1
|
MacLaren AR, Hibbitts TJ, Forstner MR, McCracken SF. Morphology and vocalization comparison of the Houston Toad and the Dwarf American Toad: implications for their historic range. PeerJ 2024; 12:e17635. [PMID: 38993974 PMCID: PMC11238721 DOI: 10.7717/peerj.17635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
Documenting changes in the distribution and abundance of a given taxon requires historical data. In the absence of long-term monitoring data collected throughout the range of a taxon, conservation biologists often rely on preserved museum specimens to determine the past or present, putative geographic distribution. Distributional data for the Houston Toad (Anaxyrus houstonensis) has consistently been confounded by similarities with a sympatric congener, the Dwarf American Toad (A. americanus charlesmithi), both in monitoring data derived from chorusing surveys, and in historical data via museum specimens. In this case, misidentification can have unintended impacts on conservation efforts, where the Houston Toad is federally endangered, and the Dwarf American Toad is of least concern. Previously published reports have compared these two taxon on the basis of their male advertisement call and morphological appearance, often with the goal of using these characters to substantiate their taxonomic status prior to the advent of DNA sequencing technology. However, numerous studies report findings that contradict one another, and no consensus on the true differences or similarities can be drawn. Here, we use contemporary recordings of wild populations of each taxon to test for quantifiable differences in male advertisement call. Additionally, we quantitatively examine a subset of vouchered museum specimens representing each taxon to test previously reported differentiating morphometric characters used to distinguish among other Bufonids of East-Central Texas, USA. Finally, we assemble and qualitatively evaluate a database of photographs representing catalogued museum vouchers for each taxon to determine if their previously documented historic ranges may be larger than are currently accepted. Our findings reveal quantifiable differences between two allopatric congeners with respect to their male advertisement call, whereas we found similarities among their detailed morphology. Additionally, we report on the existence of additional, historically overlooked, museum records for the Houston Toad in the context of its putative historic range, and discuss errors associated with the curation of these specimens whose identity and nomenclature have not been consistent through time. These results bookend decades of disagreement regarding the morphology, voice, and historic distribution of these taxa, and alert practitioners of conservation efforts for the Houston Toad to previously unreported locations of occurrence.
Collapse
Affiliation(s)
| | - Toby J. Hibbitts
- Biological Research and Teaching Collection, Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States of America
- Texas A&M Natural Resources Institute, College Station, TX, United States of America
| | - Michael R.J. Forstner
- Department of Biology, Texas State University, San Marcos, TX, United States of America
| | - Shawn F. McCracken
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christ, TX, United States of America
| |
Collapse
|
2
|
Sirsi S, Rodriguez D, Forstner MRJ. Using genome-wide data to ascertain taxonomic status and assess population genetic structure for Houston toads (Bufo [= Anaxyrus] houstonensis). Sci Rep 2024; 14:3306. [PMID: 38332325 PMCID: PMC10853240 DOI: 10.1038/s41598-024-53705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/04/2024] [Indexed: 02/10/2024] Open
Abstract
The Houston toad (Bufo [= Anaxyrus] houstonensis) is an endangered amphibian with a small geographic range. Land-use changes have primarily driven decline in B. houstonensis with population supplementation predominant among efforts to reduce its current extinction risk. However, there has been historic uncertainty regarding the evolutionary and conservation significance of B. houstonensis. To this end, we used 1170 genome-wide nuclear DNA markers to examine phylogenetic relationships between our focal taxon, representatives of the Nearctic B. americanus group, and B. nebulifer, a sympatric Middle American species. Phylogenetic analyses indicate B. houstonensis is a taxon that is distinct from B. americanus. We corroborated such genetic distinctiveness with an admixture analysis that provided support for recent reproductive isolation between B. americanus and B. houstonensis. However, ABBA-BABA tests for ancient admixture indicated historic gene flow between Nearctic species while no signal of historic gene flow was detected between Nearctic and Middle-American species. We used an admixture analysis to recognize four Management Units (MU) based on observed genetic differentiation within B. houstonensis and recommend captive propagation, population supplementation, and habitat restoration efforts specific to each MU. Our results re-affirm the evolutionary novelty of an endangered relict.
Collapse
Affiliation(s)
- Shashwat Sirsi
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.
| | - David Rodriguez
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Michael R J Forstner
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| |
Collapse
|
3
|
Martins AB, Valença-Montenegro MM, Lima MGM, Lynch JW, Svoboda WK, Silva-Júnior JDSE, Röhe F, Boubli JP, Fiore AD. A New Assessment of Robust Capuchin Monkey ( Sapajus) Evolutionary History Using Genome-Wide SNP Marker Data and a Bayesian Approach to Species Delimitation. Genes (Basel) 2023; 14:genes14050970. [PMID: 37239330 DOI: 10.3390/genes14050970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Robust capuchin monkeys, Sapajus genus, are among the most phenotypically diverse and widespread groups of primates in South America, with one of the most confusing and often shifting taxonomies. We used a ddRADseq approach to generate genome-wide SNP markers for 171 individuals from all putative extant species of Sapajus to access their evolutionary history. Using maximum likelihood, multispecies coalescent phylogenetic inference, and a Bayes Factor method to test for alternative hypotheses of species delimitation, we inferred the phylogenetic history of the Sapajus radiation, evaluating the number of discrete species supported. Our results support the recognition of three species from the Atlantic Forest south of the São Francisco River, with these species being the first splits in the robust capuchin radiation. Our results were congruent in recovering the Pantanal and Amazonian Sapajus as structured into three monophyletic clades, though new morphological assessments are necessary, as the Amazonian clades do not agree with previous morphology-based taxonomic distributions. Phylogenetic reconstructions for Sapajus occurring in the Cerrado, Caatinga, and northeastern Atlantic Forest were less congruent with morphology-based phylogenetic reconstructions, as the bearded capuchin was recovered as a paraphyletic clade, with samples from the Caatinga biome being either a monophyletic clade or nested with the blond capuchin monkey.
