1
|
Brožová V, Bolstad JS, Seregin AP, Eidesen PB. From everywhere all at once: Several colonization routes available to Svalbard in the early Holocene. Ecol Evol 2023; 13:e9892. [PMID: 36950366 PMCID: PMC10025081 DOI: 10.1002/ece3.9892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 03/21/2023] Open
Abstract
For many arctic species, the spatial (re-)colonization patterns after the last Pleistocene glaciation have been described. However, the temporal aspects of their colonization are largely missing. Did one route prevail early, while another was more important later? The high Arctic archipelago Svalbard represents a good model system to address timeframe of postglacial plant colonization. Svalbard was almost fully glaciated during last glacial maximum and (re-)colonization of vascular plants began in early Holocene. Early Holocene climatic optimum (HCO) supported an expanded establishment of a partly thermophilic vegetation. Today, we find remnants of this vegetation in sheltered regions referred to as "Arctic biodiversity hotspots". The oldest record of postglacial plant colonization to Svalbard is found in Ringhorndalen-Flatøyrdalen. Even though thermophilic species could establish also later in Holocene, only HCO was favorable for vast colonization, and only hotspots offered stable conditions for thermophilic populations throughout Holocene. Thus, these relic populations may reflect colonization patterns of HCO. We investigate whether the colonization direction of thermophilic plants (Arnica angustifolia, Campanula uniflora, Pinguicula alpina, Tofieldia pusilla, and Vaccinium uliginosum ssp. microphyllum) in Ringhorndalen-Flatøyrdalen was uniform and different from later colonization events in other localities and non-thermophilic plants (Arenaria humifusa, Bistorta vivipara, Juncus biglumis, Oxyria digyna, and Silene acaulis). We analyzed plastid haplotypes of the 10 taxa from Ringhorndalen-Flatøyrdalen, from later-colonized localities in Svalbard, and from putative source regions outside Svalbard. Only rare and thermophilic taxa Campanula uniflora and Vaccinium uliginosum ssp. microphyllum provided results suggesting at least two colonization events from different source regions. Tofieldia pusilla and all the non-thermophilic plants showed no clear phylogeographically differentiation within Svalbard. Two of the thermophilic species showed no sequence variation. Based on the results, a uniform colonization direction to Svalbard in early Holocene is not probable; several source areas and dispersal directions were contemporarily involved.
Collapse
Affiliation(s)
- Viktorie Brožová
- Department of Botany, Faculty of ScienceUniversity of South Bohemia in České BudějoviceČeské BudějoviceCzech Republic
- Department of Arctic BiologyThe University Centre in SvalbardLongyearbyenNorway
| | - Johannes S. Bolstad
- Department of Arctic BiologyThe University Centre in SvalbardLongyearbyenNorway
| | - Alexey P. Seregin
- Herbarium (MW), Faculty of BiologyM. V. Lomonosov Moscow State UniversityMoscowRussia
| | - Pernille B. Eidesen
- Department of Arctic BiologyThe University Centre in SvalbardLongyearbyenNorway
- Department of BiosciencesUniversity of OsloOsloNorway
| |
Collapse
|
2
|
Chen YP, Zhao F, Paton AJ, Sunojkumar P, Gao LM, Xiang CL. Plastome sequences fail to resolve shallow level relationships within the rapidly radiated genus Isodon (Lamiaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:985488. [PMID: 36160976 PMCID: PMC9493350 DOI: 10.3389/fpls.2022.985488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
As one of the largest genera of Lamiaceae and of great medicinal importance, Isodon is also phylogenetically and taxonomically recalcitrant largely ascribed to its recent rapid radiation in the Hengduan Mountains. Previous molecular phylogenetic studies using limited loci have only successfully resolved the backbone topology of the genus, but the interspecific relationships suffered from low resolution, especially within the largest clade (Clade IV) which comprises over 80% species. In this study, we attempted to further elucidate the phylogenetic relationships within Isodon especially Clade IV using plastome sequences with a broad taxon sampling of ca. 80% species of the genus. To reduce systematic errors, twelve different plastome data sets (coding and non-coding regions with ambiguously aligned regions and saturated loci removed or not) were employed to reconstruct phylogeny using maximum likelihood and Bayesian inference. Our results revealed largely congruent topologies of the 12 data sets and recovered major lineages of Isodon consistent with previous studies, but several incongruences are also found among these data sets and among single plastid loci. Most of the shallow nodes within Clade IV were resolved with high support but extremely short branch lengths in plastid trees, and showed tremendous conflicts with the nrDNA tree, morphology and geographic distribution. These incongruences may largely result from stochasticity (due to insufficient phylogenetic signal) and hybridization and plastid capture. Therefore, the uniparental-inherited plastome sequences are insufficient to disentangle relationships within a genus which has undergone recent rapid diversification. Our findings highlight a need for additional data from nuclear genome to resolve the relationships within Clade IV and more focused studies to assess the influences of multiple processes in the evolutionary history of Isodon. Nevertheless, the morphology of the shape and surface sculpture/indumentum of nutlets is of systematic importance that they can distinguish the four major clades of Isodon.
Collapse
Affiliation(s)
- Ya-Ping Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Fei Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Alan J. Paton
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China
| | - Chun-Lei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
3
|
Relationships within Mcneillia Indicate a Complex Evolutionary History and Reveal a New Species of Minuartiella (Caryophyllaceae, Alsinoideae). PLANTS 2022; 11:plants11162118. [PMID: 36015421 PMCID: PMC9414604 DOI: 10.3390/plants11162118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
The genus Mcneillia has been recently segregated from Minuartia L. based on molecular results, also supported by morphology. However, to date, a comprehensive study on the phylogenetic relationships within this genus is lacking. In this paper, we provide a multigene phylogeny of all the species and subspecies of Mcneillia employing two nuclear and six chloroplast markers. We documented extensive gene flow between taxa, sometimes separated at specific rank. In addition, Mcneillia as currently circumscribed, is not monophyletic. In fact, Mcneillia graminifolia subsp. brachypetala, strictly endemic to Greece, truly belongs to Minuartiella, a genus otherwise limited to South-West Asia. Moreover, even after removal of this taxon, our results do not support the monophyly of the taxa included in M. graminifolia s.l., the most variable and widespread species of the genus. Further controversial subspecies of Mcneillia graminifolia, i.e., subsp. hungarica and subsp. rosanoi, are shown to deserve taxonomic recognition as separate species, whereas Mc. moraldoi is not distinct at specific rank. In addition, Mc. saxifraga subsp. tmolea is here regarded as a further distinct species. A consistent taxonomic treatment is therefore proposed with six new combinations and nomenclatural notes, providing the necessary typifications.
Collapse
|
4
|
Naciri Y, Toprak Z, Prentice HC, Hugot L, Troia A, Burgarella C, Gradaille JL, Jeanmonod D. Convergent Morphological Evolution in Silene Sect. Italicae (Caryophyllaceae) in the Mediterranean Basin. FRONTIERS IN PLANT SCIENCE 2022; 13:695958. [PMID: 35903238 PMCID: PMC9319200 DOI: 10.3389/fpls.2022.695958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Recent divergence can obscure species boundaries among closely related taxa. Silene section Italicae (Caryophyllaceae) has been taxonomically controversial, with about 30 species described. We investigate species delimitation within this section using 500 specimens sequenced for one nuclear and two plastid markers. Despite the use of a small number of genes, the large number of sequenced samples allowed confident delimitation of 50% of the species. The delimitation of other species (e.g., Silene nemoralis, S. nodulosa and S. andryalifolia) was more challenging. We confirmed that seven of the ten chasmophyte species in the section are not related to each other but are, instead, genetically closer to geographically nearby species belonging to Italicae yet growing in open habitats. Adaptation to chasmophytic habitats therefore appears to have occurred independently, as a result of convergent evolution within the group. Species from the Western Mediterranean Basin showed more conflicting species boundaries than species from the Eastern Mediterranean Basin, where there are fewer but better-delimited species. Significant positive correlations were found between an estimation of the effective population size of the taxa and their extent of occurrence (EOO) or area of occupancy (AOO), and negative but non-significant correlations between the former and the posterior probability (PP) of the corresponding clades. These correlations might suggest a lower impact of incomplete lineage sorting in species with low effective population sizes and small distributional ranges compared with that in species inhabiting large areas. Finally, we confirmed that S. italica and S. nemoralis are distinct species, that S. nemoralis might furthermore include two different species and that S. velutina from Corsica and S. hicesiae from the Lipari Islands are sister species.
Collapse
Affiliation(s)
- Yamama Naciri
- Unité Systématique et Médiation, Conservatoire et Jardin botaniques de Genève, Geneva, Switzerland
- Plant Systematics and Biodiversity Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Zeynep Toprak
- Unité Systématique et Médiation, Conservatoire et Jardin botaniques de Genève, Geneva, Switzerland
- Plant Systematics and Biodiversity Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- Department of Molecular Biology and Genetic, Faculty of Sciences, University of Dicle, Diyarbakir, Turkey
| | | | - Laetitia Hugot
- Conservatoire botanique national de Corse, Office de l’Environment de la Corse, Corte, France
| | - Angelo Troia
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | | | | | - Daniel Jeanmonod
- Unité Systématique et Médiation, Conservatoire et Jardin botaniques de Genève, Geneva, Switzerland
- Plant Systematics and Biodiversity Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Hamzaoğlu E, Koç M, Topal MN. A new species, Gypsophila malyerii (Caryophyllaceae) from Turkey. KEW BULLETIN 2021; 76:531-538. [PMID: 34456392 PMCID: PMC8379069 DOI: 10.1007/s12225-021-09968-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 06/13/2023]
Abstract
Gypsophila malyerii Hamzaoğlu & Koç, a new species of sect. Capituliformes, is described and illustrated from Turkey. Information on distribution, habitat and conservation status are given. The most similar species is G. osmangaziensis. The morphology and micromorphology of seed and pollen characters of the two closely related species are compared.
