1
|
Piscopo N, Costanzo M, Gelzo M, Sacchettino L, Vitiello C, Balestrieri A, Napolitano F, Esposito L. Effect of the sarcoptic mange upon metabolome profiling in wild boars. Res Vet Sci 2025; 183:105505. [PMID: 39674146 DOI: 10.1016/j.rvsc.2024.105505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Sarcoptic mange is a highly contagious disease and represents one of the main health concerns for humans and non-human mammals worldwide. It is caused by the mite Sarcoptes scabiei and can course with different morphological and physiological presentations. Accordingly, aside from skin inflammation, hosts may experience changes in body condition, immune system, biochemistry, reproduction, and thermoregulation, although the understanding of the downstream metabolic burden is still missing. In this context, mange-derived fat store depletion and following imbalance of fatty acid composition might contribute to the severity of the illness. The lack of a tool for early detection of this etiological agent often results in significant financial losses for farmers and harm to animal welfare. Therefore, using targeted LC-MS/MS-based metabolomics approach, we sought to investigate the impact of sarcoptic mange upon metabolome profiling in the blood serum of mangy wild boars. Thirteen wild boars were analyzed in three different clinical conditions, namely when they were sick, during the therapeutic treatment with ivermectin, and when they were deemed recovered from the disease. We identified specific long-chain acylcarnitines highly abundant in the blood serum of the subjects within the infection phase, when compared to the ivermectin-treated and healthy conditions. Overall, data from our preliminary study highlighted the need for more accurate and broad-based studies, about the potential role of the long chain acylcarnitines in the metabolic homeostasis, to help early diagnose of the sarcoptic mange.
Collapse
Affiliation(s)
- Nadia Piscopo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy.
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate "Franco Salvatore", Via G. Salvatore, 80145 Naples, Italy.
| | - Monica Gelzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate "Franco Salvatore", Via G. Salvatore, 80145 Naples, Italy.
| | - Luigi Sacchettino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy.
| | - Chiara Vitiello
- Department of Clinical Medicine and Surgery, AIF of Endocrinology University of Naples Federico II, Italy
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy.
| | - Francesco Napolitano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; CEINGE-Biotecnologie Avanzate "Franco Salvatore", Via G. Salvatore, 80145 Naples, Italy.
| | - Luigi Esposito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy.
| |
Collapse
|
2
|
Caterino M, Paris D, Torromino G, Costanzo M, Flore G, Tramice A, Golini E, Mandillo S, Cavezza D, Angelini C, Ruoppolo M, Motta A, De Leonibus E, Baldini A, Illingworth E, Lania G. Brain and behavioural anomalies caused by Tbx1 haploinsufficiency are corrected by vitamin B12. Life Sci Alliance 2025; 8:e202403075. [PMID: 39567195 PMCID: PMC11579592 DOI: 10.26508/lsa.202403075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
The brain-related phenotypes observed in 22q11.2 deletion syndrome (DS) patients are highly variable, and their origin is poorly understood. Changes in brain metabolism might contribute to these phenotypes, as many of the deleted genes are involved in metabolic processes, but this is unknown. This study shows for the first time that Tbx1 haploinsufficiency causes brain metabolic imbalance. We studied two mouse models of 22q11.2DS using mass spectrometry, nuclear magnetic resonance spectroscopy, and transcriptomics. We found that Tbx1 +/- mice and Df1/+ mice, with a multigenic deletion that includes Tbx1, have elevated brain methylmalonic acid, which is highly brain-toxic. Focusing on Tbx1 mutants, we found that they also have a more general brain metabolomic imbalance that affects key metabolic pathways, such as glutamine-glutamate and fatty acid metabolism. We provide transcriptomic evidence of a genotype-vitamin B12 treatment interaction. In addition, vitamin B12 treatment rescued a behavioural anomaly in Tbx1 +/- mice. Further studies will be required to establish whether the specific metabolites affected by Tbx1 haploinsufficiency are potential biomarkers of brain disease status in 22q11.2DS patients.
Collapse
Affiliation(s)
- Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli (Naples), Italy
| | - Giulia Torromino
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Monterotondo (Rome), Italy
- Department of Humanistic Studies, University of Naples Federico II, Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Gemma Flore
- Institute of Genetics and Biophysics of the National Research Council, Naples, Italy
| | - Annabella Tramice
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli (Naples), Italy
| | - Elisabetta Golini
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Monterotondo (Rome), Italy
| | - Silvia Mandillo
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Monterotondo (Rome), Italy
| | - Diletta Cavezza
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Monterotondo (Rome), Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
- PhD Program in Behavioural Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Claudia Angelini
- Institute for Applied Mathematics "Mauro Picone," National Research Council, Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli (Naples), Italy
| | - Elvira De Leonibus
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Monterotondo (Rome), Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Antonio Baldini
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | | | - Gabriella Lania
- Institute of Genetics and Biophysics of the National Research Council, Naples, Italy
| |
Collapse
|
3
|
Sacchettino L, Costanzo M, Veneruso I, D’Argenio V, Mayer M, Napolitano F, d’Angelo D. Altered microbiome and metabolome profiling in fearful companion dogs: An exploratory study. PLoS One 2025; 20:e0315374. [PMID: 39813205 PMCID: PMC11734960 DOI: 10.1371/journal.pone.0315374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025] Open
Abstract
Behavioral dysfunctions in dogs represent one of the main social concerns, since they can endanger animals and human-dog relationship. Together with the trigger stimulus (human, animal, place, scent, auditory stimuli, objects), dogs can experience stressful conditions, either in multiple settings or unique situations, more often turning into generalized fear. Such a dysfunctional behavior can be associated with genetic susceptibility, environmental factors, traumatic experiences, and medical conditions. The available therapy, based on behavior approaches, environmental management, and neurochemical manipulation, through nutrition, supplements, medicines, and pheromones, represent the mainstays of the treatments currently accessible. Growing evidence in humans and animals highlight the importance of the gut-brain axis in the modulation of the brain physiology and behavior as well. Here, taking advantage of the next generation sequencing approach, we sought to investigate the potential connection between gut microbiota and microbiome in dogs suffering from generalized fear (n = 8), when compared to healthy subjects (n = 8), who all lived in different families. Faecal microbiota evaluation showed a differential abundance of taxa related to Proteobacteria and Firmicutes Phyla, between case and control dogs. Moreover, serum metabolomics documented significant alterations of molecules associated to GABA and glutamate neurotransmission in the patients, as well as bile acids metabolism. Overall, our preliminary and integrated investigations highlighted an intriguing role for the microbiome-metabolome network, allowing to further unveil the potential pathophysiology of relational issues in companion animals and paving the way for more effective therapeutical approaches.