Collapse
Affiliation(s)
- Amely Branquinho Martins
- Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros, Instituto Chico Mendes de Conservação da Biodiversidade, Cabedelo 58310-000, PB, Brazil
- Primate Molecular Ecology and Evolution Laboratory, Department of Anthropology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mônica Mafra Valença-Montenegro
- Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros, Instituto Chico Mendes de Conservação da Biodiversidade, Cabedelo 58310-000, PB, Brazil
| | - Marcela Guimarães Moreira Lima
- Laboratório de Biogeografia da Conservação e Macroecologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66077-530, PA, Brazil
| | - Jessica W Lynch
- Institute for Society and Genetics, Department of Anthropology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Walfrido Kühl Svoboda
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Centro Interdisciplinar de Ciências da Vida, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu 85870-650, PR, Brazil
| | - José de Sousa E Silva-Júnior
- Museu Paraense Emílio Goeldi, Ministério da Ciência, Tecnologia, Inovações e Comunicações, Coordenação de Zoologia, Campus de Pesquisa, Setor de Mastozoologia, Belém 66077-830, PA, Brazil
| | - Fábio Röhe
- Laboratório de Evolução e Genética Animal, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil
| | - Jean Philippe Boubli
- School of Science, Engineering and the Environment, University of Salford, Salford M5 4WT, UK
| | - Anthony Di Fiore
- Primate Molecular Ecology and Evolution Laboratory, Department of Anthropology, The University of Texas at Austin, Austin, TX 78712, USA
- Tiputini Biodiversity Station, Universidad San Francisco de Quito, Quito 170901, Ecuador
| |
Collapse
|
4
|
Harrington S, Burbrink F. Complex cycles of divergence and migration shape lineage structure in the common kingsnake species complex. JOURNAL OF BIOGEOGRAPHY 2023; 50:341-351. [PMID: 36817740 PMCID: PMC9937589 DOI: 10.1111/jbi.14536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/17/2022] [Indexed: 06/18/2023]
Abstract
Aim The Nearctic is a complex patchwork of habitats and geologic features that form barriers to gene flow resulting in phylogeographic structure and speciation in many lineages. Habitats are rarely stable over geologic time, and the Nearctic has undergone major climatic changes in the past few million years. We use the common kingsnake species complex to study how climate, geography, and history influence lineage formation over a large, complex landscape. Location Nearctic/North America. Taxon Common kingsnake, Lampropeltis getula, species complex. Methods We analyzed genome-wide sequence data from 51 snakes spanning the majority of the species complex's range. We used population clustering, generalized dissimilarity modeling, and coalescent methods to identify the number of genetic clusters within the L. getula complex, infer the environmental correlates of genetic differentiation, and estimate models of divergence and gene flow among lineages. Results We identified three major lineages within the L. getula complex and further continuous spatial structure within lineages. The most important ecological correlates of genetic distance in the complex are related to aridity and precipitation, consistent with lineage breaks at the Great Plains/Desert ecotone and the Cochise Filter Barrier. Lineages are estimated to have undergone multiple rounds of isolation and secondary contact, with highly asymmetric migration occurring at present. Main conclusions Changing climates combined with a large and geologically complex landscape have resulted in a mosaic of discrete and spatially continuous genetic structure. Multiple rounds of isolation and secondary contact as climate fluctuated over the past ~4.4 My have likely driven the evolution of discrete lineages that maintain high levels of gene flow. Continuous structure is strongly shaped by aridity and precipitation, suggesting roles for major precipitation gradients in helping to maintain lineage identity in the face of gene flow when lineages are in geographic contact.
Collapse
Affiliation(s)
- Sean Harrington
- Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA
- INBRE Data Science Core, University of Wyoming, Laramie, WY 82071, USA
| | - Frank Burbrink
- Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA
| |
Collapse
|
5
|
Rivera D, Prates I, Firneno TJ, Rodrigues MT, Caldwell JP, Fujita MK. Phylogenomics, introgression, and demographic history of South American true toads (Rhinella). Mol Ecol 2021; 31:978-992. [PMID: 34784086 DOI: 10.1111/mec.16280] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/24/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
The effects of genetic introgression on species boundaries and how they affect species' integrity and persistence over evolutionary time have received increased attention. The increasing availability of genomic data has revealed contrasting patterns of gene flow across genomic regions, which impose challenges to inferences of evolutionary relationships and of patterns of genetic admixture across lineages. By characterizing patterns of variation across thousands of genomic loci in a widespread complex of true toads (Rhinella), we assess the true extent of genetic introgression across species thought to hybridize to extreme degrees based on natural history observations and multi-locus analyses. Comprehensive geographic sampling of five large-ranged Neotropical taxa revealed multiple distinct evolutionary lineages that span large geographic areas and, at times, distinct biomes. The inferred major clades and genetic clusters largely correspond to currently recognized taxa; however, we also found evidence of cryptic diversity within taxa. While previous phylogenetic studies revealed extensive mito-nuclear discordance, our genetic clustering analyses uncovered several admixed individuals within major genetic groups. Accordingly, historical demographic analyses supported that the evolutionary history of these toads involved cross-taxon gene flow both at ancient and recent times. Lastly, ABBA-BABA tests revealed widespread allele sharing across species boundaries, a pattern that can be confidently attributed to genetic introgression as opposed to incomplete lineage sorting. These results confirm previous assertions that the evolutionary history of Rhinella was characterized by various levels of hybridization even across environmentally heterogeneous regions, posing exciting questions about what factors prevent complete fusion of diverging yet highly interdependent evolutionary lineages.
Collapse
Affiliation(s)
- Danielle Rivera
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.,Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, TX, USA
| | - Ivan Prates
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J Firneno
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.,Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, TX, USA
| | - Miguel Trefaut Rodrigues
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Janalee P Caldwell
- Sam Noble Museum & Department of Biology, University of Oklahoma, Norman, Oklahoma, 73072-7029, USA
| | - Matthew K Fujita
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.,Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, TX, USA
| |
Collapse
|
6
|
Pereyra MO, Blotto BL, Baldo D, Chaparro JC, Ron SR, Elias-Costa AJ, Iglesias PP, Venegas PJ, C. Thomé MT, Ospina-Sarria JJ, Maciel NM, Rada M, Kolenc F, Borteiro C, Rivera-Correa M, Rojas-Runjaic FJ, Moravec J, De La Riva I, Wheeler WC, Castroviejo-Fisher S, Grant T, Haddad CF, Faivovich J. Evolution in the Genus Rhinella: A Total Evidence Phylogenetic Analysis of Neotropical True Toads (Anura: Bufonidae). BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2021. [DOI: 10.1206/0003-0090.447.1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Martín O. Pereyra
- Martín O. Pereyra: División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires; and Laboratorio de Genética Evolutiva “Claudio J. Bidau,” Instituto de Biología Subtropical (IBS, CONICET), Universidad Naci
| | - Boris L. Blotto
- Boris L. Blotto: División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires; Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biodiversidade e Centro de Aquicultura (CAUN
| | - Diego Baldo
- Diego Baldo: Laboratorio de Genética Evolutiva “Claudio J. Bidau,” Instituto de Biología Subtropical (IBS, CONICET), Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - Juan C. Chaparro
- Juan C. Chaparro: Museo de Biodiversidad del Perú, Cusco, Perú; and Museo de Historia Natural de la Universidad Nacional de San Antonio Abad del Cusco, Paraninfo Universitario, Cusco
| | - Santiago R. Ron
- Santiago R. Ron: Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito
| | - Agustín J. Elias-Costa