Collapse
Affiliation(s)
- Ergin Hamzaoğlu
- Department of Mathematics and Science Education, Gazi Faculty of Education, Gazi University, 06500 Ankara, Turkey
| | - Murat Koç
- Department of Traditional, Complementary and Integrative Medicine, Institute of Public Health, Ankara Yıldırım Beyazıt University, Keçiören, Ankara, Turkey
| | - Mevlüde Nur Topal
- Department of biotherapeutic products research and development, Institute of Public Health, Ankara Yıldırım Beyazıt University, Keçiören, Ankara, Turkey
| |
Collapse
|
6
|
Charlesworth D. The timing of genetic degeneration of sex chromosomes. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200093. [PMID: 34247501 DOI: 10.1098/rstb.2020.0093] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Genetic degeneration is an extraordinary feature of sex chromosomes, with the loss of functions of Y-linked genes in species with XY systems, and W-linked genes in ZW systems, eventually affecting almost all genes. Although degeneration is familiar to most biologists, important aspects are not yet well understood, including how quickly a Y or W chromosome can become completely degenerated. I review the current understanding of the time-course of degeneration. Degeneration starts after crossing over between the sex chromosome pair stops, and theoretical models predict an initially fast degeneration rate and a later much slower one. It has become possible to estimate the two quantities that the models suggest are the most important in determining degeneration rates-the size of the sex-linked region, and the time when recombination became suppressed (which can be estimated using Y-X or W-Z sequence divergence). However, quantifying degeneration is still difficult. I review evidence on gene losses (based on coverage analysis) or loss of function (by classifying coding sequences into functional alleles and pseudogenes). I also review evidence about whether small genome regions degenerate, or only large ones, whether selective constraints on the genes in a sex-linked region also strongly affect degeneration rates, and about how long it takes before all (or almost all) genes are lost. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, EH9 3LF, UK
| |
Collapse
|
7
|
Moiloa NA, Mesbah M, Nylinder S, Manning J, Forest F, de Boer HJ, Bacon CD, Oxelman B. Biogeographic origins of southern African Silene (Caryophyllaceae). Mol Phylogenet Evol 2021; 162:107199. [PMID: 33984468 DOI: 10.1016/j.ympev.2021.107199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/25/2022]
Abstract
Silene (Caryophyllaceae) is distributed predominantly in the northern Hemisphere, where it is most diverse around the Mediterranean Basin. The genus is also well represented in North Africa, extending into tropical, sub-Saharan and southern Africa. Eight native species are recognized in southern Africa, taxonomically placed in two sections: Elisanthe and Silene s.l. Although the taxonomy of the southern African taxa has recently been revised, their phylogenetic relationships and biogeographic history remain unclear. This study aims to infer the phylogenetic position and geographic origins of the southern African taxa. We generated DNA sequences of nuclear and plastid loci from several individuals belonging to all eight species of Silene recognized from southern Africa, and combined our DNA sequences with existing data representing species from major clades (i.e. sections) based on the recently revised Silene infrageneric taxonomy. We used a Bayesian coalescent species tree continuous diffusion approach to co-estimate the species tree and the ancestral areas of representative members of the genus. Our results show that the perennial southern African members of section Elisanthe form a strongly-supported clade with the Eurasian annual S. noctiflora and the Central Asian perennial S. turkestanica. The rest of the perennial species form a strongly-supported clade together with the annual S. aethiopica, which is nested in a larger Mediterranean clade comprising mostly annual species classified in section Silene s.l. Estimates of ancestral areas indicate a late Pleistocene dispersal to southern Africa from central and East Africa for the sub-Saharan members of section Silene s.l. The Elisanthe clade is inferred to have colonized southern Africa through long-distance dispersal from Eurasia during the late Pleistocene. Our findings support the hypothesis of a relatively recent colonization into southern Africa resulting from two independent dispersal events during the Pleistocene.
Collapse
Affiliation(s)
- Ntwai A Moiloa
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs Gata 22 B, 413 19 Gothenburg, Sweden; Gothenburg Global Biodiversity Centre, Box 461, 405 30 Gothenburg, Sweden.
| | - Melilia Mesbah
- Gothenburg Global Biodiversity Centre, Box 461, 405 30 Gothenburg, Sweden; Laboratory of Ecology and Environment, Faculty of Natural and Life Sciences, University of Bejaia, 06000 Bejaia, Algeria
| | - Stephan Nylinder
- Swedish National Data Service, University of Gothenburg, Box 463, 405 30 Gothenburg, Sweden
| | - John Manning
- South African National Biodiversity Institute, Private Bag X7, Claremont, Cape Town 7735, South Africa; Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, United Kingdom
| | - Hugo J de Boer
- Natural History Museum, University of Oslo, Postboks 1172, Blindern, 0318 Oslo, Norway
| | - Christine D Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs Gata 22 B, 413 19 Gothenburg, Sweden; Gothenburg Global Biodiversity Centre, Box 461, 405 30 Gothenburg, Sweden
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs Gata 22 B, 413 19 Gothenburg, Sweden; Gothenburg Global Biodiversity Centre, Box 461, 405 30 Gothenburg, Sweden
| |
Collapse
|
8
|
Muyle A, Martin H, Zemp N, Mollion M, Gallina S, Tavares R, Silva A, Bataillon T, Widmer A, Glémin S, Touzet P, Marais GAB. Dioecy Is Associated with High Genetic Diversity and Adaptation Rates in the Plant Genus Silene. Mol Biol Evol 2021; 38:805-818. [PMID: 32926156 PMCID: PMC7947750 DOI: 10.1093/molbev/msaa229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
About 15,000 angiosperm species (∼6%) have separate sexes, a phenomenon known as dioecy. Why dioecious taxa are so rare is still an open question. Early work reported lower species richness in dioecious compared with nondioecious sister clades, raising the hypothesis that dioecy may be an evolutionary dead-end. This hypothesis has been recently challenged by macroevolutionary analyses that detected no or even positive effect of dioecy on diversification. However, the possible genetic consequences of dioecy at the population level, which could drive the long-term fate of dioecious lineages, have not been tested so far. Here, we used a population genomics approach in the Silene genus to look for possible effects of dioecy, especially for potential evidence of evolutionary handicaps of dioecy underlying the dead-end hypothesis. We collected individual-based RNA-seq data from several populations in 13 closely related species with different sexual systems: seven dioecious, three hermaphroditic, and three gynodioecious species. We show that dioecy is associated with increased genetic diversity, as well as higher selection efficacy both against deleterious mutations and for beneficial mutations. The results hold after controlling for phylogenetic inertia, differences in species census population sizes and geographic ranges. We conclude that dioecious Silene species neither show signs of increased mutational load nor genetic evidence for extinction risk. We discuss these observations in the light of the possible demographic differences between dioecious and self-compatible hermaphroditic species and how this could be related to alternatives to the dead-end hypothesis to explain the rarity of dioecy.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA
| | - Hélène Martin
- University of Lille, CNRS, UMR 8198—Evo-Eco-Paleo, F-59000 Lille, France
- Département de Biologie, Institut de Biologie Integrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Niklaus Zemp
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Genetic Diversity Centre (GDC), ETH Zurich, Zurich, Switzerland
| | - Maéva Mollion
- Bioinformatics Research Centre, Aarhus University, Aarhus C, Denmark
| | - Sophie Gallina
- University of Lille, CNRS, UMR 8198—Evo-Eco-Paleo, F-59000 Lille, France
| | - Raquel Tavares
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Alexandre Silva
- Centro de Interpretação da Serra da Estrela (CISE), Seia, Portugal
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, Aarhus C, Denmark
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Sylvain Glémin
- CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Évolution)]—UMR 6553, University of Rennes, Rennes, France
- Department of Ecology and Genetics, Evolutionary Biology Center and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pascal Touzet
- University of Lille, CNRS, UMR 8198—Evo-Eco-Paleo, F-59000 Lille, France
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| |
Collapse
|
9
|
Liu X, Glémin S, Karrenberg S. Evolution of putative barrier loci at an intermediate stage of speciation with gene flow in campions (Silene). Mol Ecol 2020; 29:3511-3525. [PMID: 32740990 PMCID: PMC7540528 DOI: 10.1111/mec.15571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022]
Abstract
Understanding the origin of new species is a central goal in evolutionary biology. Diverging lineages often evolve highly heterogeneous patterns of genetic differentiation; however, the underlying mechanisms are not well understood. We investigated evolutionary processes governing genetic differentiation between the hybridizing campions Silene dioica (L.) Clairv. and S. latifolia Poiret. Demographic modelling indicated that the two species diverged with gene flow. The best‐supported scenario with heterogeneity in both migration rate and effective population size suggested that a small proportion of the loci evolved without gene flow. Differentiation (FST) and sequence divergence (dXY) were correlated and both tended to peak in the middle of most linkage groups, consistent with reduced gene flow at highly differentiated loci. Highly differentiated loci further exhibited signatures of selection. In between‐species population pairs, isolation by distance was stronger for genomic regions with low between‐species differentiation than for highly differentiated regions that may contain barrier loci. Moreover, differentiation landscapes within and between species were only weakly correlated, suggesting that linked selection due to shared recombination and gene density landscapes is not the dominant determinant of genetic differentiation in these lineages. Instead, our results suggest that divergent selection shaped the genomic landscape of differentiation between the two Silene species, consistent with predictions for speciation in the face of gene flow.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Sylvain Glémin
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,UMR CNRS 6553 ECOBIO, Université de Rennes I, Rennes Cedex, France
| | - Sophie Karrenberg
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Areces-Berazain F, Wang Y, Hinsinger DD, Strijk JS. Plastome comparative genomics in maples resolves the infrageneric backbone relationships. PeerJ 2020; 8:e9483. [PMID: 32742784 PMCID: PMC7365138 DOI: 10.7717/peerj.9483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/15/2020] [Indexed: 12/28/2022] Open
Abstract
Maples (Acer) are among the most diverse and ecologically important tree genera of the north-temperate forests. They include species highly valued as ornamentals and as a source of timber and sugar products. Previous phylogenetic studies employing plastid markers have not provided sufficient resolution, particularly at deeper nodes, leaving the backbone of the maple plastid tree essentially unresolved. We provide the plastid genome sequences of 16 species of maples spanning the sectional diversity of the genus and explore the utility of these sequences as a source of information for genetic and phylogenetic studies in this group. We analyzed the distribution of different types of repeated sequences and the pattern of codon usage, and identified variable regions across the plastome. Maximum likelihood and Bayesian analyses using two partitioning strategies were performed with these and previously published sequences. The plastomes ranged in size from 155,212 to 157,023 bp and had structure and gene content except for Acer palmatum (sect. Palmata), which had longer inverted repeats and an additional copy of the rps19 gene. Two genes, rps2 and rpl22, were found to be truncated at different positions and might be non-functional in several species. Most dispersed repeats, SSRs, and overall variation were detected in the non-coding sequences of the LSC and SSC regions. Fifteen loci, most of which have not been used before in the genus, were identified as the most variable and potentially useful as molecular markers for barcoding and genetic studies. Both ML and Bayesian analyses produced similar results irrespective of the partitioning strategy used. The plastome-based tree largely supported the topology inferred in previous studies using cp markers while providing resolution to the backbone relationships but was highly incongruous with a recently published nuclear tree presenting an opportunity for further research to investigate the causes of discordance, and particularly the role of hybridization in the diversification of the genus. Plastome sequences are valuable tools to resolve deep-level relationships within Acer. The variable loci and SSRs identified in this study will facilitate the development of markers for ecological and evolutionary studies in the genus. This study underscores the potential of plastid genome sequences to improve our understanding of the evolution of maples.
Collapse
Affiliation(s)
- Fabiola Areces-Berazain
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
- Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, Luang Prabang, Laos
| | - Yixi Wang
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Damien D. Hinsinger
- Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, Luang Prabang, Laos
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commisariat à l’Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Joeri S. Strijk
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
- Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, Luang Prabang, Laos
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
11
|
Rose JP, Toledo CAP, Lemmon EM, Lemmon AR, Sytsma KJ. Out of Sight, Out of Mind: Widespread Nuclear and Plastid-Nuclear Discordance in the Flowering Plant Genus Polemonium (Polemoniaceae) Suggests Widespread Historical Gene Flow Despite Limited Nuclear Signal. Syst Biol 2020; 70:162-180. [PMID: 32617587 DOI: 10.1093/sysbio/syaa049] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Phylogenomic data from a rapidly increasing number of studies provide new evidence for resolving relationships in recently radiated clades, but they also pose new challenges for inferring evolutionary histories. Most existing methods for reconstructing phylogenetic hypotheses rely solely on algorithms that only consider incomplete lineage sorting (ILS) as a cause of intra- or intergenomic discordance. Here, we utilize a variety of methods, including those to infer phylogenetic networks, to account for both ILS and introgression as a cause for nuclear and cytoplasmic-nuclear discordance using phylogenomic data from the recently radiated flowering plant genus Polemonium (Polemoniaceae), an ecologically diverse genus in Western North America with known and suspected gene flow between species. We find evidence for widespread discordance among nuclear loci that can be explained by both ILS and reticulate evolution in the evolutionary history of Polemonium. Furthermore, the histories of organellar genomes show strong discordance with the inferred species tree from the nuclear genome. Discordance between the nuclear and plastid genome is not completely explained by ILS, and only one case of discordance is explained by detected introgression events. Our results suggest that multiple processes have been involved in the evolutionary history of Polemonium and that the plastid genome does not accurately reflect species relationships. We discuss several potential causes for this cytoplasmic-nuclear discordance, which emerging evidence suggests is more widespread across the Tree of Life than previously thought. [Cyto-nuclear discordance, genomic discordance, phylogenetic networks, plastid capture, Polemoniaceae, Polemonium, reticulations.].
