viegas Bender
- Department of Conservative Dentistry - Oral Pathology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiago Fiorini
- Department of Conservative Dentistry - Periodontology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Sabrina Carvalho Gomes
- Department of Conservative Dentistry - Periodontology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Visioli
- Department of Conservative Dentistry - Oral Pathology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patricia Daniela Melchiors Angst
- Department of Conservative Dentistry - Periodontology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
41
|
Jones SA, McGovern M, Lidove O, Giugliani R, Mistry PK, Dionisi-Vici C, Munoz-Rojas MV, Nalysnyk L, Schecter AD, Wasserstein M. Clinical relevance of endpoints in clinical trials for acid sphingomyelinase deficiency enzyme replacement therapy. Mol Genet Metab 2020; 131:116-123. [PMID: 32616389 DOI: 10.1016/j.ymgme.2020.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Acid sphingomyelinase deficiency (ASMD) also known as Niemann-Pick disease, is a rare lysosomal storage disorder with a diverse disease spectrum that includes slowly progressive, chronic visceral (type B) and neurovisceral forms (intermediate type A/B), in addition to infantile, rapidly progressive fatal neurovisceral disease (type A). PURPOSE AND METHODS We review the published evidence on the relevance of splenomegaly and reduced lung diffusion capacity to the clinical burden of chronic forms of ASMD. Targeted literature searches were conducted to identify relevant ASMD and non-ASMD studies for associations between diffusing capacity of the lungs for carbon monoxide (DLCO) and splenomegaly, with clinical parameters and outcome measures. RESULTS Respiratory disease and organomegaly are primary and independent contributors to mortality, disease burden, and morbidity for patients with chronic ASMD. The degree of splenomegaly correlates with short stature, atherogenic lipid profile, and degree of abnormality of hematologic parameters, and thus may be considered a surrogate marker for bleeding risk, abnormal lipid profiles and possibly, liver fibrosis. Progressive lung disease is a prevalent clinical feature of chronic ASMD, contributing to a decreased quality of life (QoL) and an increased disease burden. In addition, respiratory-related complications are a major cause of mortality in ASMD. CONCLUSIONS The reviewed evidence from ASMD natural history and observational studies supports the use of lung function and spleen volume as clinically meaningful endpoints in ASMD trials that translate into important measures of disease burden for patients.
Collapse
Affiliation(s)
- Simon A Jones
- Manchester University NHS Trust Ctr Genomic Medicine, Manchester, UK.
| | | | - Olivier Lidove
- Groupe Hospitalier Diaconesses-Croix St Simon, Paris, France
| | - Roberto Giugliani
- Med Genet Serv & DR BRASIL Research Group, HCPA, Dept Genetics, UFRGS, and INAGEMP, Porto Alegre, Brazil
| | | | | | | | | | | | - Melissa Wasserstein
- Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
42
|
Opoka L, Wyrostkiewicz D, Radwan-Rohrenschef P, Roży A, Tylki-Szymańska A, Tomkowski W, Szturmowicz M. Combined Emphysema and Interstitial Lung Disease as a Rare Presentation of Pulmonary Involvement in a Patient with Chronic Visceral Acid Sphingomyelinase Deficiency (Niemann-Pick Disease Type B). AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e923394. [PMID: 32759889 PMCID: PMC7431013 DOI: 10.12659/ajcr.923394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/20/2020] [Accepted: 05/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Niemann-Pick disease is a rare genetic disorder caused by mutations in sphingomyelin phosphodiesterase 1 gene. It results in acid sphingomyelinase deficiency (ASMD) and sphingomyelin intracellular accumulation. Lung disease is diagnosed mostly in chronic visceral ASMD. Ground-glass opacities and smooth interlobular septal thickening are described most frequently. They are localized predominantly in the lower parts of both lungs. CASE REPORT The authors describe a rare type of lung involvement, composed of emphysema and interstitial lung disease (ILD), in a nonsmoking adult male with chronic visceral ASMD. Areas of ground-glass opacities and lung fibrosis presenting as reticulation and bronchiectasis have been described in high-resolution computed tomography of the lungs. The radiological findings were localized predominantly in the middle and lower parts of both lungs. Large air spaces of marginal emphysema, localized in the upper lobes, were also demonstrated. Foamy macrophages, staining blue with May-Grünwald-Giemsa, were found in bronchoalveolar lavage, confirming lung involvement in the course of ASMD. The course of disease was stable, with no hypoxemia at rest. Nevertheless, because of markedly decreased lung transfer for carbon monoxide and significant desaturation on exertion, further controls have been planned, with qualification for long-term oxygen therapy in case of deterioration. CONCLUSIONS We present a unique type of lung involvement, combined emphysema and ILD, in a nonsmoking adult patient with chronic visceral ASMD. On such occasion chronic obstructive pulmonary disease coexisting with ILD as well as chronic pulmonary fibrosis and emphysema syndrome should be excluded.