Collapse
Affiliation(s)
- Luigi Sacchettino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Iolanda Veneruso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Rome, Italy
| | - Maria Mayer
- Independent Researcher, Small Animal Nutrition Consultation (FNOVI), Rome, Italy
| | - Francesco Napolitano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Danila d’Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Santorelli L, Costanzo M, Petrosino S, Santoro M, Caterino M, Ruoppolo M, Grumati P. Cross-Linking Mass Spectrometry to Capture Protein Network Dynamics of Cell Membranome. Methods Mol Biol 2025; 2884:241-258. [PMID: 39716008 DOI: 10.1007/978-1-0716-4298-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Interactions among proteins are fundamental in driving functions and activities that regulate cell biology, mechanotransduction, and cell-to-cell communication/recognition. Recently, cross-linking mass spectrometry (XL-MS) has emerged as a powerful tool for interaction discovery and characterization, driving the enlightenment of novel binding partners otherwise undetected. Covalent linkages of two amino acid residues of proteins (or within complexes) in close proximity can be identified by MS, thus providing structural insights such as distance restraints or unraveling interaction dynamics.The XL-MS workflow described here is applied to map the plasma membrane protein (PMP) networks since they play important roles in the modulation of diverse molecular processes, including transport, signal transduction, endocytosis, and secretion. The strategy includes cross-linking of PMP-enriched fractions, label-free nanoLC-MS/MS, and bioinformatics data analysis. "Membranome" interconnections constitute around 30% of the mammalian proteome and 60% of all drug targets. Exploring such networks under different biological conditions is a promising and unbiased approach to depicting regulatory pathways that govern cell behavior.
Collapse
Affiliation(s)
- Lucia Santorelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples, Italy.
- CEINGE-Biotecnologie Avanzate Franco Salvatore Scarl, Naples, Italy.
| | - Sara Petrosino
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Michele Santoro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore Scarl, Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore Scarl, Naples, Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Clinical Medicine and Surgery, University of Naples, Naples, Italy.
| |
Collapse
|
5
|
Rossi A, Ruoppolo M, Fedele R, Pirozzi F, Rosano C, Auricchio R, Melis D, Strisciuglio P, Oosterveer MH, Derks TGJ, Parenti G, Caterino M. A specific serum lipid signature characterizes patients with glycogen storage disease type Ia. J Lipid Res 2024; 65:100651. [PMID: 39306041 PMCID: PMC11526085 DOI: 10.1016/j.jlr.2024.100651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024] Open
Abstract
Glycogen storage disease type Ia (GSDIa) is a rare, inherited glucose-6-phosphatase-α (G6Pase-α) deficiency-induced carbohydrate metabolism disorder. Although hyperlipidemia is a hallmark of GSDI, the extent of lipid metabolism disruption remains incompletely understood. Lipidomic analysis was performed to characterize the serum lipidome in patients with GSDIa, by including age- and sex-matched healthy controls and age-matched hypercholesterolemic controls. Metabolic control and dietary information biochemical markers were obtained from patients with GSDIa. Patients with GSDIa showed higher total serum lysophosphatidylcholine (Fold Change, (FC) 2.2, P < 0.0001), acyl-acyl-phosphatidylcholine (FC 2.1, P < 0.0001), and ceramide (FC 2.4, P < 0.0001) levels and bile acid (FC 0.7, P < 0.001), acylcarnitines (FC 0.7, P < 0.001), and cholesterol esters (FC 1.0, P < 0.001) than those of healthy controls, and higher di- (FC 1.1, P < 0.0001; FC 0.9, P < 0.01) and triacylglycerol (FC 6.3, P < 0.0001; FC 3.9, P < 0.01) levels than those of healthy controls and hypercholesterolemic subjects. Both total cholesterol and triglyceride values correlated with Cer (d16:1/22:0), Cer (d18:1/20:0), Cer (d18:1/20:0(OH)), Cer (d18:1/22:0), Cer (d18:1/23:0), Cer (d18:1/24:1), Cer (d18:2/22:0), Cer (d18:2/24:1). Total cholesterol also correlated with Cer (d18:1/24:0), Cer (d18:2/20:0), HexCer (d16:1/22:0), HexCer (d18:1/18:0), and Hex2Cer (d18:1/20:0). Triglyceridelevels correlated with Cer (d18:0/24:1). Alanine aminotransferase values correlated with Cer (d18:0/22:0), insulin with Cer (d18:1/22:1) and Cer (d18:1/24:1), and HDL with hexosylceramide (HexCer) (d18:2/23:0). These results expand on the currently known involvement of lipid metabolism in GSDIa. Circulating Cer may allow for refined dietary assessment compared with traditional biomarkers. Because specific lipid species are relatively easy to assess, they represent potential novel biomarkers of GSDIa.
Collapse
Affiliation(s)
- Alessandro Rossi
- Section of Pediatrics, Department of Translational Medicine, University of Naples "Federico II", Naples, Italy; Section of Metabolic Diseases, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy; CEINGE Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | | | - Francesca Pirozzi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Carmen Rosano
- Section of Pediatrics, Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Renata Auricchio
- Section of Pediatrics, Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Pietro Strisciuglio
- Section of Pediatrics, Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Maaike H Oosterveer
- Department of Pediatrics and Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Giancarlo Parenti
- Section of Pediatrics, Department of Translational Medicine, University of Naples "Federico II", Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy; CEINGE Biotecnologie Avanzate s.c.ar.l., Naples, Italy.