Collapse
Affiliation(s)
- Jeffrey P Rose
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Cassio A P Toledo
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biolgia, Universidade Estadual de Campinas-UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP. CEP: 13083-862, Brazil
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA
| | - Kenneth J Sytsma
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
12
|
Lin N, Zhang DG, Huang XH, Zhang JW, Yang JY, Tojibaev K, Wang HC, Deng T. Silene sunhangii (Caryophyllaceae), a new species from China. PHYTOKEYS 2019; 135:59-69. [PMID: 31849559 PMCID: PMC6908523 DOI: 10.3897/phytokeys.135.36426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/10/2019] [Indexed: 06/01/2023]
Abstract
Silene sunhangii, a new species of Caryophyllaceae known from only three populations in Hubei and Hunan provinces of central China, is described. Both morphological and molecular data were used to assess the taxonomic status and relationships of this species. Morphologically, S. sunhangii is most similar to S. platyphylla Franch. from which it differs most readily in having 3-veined elliptical leaves without pubescence, tasseled catacorolla, pale purple to red petals without a linear lobe or narrow tooth and lanceolate, bifid to one third. A phylogenetic analysis based on nuclear ITS region identified the new species as a well-supported, independent lineage. Our new species is nested within a grade that encompasses species representing a polyphyletic Silene sect. Physolychnis (Benth.) Bocquet. Both the genetic and morphological data support the recognition of Silene sunhangii as a distinct species, although there is inconsistency between these two datasets as to the relationships of the new species.
Collapse
Affiliation(s)
- Nan Lin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, ChinaKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, ChinaWuhan Botanical Garden, Chinese Academy of SciencesWuhanChina
- University of Chinese Academy of Sciences, Beijing 100049, ChinaUniversity of Chinese Academy of SciencesBeijingChina
| | - Dai-Gui Zhang
- Key Laboratory of Plant Resources Conservation and Utilization, Jishou University, Jishou, Hunan 416000, ChinaJishou UniversityJishouChina
| | - Xian-Han Huang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, ChinaKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
- University of Chinese Academy of Sciences, Beijing 100049, ChinaUniversity of Chinese Academy of SciencesBeijingChina
| | - Jian-Wen Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, ChinaKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
| | - Jing-Yuan Yang
- Administration of Shennongjia National Park, Shennongjia, Hubei 44241, ChinaAdministration of Shennongjia National ParkShennongjiaChina
| | - Komiljon Tojibaev
- Central Herbarium of Uzbekistan, Institute of Botany, Academy Sciences of Uzbekistan, Tashkent 100025, UzbekistanInstitute of Botany, Academy Sciences of UzbekistanTashkentUzbekistan
| | - Heng-Chang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, ChinaWuhan Botanical Garden, Chinese Academy of SciencesWuhanChina
| | - Tao Deng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, ChinaKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
| |
Collapse
|
13
|
del Valle JC, Casimiro-Soriguer I, Buide ML, Narbona E, Whittall JB. Whole Plastome Sequencing Within Silene Section Psammophilae Reveals Mainland Hybridization and Divergence With the Balearic Island Populations. FRONTIERS IN PLANT SCIENCE 2019; 10:1466. [PMID: 31803208 PMCID: PMC6872646 DOI: 10.3389/fpls.2019.01466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/22/2019] [Indexed: 05/29/2023]
Abstract
Reconstructing the phylogenetic relationships within Caryophyllaceae tribe Sileneae has been obscured by hybridization and incomplete lineage sorting. Silene is the largest genus in the Caryophyllaceae, and unraveling its evolutionary history has been particularly challenging. In order to infer the phylogenetic relationships among the five species in Silene section Psammophilae, we have performed a genome skimming approach to acquire the complete plastid genome (cpDNA), nuclear ribosomal cistron (nrDNA), and partial mitochondrial genome (mtDNA). We have included 26 populations, representing the range of each species' distribution. This section includes five morphologically similar species endemic to the Iberian Peninsula and Balearic Islands (Ibiza and Formentera), yet some of them occupy distinct edaphic habitats (e.g. maritime sands, calcareous sandstones). In addition to phylogeographic analyses, genetic structuring using the chloroplast data set was inferred with Discriminant Analysis of Principal Components (DAPC), analyses of molecular variance (AMOVA), and a partial Mantel test. Reference-guided assembly of 50 bp single-end and 250 bp paired-end Illumina reads produced the nearly complete cpDNA genome (154 kbp), partial mtDNA genome (from 81 to 114 kbp), and the nrDNA cistron (6.4 kbp). Selected variable regions of the cpDNA and mtDNA assemblies were confirmed by Sanger sequencing. Phylogenetic analyses of the mainland populations reveal incongruence among the three genomes. None of the three data sets produced relationships consistent with taxonomy or geography. In contrast, Silene cambessedesii, present in the Balearic Islands, is the only species that forms a strongly supported monophyletic clade in the cpDNA genome and is strongly differentiated with respect to the remaining taxa of the Iberian Peninsula. These results contrast with those obtained for mainland populations. Across the entire analysis, only one well-supported mainland clade of Silene littorea and Silene stockenii emerges from the southern region of the Iberian Peninsula. DAPC and AMOVA results suggest the absence of genetic structure among mainland populations of Silene section Psammophilae, whereas partial Mantel test discarded spatial correlation of genetic differentiation. The widespread incongruence between morphology-based taxonomic boundaries and phylogeography suggests a history of interspecific hybridization, in which only a substantial geographic barrier, like isolation by the Mediterranean Sea, was sufficient to create and maintain species boundaries in Silene section Psammophilae.
Collapse
Affiliation(s)
- José Carlos del Valle
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Inés Casimiro-Soriguer
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Mᵃ Luisa Buide
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Eduardo Narbona
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Justen B. Whittall
- Department of Biology, Santa Clara University, Santa Clara, CA, United States
| |
Collapse
|
14
|
Hartmann FE, Rodríguez de la Vega RC, Carpentier F, Gladieux P, Cornille A, Hood ME, Giraud T. Understanding Adaptation, Coevolution, Host Specialization, and Mating System in Castrating Anther-Smut Fungi by Combining Population and Comparative Genomics. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:431-457. [PMID: 31337277 DOI: 10.1146/annurev-phyto-082718-095947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Anther-smut fungi provide a powerful system to study host-pathogen specialization and coevolution, with hundreds of Microbotryum species specialized on diverse Caryophyllaceae plants, castrating their hosts through manipulation of the hosts' reproductive organs to facilitate disease transmission. Microbotryum fungi have exceptional genomic characteristics, including dimorphic mating-type chromosomes, that make this genus anexcellent model for studying the evolution of mating systems and their influence on population genetics structure and adaptive potential. Important insights into adaptation, coevolution, host specialization, and mating system evolution have been gained using anther-smut fungi, with new insights made possible by the recent advent of genomic approaches. We illustrate with Microbotryum case studies how using a combination of comparative genomics, population genomics, and transcriptomics approaches enables the integration of different evolutionary perspectives across different timescales. We also highlight current challenges and suggest future studies that will contribute to advancing our understanding of the mechanisms underlying adaptive processes in populations of fungal pathogens.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Ecologie Systématique Evolution, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France;
| | | | - Fantin Carpentier
- Ecologie Systématique Evolution, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France;
| | - Pierre Gladieux
- UMR BGPI, Univ. Montpellier, INRA, CIRAD, Montpellier SupAgro, 34398 Montpellier, France
| | - Amandine Cornille
- Génétique Quantitative et Evolution-Le Moulon, INRA; Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Michael E Hood
- Biology Department, Amherst College, Amherst, Massachusetts 01002-5000, USA
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France;
| |
Collapse
|
15
|
Martin H, Carpentier F, Gallina S, Godé C, Schmitt E, Muyle A, Marais GAB, Touzet P. Evolution of Young Sex Chromosomes in Two Dioecious Sister Plant Species with Distinct Sex Determination Systems. Genome Biol Evol 2019; 11:350-361. [PMID: 30649306 PMCID: PMC6364797 DOI: 10.1093/gbe/evz001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
In the last decade, progress has been made in methods to identify the sex determination system in plants. This gives the opportunity to study sex chromosomes that arose independently at different phylogenetic scales, and thus allows the discovery and the understanding of early stages of sex chromosome evolution. In the genus Silene, sex chromosomes have evolved independently in at least two clades from a nondioecious ancestor, the Melandrium and Otites sections. In the latter, sex chromosomes could be younger than in the section Melandrium, based on phylogenetic studies and as no heteromorphic sex chromosomes have been detected. This section might also exhibit lability in sex determination, because male heterogamy and female heterogamy have been suggested to occur. In this study, we investigated the sex determination system of two dioecious species in the section Otites (Silene otites and its close relative Silene pseudotites). Applying the new probabilistic method SEX-DETector on RNA-seq data from cross-controlled progenies, we inferred their most likely sex determination system and a list of putative autosomal and sex-linked contigs. We showed that the two phylogenetically close species differed in their sex determination system (XY versus ZW) with sex chromosomes that derived from two different pairs of autosomes. We built a genetic map of the sex chromosomes and showed that both pairs exhibited a large region with lack of recombination. However, the sex-limited chromosomes exhibited no strong degeneration. Finally, using the “ancestral” autosomal expression of sex-linked orthologs of nondioecious S. nutans, we found a slight signature of dosage compensation in the heterogametic females of S. otites.
Collapse
Affiliation(s)
- Hélène Martin
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France.,Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Fantin Carpentier
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France.,Ecologie Systématique Evolution, Université Paris Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | | | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France
| | - Eric Schmitt
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France
| | - Aline Muyle
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | | |
Collapse
|
16
|
Balounova V, Gogela R, Cegan R, Cangren P, Zluvova J, Safar J, Kovacova V, Bergero R, Hobza R, Vyskot B, Oxelman B, Charlesworth D, Janousek B. Evolution of sex determination and heterogamety changes in section Otites of the genus Silene. Sci Rep 2019; 9:1045. [PMID: 30705300 PMCID: PMC6355844 DOI: 10.1038/s41598-018-37412-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/05/2018] [Indexed: 11/18/2022] Open
Abstract
Switches in heterogamety are known to occur in both animals and plants. Although plant sex determination systems probably often evolved more recently than those in several well-studied animals, including mammals, and have had less time for switches to occur, we previously detected a switch in heterogamety in the plant genus Silene: section Otites has both female and male heterogamety, whereas S. latifolia and its close relatives, in a different section of the genus, Melandrium (subgenus Behenantha), all have male heterogamety. Here we analyse the evolution of sex chromosomes in section Otites, which is estimated to have evolved only about 0.55 MYA. Our study confirms female heterogamety in S. otites and newly reveals female heterogamety in S. borysthenica. Sequence analyses and genetic mapping show that the sex-linked regions of these two species are the same, but the region in S. colpophylla, a close relative with male heterogamety, is different. The sex chromosome pairs of S. colpophylla and S. otites each correspond to an autosome of the other species, and both differ from the XY pair in S. latifolia. Silene section Otites species are suitable for detailed studies of the events involved in such changes, and our phylogenetic analysis suggests a possible change from female to male heterogamety within this section. Our analyses suggest a possibility that has so far not been considered, change in heterogamety through hybridization, in which a male-determining chromosome from one species is introgressed into another one, and over-rides its previous sex-determining system.
