1
|
Melekhin M, Potekhin A, Gentekaki E, Chantangsi C. Paramecium (Oligohymenophorea, Ciliophora) diversity in Thailand sheds light on the genus biogeography and reveals new phylogenetic lineages. J Eukaryot Microbiol 2024; 71:e13004. [PMID: 37849422 DOI: 10.1111/jeu.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Paramecium (Ciliophora, Oligohymenophorea) is a good model to study ciliate biogeography. Extensive sampling mainly in northern hemisphere has led to 16 valid morphological species description thus far. However, a majority of hard-to-reach regions, including South East Asia, are underinvestigated. Our study combined traditional morphological and molecular approaches to reveal the biodiversity of Paramecium in Thailand from more than 110 samples collected in 10 provinces. Representatives of seven morphological species were identified from our collection, including the rare species, such as P. gigas and P. jenningsi. Additionally, we detected five different sibling species of the P. aurelia complex, described a new cryptic species P. hiwatashii n. sp. phylogenetically related to P. caudatum, and discovered a potentially new genetic species of the P. bursaria species complex. We also documented a variety of bacterial cytoplasmic symbionts from at least nine monoclonal cultures of Paramecium.
Collapse
Affiliation(s)
- Maksim Melekhin
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, St Petersburg, Russia
| | - Alexey Potekhin
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Chitchai Chantangsi
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Paramecium bursaria—A Complex of Five Cryptic Species: Mitochondrial DNA COI Haplotype Variation and Biogeographic Distribution. DIVERSITY 2021. [DOI: 10.3390/d13110589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ciliates are a diverse protistan group and many consist of cryptic species complexes whose members may be restricted to particular biogeographic locations. Mitochondrial genes, characterized by a high resolution for closely related species, were applied to identify new species and to distinguish closely related morphospecies. In the current study, we analyzed 132 sequences of COI mtDNA fragments obtained from P. bursaria species collected worldwide. The results allowed, for the first time, to generate a network of COI haplotypes and demonstrate the relationships between P. bursaria strains, as well as to confirm the existence of five reproductively isolated haplogroups. The P. bursaria haplogroups identified in the present study correspond to previously reported syngens (R1, R2, R3, R4, and R5), thus we decided to propose the following binominal names for each of them: P. primabursaria, P. bibursaria, P. tribursaria, P. tetrabursaria, and P. pentabursaria, respectively. The phylogeographic distribution of P. bursaria species showed that P. primabursaria and P. bibursaria were strictly Eurasian, except for two South Australian P. bibursaria strains. P. tribursaria was found mainly in Eastern Asia, in two stands in Europe and in North America. In turn, P. tetrabursaria was restricted to the USA territory, whereas P. pentabursaria was found in two European localities.
Collapse
|
3
|
Wang C, Hu Y, Warren A, Hu X. Genetic Diversity and Phylogeny of the Genus Euplotes (Protozoa, Ciliophora) Revealed by the Mitochondrial CO1 and Nuclear Ribosomal Genes. Microorganisms 2021; 9:microorganisms9112204. [PMID: 34835330 PMCID: PMC8624429 DOI: 10.3390/microorganisms9112204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/03/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Nuclear ribosomal and mitochondrial genes have been utilized individually or in combination to identify known species and discriminate closely related species. However, compared with metazoans, genetic diversity within the ciliate order Euplotida is poorly known. The aim of this study is to investigate how much nucleotide sequence divergence occurs within Euplotes. A total of 14 new gene sequences, comprising four SSU rDNA and 10 CO1 (including three species for the first time) were obtained. Phylogenetic analyses were carried out based on sequences of two DNA fragments from the same 27 isolates. We found that CO1 revealed a larger interspecific divergence than the SSU rRNA gene, thus demonstrating a higher resolution for separating congeners. Genetic distances differ significantly at the species level. Euplotes balteatus was revealed to have a large intraspecific variation at two loci, while E. vannus showed different levels of haplotype variability, which appeared as a polyphyletic cluster on the CO1 tree. These high genetic divergences suggest the presence of more cryptic species. By contrast, the CO1 gene showed low variability within E. raikovi, appearing as monophyletic clusters, which indicates that this species could be identified based on this gene. Conclusively, CO1 is a suitable marker for the study of genetic diversity within Euplotes, and increased taxon sampling gives an opportunity to screen relationships among members of this genus. Additionally, current data present no clear biogeographical pattern for Euplotes.