- Agustín J. Elias-Costa: División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires
| | - Patricia P. Iglesias
- Patricia P. Iglesias: Laboratorio de Genética Evolutiva “Claudio J. Bidau”, Instituto de Biología Subtropical (IBS, CONICET), Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - Pablo J. Venegas
- Pablo J. Venegas: División de Herpetología-Centro de Ornitología y Biodiversidad (CORBIDI), Surco, Lima
| | - Maria Tereza C. Thomé
- Maria Tereza C. Thomé: Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Rio Claro, São Paulo
| | - Jhon Jairo Ospina-Sarria
- Jhon Jairo Ospina-Sarria: Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; and Calima, Fundación para la Investigación de la Biodiversidad y Conservación en el Trópico, Cali
| | - Natan M. Maciel
- Natan M. Maciel: Laboratório de Herpetologia e Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Marco Rada
- Marco Rada: Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo
| | - Francisco Kolenc
- Francisco Kolenc: Sección Herpetología, Museo Nacional de Historia Natural, Montevideo
| | - Claudio Borteiro
- Claudio Borteiro: Sección Herpetología, Museo Nacional de Historia Natural, Montevideo
| | - Mauricio Rivera-Correa
- Mauricio Rivera-Correa: Grupo Herpetológico de Antioquia, Instituto de Biología, Universidad de Antioquia, Medellín
| | - Fernando J.M. Rojas-Runjaic
- Fernando J.M. Rojas-Runjaic: Fundación La Salle de Ciencias Naturales, Museo de Historia Natural La Salle (MHNLS), Venezuela; and Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jiří Moravec
- Jiří Moravec: Department of Zoology, National Museum, Prague, Czech Republic
| | - Ignacio De La Riva
- Ignacio de la Riva: Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid
| | - Ward C. Wheeler
- Ward C. Wheeler: Division of Invertebrate Zoology, American Museum of Natural History, New York
| | - Santiago Castroviejo-Fisher
- Santiago Castroviejo-Fisher: Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil; and Research Associate, Herpetology, Division of Vertebrate Zoology, American Museum of Natural History, New York
| | - Taran Grant
- Taran Grant: Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo; and Research Associate, Herpetology, Division of Vertebrate Zoology, American Museum of Natural History, New York
| | - Célio F.B. Haddad
- Célio F.B. Haddad: Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Rio Claro, São Paulo
| | - Julián Faivovich
- Julián Faivovich: División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
| |
Collapse
|
7
|
Cairns NA, Cicchino AS, Stewart KA, Austin JD, Lougheed SC. Cytonuclear discordance, reticulation and cryptic diversity in one of North America's most common frogs. Mol Phylogenet Evol 2020; 156:107042. [PMID: 33338660 DOI: 10.1016/j.ympev.2020.107042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 10/28/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Complicated phylogenetic histories benefit from diverse sources of inference. Pseudacris crucifer (spring peeper) spans most of eastern North America and comprises six mtDNA lineages that form multiple contact zones. The putative Miocene or early Pliocene origins of the oldest lineages within Pseudacris crucifer imply sufficient time for species-level divergence. To understand why this species appears unified while congeners have radiated, we analyze and compare male advertisement calls, mitochondrial, and nuclear markers and speak to the complex processes that have potentially influenced its contemporary patterns. We find extensive geographic and topological mitonuclear discordance, with three nuclear lineages containing 6 more-structured mtDNA lineages, and nuclear introgression at some contact zones. Male advertisement call differentiation is incongruent with the genetic structure as only one lineage appears differentiated. Occupying the Interior Highlands of the central United States, this Western lineage also has the most concordant mitochondrial and nuclear geographic patterns. Based on our findings we suggest that the antiquity of common ancestors was not as important as the maintenance of allopatry in the divergence in P. crucifer genetic lineages. We use multiple lines of evidence to generate hypotheses of isolation, reticulation, and discordance within this species and to expand our understanding of the early stages of speciation.
Collapse
Affiliation(s)
- N A Cairns
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - A S Cicchino
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, United States.
| | - K A Stewart
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 904 Science Park, 1098XH Amsterdam, North Holland, Netherlands
| | - J D Austin
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, United States.
| | - S C Lougheed
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
8
|
DNA barcoding reveals cryptic diversity in the underestimated genus Triplophysa (Cypriniformes: Cobitidae, Nemacheilinae) from the northeastern Qinghai-Tibet Plateau. BMC Evol Biol 2020; 20:151. [PMID: 33183225 PMCID: PMC7663858 DOI: 10.1186/s12862-020-01718-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/04/2020] [Indexed: 01/12/2023] Open
Abstract
Background The northeastern part of the Qinghai-Tibet Plateau (QTP) presents a high number of plateau loach species. As one of the three major groups of fishes distributed on the QTP, plateau loach has high ecological value. However, the taxonomy and systematics of these fish are still controversial, and a large number of new species have been reported. The reason for this phenomenon is that the degree of morphological variation is low, the phylogenetic information provided by morphological and anatomical features used for species identification is relatively poor, and many cryptic species are observed. Based on the high-density sampling points from the biodiversity hotspots surveyed, this study aims to evaluate the biodiversity of plateau loach in the northeastern part of the QTP and reveal the hidden diversity by comparing morphological species with molecular operational taxonomic units (MOTUs). Results After careful identification and comparison of the morphology and DNA barcoding of 1630 specimens, 22 species were identified, with 20 considered valid local species and two identified as new species that had not been previously described. Based on the combination of morphological and molecular methods, a total of 24 native species were found, two of which were cryptic species: Triplophysa robusta sp1 and Triplophysa minxianensis sp1. Fourteen of the 24 species form clusters of barcodes that allow them to be reliably identified. The remaining cases involved 10 closely related species, including rapidly differentiated species and species that seemed to have experienced incomplete lineage sorting or showed introgressions. Conclusions The results highlight the need to combine traditional taxonomies with molecular methods to correctly identify species, especially closely related species, such as the plateau loach. This study provides a basis for protecting the biodiversity of plateau loach.
Collapse
|
9
|
Vieira D, Esteves S, Santiago C, Conde-Sousa E, Fernandes T, Pais C, Soares P, Franco-Duarte R. Population Analysis and Evolution of Saccharomyces cerevisiae Mitogenomes. Microorganisms 2020; 8:E1001. [PMID: 32635509 PMCID: PMC7409325 DOI: 10.3390/microorganisms8071001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/30/2023] Open
Abstract
The study of mitogenomes allows the unraveling of some paths of yeast evolution that are often not exposed when analyzing the nuclear genome. Although both nuclear and mitochondrial genomes are known to determine phenotypic diversity and fitness, no concordance has yet established between the two, mainly regarding strains' technological uses and/or geographical distribution. In the current work, we proposed a new method to align and analyze yeast mitogenomes, overcoming current difficulties that make it impossible to obtain comparable mitogenomes for a large number of isolates. To this end, 12,016 mitogenomes were considered, and we developed a novel approach consisting of the design of a reference sequence intended to be comparable between all mitogenomes. Subsequently, the population structure of 6646 Saccharomyces cerevisiae mitogenomes was assessed. Results revealed the existence of particular clusters associated with the technological use of the strains, in particular regarding clinical isolates, laboratory strains, and yeasts used for wine-associated activities. As far as we know, this is the first time that a positive concordance between nuclear and mitogenomes has been reported for S. cerevisiae, in terms of strains' technological applications. The results obtained highlighted the importance of including the mtDNA genome in evolutionary analysis, in order to clarify the origin and history of yeast species.