Collapse
Affiliation(s)
- Veronika Balounova
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Roman Gogela
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Patrik Cangren
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden, Sweden
| | - Jitka Zluvova
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Jan Safar
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, 78371, Olomouc, Czech Republic
| | - Viera Kovacova
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic.,Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, Cologne, Germany
| | - Roberta Bergero
- Institute of Evolutionary Biology, EH9 3FL University of Edinburgh, Edinburgh, UK
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic.,Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, 78371, Olomouc, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden, Sweden
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, EH9 3FL University of Edinburgh, Edinburgh, UK
| | - Bohuslav Janousek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic.
| |
Collapse
|
17
|
Karrenberg S, Liu X, Hallander E, Favre A, Herforth-Rahmé J, Widmer A. Ecological divergence plays an important role in strong but complex reproductive isolation in campions (Silene). Evolution 2018; 73:245-261. [PMID: 30499144 DOI: 10.1111/evo.13652] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/13/2018] [Accepted: 01/16/2018] [Indexed: 12/27/2022]
Abstract
New species arise through the evolution of reproductive barriers between formerly interbreeding lineages. Yet, comprehensive assessments of potential reproductive barriers, which are needed to make inferences on processes driving speciation, are only available for a limited number of systems. In this study, we estimated individual and cumulative strengths of seven prezygotic and six postzygotic reproductive barriers between the recently diverged taxa Silene dioica (L.) Clairv. and S. latifolia Poiret using both published and new data. A combination of multiple partial reproductive barriers resulted in near-complete reproductive isolation between S. dioica and S. latifolia, consistent with earlier estimates of gene flow between the taxa. Extrinsic barriers associated with adaptive ecological divergence were most important, while intrinsic postzygotic barriers had moderate individual strength but contributed only little to total reproductive isolation. These findings are in line with ecological divergence as driver of speciation. We further found extensive variation in extrinsic reproductive isolation, ranging from sites with very strong selection against migrants and hybrids to intermediate sites where substantial hybridization is possible. This situation may allow for, or even promote, heterogeneous genetic divergence.
Collapse
Affiliation(s)
- Sophie Karrenberg
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18 D, 75236, Uppsala, Sweden
| | - Xiaodong Liu
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18 D, 75236, Uppsala, Sweden
| | - Emelie Hallander
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18 D, 75236, Uppsala, Sweden.,Current Address: Swedish Board of Agriculture, Vallgatan 8, 551 82, Jönköping, Sweden
| | - Adrien Favre
- Department of Diversity and Evolution of Higher Plants, Institute of Ecology, Evolution and Diversity, Goethe-University, 60439, Frankfurt am Main, Germany.,Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Joelle Herforth-Rahmé
- ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zürich, Switzerland.,Current Address: Research Institute of Organic Agriculture FiBL, Department of Soil Sciences, Ackerstrasse 113, Box 219, 5070, Frick, Switzerland
| | - Alex Widmer
- ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zürich, Switzerland
| |
Collapse
|
18
|
Frajman B, Schönswetter P, Weiss-Schneeweiss H, Oxelman B. Origin and Diversification of South American Polyploid Silene Sect. Physolychnis (Caryophyllaceae) in the Andes and Patagonia. Front Genet 2018; 9:639. [PMID: 30619464 PMCID: PMC6297176 DOI: 10.3389/fgene.2018.00639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022] Open
Abstract
The Andes are an important biogeographic region in South America extending for about 8000 km from Venezuela to Argentina. They are - along with the Patagonian steppes - the main distribution area of ca. 18 polyploid species of Silene sect. Physolychnis. Using nuclear ITS and plastid psbE-petG and matK sequences, flow cytometric ploidy level estimations and chromosome counts, and including 13 South American species, we explored the origin and diversification of this group. Our data suggest a single, late Pliocene or early Pleistocene migration of the North American S. verecunda lineage to South America, which was followed by dispersal and diversification of this tetraploid lineage in the Andes, other Argentinian mountain ranges and the Patagonian steppes. Later in the Pleistocene South American populations hybridized with the S. uralensis lineage, which led to allopolyploidisation and origin of decaploid S. chilensis and S. echegarayi occurring at high elevations. Additionally, we show that the morphological differentiation in leaf shape correlated with divergent habitats (high elevation Andes vs. lower elevation Patagonian steppes) is also supported phylogenetically, especially in the ITS tree. Lastly, the species boundaries among the narrow-leaved Patagonian steppe species are poorly resolved and need more thorough taxonomic revision.
Collapse
Affiliation(s)
- Božo Frajman
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | | | | | - Bengt Oxelman
- Department of Plant and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Xie C, Xie DF, Zhong Y, Guo XL, Liu Q, Zhou SD, He XJ. The effect of Hengduan Mountains Region (HMR) uplift to environmental changes in the HMR and its eastern adjacent area: Tracing the evolutionary history of Allium section Sikkimensia (Amaryllidaceae). Mol Phylogenet Evol 2018; 130:380-396. [PMID: 30240912 DOI: 10.1016/j.ympev.2018.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/29/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
Exploring the effects of orographic events and climatic shifts on geographic distribution of organism in the Hengduan Mountains Region (HMR) and its eastern adjacent area is crucial to the understanding of the environmental changes to organismal evolution. To gain further insight into these processes, we reconstruct evolutionary history of ten species in Allium section Sikkimensia, distributed across regions abovementioned. Using chloroplast and nuclear sequence variation of 79 populations of these ten Allium species with known morphological preferences, we elucidate the phylogenetic relationship, divergence time, ancestral area and genetic structures. Climatic variables analysis, Isolation by distance (IBD) and environment (IBE) and Species distribution modeling (SDM) were analyzed along different genetic clades. These analyses indicated that the initial split of Sikkimensia was triggered by climate changes following Qinghai-Tibet Plateau sensu lato (QTPsl) uplift during the late Miocene. Subsequently, divergences within lineage (lineage A)/among lineages (lineage C and D) in Sikkimensia may be induced by the intense uplift of the HMR around 3-4 Ma and abrupt intensifying of the Asian monsoon regimes. Furthermore, Sikkimensia populations exhibited lopsided demographic history in the Last Glacial Maximum (LGM), as was indicated by the expansion of their range in the QDM and contraction in the HMR. Our findings appear to suggest that the HMR uplift could have strengthened the orographic difference between the HMR and its eastern adjacent area and led to a colder climate in the HMR, while geological topography also played an important role for taxa to respond the climate change that had taken place in the HMR and its eastern adjacent area during the Pleistocene.
Collapse
Affiliation(s)
- Chuan Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yan Zhong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xian-Lin Guo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Qing Liu
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, PR China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xing-Jin He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
20
|
Muyle A, Zemp N, Fruchard C, Cegan R, Vrana J, Deschamps C, Tavares R, Hobza R, Picard F, Widmer A, Marais GAB. Genomic imprinting mediates dosage compensation in a young plant XY system. NATURE PLANTS 2018; 4:677-680. [PMID: 30104649 DOI: 10.1038/s41477-018-0221-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/16/2018] [Indexed: 05/06/2023]
Abstract
Sex chromosomes have repeatedly evolved from a pair of autosomes. Consequently, X and Y chromosomes initially have similar gene content, but ongoing Y degeneration leads to reduced expression and eventual loss of Y genes1. The resulting imbalance in gene expression between Y genes and the rest of the genome is expected to reduce male fitness, especially when protein networks have components from both autosomes and sex chromosomes. A diverse set of dosage compensating mechanisms that alleviates these negative effects has been described in animals2-4. However, the early steps in the evolution of dosage compensation remain unknown, and dosage compensation is poorly understood in plants5. Here, we describe a dosage compensation mechanism in the evolutionarily young XY sex determination system of the plant Silene latifolia. Genomic imprinting results in higher expression from the maternal X chromosome in both males and females. This compensates for reduced Y expression in males, but results in X overexpression in females and may be detrimental. It could represent a transient early stage in the evolution of dosage compensation. Our finding has striking resemblance to the first stage proposed by Ohno6 for the evolution of X inactivation in mammals.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France.
| | - Niklaus Zemp
- Genetic Diversity Centre (GDC), ETH Zurich, Zurich, Switzerland
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Cécile Fruchard
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| | - Radim Cegan
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Vrana
- Institute of Experimental Botany, Center of the Hana Region for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Raquel Tavares
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| | - Roman Hobza
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Institute of Experimental Botany, Center of the Hana Region for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Franck Picard
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Gabriel A B Marais
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| |
Collapse
|
21
|
Zemp N, Widmer A, Charlesworth D. Has adaptation occurred in males and females since separate sexes evolved in the plant Silene latifolia? Proc Biol Sci 2018; 285:rspb.2017.2824. [PMID: 30051860 DOI: 10.1098/rspb.2017.2824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/03/2018] [Indexed: 11/12/2022] Open
Abstract
The evolution of separate sexes may involve changed expression of many genes, as each sex adapts to its new state. Evidence is accumulating for sex differences in expression even in organisms that have recently evolved separate sexes from hermaphrodite or monoecious (cosexual) ancestors, such as some dioecious flowering plants. We describe evidence that a dioecious plant species with recently evolved dioecy, Silene latifolia, has undergone adaptive changes that improve functioning in females, in addition to changes that are probably pleiotropic effects of male sterility. The results suggest pervasive adaptations as soon as males and females evolve from their cosexual ancestor.
Collapse
Affiliation(s)
- Niklaus Zemp
- Institute of Integrative Biology, Universitätstrasse 16, 8092 Zürich, Switzerland.,Genetic Diversity Centre (GDC), ETH Zurich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Alex Widmer
- Institute of Integrative Biology, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, Midlothian, Scotland
| |
Collapse
|
22
|
Krasovec M, Chester M, Ridout K, Filatov DA. The Mutation Rate and the Age of the Sex Chromosomes in Silene latifolia. Curr Biol 2018; 28:1832-1838.e4. [PMID: 29804812 DOI: 10.1016/j.cub.2018.04.069] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/12/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
Many aspects of sex chromosome evolution are common to both plants and animals [1], but the process of Y chromosome degeneration, where genes on the Y become non-functional over time, may be much slower in plants due to purifying selection against deleterious mutations in the haploid gametophyte [2, 3]. Testing for differences in Y degeneration between the kingdoms has been hindered by the absence of accurate age estimates for plant sex chromosomes. Here, we used genome resequencing to estimate the spontaneous mutation rate and the age of the sex chromosomes in white campion (Silene latifolia). Screening of single nucleotide polymorphisms (SNPs) in parents and 10 F1 progeny identified 39 de novo mutations and yielded a rate of 7.31 × 10-9 (95% confidence interval: 5.20 × 10-9 - 8.00 × 10-9) mutations per site per haploid genome per generation. Applying this mutation rate to the synonymous divergence between homologous X- and Y-linked genes (gametologs) gave age estimates of 11.00 and 6.32 million years for the old and young strata, respectively. Based on SNP segregation patterns, we inferred which genes were Y-linked and found that at least 47% are already dysfunctional. Applying our new estimates for the age of the sex chromosomes indicates that the rate of Y degeneration in S. latifolia is nearly 2-fold slower when compared to animal sex chromosomes of a similar age. Our revised estimates support Y degeneration taking place more slowly in plants, a discrepancy that may be explained by differences in the life cycles of animals and plants.