Collapse
Affiliation(s)
- Congcong Wang
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China;
| | - Yue Hu
- Oxford Sixth Form College, Oxford OX1 4HT, UK;
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK;
| | - Xiaozhong Hu
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China;
- Correspondence: ; Tel.: +86-532-8203-1610
| |
Collapse
|
4
|
Fan X, Yao S, Luo X, Dong T, Xu Y, Chen L, Bourland W, Zhao Y, Huang J. Some morphologically distinguishable hypotrich ciliates share identical 18S rRNA gene sequences – taxonomic insights from a case study on Oxytricha species (Protista, Ciliophora). Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlaa145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Modern taxonomic studies of ciliated protozoa require both morphological and molecular data. One dilemma is how to distinguish morphologically similar species with few nucleotide differences in the widely used marker, the 18S rRNA gene. In the present study, two Oxytricha species were morphologically documented using light and electron microscopy. The mitochondrial cytochrome c oxidase subunit I (COI) gene and a fragment of the rRNA gene covering the 18S-ITS1-5.8S-ITS2-28S rRNA gene regions were sequenced. Phylogenetic analyses of all available Oxytricha granulifera-related populations were performed to reveal the internal relationships of this group. We described a new species, Oxytricha atypica sp. nov., distinguished from its congeners by having seven postoral ventral cirri resulting from the additional fragmentation of anlage V during ontogenesis. Although their 18S rRNA genes differ by only one nucleotide, divergence of the COI gene is as high as 11.8% between O. atypica and the closely related species, O. granulifera. All but one of the COI nucleotide substitutions were synonymous. We documented the highly conserved nature of the 18S rRNA gene in the morphospecies of Oxytricha. Based on these findings, we speculate that O. granulifera contains cryptic species or morphospecies needing further characterization, and new insights for the taxonomy of hypotrich ciliates are also discussed.
Collapse
Affiliation(s)
- Xinpeng Fan
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Shunli Yao
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaotian Luo
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tianyao Dong
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Lingyun Chen
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - William Bourland
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Yan Zhao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jie Huang
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
5
|
Weiler J, Zilio G, Zeballos N, Nørgaard L, Conce Alberto WD, Krenek S, Kaltz O, Bright L. Among-Strain Variation in Resistance of Paramecium caudatum to the Endonuclear Parasite Holospora undulata: Geographic and Lineage-Specific Patterns. Front Microbiol 2020; 11:603046. [PMID: 33381098 PMCID: PMC7767928 DOI: 10.3389/fmicb.2020.603046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/24/2020] [Indexed: 01/04/2023] Open
Abstract
Resistance is a key determinant in interactions between hosts and their parasites. Understanding the amount and distribution of variation in this trait between strains can provide insights into (co)evolutionary processes and their potential to shape patterns of diversity in natural populations. Using controlled inoculation in experimental mass cultures, we investigated the quantitative variation in resistance to the bacterial parasite Holospora undulata across a worldwide collection of strains of its ciliate host Paramecium caudatum. We combined the observed variation with available information on the phylogeny and biogeography of the strains. We found substantial variation in resistance among strains, with upper-bound values of broad-sense heritability >0.5 (intraclass correlation coefficients). Strain estimates of resistance were repeatable between laboratories and ranged from total resistance to near-complete susceptibility. Early (1 week post inoculation) measurements provided higher estimates of resistance heritability than did later measurements (2-3 weeks), possibly due to diverging epidemiological dynamics in replicate cultures of the same strains. Genetic distance (based on a neutral marker) was positively correlated with the difference in resistance phenotype between strains (r = 0.45), essentially reflecting differences between highly divergent clades (haplogroups) within the host species. Haplogroup A strains, mostly European, were less resistant to the parasite (49% infection prevalence) than non-European haplogroup B strains (28%). At a smaller geographical scale (within Europe), strains that are geographically closer to the parasite origin (Southern Germany) were more susceptible to infection than those from further away. These patterns are consistent with a picture of local parasite adaptation. Our study demonstrates ample natural variation in resistance on which selection can act and hints at symbiont adaptation producing signatures in geographic and lineage-specific patterns of resistance in this model system.