Collapse
Affiliation(s)
- Lucyna Opoka
- Department of Radiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Dorota Wyrostkiewicz
- 1 Department of Lung Diseases, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Piotr Radwan-Rohrenschef
- 1 Department of Lung Diseases, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Adriana Roży
- Department of Genetics and Clinical Immunology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Witold Tomkowski
- 1 Department of Lung Diseases, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Monika Szturmowicz
- 1 Department of Lung Diseases, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| |
Collapse
|
43
|
Al-Eitan L, Alqa'qa' K, Amayreh W, Aljamal H, Khasawneh R, Al-Zoubi B, Okour I, Haddad A, Haddad Y, Haddad H. Novel mutations in the SMPD1 gene in Jordanian children with Acid sphingomyelinase deficiency (Niemann-Pick types A and B). Gene 2020; 747:144683. [PMID: 32311413 DOI: 10.1016/j.gene.2020.144683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 01/13/2023]
Abstract
Acid sphingomyelinase (ASM) deficiency (ASMD) is a spectrum that includes Niemann-Pick disease (NPD) types A (NPD A) and B (NPD B). ASMD is characterized by intracellular accumulation of unesterified cholesterol and gangliosides within the endosomal-lysosomal system. It is caused by different mutations in SMPD1 gene that result in reduction or complete absence of acid sphingomyelinase activity in the cells. Herein, four unrelated consanguineous families with two NPD A and three NPD B patients were assessed for their genotypes via sequencing of the SMPD1 gene and their acid sphingomyelinase enzymatic activity. Among the eight identified mutations, three were novel and reported for the first time in Jordanian families (c.120_131delGCTGGCGCTGGC or c.132_143delGCTGGCGCTGGC, c.1758T > G, and c.1344T > A). All the patients displayed ASM activity lower than 1.3 µmol/l/h (P < 0.001). Genotyping and enzymatic assessment might play a significant role in disease identification in people at risk to facilitate genetic counseling in the future.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan; Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Kifah Alqa'qa'
- Department of Pediatrics, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Wajdi Amayreh
- Department of Pediatrics, Metabolic Genetics Clinic, Queen Rania Al-Abdullah Children's Hospital, King Hussein Medical Centre, Amman 11855, Jordan
| | - Hanan Aljamal
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rame Khasawneh
- Department of Pathology, Division of Molecular Genetic Pathology, King Hussein Medical Center, Amman 11733, Jordan
| | - Batool Al-Zoubi
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Israa Okour
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Amany Haddad
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 61300, Czech Republic; Central European Institute of Technology, Brno University of Technology, Brno 61200, Czech Republic
| | - Hazem Haddad
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
44
|
Nascimbeni F, Dionisi Vici C, Vespasiani Gentilucci U, Angelico F, Nobili V, Petta S, Valenti L. AISF update on the diagnosis and management of adult-onset lysosomal storage diseases with hepatic involvement. Dig Liver Dis 2020; 52:359-367. [PMID: 31902560 DOI: 10.1016/j.dld.2019.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
Abstract
Lysosomal storage diseases (LSDs) are a heterogeneous group of inherited disorders caused by loss-of-function mutations in genes encoding for lysosomal enzymes/proteins. The consequence is a progressive accumulation of substrates in these intracellular organelles, resulting in cellular and tissue damage. The overall incidence is about 1/8000 live births, but is likely underestimated. LSDs are chronic progressive multi-systemic disorders, generally presenting with visceromegaly, and involvement of the central nervous system, eyes, the skeleton, and the respiratory and cardiovascular systems. The age at onset and phenotypic expression are highly variable, according to the specific enzymatic defect and tissues involved, the residual activity, and the disease-causing genotype. Enzyme-replacement therapies and substrate-reduction therapies have recently become available, leading to the improvement in symptoms, disease progression and quality of life of affected individuals. Liver involvement and hepatosplenomegaly are frequent features of LSDs and a hallmark of adult-onset forms, frequently leading to medical attention. LSDs should therefore be considered in the differential diagnosis of liver disease with organomegaly. The present document will provide a short overview of adult-onset LSDs with hepatic involvement, highlighting the specificities and systemic manifestations of the ones most frequently encountered in clinical practice, which may hint at the correct diagnosis and the appropriate treatment.