Collapse
Affiliation(s)
- Daniel Vieira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Soraia Esteves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Carolina Santiago
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Eduardo Conde-Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- CMUP—Centro de Matemática da Universidade do Porto, 4169-007 Porto, Portugal
| | - Ticiana Fernandes
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Célia Pais
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Ricardo Franco-Duarte
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
10
|
Cros E, Chattopadhyay B, Garg KM, Ng NSR, Tomassi S, Benedick S, Edwards DP, Rheindt FE. Quaternary land bridges have not been universal conduits of gene flow. Mol Ecol 2020; 29:2692-2706. [PMID: 32542783 DOI: 10.1111/mec.15509] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Quaternary climate oscillations are a well-known driver of animal diversification, but their effects are most well studied in areas where glaciations lead to habitat fragmentation. In large areas of the planet, however, glaciations have had the opposite effect, but here their impacts are much less well understood. This is especially true in Southeast Asia, where cyclical changes in land distribution have generated enormous land expansions during glacial periods. In this study, we selected a panel of five songbird species complexes covering a range of ecological specificities to investigate the effects Quaternary land bridges have had on the connectivity of Southeast Asian forest biota. Specifically, we combined morphological and bioacoustic analysis with an arsenal of population genomic and modelling approaches applied to thousands of genome-wide DNA markers across a total of more than 100 individuals. Our analyses show that species dependent on forest understorey exhibit deep differentiation between Borneo and western Sundaland, with no evidence of gene flow during the land bridges accompanying the last 1-2 ice ages. In contrast, dispersive canopy species and habitat generalists have experienced more recent gene flow. Our results argue that there remains much cryptic species-level diversity to be discovered in Southeast Asia even in well-known animal groups such as birds, especially in nondispersive forest understorey inhabitants. We also demonstrate that Quaternary land bridges have not been equally suitable conduits of gene flow for all species complexes and that life history is a major factor in predicting relative population divergence time across Quaternary climate fluctuations.
Collapse
Affiliation(s)
- Emilie Cros
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Balaji Chattopadhyay
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Kritika M Garg
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Nathaniel S R Ng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Suzanne Tomassi
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Suzan Benedick
- Sustainable Agriculture School, Universiti Malaysia Sabah, Sabah, Malaysia
| | - David P Edwards
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Discordant evolution of mitochondrial and nuclear yeast genomes at population level. BMC Biol 2020; 18:49. [PMID: 32393264 PMCID: PMC7216626 DOI: 10.1186/s12915-020-00786-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Background Mitochondria are essential organelles partially regulated by their own genomes. The mitochondrial genome maintenance and inheritance differ from the nuclear genome, potentially uncoupling their evolutionary trajectories. Here, we analysed mitochondrial sequences obtained from the 1011 Saccharomyces cerevisiae strain collection and identified pronounced differences with their nuclear genome counterparts. Results In contrast with pre-whole genome duplication fungal species, S. cerevisiae mitochondrial genomes show higher genetic diversity compared to the nuclear genomes. Strikingly, mitochondrial genomes appear to be highly admixed, resulting in a complex interconnected phylogeny with a weak grouping of isolates, whereas interspecies introgressions are very rare. Complete genome assemblies revealed that structural rearrangements are nearly absent with rare inversions detected. We tracked intron variation in COX1 and COB to infer gain and loss events throughout the species evolutionary history. Mitochondrial genome copy number is connected with the nuclear genome and linearly scale up with ploidy. We observed rare cases of naturally occurring mitochondrial DNA loss, petite, with a subset of them that do not suffer the expected growth defect in fermentable rich media. Conclusions Overall, our results illustrate how differences in the biology of two genomes coexisting in the same cells can lead to discordant evolutionary histories.
Collapse
|
12
|
Reis CA, Dias C, Araripe J, Aleixo A, Anciães M, Sampaio I, Schneider H, Rêgo PS. Multilocus data of a manakin species reveal cryptic diversification moulded by vicariance. ZOOL SCR 2019. [DOI: 10.1111/zsc.12395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Camila Alves Reis
- Curso de Pós‐Graduação em Zoologia Universidade Federal do ParáMuseu Paraense Emílio Goeldi Belém Brazil
| | - Cleyssian Dias
- Curso de Pós‐Graduação em Zoologia Universidade Federal do ParáMuseu Paraense Emílio Goeldi Belém Brazil
| | - Juliana Araripe
- Instituto de Estudos Costeiros Universidade Federal do Pará Bragança Brazil
| | - Alexandre Aleixo
- Finnish Museum of Natural History University of Helsinki Helsinki Finland
| | - Marina Anciães
- Laboratório de Evolução e Comportamento Animal COBIO Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
| | - Iracilda Sampaio
- Instituto de Estudos Costeiros Universidade Federal do Pará Bragança Brazil
| | - Horacio Schneider
- Instituto de Estudos Costeiros Universidade Federal do Pará Bragança Brazil
| | - Péricles Sena Rêgo
- Instituto de Estudos Costeiros Universidade Federal do Pará Bragança Brazil
| |
Collapse
|
13
|
Thirty Years of Hybridization between Toads along the Agua Fria River in Arizona: Part II: Fine-Scale Assessment of Genetic Changes over Time Using Microsatellites. J HERPETOL 2019. [DOI: 10.1670/18-101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Zhang J, Yao J, Hu Z, Jueterbock A, Yotsukura N, Krupnova TN, Nagasato C, Duan D. Phylogeographic diversification and postglacial range dynamics shed light on the conservation of the kelp Saccharina japonica. Evol Appl 2019; 12:791-803. [PMID: 30976310 PMCID: PMC6439492 DOI: 10.1111/eva.12756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/22/2018] [Accepted: 12/09/2018] [Indexed: 01/04/2023] Open
Abstract
Studies of postglacial range shifts could enhance our understanding of seaweed species' responses to climate change and hence facilitate the conservation of natural resources. However, the distribution dynamics and phylogeographic diversification of the commercially and ecologically important kelp Saccharina japonica in the Northwest Pacific (NWP) are still poorly surveyed. In this study, we analyzed the evolutionary history of S. japonica using two mitochondrial markers and 24 nuclear microsatellites. A STRUCTURE analysis revealed two partially isolated lineages: lineage H, which is scattered along the coast of Japan; and lineage P, which occurs along the west coast of the Japan Sea. Ecological niche modeling projections to the Last Glacial Maximum (LGM) revealed that the southern coasts of the Japan Sea and the Pacific side of the Oshima and Honshu Peninsulas provided the most suitable habitats for S. japonica, implying that these regions served as ancient refugia during the LGM. Ancient isolation in different refugia may explain the observed divergence between lineages P and H. An approximate Bayesian computation analysis indicated that the two lineages experienced post-LGM range expansion and that postglacial secondary contact occurred in Sakhalin. Model projections into the year 2,100 predicted that S. japonica will shift northwards and lose its genetic diversity center on the Oshima Peninsula in Hokkaido and Shimokita Peninsula in Honshu. The range shifts and evolutionary history of S. japonica improve our understanding of how climate change impacted the distribution range and diversity of this species and provide useful information for the conservation of natural resources under ongoing environmental change in the NWP.