Collapse
Affiliation(s)
- Jared Weiler
- Department of Biology, State University of New York, College at New Paltz, New Paltz, NY, United States
| | - Giacomo Zilio
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Nathalie Zeballos
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Louise Nørgaard
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne, VIC, Australia
| | - Winiffer D. Conce Alberto
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Sascha Krenek
- Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Oliver Kaltz
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Lydia Bright
- Department of Biology, State University of New York, College at New Paltz, New Paltz, NY, United States
| |
Collapse
|
6
|
Succinate dehydrogenase gene as a marker for studying Blastocystis genetic diversity. Heliyon 2020; 6:e05387. [PMID: 33163680 PMCID: PMC7609450 DOI: 10.1016/j.heliyon.2020.e05387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/01/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Blastocystis has been reported as the most common eukaryotic microorganism residing in the intestines of both humans and animals, with a prevalence of up to 100% in some populations. Since this is a cryptic species, sequence polymorphism are the single strategy to analyses its genetic diversity, being traditionally used the analysis of ssu rRNA gene sequence to determine alleles and subtypes (STs) for this species. This multicopy gene has shown high diversity among different STs, making necessary to explore other genes to assess intraspecific diversity. This study evaluated the use of a novel genetic marker, succinate dehydrogenase (SDHA), for the typing and evaluation of the genetic diversity and genetic population structure of Blastocystis. In total, 375 human fecal samples were collected and subjected to PCR, subtyped using the ssu rRNA marker, and then the SDHA gene was amplified via PCR for 117 samples. We found some incongruences between tree topologies for both molecular markers. However, the clustering by ST previously established for Blastocystis was congruent in the concatenated sequence. SDHA showed lower reticulation (The origination of a lineage through the partial merging of two ancestor lineages) signals and better intra ST clustering ability. Clusters with geographical associations were observed intra ST. The genetic diversity was lower in the marker evaluated compared to that of the ssu rRNA gene (nucleotide diversity = 0.03344 and 0.16986, respectively) and the sequences analyzed showed population expansion with genetic differentiation principally among STs. The ssu rRNA gene was useful to explore interspecific diversity but together with the SDHA gene the resolution power to evaluate intra ST diversity was higher. These results showed the potential of the SDHA marker for studying the intra ST genetic diversity of Blastocystis related with geographical location and the inter ST diversity using the concatenated sequences.
Collapse
|
7
|
Development of a Multilocus Sequence Typing Scheme for Giardia intestinalis. Genes (Basel) 2020; 11:genes11070764. [PMID: 32650382 PMCID: PMC7397270 DOI: 10.3390/genes11070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 11/16/2022] Open
Abstract
Giardia intestinalis is an intestinal protozoan most commonly found in humans. It has been grouped into 8 assemblages (A-H). Markers such as the glutamate dehydrogenase gene, triose phosphate isomerase and beta-giardin (β-giardin) have been widely used for genotyping. In addition, different genetic targets have been proposed as a valuable alternative to assess diversity and genetics of this microorganism. Thus, our objective was to evaluate new markers for the study of the diversity and intra-taxa genetic structure of G. intestinalis in silico and in DNA obtained from stool samples. We analysed nine constitutive genes in 80 complete genome sequences and in a group of 24 stool samples from Colombia. Allelic diversity was evaluated by locus and for the concatenated sequence of nine loci that could discriminate up to 53 alleles. Phylogenetic reconstructions allowed us to identify AI, AII and B assemblages. We found evidence of intra- and inter-assemblage recombination events. Population structure analysis showed genetic differentiation among the assemblages analysed.