| |
Collapse
|
6
|
Imperlini E, Di Marzio L, Cevenini A, Costanzo M, Nicola d'Avanzo, Fresta M, Orrù S, Celia C, Salvatore F. Unraveling the impact of different liposomal formulations on the plasma protein corona composition might give hints on the targeting capability of nanoparticles. NANOSCALE ADVANCES 2024; 6:4434-4449. [PMID: 39170967 PMCID: PMC11334990 DOI: 10.1039/d4na00345d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/27/2024] [Indexed: 08/23/2024]
Abstract
Nanoparticles (NPs) interact with biological fluids after being injected into the bloodstream. The interactions between NPs and plasma proteins at the nano-bio interface affect their biopharmaceutical properties and distribution in the organ and tissues due to protein corona (PrC) composition, and in turn, modification of the resulting targeting capability. Moreover, lipid and polymer NPs, at their interface, affect the composition of PrC and the relative adsorption and abundance of specific proteins. To investigate this latter aspect, we synthesized and characterized different liposomal formulations (LFs) with lipids and polymer-conjugated lipids at different molar ratios, having different sizes, size distributions and surface charges. The PrC composition of various designed LFs was evaluated ex vivo in human plasma by label-free quantitative proteomics. We also correlated the relative abundance of identified specific proteins in the coronas of the different LFs with their physicochemical properties (size, PDI, zeta potential). The evaluation of outputs from different bioinformatic tools discovered protein clusters allowing to highlight: (i) common as well as the unique species for the various formulations; (ii) correlation between each identified PrC and the physicochemical properties of LFs; (iii) some preferential binding determined by physicochemical properties of LFs; (iv) occurrence of formulation-specific protein patterns in PrC. Investigating specific clusters in PrC will help decode the multivalent roles of the protein pattern components in the drug delivery process, taking advantage of the bio-nanoscale recognition and identification for significant advances in nanomedicine.
Collapse
Affiliation(s)
- Esther Imperlini
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia Viterbo 01100 Italy
| | - Luisa Di Marzio
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio" Via dei Vestini 31 66100 Chieti Italy +39 0871 3554711
| | - Armando Cevenini
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II Naples 80131 Italy +39 3356069177
- CEINGE-Biotecnologie Avanzate Franco Salvatore Naples 80145 Italy +39 081 3737880
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II Naples 80131 Italy +39 3356069177
- CEINGE-Biotecnologie Avanzate Franco Salvatore Naples 80145 Italy +39 081 3737880
| | - Nicola d'Avanzo
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia" Viale "S. Venuta" 88100 Catanzaro Italy
- Department of Experimental and Clinical Medicine, Research Center "ProHealth Translational Hub", "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta"-Building of BioSciences Viale S. Venuta 88100 Catanzaro Italy
| | - Massimo Fresta
- Department of Experimental and Clinical Medicine, Research Center "ProHealth Translational Hub", "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta"-Building of BioSciences Viale S. Venuta 88100 Catanzaro Italy
- Department of Health Sciences, University of Catanzaro "Magna Graecia" Viale "S. Venuta" 88100 Catanzaro Italy
| | - Stefania Orrù
- CEINGE-Biotecnologie Avanzate Franco Salvatore Naples 80145 Italy +39 081 3737880
- Department of Medical, Movement and Wellness Sciences, University of Naples Parthenope Naples 80133 Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio" Via dei Vestini 31 66100 Chieti Italy +39 0871 3554711
- Lithuanian University of Health Sciences, Laboratory of Drug Targets Histopathology, Institute of Cardiology A. Mickeviciaus g. 9 LT-44307 Kaunas Lithuania
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
- UdA-TechLab, Research Center, University of Chieti-Pescara "G. D'Annunzio" 66100 Chieti Italy
| | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II Naples 80131 Italy +39 3356069177
- CEINGE-Biotecnologie Avanzate Franco Salvatore Naples 80145 Italy +39 081 3737880
| |
Collapse
|
7
|
Isasi E, Wajner M, Duarte JA, Olivera-Bravo S. Cerebral White Matter Alterations Associated With Oligodendrocyte Vulnerability in Organic Acidurias: Insights in Glutaric Aciduria Type I. Neurotox Res 2024; 42:33. [PMID: 38963434 DOI: 10.1007/s12640-024-00710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/27/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
The white matter is an important constituent of the central nervous system, containing axons, oligodendrocytes, and its progenitor cells, astrocytes, and microglial cells. Oligodendrocytes are central for myelin synthesis, the insulating envelope that protects axons and allows normal neural conduction. Both, oligodendrocytes and myelin, are highly vulnerable to toxic factors in many neurodevelopmental and neurodegenerative disorders associated with disturbances of myelination. Here we review the main alterations in oligodendrocytes and myelin observed in some organic acidurias/acidemias, which correspond to inherited neurometabolic disorders biochemically characterized by accumulation of potentially neurotoxic organic acids and their derivatives. The yet incompletely understood mechanisms underlying the high vulnerability of OLs and/or myelin in glutaric acidemia type I, the most prototypical cerebral organic aciduria, are particularly discussed.
Collapse
Affiliation(s)
- Eugenia Isasi
- Laboratorio de Neurobiología Celular y Molecular, Unidad Académica de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Moacir Wajner
- Department of Biochemistry, Instituto de Ciencias Básicas da Saude, Universidade Federal de Río Grande do Sul, Porto Alegre, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Juliana Avila Duarte
- Departamento de Medicina Interna, Serviço de Radiología, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Silvia Olivera-Bravo
- Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay.
| |
Collapse
|
8
|
Costanzo M, Cevenini A, Kollipara L, Caterino M, Bianco S, Pirozzi F, Scerra G, D'Agostino M, Pavone LM, Sickmann A, Ruoppolo M. Methylmalonic acidemia triggers lysosomal-autophagy dysfunctions. Cell Biosci 2024; 14:63. [PMID: 38760822 PMCID: PMC11102240 DOI: 10.1186/s13578-024-01245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Methylmalonic acidemia (MMA) is a rare inborn error of propionate metabolism caused by deficiency of the mitochondrial methylmalonyl-CoA mutase (MUT) enzyme. As matter of fact, MMA patients manifest impairment of the primary metabolic network with profound damages that involve several cell components, many of which have not been discovered yet. We employed cellular models and patients-derived fibroblasts to refine and uncover new pathologic mechanisms connected with MUT deficiency through the combination of multi-proteomics and bioinformatics approaches. RESULTS Our data show that MUT deficiency is connected with profound proteome dysregulations, revealing molecular actors involved in lysosome and autophagy functioning. To elucidate the effects of defective MUT on lysosomal and autophagy regulation, we analyzed the morphology and functionality of MMA-lysosomes that showed deep alterations, thus corroborating omics data. Lysosomes of MMA cells present as enlarged vacuoles with low degradative capabilities. Notwithstanding, treatment with an anti-propionigenic drug is capable of totally rescuing lysosomal morphology and functional activity in MUT-deficient cells. These results indicate a strict connection between MUT deficiency and lysosomal-autophagy dysfunction, providing promising therapeutic perspectives for MMA. CONCLUSIONS Defective homeostatic mechanisms in the regulation of autophagy and lysosome functions have been demonstrated in MUT-deficient cells. Our data prove that MMA triggers such dysfunctions impacting on autophagosome-lysosome fusion and lysosomal activity.