Collapse
Affiliation(s)
- Jie Zhang
- Key Lab of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Jianting Yao
- Key Lab of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Zi‐Min Hu
- Key Lab of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | | | | | | | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern BiosphereHokkaido UniversityMuroranJapan
| | - Delin Duan
- Key Lab of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| |
Collapse
|
15
|
Feng C, Zhou W, Tang Y, Gao Y, Chen J, Tong C, Liu S, Wanghe K, Zhao K. Molecular systematics of the Triplophysa robusta (Cobitoidea) complex: Extensive gene flow in a depauperate lineage. Mol Phylogenet Evol 2018; 132:275-283. [PMID: 30550962 DOI: 10.1016/j.ympev.2018.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 11/24/2022]
Abstract
Gene flow between populations assumed to be isolated frequently leads to incorrect inferences of evolutionary history. Understanding gene flow and its causes has long been a key topic in evolutionary biology. In this study, we explored the evolutionary history of the Triplophysa robusta complex, using a combination of multilocus analyses and coalescent simulation. Our multilocus approach detected conspicuous mitonuclear discordances in the T. robusta complex. Mitochondrial results showed reticular clades, whereas the nuclear results corresponded with the morphological data. Coalescent simulation indicated that gene flow was the source of these discordances. Molecular clock analysis combined with geological processes suggest that intense geological upheavals have shaped a complicated evolutionary history for the T. robusta complex since the late Miocene, causing extensive gene flow which has distorted the molecular systematics of the T. robusta complex. We suggest that frequent gene flow may restrict speciation in the T. robusta complex, leading to such a depauperate lineage. Based on this comprehensive understanding, we provide our proposals for taxonomic revision of the T. robusta complex.
Collapse
Affiliation(s)
- Chenguang Feng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, and Laboratory of Plateau Fish Evolutionary and Functional Genomics, and Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Yongtao Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, and Laboratory of Plateau Fish Evolutionary and Functional Genomics, and Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Gao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Jinmin Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Chao Tong
- Key Laboratory of Adaptation and Evolution of Plateau Biota, and Laboratory of Plateau Fish Evolutionary and Functional Genomics, and Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijia Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, and Laboratory of Plateau Fish Evolutionary and Functional Genomics, and Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunyuan Wanghe
- Key Laboratory of Adaptation and Evolution of Plateau Biota, and Laboratory of Plateau Fish Evolutionary and Functional Genomics, and Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, and Laboratory of Plateau Fish Evolutionary and Functional Genomics, and Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China.
| |
Collapse
|
16
|
Cox CL, Stringer JF, Moseley MA, Chippindale PT, Streicher JW. Testing the geographical dimensions of genetic diversity following range expansion in a North American snake. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Christian L Cox
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
- Department of Biology, University of Texas at Arlington, South Nedderman Drive, Arlington, USA
| | - Joel F Stringer
- Department of Biology, University of Texas at Arlington, South Nedderman Drive, Arlington, USA
| | - Matthew A Moseley
- Department of Biology, University of Texas at Arlington, South Nedderman Drive, Arlington, USA
| | - Paul T Chippindale
- Department of Biology, University of Texas at Arlington, South Nedderman Drive, Arlington, USA
| | - Jeffrey W Streicher
- Department of Biology, University of Texas at Arlington, South Nedderman Drive, Arlington, USA
- Department of Life Sciences, The Natural History Museum, London, UK
| |
Collapse
|
17
|
Hidden diversity within the depauperate genera of the snake tribe Lampropeltini (Serpentes, Colubridae). Mol Phylogenet Evol 2018; 129:214-225. [PMID: 30189319 DOI: 10.1016/j.ympev.2018.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 07/31/2018] [Accepted: 08/29/2018] [Indexed: 11/20/2022]
Abstract
Accurate representation of lineage diversity through complete taxon sampling is crucial to understanding the evolution of biodiversity, particularly when using molecular phylogenetics to estimate evolutionary relationships. In this interest, taxonomic diversity is often used as a proxy for lineage diversity even though the two concepts are not synonymous. We explore this within the snake tribe Lampropeltini which includes some of the most conspicuous and heavily studied snakes in North America. Both the taxonomy and hypothesized relationships within this tribe have been in flux. The number of species has increased from 23 to 51 over the last thirty years, predominately within three of the nine genera (Lampropeltis, Pantherophis, Pituophis). The remaining six depauperate genera (Arizona, Bogertophis, Cemophora, Pseudelaphe, Rhinocheilus, and Senticolis) have been poorly represented in phylogenetic studies. To estimate evolutionary relationships and determine if the dichotomy in depauperate and speciose genera within Lampropeltini is a function of taxon sampling or truly represents the lineage diversity, we estimated the phylogeny of this group using nuclear and mitochondrial loci in a concatenated and coalescent framework with the largest sampling of the six depauperate genera to date. In addition, we estimated the divergence dates among the genera to assess whether the instability of Lampropeltini phylogenetic relationships is due to an adaptive radiation. While some nodes still remain unresolved, the generic-level relationships we recovered agree with those of a recent next-generation study that used a much larger set of loci for fewer individuals. We also tested two putative species, Arizona pacata and Pseudelaphe phaescens, for the first time phylogenetically and find evidence that they are distinct lineages. Overall, we find that the taxonomic and genetic diversity are not correlated in Lampropeltini and that representing putative diversity in phylogenies will lead to a better estimate of evolutionary histories, especially in groups with complex radiations.