Collapse
|
8
|
Zhan Z, Li J, Xu K. Ciliate Environmental Diversity Can Be Underestimated by the V4 Region of SSU rDNA: Insights from Species Delimitation and Multilocus Phylogeny of Pseudokeronopsis (Protist, Ciliophora). Microorganisms 2019; 7:microorganisms7110493. [PMID: 31717798 PMCID: PMC6920991 DOI: 10.3390/microorganisms7110493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/03/2022] Open
Abstract
Metabarcoding and high-throughput sequencing methods have greatly improved our understanding of protist diversity. Although the V4 region of small subunit ribosomal DNA (SSU-V4 rDNA) is the most widely used marker in DNA metabarcoding of eukaryotic microorganisms, doubts have recently been raised about its suitability. Here, using the widely distributed ciliate genus Pseudokeronopsis as an example, we assessed the potential of SSU-V4 rDNA and four other nuclear and mitochondrial markers for species delimitation and phylogenetic reconstruction. Our studies revealed that SSU-V4 rDNA is too conservative to distinguish species, and a threshold of 97% and 99% sequence similarity detected only one and three OTUs, respectively, from seven species. On the basis of the comparative analysis of the present and previously published data, we proposed the multilocus marker including the nuclear 5.8S rDNA combining the internal transcribed spacer regions (ITS1-5.8S-ITS2) and the hypervariable D2 region of large subunit rDNA (LSU-D2) as an ideal barcode rather than the mitochondrial cytochrome c oxidase subunit 1 gene, and the ITS1-5.8S-ITS2 as a candidate metabarcoding marker for ciliates. Furthermore, the compensating base change and tree-based criteria of ITS2 and LSU-D2 were useful in complementing the DNA barcoding and metabarcoding methods by giving second structure and phylogenetic evidence.
Collapse
Affiliation(s)
- Zifeng Zhan
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.Z.); (J.L.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ju Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.Z.); (J.L.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kuidong Xu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.Z.); (J.L.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
9
|
PrzyboŚ E, Tarcz S. Global molecular variation of Paramecium jenningsi complex (Ciliophora, Protista): a starting point for further, detailed biogeography surveys. SYST BIODIVERS 2019. [DOI: 10.1080/14772000.2019.1643424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ewa PrzyboŚ
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków 31-016, Sławkowska 17, Kraków, Poland
| | - Sebastian Tarcz
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków 31-016, Sławkowska 17, Kraków, Poland
| |
Collapse
|
10
|
Przyboś E, Rautian M, Beliavskaia A, Tarcz S. Evaluation of the molecular variability and characteristics of Paramecium polycaryum and Paramecium nephridiatum, within subgenus Cypriostomum (Ciliophora, Protista). Mol Phylogenet Evol 2018; 132:296-306. [PMID: 30528084 DOI: 10.1016/j.ympev.2018.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 11/05/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022]
Abstract
Although some Paramecium species are suitable research objects in many areas of life sciences, the biodiversity structure of other species is almost unknown. In the current survey, we present a molecular analysis of 60 Cypriostomum strains, which for the first time allows for the study of intra- and interspecific relationships within that subgenus, as well as the assessment of the biogeography patterns of its morphospecies. Analysis of COI mtDNA variation revealed three main clades (separated from each other by approximately 130 nucleotide substitutions), each one with internal sub-clusters (differing by 30 to 70 substitutions - a similar range found between P. aurelia cryptic species and P. bursaria syngens). The first clade is represented exclusively by P. polycaryum; the second one includes only four strains identified as P. calkinsi. The third cluster seems to be paraphyletic, as it includes P. nephridiatum, P. woodruffi, and Eucandidatus P. hungarianum. Some strains, previously identified as P. calkinsi, had COI sequences identical or very similar to P. nephridiatum ones. Morphological reinvestigation of several such strains revealed common morphological features with P. nephridiatum. The paper contains new information concerning speciation within particular species, i.e. existence of cryptic species within P. polycaryum (three) and in P. nephridiatum (six).