Collapse
Affiliation(s)
- Marc Krasovec
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Michael Chester
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Kate Ridout
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK.
| |
Collapse
|
23
|
A Comparison of Selective Pressures in Plant X-Linked and Autosomal Genes. Genes (Basel) 2018; 9:genes9050234. [PMID: 29751495 PMCID: PMC5977174 DOI: 10.3390/genes9050234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 01/30/2023] Open
Abstract
Selection is expected to work differently in autosomal and X-linked genes because of their ploidy difference and the exposure of recessive X-linked mutations to haploid selection in males. However, it is not clear whether these expectations apply to recently evolved sex chromosomes, where many genes retain functional X- and Y-linked gametologs. We took advantage of the recently evolved sex chromosomes in the plant Silene latifolia and its closely related species to compare the selective pressures between hemizygous and non-hemizygous X-linked genes as well as between X-linked genes and autosomal genes. Our analysis, based on over 1000 genes, demonstrated that, similar to animals, X-linked genes in Silene evolve significantly faster than autosomal genes—the so-called faster-X effect. Contrary to expectations, faster-X divergence was detectable only for non-hemizygous X-linked genes. Our phylogeny-based analyses of selection revealed no evidence for faster adaptation in X-linked genes compared to autosomal genes. On the other hand, partial relaxation of purifying selection was apparent on the X-chromosome compared to the autosomes, consistent with a smaller genetic diversity in S. latifolia X-linked genes (πx = 0.016; πaut = 0.023). Thus, the faster-X divergence in S. latifolia appears to be a consequence of the smaller effective population size rather than of a faster adaptive evolution on the X-chromosome. We argue that this may be a general feature of “young” sex chromosomes, where the majority of X-linked genes are not hemizygous, preventing haploid selection in heterogametic sex.
Collapse
|
24
|
Hartmann FE, Rodríguez de la Vega RC, Brandenburg JT, Carpentier F, Giraud T. Gene Presence-Absence Polymorphism in Castrating Anther-Smut Fungi: Recent Gene Gains and Phylogeographic Structure. Genome Biol Evol 2018; 10:1298-1314. [PMID: 29722826 PMCID: PMC5967549 DOI: 10.1093/gbe/evy089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Gene presence-absence polymorphisms segregating within species are a significant source of genetic variation but have been little investigated to date in natural populations. In plant pathogens, the gain or loss of genes encoding proteins interacting directly with the host, such as secreted proteins, probably plays an important role in coevolution and local adaptation. We investigated gene presence-absence polymorphism in populations of two closely related species of castrating anther-smut fungi, Microbotryum lychnidis-dioicae (MvSl) and M. silenes-dioicae (MvSd), from across Europe, on the basis of Illumina genome sequencing data and high-quality genome references. We observed presence-absence polymorphism for 186 autosomal genes (2% of all genes) in MvSl, and only 51 autosomal genes in MvSd. Distinct genes displayed presence-absence polymorphism in the two species. Genes displaying presence-absence polymorphism were frequently located in subtelomeric and centromeric regions and close to repetitive elements, and comparison with outgroups indicated that most were present in a single species, being recently acquired through duplications in multiple-gene families. Gene presence-absence polymorphism in MvSl showed a phylogeographic structure corresponding to clusters detected based on SNPs. In addition, gene absence alleles were rare within species and skewed toward low-frequency variants. These findings are consistent with a deleterious or neutral effect for most gene presence-absence polymorphism. Some of the observed gene loss and gain events may however be adaptive, as suggested by the putative functions of the corresponding encoded proteins (e.g., secreted proteins) or their localization within previously identified selective sweeps. The adaptive roles in plant and anther-smut fungi interactions of candidate genes however need to be experimentally tested in future studies.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Jean-Tristan Brandenburg
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Fantin Carpentier
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Tatiana Giraud
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
25
|
Muyle A, Shearn R, Marais GA. The Evolution of Sex Chromosomes and Dosage Compensation in Plants. Genome Biol Evol 2017; 9:627-645. [PMID: 28391324 PMCID: PMC5629387 DOI: 10.1093/gbe/evw282] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 12/17/2022] Open
Abstract
Plant sex chromosomes can be vastly different from those of the few historical animal model organisms from which most of our understanding of sex chromosome evolution is derived. Recently, we have seen several advancements from studies on green algae, brown algae, and land plants that are providing a broader understanding of the variable ways in which sex chromosomes can evolve in distant eukaryotic groups. Plant sex-determining genes are being identified and, as expected, are completely different from those in animals. Species with varying levels of differentiation between the X and Y have been found in plants, and these are hypothesized to be representing different stages of sex chromosome evolution. However, we are also finding that sex chromosomes can remain morphologically unchanged over extended periods of time. Where degeneration of the Y occurs, it appears to proceed similarly in plants and animals. Dosage compensation (a phenomenon that compensates for the consequent loss of expression from the Y) has now been documented in a plant system, its mechanism, however, remains unknown. Research has also begun on the role of sex chromosomes in sexual conflict resolution, and it appears that sex-biased genes evolve similarly in plants and animals, although the functions of these genes remain poorly studied. Because the difficulty in obtaining sex chromosome sequences is increasingly being overcome by methodological developments, there is great potential for further discovery within the field of plant sex chromosome evolution.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Rylan Shearn
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Gabriel Ab Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| |
Collapse
|
26
|
Antonova EV, Korchagina OS. Microsatellite loci variability in the ural population of Silene latifolia (caryophyllaceae). BIOL BULL+ 2017. [DOI: 10.1134/s1062359017050028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Wei SJ, Lu YB, Ye QQ, Tang SQ. Population Genetic Structure and Phylogeography of Camellia flavida (Theaceae) Based on Chloroplast and Nuclear DNA Sequences. FRONTIERS IN PLANT SCIENCE 2017; 8:718. [PMID: 28579991 PMCID: PMC5437371 DOI: 10.3389/fpls.2017.00718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/19/2017] [Indexed: 05/30/2023]
Abstract
Camellia flavida is an endangered species of yellow camellia growing in limestone mountains in southwest China. The current classification of C. flavida into two varieties, var. flavida and var. patens, is controversial. We conducted a genetic analysis of C. flavida to determine its taxonomic structure. A total of 188 individual plants from 20 populations across the entire distribution range in southwest China were analyzed using two DNA fragments: a chloroplast DNA fragment from the small single copy region and a single-copy nuclear gene called phenylalanine ammonia-lyase (PAL). Sequences from both chloroplast and nuclear DNA were highly diverse; with high levels of genetic differentiation and restricted gene flow. This result can be attributed to the high habitat heterogeneity in limestone karst, which isolates C. flavida populations from each other. Our nuclear DNA results demonstrate that there are three differentiated groups within C. flavida: var. flavida 1, var. flavida 2, and var. patens. These genetic groupings are consistent with the morphological characteristics of the plants. We suggest that the samples included in this study constitute three taxa and the var. flavida 2 group is the genuine C. flavida. The three groups should be recognized as three management units for conservation concerns.
Collapse
Affiliation(s)
- Su-Juan Wei
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal UniversityGuilin, China
- College of Life Science, Guangxi Normal UniversityGuilin, China
| | - Yong-Bin Lu
- College of Life Science, Guangxi Normal UniversityGuilin, China
| | - Quan-Qing Ye
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal UniversityGuilin, China
- College of Life Science, Guangxi Normal UniversityGuilin, China
| | - Shao-Qing Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal UniversityGuilin, China
- College of Life Science, Guangxi Normal UniversityGuilin, China
| |
Collapse
|
28
|
Favre A, Widmer A, Karrenberg S. Differential adaptation drives ecological speciation in campions (Silene): evidence from a multi-site transplant experiment. THE NEW PHYTOLOGIST 2017; 213:1487-1499. [PMID: 27775172 DOI: 10.1111/nph.14202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
In order to investigate the role of differential adaptation for the evolution of reproductive barriers, we conducted a multi-site transplant experiment with the dioecious sister species Silene dioica and S. latifolia and their hybrids. Crosses within species as well as reciprocal first-generation (F1 ) and second-generation (F2 ) interspecific hybrids were transplanted into six sites, three within each species' habitat. Survival and flowering were recorded over 4 yr. At all transplant sites, the local species outperformed the foreign species, reciprocal F1 hybrids performed intermediately and F2 hybrids underperformed in comparison to F1 hybrids (hybrid breakdown). Females generally had slightly higher cumulative fitness than males in both within- and between-species crosses and we thus found little evidence for Haldane's rule acting on field performance. The strength of selection against F1 and F2 hybrids as well as hybrid breakdown increased with increasing strength of habitat adaptation (i.e. the relative fitness difference between the local and the foreign species) across sites. Our results suggest that differential habitat adaptation led to ecologically dependent post-zygotic reproductive barriers and drives divergence and speciation in this Silene system.
Collapse
Affiliation(s)
- Adrien Favre
- Plant Ecological Genetics, ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zurich, Switzerland
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Alex Widmer
- Plant Ecological Genetics, ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zurich, Switzerland
| | - Sophie Karrenberg
- Plant Ecological Genetics, ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zurich, Switzerland
- Department of Ecology and Genetics, Plant Ecology and Evolution, Uppsala University, Norbyvägen 18 D, 752 36, Uppsala, Sweden
| |
Collapse
|
29
|
Campos JL, Qiu S, Guirao-Rico S, Bergero R, Charlesworth D. Recombination changes at the boundaries of fully and partially sex-linked regions between closely related Silene species pairs. Heredity (Edinb) 2016; 118:395-403. [PMID: 27827389 DOI: 10.1038/hdy.2016.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 11/09/2022] Open
Abstract
The establishment of a region of suppressed recombination is a critical change during sex chromosome evolution, leading to such properties as Y (and W) chromosome genetic degeneration, accumulation of repetitive sequences and heteromorphism. Although chromosome inversions can cause large regions to have suppressed recombination, and inversions are sometimes involved in sex chromosome evolution, gradual expansion of the non-recombining region could potentially sometimes occur. We here test whether closer linkage has recently evolved between the sex-determining region and several genes that are partially sex-linked in Silene latifolia, using Silene dioica, a closely related dioecious plants whose XY sex chromosome system is inherited from a common ancestor. The S. latifolia pseudoautosomal region (PAR) includes several genes extremely closely linked to the fully Y-linked region. These genes were added to an ancestral PAR of the sex chromosome pair in two distinct events probably involving translocations of autosomal genome regions causing multiple genes to become partially sex-linked. Close linkage with the PAR boundary must have evolved since these additions, because some genes added in both events now show almost complete sex linkage in S. latifolia. We compared diversity patterns of five such S. latifolia PAR boundary genes with their orthologues in S. dioica, including all three regions of the PAR (one gene that was in the ancestral PAR and two from each of the added regions). The results suggest recent recombination suppression in S. latifolia, since its split from S. dioica.