Collapse
Affiliation(s)
- Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy.
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
| | - Armando Cevenini
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | | | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Sabrina Bianco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Francesca Pirozzi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
- Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy.
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
| |
Collapse
|
9
|
Scarcella M, Scerra G, Ciampa M, Caterino M, Costanzo M, Rinaldi L, Feliciello A, Anzilotti S, Fiorentino C, Renna M, Ruoppolo M, Pavone LM, D’Agostino M, De Pasquale V. Metabolic rewiring and autophagy inhibition correct lysosomal storage disease in mucopolysaccharidosis IIIB. iScience 2024; 27:108959. [PMID: 38361619 PMCID: PMC10864807 DOI: 10.1016/j.isci.2024.108959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are lysosomal disorders with neurological involvement for which no cure exists. Here, we show that recombinant NK1 fragment of hepatocyte growth factor rescues substrate accumulation and lysosomal defects in MPS I, IIIA and IIIB patient fibroblasts. We investigated PI3K/Akt pathway, which is of crucial importance for neuronal function and survival, and demonstrate that PI3K inhibition abolishes NK1 therapeutic effects. We identified that autophagy inhibition, by Beclin1 silencing, reduces MPS IIIB phenotype and that NK1 downregulates autophagic-lysosome (ALP) gene expression, suggesting a possible contribution of autophagosome biogenesis in MPS. Indeed, metabolomic analyses revealed defects of mitochondrial activity accompanied by anaerobic metabolism and inhibition of AMP-activated protein kinase (AMPK), which acts on metabolism and autophagy, rescues lysosomal defects. These results provide insights into the molecular mechanisms of MPS IIIB physiopathology, supporting the development of new promising approaches based on autophagy inhibition and metabolic rewiring to correct lysosomal pathology in MPSs.
Collapse
Affiliation(s)
- Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariangela Ciampa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80131 Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80131 Naples, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Serenella Anzilotti
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, 82100 Benevento, Italy
| | - Chiara Fiorentino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maurizio Renna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80131 Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Massimo D’Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy
| |
Collapse
|
10
|
Santorelli L, Caterino M, Costanzo M. Proteomics and Metabolomics in Biomedicine. Int J Mol Sci 2023; 24:16913. [PMID: 38069240 PMCID: PMC10706996 DOI: 10.3390/ijms242316913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The technological advances of recent years have significantly enhanced medical discoveries [...].
Collapse
Affiliation(s)
- Lucia Santorelli
- Department of Oncology and Hematology-Oncology, University of Milano, 20122 Milan, Italy;
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
- CEINGE–Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
- CEINGE–Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| |
Collapse
|
11
|
Campesi I, Capobianco G, Cano A, Lodde V, Cruciani S, Maioli M, Sotgiu G, Idda ML, Puci MV, Ruoppolo M, Costanzo M, Caterino M, Cambosu F, Montella A, Franconi F. Stratification of Amniotic Fluid Cells and Amniotic Fluid by Sex Opens Up New Perspectives on Fetal Health. Biomedicines 2023; 11:2830. [PMID: 37893203 PMCID: PMC10604128 DOI: 10.3390/biomedicines11102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Amniotic fluid is essential for fetus wellbeing and is used to monitor pregnancy and predict fetal outcomes. Sex affects health and medicine from the beginning of life, but knowledge of its influence on cell-depleted amniotic fluid (AF) and amniotic fluid cells (AFCs) is still neglected. We evaluated sex-related differences in AF and in AFCs to extend personalized medicine to prenatal life. AFCs and AF were obtained from healthy Caucasian pregnant women who underwent amniocentesis at the 16th-18th week of gestation for advanced maternal age. In the AF, inflammation biomarkers (TNFα, IL6, IL8, and IL4), malondialdehyde, nitrites, amino acids, and acylcarnitines were measured. Estrogen receptors and cell fate (autophagy, apoptosis, senescence) were measured in AFCs. TNFα, IL8, and IL4 were higher in female AF, whereas IL6, nitrites, and MDA were similar. Valine was higher in male AF, whereas several acylcarnitines were sexually different, suggesting a mitochondrial involvement in establishing sex differences. Female AFCs displayed higher expression of ERα protein and a higher ERα/ERβ ratio. The ratio of LC3II/I, an index of autophagy, was higher in female AFCs, while LC3 gene was similar in both sexes. No significant sex differences were found in the expression of the lysosomal protein LAMP1, while p62 was higher in male AFCs. LAMP1 gene was upregulated in male AFCs, while p62 gene was upregulated in female ones. Finally, caspase 9 activity and senescence linked to telomeres were higher in female AFCs, while caspase 3 and β-galactosidase activities were similar. This study supports the idea that sex differences start very early in prenatal life and influence specific parameters, suggesting that it may be relevant to appreciate sex differences to cover knowledge gaps. This might lead to improving the diagnosis of risk prediction for pregnancy complications and achieving a more satisfactory monitoring of fetus health, even preventing future diseases in adulthood.
Collapse
Affiliation(s)
- Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (V.L.); (S.C.); (M.M.); (A.M.)
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy;
| | - Giampiero Capobianco
- Gynecologic and Obstetric Clinic, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Antonella Cano
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (V.L.); (S.C.); (M.M.); (A.M.)
| | - Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (V.L.); (S.C.); (M.M.); (A.M.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (V.L.); (S.C.); (M.M.); (A.M.)
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (V.L.); (S.C.); (M.M.); (A.M.)
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (G.S.); (M.V.P.)
| | - Maria Laura Idda
- Institute of Genetics and Biomedical Research, 07100 Sassari, Italy;
| | - Mariangela Valentina Puci
- Clinical Epidemiology and Medical Statistics Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (G.S.); (M.V.P.)
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (M.R.); (M.C.); (M.C.)
- CEINGE—Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (M.R.); (M.C.); (M.C.)
- CEINGE—Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (M.R.); (M.C.); (M.C.)