Collapse
Affiliation(s)
- Ewa Przyboś
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland
| | - Maria Rautian
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Alexandra Beliavskaia
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia; Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sebastian Tarcz
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland.
| |
Collapse
|
11
|
Park MH, Jung JH, Jo E, Park KM, Baek YS, Kim SJ, Min GS. Utility of mitochondrial CO1 sequences for species discrimination of Spirotrichea ciliates (Protozoa, Ciliophora). Mitochondrial DNA A DNA Mapp Seq Anal 2018; 30:148-155. [PMID: 29701079 DOI: 10.1080/24701394.2018.1464563] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Ciliates are a diverse species group of the Protozoa, and nuclear and mitochondrial genes have been utilized to discover new species and discriminate closely related species. The mitochondrial cytochrome c oxidase subunit 1 (CO1) gene has been used to discriminate metazoan species and has also been applied for some groups in the phylum Ciliophora. However, it is difficult to produce a universal primer as a standard barcode, because unlike metazoans, mitochondrial DNA sequences of ciliates are long and highly variable. Therefore, to design the new primer set, we sequenced the mitochondrial genomes of two pseudokeronopsids in the class Spirotrichea using next-generation sequencing technology (HiSeq™ 2000). Based on putative CO1 gene fragments of the pseudokeronopsids, we designed the new primer set and successfully sequenced the CO1 of 69 populations representing 47 species (five orders, 14 families, and 27 genera). We found that CO1 showed higher resolution for separating congeneric species than did nuclear SSU rRNA gene sequences, and we identified some putative cryptic species.
Collapse
Affiliation(s)
- Mi-Hyun Park
- a Department of Biological Sciences , Inha University , Incheon , The Republic of Korea
| | - Jae-Ho Jung
- b Department of Biology , Gangneung-Wonju National University , Gangneung , The Republic of Korea
| | - Euna Jo
- a Department of Biological Sciences , Inha University , Incheon , The Republic of Korea
| | - Kyung-Min Park
- a Department of Biological Sciences , Inha University , Incheon , The Republic of Korea.,c Korea Polar Research Institute , Incheon , The Republic of Korea
| | - Ye-Seul Baek
- a Department of Biological Sciences , Inha University , Incheon , The Republic of Korea
| | - Se-Joo Kim
- d KRIBB , Daejeon , The Republic of Korea
| | - Gi-Sik Min
- a Department of Biological Sciences , Inha University , Incheon , The Republic of Korea
| |
Collapse
|
12
|
Worldwide sampling reveals low genetic variability in populations of the freshwater ciliate Paramecium biaurelia (P. aurelia species complex, Ciliophora, Protozoa). ORG DIVERS EVOL 2018. [DOI: 10.1007/s13127-017-0357-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Utility of combining morphological characters, nuclear and mitochondrial genes: An attempt to resolve the conflicts of species identification for ciliated protists. Mol Phylogenet Evol 2016; 94:718-729. [DOI: 10.1016/j.ympev.2015.10.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/08/2015] [Accepted: 10/16/2015] [Indexed: 11/20/2022]
|
14
|
Przyboś E, Tarcz S, Rautian M, Sawka N. Delimiting Species Boundaries within a Paraphyletic Species Complex: Insights from Morphological, Genetic, and Molecular Data on Paramecium sonneborni (Paramecium aurelia species complex, Ciliophora, Protozoa). Protist 2015; 166:438-56. [PMID: 26277215 DOI: 10.1016/j.protis.2015.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/01/2015] [Accepted: 07/12/2015] [Indexed: 02/06/2023]
Abstract