Collapse
Affiliation(s)
- J L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - S Qiu
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - S Guirao-Rico
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - R Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - D Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
30
|
Karimullina E, Antonova EV, Pozolotina VN. Genetic variation in natural Melandrium album populations exposed to chronic ionizing radiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21565-21576. [PMID: 27515527 DOI: 10.1007/s11356-016-7355-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
The effect of radiation pollution on genetic variation in natural populations of Melandrium album was investigated at the head part of the East-Ural Radioactive Trace (EURT) and background areas. The highest genetic differentiation estimated using F ST was revealed between compared pairs of the background and impact samples in populations of M. album. The highest rate of polymorphism was observed at the closest to nuclear accident, Impact-1 site. The unique alleles (Mdh-3104, Pgi-2106, Lap 105, Mdh-296, and Dia 94) were discovered at the EURT. Individuals from chronically low-level irradiated sites were genetically closer than to plants from background sites using Nadhdh locus. The increase of the frequency of unique homozygous and heterozygous genotypes was identified in populations of M. album growing under chronic radiation exposure conditions. The largest contribution to the group of unique heterozygous genotypes at the EURT was made by three loci - Lap, Pgi-2, and Nadhdh; the main role in interpopulation differentiation of samples was made by the alleles Sod-2115, Skdh 100, and Nadhdh 100. Our results provide evidence for the correlation between the increase of genetic variation other than the «genetic erosion» and chronic radiation exposure factor in natural plant populations.
Collapse
Affiliation(s)
- Elina Karimullina
- Laboratory of Population Radiobiology, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 Marta St., 202, Ekaterinburg, Russian Federation, 620144.
| | - Elena V Antonova
- Laboratory of Population Radiobiology, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 Marta St., 202, Ekaterinburg, Russian Federation, 620144
| | - Vera N Pozolotina
- Laboratory of Population Radiobiology, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 Marta St., 202, Ekaterinburg, Russian Federation, 620144
| |
Collapse
|
31
|
Muyle A, Käfer J, Zemp N, Mousset S, Picard F, Marais GA. SEX-DETector: A Probabilistic Approach to Study Sex Chromosomes in Non-Model Organisms. Genome Biol Evol 2016; 8:2530-43. [PMID: 27492231 PMCID: PMC5010906 DOI: 10.1093/gbe/evw172] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We propose a probabilistic framework to infer autosomal and sex-linked genes from RNA-seq data of a cross for any sex chromosome type (XY, ZW, and UV). Sex chromosomes (especially the non-recombining and repeat-dense Y, W, U, and V) are notoriously difficult to sequence. Strategies have been developed to obtain partially assembled sex chromosome sequences. Most of them remain difficult to apply to numerous non-model organisms, either because they require a reference genome, or because they are designed for evolutionarily old systems. Sequencing a cross (parents and progeny) by RNA-seq to study the segregation of alleles and infer sex-linked genes is a cost-efficient strategy, which also provides expression level estimates. However, the lack of a proper statistical framework has limited a broader application of this approach. Tests on empirical Silene data show that our method identifies 20-35% more sex-linked genes than existing pipelines, while making reliable inferences for downstream analyses. Approximately 12 individuals are needed for optimal results based on simulations. For species with an unknown sex-determination system, the method can assess the presence and type (XY vs. ZW) of sex chromosomes through a model comparison strategy. The method is particularly well optimized for sex chromosomes of young or intermediate age, which are expected in thousands of yet unstudied lineages. Any organisms, including non-model ones for which nothing is known a priori, that can be bred in the lab, are suitable for our method. SEX-DETector and its implementation in a Galaxy workflow are made freely available.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Jos Käfer
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Niklaus Zemp
- Institute of Integrative Biology (IBZ), ETH Zurich, Zürich, Switzerland
| | - Sylvain Mousset
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Franck Picard
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Gabriel Ab Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| |
Collapse
|
32
|
Li QQ, Zhou SD, Huang DQ, He XJ, Wei XQ. Molecular phylogeny, divergence time estimates and historical biogeography within one of the world's largest monocot genera. AOB PLANTS 2016; 8:plw041. [PMID: 27339054 PMCID: PMC4976397 DOI: 10.1093/aobpla/plw041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/11/2016] [Indexed: 05/20/2023]
Abstract
A primary aim of historical biogeography is to identify the causal factors or processes that have shaped the composition and distribution of biotas over time. Another is to infer the evolution of geographic ranges of species and clades in a phylogenetic context. To this end, historical biogeography addresses important questions such as: Where were ancestors distributed? Where did lineages originate? Which processes cause geographic ranges to evolve through time? Allium subgenus Anguinum comprises approximately twelve taxa with a disjunct distribution in the high mountains from south-western Europe to eastern Asia and in northeastern North America. Although both the systematic position and the geographical limits of Anguinum have been identified, to date no molecular systematic study has been performed utilizing a comprehensive sampling of these species. With an emphasis on the Anguinum eastern Asian geographical group, the goals of the present study were: (i) to infer species-level phylogenetic relationships within Anguinum, (ii) to assess molecular divergence and estimated the times of the major splits in Anguinum and (iii) to trace the biogeographic history of the subgenus. Four DNA sequences (ITS, matK, trnH-psbA, rps16) were used to reconstruct the phylogeny of Allium subgen. Anguinum RbcL sequences were used to estimate divergences time for Allium, and sequences of ITS were used to estimate the divergence times for Anguinum and its main lineages and to provide implications for the evolutionary history of the subgenus. Phylogenetic analyses for all Allium corroborate that Anguinum is monophyletic and indicate that Anguinum is composed of two sister groups: one with a Eurasian-American distribution, and the other restricted to eastern Asia. In the eastern Asian geographical group, incongruence between gene trees and morphology-based taxonomies was recovered as was incongruence between data from plastid and nuclear sequences. This incongruence is likely due to the combined effects of a recent radiation, incomplete lineage sorting, and hybridization/introgression. Divergence time estimates suggest that the crown group of Anguinum originated during the late Miocene (ca. 7.16 Mya) and then diverged and dispersed. Biogeographic analyses using statistical dispersal-vicariance analysis (S-DIVA) and a likelihood method support an eastern Asia origin of Anguinum It is inferred that in the late Pliocene/Early Pleistocene, with cooling climates and the uplift of the Himalayas and Hengduan Mountains, the ancestor of the eastern Asian alliance clade underwent a very recent radiation.
Collapse
Affiliation(s)
- Qin-Qin Li
- Key Laboratory of Bio-Resources and Eco-Environment, MOE, College of Life Sciences, Sichuan University, Chengdu 610064, China Sichuan College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China Inner Mongolia
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment, MOE, College of Life Sciences, Sichuan University, Chengdu 610064, China Sichuan
| | - De-Qing Huang
- Key Laboratory of Bio-Resources and Eco-Environment, MOE, College of Life Sciences, Sichuan University, Chengdu 610064, China Sichuan
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment, MOE, College of Life Sciences, Sichuan University, Chengdu 610064, China Sichuan
| | - Xian-Qin Wei
- Key Laboratory of Bio-Resources and Eco-Environment, MOE, College of Life Sciences, Sichuan University, Chengdu 610064, China Sichuan
| |
Collapse
|
33
|
Abstract
The nonrecombining regions of animal Y chromosomes are known to undergo genetic degeneration, but previous work has failed to reveal large-scale gene degeneration on plant Y chromosomes. Here, we uncover rapid and extensive degeneration of Y-linked genes in a plant species, Silene latifolia, that evolved sex chromosomes de novo in the last 10 million years. Previous transcriptome-based studies of this species missed unexpressed, degenerate Y-linked genes. To identify sex-linked genes, regardless of their expression, we sequenced male and female genomes of S. latifolia and integrated the genomic contigs with a high-density genetic map. This revealed that 45% of Y-linked genes are not expressed, and 23% are interrupted by premature stop codons. This contrasts with X-linked genes, in which only 1.3% of genes contained stop codons and 4.3% of genes were not expressed in males. Loss of functional Y-linked genes is partly compensated for by gene-specific up-regulation of X-linked genes. Our results demonstrate that the rate of genetic degeneration of Y-linked genes in S. latifolia is as fast as in animals, and that the evolutionary trajectories of sex chromosomes are similar in the two kingdoms.
Collapse
|
34
|
Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences. Sci Rep 2015; 5:13957. [PMID: 26355750 PMCID: PMC4564799 DOI: 10.1038/srep13957] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 08/13/2015] [Indexed: 01/21/2023] Open
Abstract
Rice is the most important crop in the world, acting as the staple food for over half of the world’s population. The evolutionary relationships of cultivated rice and its wild relatives have remained contentious and inconclusive. Here we report on the use of whole chloroplast sequences to elucidate the evolutionary and phylogenetic relationships in the AA genome Oryza species, representing the primary gene pool of rice. This is the first study that has produced a well resolved and strongly supported phylogeny of the AA genome species. The pan tropical distribution of these rice relatives was found to be explained by long distance dispersal within the last million years. The analysis resulted in a clustering pattern that showed strong geographical differentiation. The species were defined in two primary clades with a South American/African clade with two species, O glumaepatula and O longistaminata, distinguished from all other species. The largest clade was comprised of an Australian clade including newly identified taxa and the African and Asian clades. This refined knowledge of the relationships between cultivated rice and the related wild species provides a strong foundation for more targeted use of wild genetic resources in rice improvement and efforts to ensure their conservation.
Collapse
|
35
|
Kyrkou I, Iriondo JM, García-Fernández A. A glacial survivor of the alpine Mediterranean region: phylogenetic and phylogeographic insights into Silene ciliata Pourr. (Caryophyllaceae). PeerJ 2015; 3:e1193. [PMID: 26312184 PMCID: PMC4548490 DOI: 10.7717/peerj.1193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/26/2015] [Indexed: 11/20/2022] Open
Abstract
Silene ciliata Pourr. (Caryophyllaceae) is a species with a highly disjunct distribution which inhabits the alpine mountains of the Mediterranean Basin. We investigated the phylogeny and phylogeography of the species to (a) clarify the long-suggested division of S. ciliata into two subspecies, (b) evaluate its phylogenetic origin and (c) assess whether the species' diversification patterns were affected by the Mediterranean relief. For this purpose, we collected DNA from 25 populations of the species that inhabit the mountains of Portugal, Spain, France, Italy, former Yugoslav Republic of Macedonia, Bulgaria and Greece and studied the plastid regions rbcL, rps16 and trnL. Major intraspecific variation was supported by all analyses, while the possibility of the existence of more varieties or subspecies was not favoured. Plastid DNA (cpDNA) evidence was in accordance with the division of S. ciliata into the two subspecies, one spreading west (Iberian Peninsula and Central Massif) and the other east of the Alps region (Italian and Balkan Peninsula). This study proposes that the species' geographically disconnected distribution has probably derived from vicariance processes and from the Alps acting as a barrier to the species' dispersal. The monophyletic origin of the species is highly supported. cpDNA patterns were shown independent of the chromosome evolution in the populations and could have resulted from a combination of geographic factors providing links and barriers, climatic adversities and evolutionary processes that took place during Quaternary glaciations.