- CEINGE—Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy
| | - Francesca Cambosu
- Genetics and Developmental Biology Unit, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy;
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (V.L.); (S.C.); (M.M.); (A.M.)
| | - Flavia Franconi
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy;
| |
Collapse
|
12
|
Schumann A, Brutsche M, Havermans M, Grünert SC, Kölker S, Groß O, Hannibal L, Spiekerkoetter U. The impact of metabolic stressors on mitochondrial homeostasis in a renal epithelial cell model of methylmalonic aciduria. Sci Rep 2023; 13:7677. [PMID: 37169781 PMCID: PMC10175303 DOI: 10.1038/s41598-023-34373-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023] Open
Abstract
Methylmalonic aciduria (MMA-uria) is caused by deficiency of the mitochondrial enzyme methylmalonyl-CoA mutase (MUT). MUT deficiency hampers energy generation from specific amino acids, odd-chain fatty acids and cholesterol. Chronic kidney disease (CKD) is a well-known long-term complication. We exposed human renal epithelial cells from healthy controls and MMA-uria patients to different culture conditions (normal treatment (NT), high protein (HP) and isoleucine/valine (I/V)) to test the effect of metabolic stressors on renal mitochondrial energy metabolism. Creatinine levels were increased and antioxidant stress defense was severely comprised in MMA-uria cells. Alterations in mitochondrial homeostasis were observed. Changes in tricarboxylic acid cycle metabolites and impaired energy generation from fatty acid oxidation were detected. Methylcitrate as potentially toxic, disease-specific metabolite was increased by HP and I/V load. Mitophagy was disabled in MMA-uria cells, while autophagy was highly active particularly under HP and I/V conditions. Mitochondrial dynamics were shifted towards fission. Sirtuin1, a stress-resistance protein, was down-regulated by HP and I/V exposure in MMA-uria cells. Taken together, both interventions aggravated metabolic fingerprints observed in MMA-uria cells at baseline. The results point to protein toxicity in MMA-uria and lead to a better understanding, how the accumulating, potentially toxic organic acids might trigger CKD.
Collapse
Affiliation(s)
- Anke Schumann
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, Mathildenstr. 1, 79106, Freiburg, Germany.
| | - Marion Brutsche
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, Mathildenstr. 1, 79106, Freiburg, Germany
| | - Monique Havermans
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Sarah C Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, Mathildenstr. 1, 79106, Freiburg, Germany
| | - Stefan Kölker
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Olaf Groß
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Luciana Hannibal
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Laboratory of Clinical Biochemistry and Metabolism, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, Mathildenstr. 1, 79106, Freiburg, Germany
| |
Collapse
|
13
|
Costanzo M, De Giglio MAR, Roviello GN. Deciphering the Relationship between SARS-CoV-2 and Cancer. Int J Mol Sci 2023; 24:ijms24097803. [PMID: 37175509 PMCID: PMC10178366 DOI: 10.3390/ijms24097803] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Some viruses are known to be associated with the onset of specific cancers. These microorganisms, oncogenic viruses or oncoviruses, can convert normal cells into cancer cells by modulating the central metabolic pathways or hampering genomic integrity mechanisms, consequently inhibiting the apoptotic machinery and/or enhancing cell proliferation. Seven oncogenic viruses are known to promote tumorigenesis in humans: human papillomavirus (HPV), hepatitis B and C viruses (HBV, HCV), Epstein-Barr virus (EBV), human T-cell leukemia virus 1 (HTLV-1), Kaposi sarcoma-associated herpesvirus (KSHV), and Merkel cell polyomavirus (MCPyV). Recent research indicates that SARS-CoV-2 infection and COVID-19 progression may predispose recovered patients to cancer onset and accelerate cancer development. This hypothesis is based on the growing evidence regarding the ability of SARS-CoV-2 to modulate oncogenic pathways, promoting chronic low-grade inflammation and causing tissue damage. Herein, we summarize the main relationships known to date between virus infection and cancer, providing a summary of the proposed biochemical mechanisms behind the cellular transformation. Mechanistically, DNA viruses (such as HPV, HBV, EBV, and MCPyV) encode their virus oncogenes. In contrast, RNA viruses (like HCV, HTLV-1) may encode oncogenes or trigger host oncogenes through cis-/-trans activation leading to different types of cancer. As for SARS-CoV-2, its role as an oncogenic virus seems to occur through the inhibition of oncosuppressors or controlling the metabolic and autophagy pathways in the infected cells. However, these effects could be significant in particular scenarios like those linked to severe COVID-19 or long COVID. On the other hand, looking at the SARS-CoV-2─cancer relationship from an opposite perspective, oncolytic effects and anti-tumor immune response were triggered by SARS-CoV-2 infection in some cases. In summary, our work aims to recall comprehensive attention from the scientific community to elucidate the effects of SARS-CoV-2 and, more in general, β-coronavirus infection on cancer susceptibility for cancer prevention or supporting therapeutic approaches.
Collapse
Affiliation(s)
- Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., Via G. Salvatore 486, 80145 Naples, Italy
| | | | - Giovanni Nicola Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
14
|
Ding Y, Liu Y, Zhang L, Deng Y, Chen H, Lan X, Jiang D, Cao W. Quantitative assessment of renal functions using 68Ga-EDTA dynamic PET imaging in renal injury in mice of different origins. Front Med (Lausanne) 2023; 10:1143473. [PMID: 37051215 PMCID: PMC10083276 DOI: 10.3389/fmed.2023.1143473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/28/2023] [Indexed: 03/28/2023] Open
Abstract
BackgroundEarly detection of kidney diseases can be challenging as conventional methods such as blood tests or imaging techniques (computed tomography (CT), magnetic resonance imaging (MRI), or ultrasonography) may be insufficient to assess renal function. A single-photon emission CT (SPECT) renal scan provides a means of measuring glomerular filtration rates (GFRs), but its diagnostic accuracy is limited due to its planar imaging modality and semi-quantification property. In this study, we aimed to improve the accuracy of GFR measurement by preparing a positron emission tonometry (PET) tracer 68Ga-Ethylenediaminetetraacetic acid (68Ga-EDTA) and comprehensively evaluating its performance in healthy mice and murine models of renal dysfunction.MethodsDynamic PET scans were performed in healthy C57BL/6 mice and in models of renal injury, including acute kidney injury (AKI) and unilateral ureter obstruction (UUO) using 68Ga-EDTA. In a 30-min dynamic scan, PET images and time-activity curves (TACs) were acquired. Renal function and GFR values were measured using renograms and validated through serum renal function parameters, biodistribution results, and pathological staining.Results68Ga-EDTA dynamic PET imaging quantitatively captured the tracer elimination process. The calculated GFR values were 0.25 ± 0.02 ml/min in healthy mice, 0.01 ± 0.00 ml/min in AKI mice, and 0.25 ± 0.04, 0.29 ± 0.03 and 0.24 ± 0.01 ml/min in UUO mice, respectively. Furthermore, 68Ga-EDTA dynamic PET imaging and GFRPET were able to differentiate mild renal impairment before serum parameters indicated any changes.ConclusionsOur findings demonstrate that 68Ga-EDTA dynamic PET provides a reliable and precise means of evaluating renal function in two murine models of renal injury. These results hold promise for the widespread clinical application of 68Ga-EDTA dynamic PET in the near future.