Collapse
Affiliation(s)
- Fabio Nascimbeni
- Regional Referral Centre for Lysosomal Storage Diseases, Division of Internal Medicine and Metabolism, Civil Hospital, AOU of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Dionisi Vici
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Francesco Angelico
- Department of Public Health and Infective Diseases, Università Sapienza, Roma, Italy
| | - Valerio Nobili
- Division of Hepatology and Gastroenterology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Salvatore Petta
- Gastroenterology and Hepatology, PROMISE, Palermo University, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, and Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
45
|
Johnson AA. Lipid Hydrolase Enzymes: Pragmatic Prolongevity Targets for Improved Human Healthspan? Rejuvenation Res 2019; 23:107-121. [PMID: 31426688 DOI: 10.1089/rej.2019.2211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Compelling evidence suggests that lipid metabolism, which plays critical roles in fat storage, cell membrane maintenance, and cell signaling, is intricately linked to aging. Lipid hydrolases are important enzymes that catalyze the hydrolysis of more complex lipids into simpler lipids. Diverse interventions targeting lipid hydrolases can prolong or shorten life in model organisms. For example, the genetic removal of or RNAi knockdown against a phospholipase can reduce lifespan in Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus. The removal of lysosomal acid lipase results in premature death in mice, while its overexpression in nematodes generates lean, long-lived individuals. The overexpression or inhibition of diacylglycerol lipase leads to enhanced or reduced longevity, respectively, in both worms and flies. Lifespan can also be extended by knocking down triacylglycerol lipases in yeast, overexpressing fatty acid amide hydrolase in worms, or removing hepatic lipase in a mouse model of coronary disease. Conversely, flies lacking the triacylglycerol lipase Brummer are obese and short lived. Linking sphingolipids and aging, removing the sphingomyelinase inositol phosphosphingolipid phospholipase shortens chronological lifespan in Saccharomyces cerevisiae, while inhibiting an acid sphingomyelinase in worms or inactivating alkaline ceramidase in flies extends lifespan. The clinical potential of manipulating these enzymes is highlighted by the FDA-approved obesity drug orlistat, which is an inhibitor of pancreatic and hepatic lipases that induces weight loss and improves insulin/glucose homeostasis. Additional research is warranted to better understand how these lipid hydrolases impact aging and to determine if clinical interventions targeting them are capable of improving human healthspan.
Collapse
|
46
|
Capron T, Trigui Y, Gautier C, Puech B, Chanez P, Reynaud-Gaubert M. Respiratory impairment in Niemann-Pick B disease: Two case reports and review for the pulmonologist. Respir Med Res 2019; 76:13-18. [PMID: 31254945 DOI: 10.1016/j.resmer.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 11/18/2022]
Abstract
Acid sphingomyelinase deficiency (ASMD), also called Niemann-Pick disease, is a storage disorder with pulmonary involvement but few respiratory symptoms in adults. However, the disease may evolve towards clinically relevant respiratory symptoms with referral to the pulmonologist for management and care. Based on two case reports illustrating respiratory impairment, the aim of this work was to review clinical features, diagnosis, respiratory prognostic and therapeutics for the pulmonologist. Overall, storage disorder should be suspected in the presence of hepatosplenomegaly and interstitial lung disease. Concomitant thrombopenia or hyperlipidemia should also draw attention. Following recent consensus guidelines, diagnosis is based on enzyme assay for ASM activity in blood, with subsequent gene sequencing once the biochemical diagnosis has been confirmed. Disease is slowly progressive and the main causes of death are respiratory and liver failure. Presence of emphysema lesions or worsening of respiratory symptoms should call for the intensification of treatment. Though enzyme replacement therapy is a promising way of development, lung transplantation might be considered for these patients in the absence of contraindication.