Collapse
Affiliation(s)
- Ifigeneia Kyrkou
- Department of Biotechnology, Agricultural University of Athens , Athens , Greece ; Area de Biodiversidad y Conservación, Universidad Rey Juan Carlos , Móstoles, Madrid , Spain
| | - José María Iriondo
- Area de Biodiversidad y Conservación, Universidad Rey Juan Carlos , Móstoles, Madrid , Spain
| | | |
Collapse
|
36
|
Bergero R, Qiu S, Charlesworth D. Gene loss from a plant sex chromosome system. Curr Biol 2015; 25:1234-40. [PMID: 25913399 DOI: 10.1016/j.cub.2015.03.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/10/2015] [Accepted: 03/11/2015] [Indexed: 12/31/2022]
Abstract
Sex chromosomes have evolved independently in numerous animal and plant lineages. After recombination becomes suppressed between two homologous sex chromosomes, genes on the non-recombining Y chromosomes (and W chromosomes in ZW systems) undergo genetic degeneration, losing functions retained by their X- or Z-linked homologs, changing their expression, and becoming lost [1, 2]. Adaptive changes may also occur, both on the non-recombining Y chromosome, to shut down expression of maladapted genes [3], and on the X chromosome (or the Z in ZW systems), which may evolve dosage compensation to increase low expression or compensate for poor protein function in the heterogametic sex [2, 4, 5]. Although empirical approaches to studying genetic degeneration have been developed for model species [3, 6], the onset and dynamics of these changes are still poorly understood, particularly in de novo evolving sex chromosomes. Sex chromosomes of some plants evolved much more recently than those of mammals, birds, and Drosophila [7-9], making them suitable for studying the early stages of genetic degeneration in de novo evolving sex chromosomes. In plants, haploid selection should oppose gene loss from Y chromosomes, but recent work on sex chromosomes of two plant species has estimated that Y-linked transcripts are lacking for 10%-30% of X-linked genes [10-12]. Here, we provide evidence that, in Silene latifolia, this largely involved losses of Y-linked genes, and not suppressed expression of Y-linked alleles, or gene additions to the X chromosome. Our results also suggest that chromosome-wide dosage compensation does not occur in this plant.
Collapse
Affiliation(s)
- Roberta Bergero
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3JT Edinburgh, UK.
| | - Suo Qiu
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3JT Edinburgh, UK
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3JT Edinburgh, UK
| |
Collapse
|
37
|
Casimiro-Soriguer I, Buide ML, Narbona E. Diversity of sexual systems within different lineages of the genus Silene. AOB PLANTS 2015; 7:plv037. [PMID: 25862920 PMCID: PMC4433491 DOI: 10.1093/aobpla/plv037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/26/2015] [Indexed: 05/15/2023]
Abstract
Species and populations can be categorized by their sexual systems, depending on the spatial distribution of female and male reproductive structures within and among plants. Although a high diversity of sexual systems exists in Silene, their relative frequency at the genus and infrageneric level is unknown. Here, we carried out an extensive literature search for direct or indirect descriptions of sexual systems in Silene species. We found descriptions of sexual systems for 98 Silene species, where 63 and 35 correspond to the phylogenetically supported subgenera Silene and Behenantha, respectively. Hermaphroditism was the commonest sexual system (58.2 %), followed by dioecy (14.3 %), gynodioecy (13.3 %) and gynodioecy-gynomonoecy (i.e. hermaphroditic, female and gynomonoecious plants coexisting in the same population; 12.2 %). The presence of these sexual systems in both subgenera suggests their multiple origins. In 17 species, the description of sexual systems varied, and in most cases these differences corresponded to variations within or among populations. Interestingly, the poorly studied gynodioecy-gynomonoecy sexual system showed similar frequency to dioecy and gynodioecy in both subgenera. In addition, the incidence of gynodioecy-gynomonoecy was analysed in the species of section Psammophilae (Silene littorea, S. psammitis, S. adscendens and S. cambessedesii), in a survey of 26 populations across the distribution area of the species. The four species showed gynomonoecy-gynodioecy in most populations. Hermaphrodites were the most frequent morph, with a low number of females and gynomonoecious plants in all populations. The frequency of sexual morphs varied significantly among the studied populations but not among species. Female plants generally produced smaller numbers of flowers than hermaphroditic or gynomonoecious plants, and the percentages of female flowers per population were low. All these findings suggest that the gynodioecious-gynomonoecious sexual system in section Psammophilae is closer to hermaphroditism or gynomonoecy than gynodioecy.
Collapse
Affiliation(s)
- Inés Casimiro-Soriguer
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra. de Utrera, km 1, 41013 Sevilla, Spain Área de Botánica, Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Maria L Buide
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra. de Utrera, km 1, 41013 Sevilla, Spain
| | - Eduardo Narbona
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra. de Utrera, km 1, 41013 Sevilla, Spain
| |
Collapse
|
38
|
Population genetics of invasive Citrullus lanatus, Citrullus colocynthis and Cucumis myriocarpus (Cucurbitaceae) in Australia: inferences based on chloroplast and nuclear gene sequencing. Biol Invasions 2015. [DOI: 10.1007/s10530-015-0891-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Abstract
Dioecy (separate male and female individuals) ensures outcrossing and is more prevalent in animals than in plants. Although it is common in bryophytes and gymnosperms, only 5% of angiosperms are dioecious. In dioecious higher plants, flowers borne on male and female individuals are, respectively deficient in functional gynoecium and androecium. Dioecy is inherited via three sex chromosome systems: XX/XY, XX/X0 and WZ/ZZ, such that XX or WZ is female and XY, X0 or ZZ are males. The XX/XY system generates the rarer XX/X0 and WZ/ZZ systems. An autosome pair begets XY chromosomes. A recessive loss-of-androecium mutation (ana) creates X chromosome and a dominant gynoecium-suppressing (GYS) mutation creates Y chromosome. The ana/ANA and gys/GYS loci are in the sex-determining region (SDR) of the XY pair. Accumulation of inversions, deleterious mutations and repeat elements, especially transposons, in the SDR of Y suppresses recombination between X and Y in SDR, making Y labile and increasingly degenerate and heteromorphic from X. Continued recombination between X and Y in their pseudoautosomal region located at the ends of chromosomal arms allows survival of the degenerated Y and of the species. Dioecy is presumably a component of the evolutionary cycle for the origin of new species. Inbred hermaphrodite species assume dioecy. Later they suffer degenerate-Y-led population regression. Cross-hybridization between such extinguishing species and heterologous species, followed by genome duplication of segregants from hybrids, give rise to new species.
Collapse
|
40
|
White MA, Kitano J, Peichel CL. Purifying Selection Maintains Dosage-Sensitive Genes during Degeneration of the Threespine Stickleback Y Chromosome. Mol Biol Evol 2015; 32:1981-95. [PMID: 25818858 DOI: 10.1093/molbev/msv078] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sex chromosomes are subject to unique evolutionary forces that cause suppression of recombination, leading to sequence degeneration and the formation of heteromorphic chromosome pairs (i.e., XY or ZW). Although progress has been made in characterizing the outcomes of these evolutionary processes on vertebrate sex chromosomes, it is still unclear how recombination suppression and sequence divergence typically occur and how gene dosage imbalances are resolved in the heterogametic sex. The threespine stickleback fish (Gasterosteus aculeatus) is a powerful model system to explore vertebrate sex chromosome evolution, as it possesses an XY sex chromosome pair at relatively early stages of differentiation. Using a combination of whole-genome and transcriptome sequencing, we characterized sequence evolution and gene expression across the sex chromosomes. We uncovered two distinct evolutionary strata that correspond with known structural rearrangements on the Y chromosome. In the oldest stratum, only a handful of genes remain, and these genes are under strong purifying selection. By comparing sex-linked gene expression with expression of autosomal orthologs in an outgroup, we show that dosage compensation has not evolved in threespine sticklebacks through upregulation of the X chromosome in males. Instead, in the oldest stratum, the genes that still possess a Y chromosome allele are enriched for genes predicted to be dosage sensitive in mammals and yeast. Our results suggest that dosage imbalances may have been avoided at haploinsufficient genes by retaining function of the Y chromosome allele through strong purifying selection.
Collapse
Affiliation(s)
- Michael A White
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Catherine L Peichel
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
41
|
Dufay M, Champelovier P, Käfer J, Henry JP, Mousset S, Marais GAB. An angiosperm-wide analysis of the gynodioecy-dioecy pathway. ANNALS OF BOTANY 2014; 114:539-48. [PMID: 25091207 PMCID: PMC4204665 DOI: 10.1093/aob/mcu134] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/16/2014] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS About 6 % of an estimated total of 240 000 species of angiosperms are dioecious. The main precursors of this sexual system are thought to be monoecy and gynodioecy. A previous angiosperm-wide study revealed that many dioecious species have evolved through the monoecy pathway; some case studies and a large body of theoretical research also provide evidence in support of the gynodioecy pathway. If plants have evolved through the gynodioecy pathway, gynodioecious and dioecious species should co-occur in the same genera. However, to date, no large-scale analysis has been conducted to determine the prevalence of the gynodioecy pathway in angiosperms. In this study, this gap in knowledge was addressed by performing an angiosperm-wide survey in order to test for co-occurrence as evidence of the gynodioecy pathway. METHODS Data from different sources were compiled to obtain (to our knowledge) the largest dataset on gynodioecy available, with 275 genera that include at least one gynodioecious species. This dataset was combined with a dioecy dataset from the literature, and a study was made of how often dioecious and gynodioecious species could be found in the same genera using a contingency table framework. KEY RESULTS It was found that, overall, angiosperm genera with both gynodioecious and dioecious species occur more frequently than expected, in agreement with the gynodioecy pathway. Importantly, this trend holds when studying different classes separately (or sub-classes, orders and families), suggesting that the gynodioecy pathway is not restricted to a few taxa but may instead be widespread in angiosperms. CONCLUSIONS This work complements that previously carried out on the monoecy pathway and suggests that gynodioecy is also a common pathway in angiosperms. The results also identify angiosperm families where some (or all) dioecious species may have evolved from gynodioecious precursors. These families could be the targets of future small-scale studies on transitions to dioecy taking phylogeny explicitly into account.
Collapse
Affiliation(s)
- M Dufay
- Université de Lille 1, Laboratoire Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Villeneuve d'Ascq, F-59655 Cedex, France
| | - P Champelovier
- Université Lyon 1, Centre National de la Recherche Scientifique, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, F-69622 Cedex, France
| | - J Käfer
- Université Lyon 1, Centre National de la Recherche Scientifique, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, F-69622 Cedex, France
| | - J P Henry
- Muséum National d'Histoire Naturelle. Département de Systématique et Évolution Botanique, CP39, 12, rue Buffon, F-75005 Paris, France
| | - S Mousset
- Université Lyon 1, Centre National de la Recherche Scientifique, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, F-69622 Cedex, France
| | - G A B Marais
- Université Lyon 1, Centre National de la Recherche Scientifique, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, F-69622 Cedex, France
| |
Collapse
|
42
|
Slancarova V, Zdanska J, Janousek B, Talianova M, Zschach C, Zluvova J, Siroky J, Kovacova V, Blavet H, Danihelka J, Oxelman B, Widmer A, Vyskot B. Evolution of sex determination systems with heterogametic males and females in silene. Evolution 2013; 67:3669-77. [PMID: 24299418 DOI: 10.1111/evo.12223] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 07/29/2013] [Indexed: 02/03/2023]
Abstract
The plant genus Silene has become a model for evolutionary studies of sex chromosomes and sex-determining mechanisms. A recent study performed in Silene colpophylla showed that dioecy and the sex chromosomes in this species evolved independently from those in Silene latifolia, the most widely studied dioecious Silene species. The results of this study show that the sex-determining system in Silene otites, a species related to S. colpophylla, is based on female heterogamety, a sex determination system that is unique among the Silene species studied to date. Our phylogenetic data support the placing of S. otites and S. colpophylla in the subsection Otites and the analysis of ancestral states suggests that the most recent common ancestor of S. otites and S. colpophylla was most probably dioecious. These observations imply that a switch from XX/XY sex determination to a ZZ/ZW system (or vice versa) occurred in the subsection Otites. This is the first report of two different types of heterogamety within one plant genus of this mostly nondioecious plant family.