Collapse
Affiliation(s)
- Ying Ding
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Yu Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Li Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Yinqian Deng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Huanyu Chen
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
- Dawei Jiang
| | - Wei Cao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
- *Correspondence: Wei Cao
| |
Collapse
|
15
|
Campesi I, Ruoppolo M, Franconi F, Caterino M, Costanzo M. Sex-Gender-Based Differences in Metabolic Diseases. Handb Exp Pharmacol 2023; 282:241-257. [PMID: 37528324 DOI: 10.1007/164_2023_683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Sexual dimorphism creates different biological and cellular activities and selective regulation mechanisms in males and females, thus generating differential responses in health and disease. In this scenario, the sex itself is a source of physiologic metabolic disparities that depend on constitutive genetic and epigenetic features that characterize in a specific manner one sex or the other. This has as a direct consequence a huge impact on the metabolic routes that drive the phenotype of an individual. The impact of sex is being clearly recognized also in disease, whereas male and females are more prone to the development of some disorders, or have selective responses to drugs and therapeutic treatments. Actually, very less is known regarding the probable differences guided by sex in the context of inherited metabolic disorders, owing to the scarce consideration of sex in such restricted field, accompanied by an intrinsic bias connected with the rarity of such diseases. Metabolomics technologies have been ultimately developed and adopted for being excellent tools for the investigation of metabolic mechanisms, for marker discovery or monitoring, and for supporting diagnostic procedures of metabolic disorders. Hence, metabolomic approaches can excellently embrace the discovery of sex differences, especially when associated to the outcome or the management of certain inborn errors of the metabolism.
Collapse
Affiliation(s)
- Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE - Biotecnologie Avanzate Franco Salvatore s.c.ar.l., Naples, Italy
| | - Flavia Franconi
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE - Biotecnologie Avanzate Franco Salvatore s.c.ar.l., Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
- CEINGE - Biotecnologie Avanzate Franco Salvatore s.c.ar.l., Naples, Italy.
| |
Collapse
|
16
|
Santorelli L, Caterino M, Costanzo M. Dynamic Interactomics by Cross-Linking Mass Spectrometry: Mapping the Daily Cell Life in Postgenomic Era. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:633-649. [PMID: 36445175 DOI: 10.1089/omi.2022.0137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The majority of processes that occur in daily cell life are modulated by hundreds to thousands of dynamic protein-protein interactions (PPI). The resulting protein complexes constitute a tangled network that, with its continuous remodeling, builds up highly organized functional units. Thus, defining the dynamic interactome of one or more proteins allows determining the full range of biological activities these proteins are capable of. This conceptual approach is poised to gain further traction and significance in the current postgenomic era wherein the treatment of severe diseases needs to be tackled at both genomic and PPI levels. This also holds true for COVID-19, a multisystemic disease affecting biological networks across the biological hierarchy from genome to proteome to metabolome. In this overarching context and the current historical moment of the COVID-19 pandemic where systems biology increasingly comes to the fore, cross-linking mass spectrometry (XL-MS) has become highly relevant, emerging as a powerful tool for PPI discovery and characterization. This expert review highlights the advanced XL-MS approaches that provide in vivo insights into the three-dimensional protein complexes, overcoming the static nature of common interactomics data and embracing the dynamics of the cell proteome landscape. Many XL-MS applications based on the use of diverse cross-linkers, MS detection methods, and predictive bioinformatic tools for single proteins or proteome-wide interactions were shown. We conclude with a future outlook on XL-MS applications in the field of structural proteomics and ways to sustain the remarkable flexibility of XL-MS for dynamic interactomics and structural studies in systems biology and planetary health.
Collapse
Affiliation(s)
- Lucia Santorelli
- Department of Oncology and Hematology-Oncology, University of Milano, Milan, Italy.,IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| |
Collapse
|
17
|
Boy N, Mühlhausen C, Maier EM, Ballhausen D, Baumgartner MR, Beblo S, Burgard P, Chapman KA, Dobbelaere D, Heringer-Seifert J, Fleissner S, Grohmann-Held K, Hahn G, Harting I, Hoffmann GF, Jochum F, Karall D, Konstantopoulous V, Krawinkel MB, Lindner M, Märtner EMC, Nuoffer JM, Okun JG, Plecko B, Posset R, Sahm K, Scholl-Bürgi S, Thimm E, Walter M, Williams M, Vom Dahl S, Ziagaki A, Zschocke J, Kölker S. Recommendations for diagnosing and managing individuals with glutaric aciduria type 1: Third revision. J Inherit Metab Dis 2022; 46:482-519. [PMID: 36221165 DOI: 10.1002/jimd.12566] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 02/04/2023]
Abstract
Glutaric aciduria type 1 is a rare inherited neurometabolic disorder of lysine metabolism caused by pathogenic gene variations in GCDH (cytogenic location: 19p13.13), resulting in deficiency of mitochondrial glutaryl-CoA dehydrogenase (GCDH) and, consequently, accumulation of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid and glutarylcarnitine detectable by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Depending on residual GCDH activity, biochemical high and low excreting phenotypes have been defined. Most untreated individuals present with acute onset of striatal damage before age 3 (to 6) years, precipitated by infectious diseases, fever or surgery, resulting in irreversible, mostly dystonic movement disorder with limited life expectancy. In some patients, striatal damage develops insidiously. In recent years, the clinical phenotype has been extended by the finding of extrastriatal abnormalities and cognitive dysfunction, preferably in the high excreter group, as well as chronic kidney failure. Newborn screening is the prerequisite for pre-symptomatic start of metabolic treatment with low lysine diet, carnitine supplementation and intensified emergency treatment during catabolic episodes, which, in combination, have substantially improved neurologic outcome. In contrast, start of treatment after onset of symptoms cannot reverse existing motor dysfunction caused by striatal damage. Dietary treatment can be relaxed after the vulnerable period for striatal damage, that is, age 6 years. However, impact of dietary relaxation on long-term outcomes is still unclear. This third revision of evidence-based recommendations aims to re-evaluate previous recommendations (Boy et al., J Inherit Metab Dis, 2017;40(1):75-101; Kolker et al., J Inherit Metab Dis 2011;34(3):677-694; Kolker et al., J Inherit Metab Dis, 2007;30(1):5-22) and to implement new research findings on the evolving phenotypic diversity as well as the impact of non-interventional variables and treatment quality on clinical outcomes.