Collapse
Affiliation(s)
- T Capron
- Centre de compétences national maladies pulmonaires rares, équipe de transplantation pulmonaire, Aix-Marseille université, CHU Nord, Assistance publique-Hôpitaux de Marseille, 13915 Marseille, France.
| | - Y Trigui
- Clinique des bronches, allergies et sommeil, Aix-Marseille université, CHU Nord, Assistance publique-Hôpitaux de Marseille, 13915 Marseille, France
| | - C Gautier
- Centre de compétences national maladies pulmonaires rares, équipe de transplantation pulmonaire, Aix-Marseille université, CHU Nord, Assistance publique-Hôpitaux de Marseille, 13915 Marseille, France
| | - B Puech
- Service de radiologie, Aix-Marseille université, CHU Nord, Assistance publique-Hôpitaux de Marseille, 13915 Marseille, France
| | - P Chanez
- Clinique des bronches, allergies et sommeil, Aix-Marseille université, CHU Nord, Assistance publique-Hôpitaux de Marseille, 13915 Marseille, France
| | - M Reynaud-Gaubert
- Centre de compétences national maladies pulmonaires rares, équipe de transplantation pulmonaire, Aix-Marseille université, CHU Nord, Assistance publique-Hôpitaux de Marseille, 13915 Marseille, France
| |
Collapse
|
47
|
Case Report of Gastrointestinal Bleeding in an Adult with Chronic Visceral Acid Sphingomyelinase Deficiency. Case Rep Gastrointest Med 2019; 2019:9613457. [PMID: 31080679 PMCID: PMC6475549 DOI: 10.1155/2019/9613457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 11/18/2022] Open
Abstract
Introduction Acid sphingomyelinase deficiency (ASMD, also known as Niemann-Pick Type A and Type B disease) is a rare, inherited metabolic disorder. Liver-related issues, including cirrhosis and variceal haemorrhage, are a leading cause of early mortality in individuals with chronic forms of ASMD. Due to the rarity of this lysosomal storage disorder, there can be a lack of awareness that adults with chronic ASMD disease are at significant risk of cirrhosis, portal hypertension, and variceal bleeding. This case highlights an unusual presentation of recurrent variceal bleeding in an adult with cirrhosis and portal hypertension due to chronic visceral ASMD. Case Presentation A patient with severe splenomegaly was diagnosed with ASMD at age of 25. At age 64 they had multiple hospital admissions for hematochezia (originally diagnosed as ischemic colitis) accompanied by hypotension (blood pressure 91/45 mmHg), anemia (hemoglobin 8.5g/dL, ref 12-16; INR 1.4, ref ≤1.2), and mild renal insufficiency (creatinine 1.33mg/dL, ref 0.51-0.95). Colonoscopy did not reveal a source of bleeding. Computerized tomography scanning imaging showed diffuse venous collaterals and ascites. Arteriographies during subsequent episodes of bleeding were negative for active arterial intestinal bleeding. Recurrent gastrointestinal bleeding was found to originate from a varicose vein cluster connected to the right iliac vein and the superior mesenteric vein, located in the submucosa of a small intestinal loop. Multiple varices were secondary to portal hypertension in the context of cirrhosis. The patient died from recurrent variceal bleeding that exacerbated liver failure worsened by pneumonia and hypovolemic and septic shock. Conclusions The variceal bleeding in this patient was atypical in that it originated from venous collaterals bleeding into the small intestine rather than the more typical gastroesophageal varices observed in ASMD. With long standing liver dysfunction and gradual development of portal hypertension, intestinal varices rather than occult intestinal bleeding due to ischemia should be considered in ASMD patients presenting with either hematochezia or hematemesis.
Collapse
|
48
|
Lidove O, Mauhin W, London J. Acid sphingomyelinase deficiency (Niemann‒Pick disease Type B) as an inflammatory disease. J Heart Lung Transplant 2019; 38:583-584. [DOI: 10.1016/j.healun.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 11/17/2022] Open
|