Collapse
|
18
|
Yan C, Mou B, Meng Y, Tu F, Fan Z, Price M, Yue B, Zhang X. A novel mitochondrial genome of Arborophila and new insight into Arborophila evolutionary history. PLoS One 2017; 12:e0181649. [PMID: 28742865 PMCID: PMC5526529 DOI: 10.1371/journal.pone.0181649] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 07/05/2017] [Indexed: 01/16/2023] Open
Abstract
The lineage of the Bar-backed Partridge (Arborophila brunneopectus) was investigated to determine the phylogenetic relationships within Arborophila as the species is centrally distributed within an area covered by the distributions of 22 South-east Asian hill partridge species. The complete mitochondrial genome (mitogenome) of A. brunneopectus was determined and compared with four other hill partridge species mitogenomes. NADH subunit genes are radical in hill partridge mitogenomes and contain the most potential positive selective sites around where variable sites are abundant. Together with 44 other mitogenomes of closely related species, we reconstructed highly resolved phylogenetic trees using maximum likelihood (ML) and Bayesian inference (BI) analyses and calculated the divergence and dispersal history of Arborophila using combined datasets composed of their 13-protein coding sequences. Arborophila is reportedly be the oldest group in Phasianidae whose ancestors probably originated in Asia. A. rufipectus shares a closer relationship with A. ardens and A. brunneopectus compared to A. gingica and A. rufogularis, and such relationships were supported and profiled by NADH dehydrogenase subunit 5 (ND5). The intragenus divergence of all five Arborophila species occurred in the Miocene (16.84~5.69 Mya) when there were periods of climate cooling. We propose that these cooling events in the Miocene forced hill partridges from higher to lower altitudes, which led to geographic isolation and speciation. We demonstrated that the apparently deleterious +1 frameshift mutation in NADH dehydrogenase subunit 3 (ND3) found in all Arborophila is an ancient trait that has been eliminated in some younger lineages, such as Passeriformes. It is unclear of the biological advantages of this elimination for the relevant taxa and this requires further investigation.
Collapse
Affiliation(s)
- Chaochao Yan
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Biqin Mou
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Yang Meng
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Feiyun Tu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
- Institute of Wildlife Conservation, Jiangxi Academy of Forestry, Nanchang, P.R. China
| | - Zhenxin Fan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Megan Price
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Xiuyue Zhang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
19
|
Song JH, Ahn KJ. Species trees, temporal divergence and historical biogeography of coastal rove beetles (Coleoptera: Staphylinidae) reveal their early Miocene origin and show that most divergence events occurred in the early Pliocene along the Pacific coasts. Cladistics 2017; 34:313-332. [DOI: 10.1111/cla.12206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2017] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jeong-Hun Song
- Department of Biology; Chungnam National University; Daejeon 34134 South Korea
| | - Kee-Jeong Ahn
- Department of Biology; Chungnam National University; Daejeon 34134 South Korea
| |
Collapse
|
20
|
Alexander AM, Su Y, Oliveros CH, Olson KV, Travers SL, Brown RM. Genomic data reveals potential for hybridization, introgression, and incomplete lineage sorting to confound phylogenetic relationships in an adaptive radiation of narrow‐mouth frogs. Evolution 2016; 71:475-488. [DOI: 10.1111/evo.13133] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/07/2016] [Indexed: 12/30/2022]
Affiliation(s)
| | - Yong‐Chao Su
- Biodiversity Institute University of Kansas Lawrence Kansas 66045
- Department of Biological Sciences National University of Singapore 117543 Singapore
| | - Carl H. Oliveros
- Biodiversity Institute University of Kansas Lawrence Kansas 66045
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana 70803
| | - Karen V. Olson
- Biodiversity Institute University of Kansas Lawrence Kansas 66045
| | - Scott L. Travers
- Biodiversity Institute University of Kansas Lawrence Kansas 66045
| | - Rafe M. Brown
- Biodiversity Institute University of Kansas Lawrence Kansas 66045
| |
Collapse
|
21
|
The Phylogenetic Position of the Little Mexican Toad,Anaxyrus kelloggi, Using Molecular Data. J HERPETOL 2016. [DOI: 10.1670/15-105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Ament-Velásquez SL, Breedy O, Cortés J, Guzman HM, Wörheide G, Vargas S. Homoplasious colony morphology and mito-nuclear phylogenetic discordance among Eastern Pacific octocorals. Mol Phylogenet Evol 2016; 98:373-81. [DOI: 10.1016/j.ympev.2016.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 12/06/2015] [Accepted: 02/26/2016] [Indexed: 01/07/2023]
|
23
|
Gónzalez D, Rodriguez-Carres M, Boekhout T, Stalpers J, Kuramae EE, Nakatani AK, Vilgalys R, Cubeta MA. Phylogenetic relationships of Rhizoctonia fungi within the Cantharellales. Fungal Biol 2016; 120:603-619. [PMID: 27020160 PMCID: PMC5013834 DOI: 10.1016/j.funbio.2016.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 01/01/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
Phylogenetic relationships of Rhizoctonia fungi within the order Cantharellales were studied using sequence data from portions of the ribosomal DNA cluster regions ITS-LSU, rpb2, tef1, and atp6 for 50 taxa, and public sequence data from the rpb2 locus for 165 taxa. Data sets were analysed individually and combined using Maximum Parsimony, Maximum Likelihood, and Bayesian Phylogenetic Inference methods. All analyses supported the monophyly of the family Ceratobasidiaceae, which comprises the genera Ceratobasidium and Thanatephorus. Multi-locus analysis revealed 10 well-supported monophyletic groups that were consistent with previous separation into anastomosis groups based on hyphal fusion criteria. This analysis coupled with analyses of a larger sample of 165 rpb2 sequences of fungi in the Cantharellales supported a sister relationship between the Botryobasidiaceae and Ceratobasidiaceae and a sister relationship of the Tulasnellaceae with the rest of the Cantharellales. The inclusion of additional sequence data did not clarify incongruences observed in previous studies of Rhizoctonia fungi in the Cantharellales based on analyses of a single or multiple genes. The diversity of ecological and morphological characters associated with these fungi requires further investigation on character evolution for re-evaluating homologous and homoplasious characters.
Collapse
Affiliation(s)
- Dolores Gónzalez
- Instituto de Ecología, A.C., Red de Biodiversidad y Sistemática, Carretera Antigua a Coatepec No. 351, El Haya, 91070 Xalapa, Veracruz, Mexico.
| | - Marianela Rodriguez-Carres
- Department of Plant Pathology, North Carolina State University, Center for Integrated Fungal Research, Campus Box 7251, Raleigh, NC 27695, USA
| | - Teun Boekhout
- CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Joost Stalpers
- CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO/KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Andreia K Nakatani
- UNESP, Faculdade de Ciências Agronômicas, CP 237, 18603-970 Botucatu, SP, Brazil
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Marc A Cubeta
- Department of Plant Pathology, North Carolina State University, Center for Integrated Fungal Research, Campus Box 7251, Raleigh, NC 27695, USA
| |
Collapse
|
24
|
Pereyra MO, Baldo D, Blotto BL, Iglesias PP, Thomé MTC, Haddad CFB, Barrio-Amorós C, Ibáñez R, Faivovich J. Phylogenetic relationships of toads of the Rhinella granulosa group (Anura: Bufonidae): a molecular perspective with comments on hybridization and introgression. Cladistics 2016; 32:36-53. [PMID: 34732018 DOI: 10.1111/cla.12110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 11/30/2022] Open
Abstract
The Rhinella granulosa group consists of 13 species of toads distributed throughout open areas of South America and Panama. In this paper we perform a phylogenetic analysis considering all but one species of the group, employing five nuclear and four mitochondrial genes, for up to 7910 bp per specimen. Separate phylogenetic analyses under direct optimization (DO) of nuclear and mitochondrial sequences recovered the R. granulosa group as monophyletic and revealed topological incongruence that can be explained mainly by multiple events of hybridization and introgression, both mitochondrial and nuclear. The DO combined analysis, after the exclusion of putatively introgressed or heterozygous genomes, resulted in a phylogenetic hypothesis for the R. granulosa group in which most of the species are recovered as monophyletic, but with interspecific relationships poorly supported. The optimization of morphological (adult and larval), chromosomal, and behavioural characters resulted in 12 putative phenotypic synapomorphies for this species group and some other synapomorphies for internal clades. Our results indicate the need for additional population genetic studies on R. dorbignyi and R. fernandezae to corroborate the taxonomic status of both taxa. Finally, we discuss biological and genetic characteristics of Bufonidae, as possible explanations for the common occurrence of hybridization and introgression observed in some lineages of this family.