Collapse
Affiliation(s)
- Nikolas Boy
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Chris Mühlhausen
- Department of Paediatrics and Adolescent Medicine, University Medical Centre, Göttingen, Germany
| | - Esther M Maier
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, University of Munich Medical Centre, Munich, Germany
| | - Diana Ballhausen
- Paediatric Metabolic Unit, Paediatrics, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Skadi Beblo
- Department of Women and Child Health, Hospital for Children and Adolescents, Centre for Paediatric Research Leipzig (CPL), University Hospitals, University of Leipzig, Leipzig, Germany
| | - Peter Burgard
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Kimberly A Chapman
- Rare Disease Institute, Children's National Health System, Washington, District of Columbia, USA
| | - Dries Dobbelaere
- Department of Paediatric Metabolism, Reference Centre of Inherited Metabolic Disorders, Jeanne de Flandre Hospital, Lille, France
| | - Jana Heringer-Seifert
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandra Fleissner
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, University of Munich Medical Centre, Munich, Germany
| | - Karina Grohmann-Held
- Centre for Child and Adolescent Medicine, University Hospital Greifswald, Greifswald, Germany
| | - Gabriele Hahn
- Department of Radiological Diagnostics, UMC, University of Dresden, Dresden, Germany
| | - Inga Harting
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Frank Jochum
- Evangelisches Waldkrankenhaus Spandau, Berlin, Germany
| | - Daniela Karall
- Clinic for Paediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Michael B Krawinkel
- Institute of Nutritional Science, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Lindner
- Division of Metabolic Diseases, University Children's Hospital Frankfurt, Frankfurt, Germany
| | - E M Charlotte Märtner
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jean-Marc Nuoffer
- University Institute of Clinical Chemistry, University of Bern, Bern, Switzerland
| | - Jürgen G Okun
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Barbara Plecko
- Department of Paediatrics and Adolescent Medicine, Division of General Paediatrics, University Children's Hospital Graz, Medical University Graz, Graz, Austria
| | - Roland Posset
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Katja Sahm
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Eva Thimm
- Division of Experimental Paediatrics and Metabolism, Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Magdalena Walter
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Monique Williams
- Department of Paediatrics, Centre for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Stephan Vom Dahl
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, University of Düsseldorf, Düsseldorf, Germany
| | - Athanasia Ziagaki
- Centre of Excellence for Rare Metabolic Diseases, Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, University-Medicine Berlin, Berlin, Germany
| | - Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Stefan Kölker
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Miceli M, Maruotti GM, Sarno L, Carbone L, Guida M, Pelagalli A. Preliminary Characterization of the Epigenetic Modulation in the Human Mesenchymal Stem Cells during Chondrogenic Process. Int J Mol Sci 2022; 23:ijms23179870. [PMID: 36077266 PMCID: PMC9456537 DOI: 10.3390/ijms23179870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Regenerative medicine represents a growing hot topic in biomedical sciences, aiming at setting out novel therapeutic strategies to repair or regenerate damaged tissues and organs. For this perspective, human mesenchymal stem cells (hMSCs) play a key role in tissue regeneration, having the potential to differentiate into many cell types, including chondrocytes. Accordingly, in the last few years, researchers have focused on several in vitro strategies to optimize hMSC differentiation protocols, including those relying on epigenetic manipulations that, in turn, lead to the modulation of gene expression patterns. Therefore, in the present study, we investigated the role of the class II histone deacetylase (HDAC) inhibitor, MC1568, in the hMSCs-derived chondrogenesis. The hMSCs we used for this work were the hMSCs obtained from the amniotic fluid, given their greater differentiation capacity. Our preliminary data documented that MC1568 drove both the improvement and acceleration of hMSCs chondrogenic differentiation in vitro, since the differentiation process in MC1568-treated cells took place in about seven days, much less than that normally observed, namely 21 days. Collectively, these preliminary data might shed light on the validity of such a new differentiative protocol, in order to better assess the potential role of the epigenetic modulation in the process of the hypertrophic cartilage formation, which represents the starting point for endochondral ossification.
Collapse
Affiliation(s)
- Marco Miceli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
- Correspondence: (M.M.); (A.P.)
| | - Giuseppe Maria Maruotti
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Laura Sarno
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Luigi Carbone
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Maurizio Guida
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy
- Correspondence: (M.M.); (A.P.)
| |
Collapse
|
19
|
Lee N, Kim D. Toxic Metabolites and Inborn Errors of Amino Acid Metabolism: What One Informs about the Other. Metabolites 2022; 12:metabo12060527. [PMID: 35736461 PMCID: PMC9231173 DOI: 10.3390/metabo12060527] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
In inborn errors of metabolism, such as amino acid breakdown disorders, loss of function mutations in metabolic enzymes within the catabolism pathway lead to an accumulation of the catabolic intermediate that is the substrate of the mutated enzyme. In patients of such disorders, dietarily restricting the amino acid(s) to prevent the formation of these catabolic intermediates has a therapeutic or even entirely preventative effect. This demonstrates that the pathology is due to a toxic accumulation of enzyme substrates rather than the loss of downstream products. Here, we provide an overview of amino acid metabolic disorders from the perspective of the ‘toxic metabolites’ themselves, including their mechanism of toxicity and whether they are involved in the pathology of other disease contexts as well. In the research literature, there is often evidence that such metabolites play a contributing role in multiple other nonhereditary (and more common) disease conditions, and these studies can provide important mechanistic insights into understanding the metabolite-induced pathology of the inborn disorder. Furthermore, therapeutic strategies developed for the inborn disorder may be applicable to these nonhereditary disease conditions, as they involve the same toxic metabolite. We provide an in-depth illustration of this cross-informing concept in two metabolic disorders, methylmalonic acidemia and hyperammonemia, where the pathological metabolites methylmalonic acid and ammonia are implicated in other disease contexts, such as aging, neurodegeneration, and cancer, and thus there are opportunities to apply mechanistic or therapeutic insights from one disease context towards the other. Additionally, we expand our scope to other metabolic disorders, such as homocystinuria and nonketotic hyperglycinemia, to propose how these concepts can be applied broadly across different inborn errors of metabolism and various nonhereditary disease conditions.