Collapse
Affiliation(s)
- Veronika Slancarova
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, CZ-612 65, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Petri A, Pfeil BE, Oxelman B. Introgressive hybridization between anciently diverged lineages of Silene (Caryophyllaceae). PLoS One 2013; 8:e67729. [PMID: 23861793 PMCID: PMC3704521 DOI: 10.1371/journal.pone.0067729] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/21/2013] [Indexed: 11/18/2022] Open
Abstract
Hybridization has played a major role during the evolution of angiosperms, mediating both gene flow between already distinct species and the formation of new species. Newly formed hybrids between distantly related taxa are often sterile. For this reason, interspecific crosses resulting in fertile hybrids have rarely been described to take place after more than a few million years after divergence. We describe here the traces of a reproductively successful hybrid between two ancestral species of Silene, diverged for about six million years prior to hybridization. No extant hybrids between the two parental lineages are currently known, but introgression of the RNA polymerase gene NRPA2 provides clear evidence of a temporary and fertile hybrid. Parsimony reconciliation between gene trees and the species tree, as well as consideration of clade ages, help exclude gene paralogy and lineage sorting as alternative hypotheses. This may represent one of the most extreme cases of divergence between species prior to introgressive hybridization discovered yet, notably at a homoploid level. Although species boundaries are generally believed to be stable after millions of years of divergence, we believe that this finding may indicate that gene flow between distantly related species is merely largely undetected at present.
Collapse
Affiliation(s)
- Anna Petri
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
44
|
Al-Qurainy F, Khan S, Nadeem M, Tarroum M, Alaklabi A. Assessment of phylogenetic relationship of rare plant species collected from Saudi Arabia using internal transcribed spacer sequences of nuclear ribosomal DNA. GENETICS AND MOLECULAR RESEARCH 2013; 12:723-30. [PMID: 23546955 DOI: 10.4238/2013.march.11.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The rare and endangered plants of any country are important genetic resources that often require urgent conservation measures. Assessment of phylogenetic relationships and evaluation of genetic diversity is very important prior to implementation of conservation strategies for saving rare and endangered plant species. We used internal transcribed spacer sequences of nuclear ribosomal DNA for the evaluation of sequence identity from the available taxa in the GenBank database by using the Basic Local Alignment Search Tool (BLAST). Two rare plant species viz, Heliotropium strigosum claded with H. pilosum (98% branch support) and Pancratium tortuosum claded with P. tenuifolium (61% branch support) clearly. However, some species, viz Scadoxus multiflorus, Commiphora myrrha and Senecio hadiensis showed close relationships with more than one species. We conclude that nuclear ribosomal internal transcribed spacer sequences are useful markers for phylogenetic study of these rare plant species in Saudi Arabia.
Collapse
Affiliation(s)
- F Al-Qurainy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
45
|
Hong-Wa C, Besnard G. Intricate patterns of phylogenetic relationships in the olive family as inferred from multi-locus plastid and nuclear DNA sequence analyses: a close-up on Chionanthus and Noronhia (Oleaceae). Mol Phylogenet Evol 2013; 67:367-78. [PMID: 23415987 DOI: 10.1016/j.ympev.2013.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 10/19/2012] [Accepted: 02/04/2013] [Indexed: 12/28/2022]
Abstract
Noronhia represents the most successful radiation of the olive family (Oleaceae) in Madagascar with more than 40 named endemic species distributed in all ecoregions from sea level to high mountains. Its position within the subtribe Oleinae has, however, been largely unresolved and its evolutionary history has remained unexplored. In this study, we generated a dataset of plastid (trnL-F, trnT-L, trnS-G, trnK-matK) and nuclear (internal transcribed spacer [ITS]) DNA sequences to infer phylogenetic relationships within Oleinae and to examine evolutionary patterns within Noronhia. Our sample included most species of Noronhia and representatives of the ten other extant genera within the subtribe with an emphasis on Chionanthus. Bayesian inferences and maximum likelihood analyses of plastid and nuclear data indicated several instances of paraphyly and polyphyly within Oleinae, with some geographic signal. Both plastid and ITS data showed a polyphyletic Noronhia that included Indian Ocean species of Chionanthus. They also found close relationships between Noronhia and African Chionanthus. However, the plastid data showed little clear differentiation between Noronhia and the African Chionanthus whereas relationships suggested by the nuclear ITS data were more consistent with taxonomy and geography. We used molecular dating to discriminate between hybridization and lineage sorting/gene duplication as alternative explanations for these topological discordances and to infer the biogeographic history of Noronhia. Hybridization between African Chionanthus and Noronhia could not be ruled out. However, Noronhia has long been established in Madagascar after a likely Cenozoic dispersal from Africa, suggesting any hybridization between representatives of African and Malagasy taxa was ancient. In any case, the African and Indian Ocean Chionanthus and Noronhia together formed a strongly supported monophyletic clade distinct and distant from other Chionanthus, which calls for a revised and more conservative taxonomy for this group.
Collapse
Affiliation(s)
- Cynthia Hong-Wa
- Department of Biology, University of Missouri - St. Louis, One University Blvd., St. Louis, MO 63121-4000, USA.
| | | |
Collapse
|
46
|
Antonova EV, Karimullina EM, Pozolotina VN. Intraspecific variation in Melandrium album along a radioactive contamination gradient at the Eastern Ural radioactive trace. RUSS J ECOL+ 2013. [DOI: 10.1134/s1067413613010025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Käfer J, Talianová M, Bigot T, Michu E, Guéguen L, Widmer A, Žlůvová J, Glémin S, Marais GAB. Patterns of molecular evolution in dioecious and non-dioecious Silene. J Evol Biol 2012. [PMID: 23206219 DOI: 10.1111/jeb.12052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dioecy (i.e. having separate sexes) is a rather rare breeding system in flowering plants. Such rareness may result from a high probability of extinction in dioecious species because of less efficient dispersal and the costs of sexual selection, which are expected to harm dioecious species' survival on the long term. These handicaps should decrease the effective population size (Ne) of dioecious species, which in turn should reduce the efficacy of selection. Moreover, sexual selection in dioecious species is expected to specifically affect some genes, which will evolve under positive selection. The relative contribution of these effects is currently unknown and we tried to disentangle them by comparing sequence evolution between dioecious and non-dioecious species in the Silene genus (Caryophyllaceae), where dioecy has evolved at least twice. For the dioecious species in the section Melandrium, where dioecy is the oldest, we found a global reduction of purifying selection, while on some, male-biased genes, positive selection was found. For section Otites, where dioecy evolved more recently, we found no significant differences between dioecious and non-dioecious species. Our results are consistent with the view that dioecy is an evolutionary dead end in flowering plants, although other scenarios for explaining reduced Ne cannot be ruled out. Our results also show that contrasting forces act on the genomes of dioecious plants, and suggest that some time is required before the genome of such plants bears the footprints of dioecy.
Collapse
Affiliation(s)
- J Käfer
- Univ Lyon 1, Centre National de la Recherche Scientifique, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nauheimer L, Boyce PC, Renner SS. Giant taro and its relatives: a phylogeny of the large genus Alocasia (Araceae) sheds light on Miocene floristic exchange in the Malesian region. Mol Phylogenet Evol 2011; 63:43-51. [PMID: 22209857 DOI: 10.1016/j.ympev.2011.12.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/11/2011] [Accepted: 12/06/2011] [Indexed: 11/28/2022]
Abstract
Alocasia comprises over 113 species of rainforest understorey plants in Southeast Asia, the Malesian region, and Australia. Several species, including giant taro, Alocasia macrorrhizos, and Chinese taro, Alocasia cucullata, are important food plants or ornamentals. We investigated the biogeography of this genus using plastid and nuclear DNA sequences (5200 nucleotides) from 78 accessions representing 71 species, plus 25 species representing 16 genera of the Pistia clade to which Alocasia belongs. Divergence times were inferred under strict and relaxed clock models, and ancestral areas with Bayesian and maximum likelihood approaches. Alocasia is monophyletic and sister to Colocasiagigantea from the SE Asian mainland, whereas the type species of Colocasia groups with Steudnera and Remusatia, requiring taxonomic realignments. Nuclear and plastid trees show topological conflict, with the nuclear tree reflecting morphological similarities, the plastid tree species' geographic proximity, suggesting chloroplast capture. The ancestor of Alocasia diverged from its mainland sister group c. 24 million years ago, and Borneo then played a central role in the expansion of Alocasia: 11-13 of 18-19 inferred dispersal events originated on Borneo. The Philippines were reached from Borneo 4-5 times in the Late Miocene and Early Pliocene, and the Asian mainland 6-7 times in the Pliocene. Domesticated giant taro originated on the Philippines, Chinese taro on the Asian mainland.
Collapse
Affiliation(s)
- Lars Nauheimer
- Systematic Botany and Mycology, University of Munich (LMU), Menzinger-Str. 67, 80638 Munich, Germany.
| | | | | |
Collapse
|
49
|
Marais GAB, Forrest A, Kamau E, Käfer J, Daubin V, Charlesworth D. Multiple nuclear gene phylogenetic analysis of the evolution of dioecy and sex chromosomes in the genus Silene. PLoS One 2011; 6:e21915. [PMID: 21853022 PMCID: PMC3154253 DOI: 10.1371/journal.pone.0021915] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 06/08/2011] [Indexed: 11/18/2022] Open
Abstract
In the plant genus Silene, separate sexes and sex chromosomes are believed to have evolved twice. Silene species that are wholly or largely hermaphroditic are assumed to represent the ancestral state from which dioecy evolved. This assumption is important for choice of outgroup species for inferring the genetic and chromosomal changes involved in the evolution of dioecy, but is mainly based on data from a single locus (ITS). To establish the order of events more clearly, and inform outgroup choice, we therefore carried out (i) multi-nuclear-gene phylogenetic analyses of 14 Silene species (including 7 hermaphrodite or gynodioecious species), representing species from both Silene clades with dioecious members, plus a more distantly related outgroup, and (ii) a BayesTraits character analysis of the evolution of dioecy. We confirm two origins of dioecy within this genus in agreement with recent work on comparing sex chromosomes from both clades with dioecious species. We conclude that sex chromosomes evolved after the origin of Silene and within a clade that includes only S. latifolia and its closest relatives. We estimate that sex chromosomes emerged soon after the split with the ancestor of S. viscosa, the probable closest non-dioecious S. latifolia relative among the species included in our study.
Collapse
Affiliation(s)
- Gabriel A B Marais
- Laboratoire de Biométrie et Biologie évolutive, UMR5558, Université Lyon 1, Centre National de la Recherche Scientifique, Villeurbanne, France.
| | | | | | | | | | | |
Collapse
|