The demarcation of boundaries between protist species is often problematic because of the absence of a uniform species definition, the abundance of cryptic diversity, and the occurrence of convergent morphology. The ciliates belonging to the Paramecium aurelia complex, consisting of 15 species, are a good model for such systematic and evolutionary studies. One member of the complex is P. sonneborni, previously known only from one stand in Texas (USA), but recently found in two new sampling sites in Cyprus (creeks running to Salt Lake and Oroklini Lake near Larnaca). The studied Paramecium sonneborni strains (from the USA and Cyprus) reveal low viability in the F1 and F2 generations of interstrain hybrids and may be an example of ongoing allopatric speciation. Despite its molecular distinctiveness, we postulate that P. sonneborni should remain in the P. aurelia complex, making it a paraphyletic taxon. Morphological studies have revealed that some features of the nuclear apparatus of P. sonneborni correspond to the P. aurelia spp. complex, while others are similar to P. jenningsi and P. schewiakoffi. The observed discordance indicates rapid splitting of the P. aurelia-P. jenningsi-P. schewiakoffi group, in which genetic, morphological, and molecular boundaries between species are not congruent.
Collapse
Affiliation(s)
- Ewa Przyboś
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków 31-016, Sławkowska 17, Poland
| | - Sebastian Tarcz
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków 31-016, Sławkowska 17, Poland.
| | - Maria Rautian
- Laboratory of Protistology and Experimental Zoology, Faculty of Biology and Soil Science, St. Petersburg State University, Saint Petersburg 199034, Universitetskaya nab. 7/9, Russia
| | - Natalia Sawka
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków 31-016, Sławkowska 17, Poland
| |
Collapse
|
15
|
New Paramecium (Ciliophora, Oligohymenophorea) congeners shape our view on its biodiversity. ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0207-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
The first European stand of Paramecium sonneborni (P. aurelia complex), a species known only from North America (Texas, USA). Eur J Protistol 2014; 50:236-47. [DOI: 10.1016/j.ejop.2014.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/15/2014] [Accepted: 03/03/2014] [Indexed: 11/18/2022]
|
17
|
Tarcz S, Rautian M, Potekhin A, Sawka N, Beliavskaya A, Kiselev A, Nekrasova I, Przyboś E. Paramecium putrinum (Ciliophora, Protozoa): The first insight into the variation of two DNA fragments – Molecular support for the existence of cryptic species. Mol Phylogenet Evol 2014; 73:140-5. [DOI: 10.1016/j.ympev.2014.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 11/25/2022]
|
18
|
Adams M, Raadik TA, Burridge CP, Georges A. Global Biodiversity Assessment and Hyper-Cryptic Species Complexes: More Than One Species of Elephant in the Room? Syst Biol 2014; 63:518-33. [DOI: 10.1093/sysbio/syu017] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mark Adams
- Evolutionary Biology Unit, South Australian Museum, North Terrace, SA 5000, Australia
- School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Tarmo A. Raadik
- Aquatic Ecology Section, Arthur Rylah Institute for Environmental Research, Department of Environment and Primary Industries, 123 Brown Street, Heidelberg, VIC 3084, Australia
- Institute for Applied Ecology and Collaborative Research Network for Murray-Darling Futures, University of Canberra, ACT 2601, Australia and
| | - Christopher P. Burridge
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Arthur Georges
- Institute for Applied Ecology and Collaborative Research Network for Murray-Darling Futures, University of Canberra, ACT 2601, Australia and
| |
Collapse
|
19
|
Przyboś E, Tarcz S. Three-locus analysis in conjunction with strain crosses confirms the existence of reproductively isolated populations inParamecium jenningsi. SYST BIODIVERS 2013. [DOI: 10.1080/14772000.2013.865680] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|