Collapse
|
20
|
Abstract
Fluorescence microscopy has represented a crucial technique to explore the cellular and molecular mechanisms in the field of biomedicine. However, the conventional one-photon microscopy exhibits many limitations when living samples are imaged. The new technologies, including two-photon microscopy (2PM), have considerably improved the in vivo study of pathophysiological processes, allowing the investigators to overcome the limits displayed by previous techniques. 2PM enables the real-time intravital imaging of the biological functions in different organs at cellular and subcellular resolution thanks to its improved laser penetration and less phototoxicity. The development of more sensitive detectors and long-wavelength fluorescent dyes as well as the implementation of semi-automatic software for data analysis allowed to gain insights in essential physiological functions, expanding the frontiers of cellular and molecular imaging. The future applications of 2PM are promising to push the intravital microscopy beyond the existing limits. In this review, we provide an overview of the current state-of-the-art methods of intravital microscopy, focusing on the most recent applications of 2PM in kidney physiology.
Collapse
|
21
|
Costanzo M, Caterino M, Salvatori I, Manganelli V, Ferri A, Misasi R, Ruoppolo M. Proteome data of neuroblastoma cells overexpressing Neuroglobin. Data Brief 2022; 41:107843. [PMID: 35128003 PMCID: PMC8800053 DOI: 10.1016/j.dib.2022.107843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
In this article, we present data on the proteome of human neuroblastoma cells stably overexpressing Neuroglobin (NGB). The neuroprotective role of NGB is clearly established, nevertheless the related mechanistic processes, which are dependent on NGB overexpression, are not known. To address this question, we performed shotgun label-free quantification (LFQ) proteomics using an SH-SY5Y cell model of neuroblastoma that overexpresses an NGB-FLAG construct, and wild type cells transfected with an empty vector as control (CTRL). The proteomes from six biological samples per condition were digested using the S-Trap sample preparation followed by LC-MS/MS analysis with a LTQ-Orbitrap XL mass spectrometer. The quantitative analysis was performed using the LFQ algorithm of MaxQuant, leading to 1654 correctly quantified proteins over 2580 identified proteins. Finally, the statistic comparison of the two analyzed groups within Perseus platform identified 178 differential proteins (107 up- and 71 down-regulated). In addition, multivariate statistical analysis was carried out using MetaboAnalyst 5.0 software. MS proteomics data are available via ProteomeXchange with the dataset identifier PXD029012.
Collapse
Affiliation(s)
- Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
- CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples 80145, Italy
- Corresponding author at: Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy.
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
- CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples 80145, Italy
| | | | - Valeria Manganelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome 00161, Italy
| | - Alberto Ferri
- Fondazione Santa Lucia IRCCS, c/o CERC, Rome 00143, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome 00161, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
- CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples 80145, Italy
| |
Collapse
|
22
|
New Insight in Hyperinsulinism/Hyperammonemia Syndrome by Magnetic Resonance Imaging and Spectroscopy. Brain Sci 2022; 12:brainsci12030389. [PMID: 35326344 PMCID: PMC8946637 DOI: 10.3390/brainsci12030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Hyperinsulinism/hyperammonemia syndrome (HI/HA) is an autosomal dominant disorder caused by monoallelic activating mutations in the glutamate dehydrogenase 1 (GLUD1) gene. While hyperinsulinism may be explained by a reduction in the allosteric inhibition of GLUD1, the pathogenesis of HA in HI/HA remains uncertain; interestingly, HA in the HI/HA syndrome is not associated with acute hyperammonemic intoxication events. We obtained a brain magnetic resonance (MR) in a woman with HI/HA syndrome with chronic asymptomatic HA. On MR spectroscopy, choline and myoinositol were decreased as in other HA disorders. In contrast, distinct from other HA disorders, combined glutamate and glutamine levels were normal (not increased). This observation suggests that brain biochemistry in HI/HA may differ from that of other HA disorders. In HI/HA, ammonia overproduction may come to the expense of glutamate levels, and this seems to prevent the condensation of ammonia with glutamate to produce glutamine that is typical of the other HA disorders. The absence of combined glutamate and glutamine elevation might be correlated to the absence of acute cerebral ammonia toxicity.
Collapse
|
23
|
Costanzo M, Caterino M, Fedele R, Cevenini A, Pontillo M, Barra L, Ruoppolo M. COVIDomics: The Proteomic and Metabolomic Signatures of COVID-19. Int J Mol Sci 2022; 23:ijms23052414. [PMID: 35269564 PMCID: PMC8910221 DOI: 10.3390/ijms23052414] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Omics-based technologies have been largely adopted during this unprecedented global COVID-19 pandemic, allowing the scientific community to perform research on a large scale to understand the pathobiology of the SARS-CoV-2 infection and its replication into human cells. The application of omics techniques has been addressed to every level of application, from the detection of mutations, methods of diagnosis or monitoring, drug target discovery, and vaccine generation, to the basic definition of the pathophysiological processes and the biochemical mechanisms behind the infection and spread of SARS-CoV-2. Thus, the term COVIDomics wants to include those efforts provided by omics-scale investigations with application to the current COVID-19 research. This review summarizes the diverse pieces of knowledge acquired with the application of COVIDomics techniques, with the main focus on proteomics and metabolomics studies, in order to capture a common signature in terms of proteins, metabolites, and pathways dysregulated in COVID-19 disease. Exploring the multiomics perspective and the concurrent data integration may provide new suitable therapeutic solutions to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.C.); (M.C.); (A.C.)
- CEINGE–Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (R.F.); (M.P.); (L.B.)
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.C.); (M.C.); (A.C.)
- CEINGE–Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (R.F.); (M.P.); (L.B.)
| | - Roberta Fedele
- CEINGE–Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (R.F.); (M.P.); (L.B.)
| | - Armando Cevenini
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.C.); (M.C.); (A.C.)
- CEINGE–Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (R.F.); (M.P.); (L.B.)
| | - Mariarca Pontillo
- CEINGE–Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (R.F.); (M.P.); (L.B.)
| | - Lucia Barra
- CEINGE–Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (R.F.); (M.P.); (L.B.)
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.C.); (M.C.); (A.C.)
- CEINGE–Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (R.F.); (M.P.); (L.B.)
- Correspondence:
| |
Collapse
|