Collapse
Affiliation(s)
- Martín O Pereyra
- División Herpetología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"-CONICET, Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina
| | - Diego Baldo
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, N3300LQF, Posadas, Misiones, Argentina
| | - Boris L Blotto
- División Herpetología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"-CONICET, Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina.,Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, São Paulo, Brazil
| | - Patricia P Iglesias
- Instituto de Ecología, Genética y Evolución de Buenos Aires, IEGEBA-CONICET, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Maria T C Thomé
- Departamento de Zoologia, Instituto de Biociências, UNESP-Universidade Estadual Paulista, Av. 24A 1515, CEP 13506-900, Rio Claro, São Paulo, Brazil
| | - Célio F B Haddad
- Departamento de Zoologia, Instituto de Biociências, UNESP-Universidade Estadual Paulista, Av. 24A 1515, CEP 13506-900, Rio Claro, São Paulo, Brazil
| | - César Barrio-Amorós
- Instituto de Biodiversidad Tropical, Apartado Postal 220-8000, San José, Pérez Zeledón, San Isidro del General, 11901, Costa Rica
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, República de Panamá.,Departamento de Zoología, Universidad de Panamá, Panamá, República de Panamá.,Círculo Herpetológico de Panamá, Estafeta Universitaria, Apartado 10762, Panamá, República de Panamá
| | - Julián Faivovich
- División Herpetología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"-CONICET, Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina.,Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
25
|
Gante HF, Doadrio I, Alves MJ, Dowling TE. Semi-permeable species boundaries in Iberian barbels (Barbus and Luciobarbus, Cyprinidae). BMC Evol Biol 2015; 15:111. [PMID: 26066794 PMCID: PMC4465174 DOI: 10.1186/s12862-015-0392-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/28/2015] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The evolution of species boundaries and the relative impact of selection and gene flow on genomic divergence are best studied in populations and species pairs exhibiting various levels of divergence along the speciation continuum. We studied species boundaries in Iberian barbels, Barbus and Luciobarbus, a system of populations and species spanning a wide degree of genetic relatedness, as well as geographic distribution and range overlap. We jointly analyze multiple types of molecular markers and morphological traits to gain a comprehensive perspective on the nature of species boundaries in these cyprinid fishes. RESULTS Intraspecific molecular and morphological differentiation is visible among many populations. Genomes of all sympatric species studied are porous to gene flow, even if they are not sister species. Compared to their allopatric counterparts, sympatric representatives of different species share alleles and show an increase in all measures of nucleotide polymorphism (S, Hd, K, π and θ). High molecular diversity is particularly striking in L. steindachneri from the Tejo and Guadiana rivers, which co-varies with other sympatric species. Interestingly, different nuclear markers introgress across species boundaries at various levels, with distinct impacts on population trees. As such, some loci exhibit limited introgression and population trees resemble the presumed species tree, while alleles at other loci introgress more freely and population trees reflect geographic affinities and interspecific gene flow. Additionally, extent of introgression decreases with increasing genetic divergence in hybridizing species pairs. CONCLUSIONS We show that reproductive isolation in Iberian Barbus and Luciobarbus is not complete and species boundaries are semi-permeable to (some) gene flow, as different species (including non-sister) are exchanging genes in areas of sympatry. Our results support a speciation-with-gene-flow scenario with heterogeneous barriers to gene flow across the genome, strengthening with genetic divergence. This is consistent with observations coming from other systems and supports the notion that speciation is not instantaneous but a gradual process, during which different species are still able to exchange some genes, while selection prevents gene flow at other loci. We also provide evidence for a hybrid origin of a barbel ecotype, L. steindachneri, suggesting that ecology plays a key role in species coexistence and hybridization in Iberian barbels. This ecotype with intermediate, yet variable, molecular, morphological, trophic and ecological characteristics is the local product of introgressive hybridization of L. comizo with up to three different species (with L. bocagei in the Tejo, with L. microcephalus and L. sclateri in the Guadiana). In spite of the homogenizing effects of ongoing gene flow, species can still be discriminated using a combination of morphological and molecular markers. Iberian barbels are thus an ideal system for the study of species boundaries, since they span a wide range of genetic divergences, with diverse ecologies and degrees of sympatry.
Collapse
Affiliation(s)
- Hugo F Gante
- School of Life Sciences, Arizona State University, 85287-4601, Tempe, AZ, USA.
- Museu Nacional de História Natural e da Ciência, Centre for Ecology, Evolution and Environmental Changes (Ce3C), Universidade de Lisboa, Rua da Escola Politécnica 58, 1250-102, Lisbon, Portugal.
- Current address: Zoological Institute, University of Basel, 4051, Basel, Switzerland.
| | - Ignacio Doadrio
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, c/José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| | - Maria Judite Alves
- Museu Nacional de História Natural e da Ciência, Centre for Ecology, Evolution and Environmental Changes (Ce3C), Universidade de Lisboa, Rua da Escola Politécnica 58, 1250-102, Lisbon, Portugal.
| | - Thomas E Dowling
- School of Life Sciences, Arizona State University, 85287-4601, Tempe, AZ, USA.
- Current address: Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, 48202, Detroit, MI, USA.
| |
Collapse
|
26
|
Dorchin N, Joy JB, Hilke LK, Wise MJ, Abrahamson WG. Taxonomy and phylogeny of theAsphondyliaspecies (Diptera: Cecidomyiidae) of North American goldenrods: challenging morphology, complex host associations, and cryptic speciation. Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12234] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Netta Dorchin
- Department of Zoology; The George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv 69978 Israel
| | - Jeffrey B. Joy
- Department of Biological Sciences; Simon Fraser University; 8888 University Drive Burnaby BC Canada V5A 1S6
| | - Lukas K. Hilke
- University of Bonn; Regina-Pacis-Weg 3 D-53113 Bonn Germany
| | | | | |
Collapse
|
27
|
Thirty Years of Hybridization between Toads along the Agua Fria River in Arizona: I. Evidence from Morphology and mtDNA. J HERPETOL 2015. [DOI: 10.1670/14-011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Díaz-Rodríguez J, Gonçalves H, Sequeira F, Sousa-Neves T, Tejedo M, Ferrand N, Martínez-Solano I. Molecular evidence for cryptic candidate species in Iberian Pelodytes (Anura, Pelodytidae). Mol Phylogenet Evol 2015; 83:224-41. [DOI: 10.1016/j.ympev.2014.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/03/2014] [Accepted: 12/14/2014] [Indexed: 11/16/2022]
|
29
|
Strickland JL, Parkinson CL, McCoy JK, Ammerman LK. Phylogeography ofAgkistrodon piscivoruswith Emphasis on the Western Limit of Its Range. COPEIA 2014. [DOI: 10.1643/cg-13-123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Patterns of genetic diversity in the polymorphic ground snake (Sonora semiannulata). Genetica 2014; 142:361-70. [DOI: 10.1007/s10709-014-9780-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 07/18/2014] [Indexed: 10/25/2022]
|
31
|
Ruane S, Bryson RW, Pyron RA, Burbrink FT. Coalescent Species Delimitation in Milksnakes (Genus Lampropeltis) and Impacts on Phylogenetic Comparative Analyses. Syst Biol 2013; 63:231-50. [DOI: 10.1093/sysbio/syt099] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Cryptic genetic diversity and complex phylogeography of the boreal North American scorpion, Paruroctonus boreus (Vaejovidae). Mol Phylogenet Evol 2013; 71:298-307. [PMID: 24269314 DOI: 10.1016/j.ympev.2013.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/25/2013] [Accepted: 11/10/2013] [Indexed: 11/22/2022]
Abstract
Diverse studies in western North America have revealed the role of topography for dynamically shaping genetic diversity within species though vicariance, dispersal and range expansion. We examined patterns of phylogeographical diversity in the widespread but poorly studied North American vaejovid scorpion, Paruroctonus boreus Girard 1854. We used mitochondrial sequence data and parsimony, likelihood, and Bayesian inference to reconstruct phylogenetic relationships across the distributional range of P. boreus, focusing on intermontane western North America. Additionally, we developed a species distribution model to predict its present and historical distributions during the Last Glacial Maximum and the Last Interglacial Maximum. Our results documented complex phylogeographic relationships within P. boreus, with multiple, well-supported crown clades that are either geographically-circumscribed or widespread and separated by short, poorly supported internodes. We also observed subtle variation in predicted habitat suitability, especially at the northern, eastern and southern edges of the predicted distributional range under past climatic conditions. The complex phylogenetic relationships of P. boreus suggests that historical isolation and expansion of populations may have occurred. Variation in the predicted distributional range over time may implicate past climatic fluctuations in generating the patterns of genetic diversity observed in P. boreus. These findings highlight both the potential for cryptic biodiversity in widespread North American scorpion species and the importance of phylogeographical studies for understanding the factors responsible for generating the biodiversity of western North America.
Collapse
|
33
|
Thomé MTC, Zamudio KR, Haddad CFB, Alexandrino J. Delimiting genetic units in Neotropical toads under incomplete lineage sorting and hybridization. BMC Evol Biol 2012; 12:242. [PMID: 23228224 PMCID: PMC3574056 DOI: 10.1186/1471-2148-12-242] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022] Open
Abstract
Background Delimiting genetic units is useful to enhance taxonomic discovery and is often the first step toward understanding evolutionary mechanisms generating diversification. The six species within the Rhinella crucifer group of toads were defined under morphological criteria alone. Previous data suggest limited correspondence of these species to mitochondrial lineages, and morphological intergradation at transitions between forms suggests hybridization. Here we extensively sampled populations throughout the geographic distribution of the group and analyzed mitochondrial and nuclear sequence data to delimit genetic units using tree–based and allele frequency–based approaches. Results These approaches yielded complementary results, with allele frequency-based methods performing unexpectedly well given the limited number of loci examined. Both mitochondrial and nuclear markers supported a genetic structure of five units within the group, with three of the inferred units distributed within its main range, while two other units occur in separate isolates. The inferred units are mostly discordant with currently described forms: unequivocal association exists for only two of the six species in the group. Genetic evidence for hybridization exists for two pairs of units, with clear cyto–nuclear allele mixing observed in one case. Conclusions Our results confirmed that current taxonomy does not represent evolutionary units in the Rhinella crucifer group. Correspondence between genetically distinguishable units and the currently recognized species is only possible for Rhinella henseli and R. inopina. The recognition of other species relies on the reassessment of the geographic range of R. crucifer, the examination of the type series of R. ornata for hybrids, and on the use of additional markers to verify the genetic distinctiveness of R. abei. We state that R. pombali should not remain a valid species since its description appears to be based on hybrids, and that the name R. pombali should be considered a synonym of both R. crucifer and R. ornata. The fifth inferred but undescribed genetic unit may represent a new species. Our results underscore the potential of the R. crucifer species group to contribute to a better understanding of diversification processes and hybridization patterns in the Neotropics, and provide the basis for future evolutionary and taxonomic studies.
Collapse
Affiliation(s)
- Maria Tereza C Thomé
- Departamento de Zoologia, Instituto de Biociências, UNESP - Univ Estadual Paulista, Campus Rio Claro, Caixa Postal 19913506-900, Rio Claro, SP, Brazil.
| | | | | | | |
Collapse
|
34
|
Genetic and Reproductive Evidence of Natural Hybridization between the Sister SpeciesRhinella atacamensisandRhinella arunco(Anura, Bufonidae). J HERPETOL 2012. [DOI: 10.1670/10-266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Klymus KE, Carl Gerhardt H. AFLP markers resolve intra-specific relationships and infer genetic structure among lineages of the canyon treefrog, Hyla arenicolor. Mol Phylogenet Evol 2012; 65:654-67. [DOI: 10.1016/j.ympev.2012.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 07/22/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
|
36
|
Streicher JW, Cox CL, Campbell JA, Smith EN, de Sá RO. Rapid range expansion in the Great Plains narrow-mouthed toad (Gastrophryne olivacea) and a revised taxonomy for North American microhylids. Mol Phylogenet Evol 2012; 64:645-53. [DOI: 10.1016/j.ympev.2012.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 11/29/2022]
|
37
|
O’Donnell RP, Mock KE. Two frog species or one? A multi-marker approach to assessing the distinctiveness of genetic lineages in the Northern Leopard Frog, Rana pipiens. CONSERV GENET 2012. [DOI: 10.1007/s10592-012-0384-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Affiliation(s)
- David P L Toews
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
| | | |
Collapse
|
39
|
Cox CL, Streicher JW, Sheehy CM, Campbell JA, Chippindale PT. Patterns of Genetic Differentiation Among Populations of Smilisca fodiens. HERPETOLOGICA 2012. [DOI: 10.1655/herpetologica-d-11-00064.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|