1
|
Wang Z, Kim S, Farrell BD, de Medeiros BAS. Customizable PCR-based target enrichment probes for sequencing fungi-parasitized insects. INSECT SCIENCE 2024. [PMID: 39034422 DOI: 10.1111/1744-7917.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024]
Affiliation(s)
- Zhengyang Wang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Sangil Kim
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- Research Institute of Basic Sciences, Seoul National University, Seoul, Republic of Korea
| | - Brian D Farrell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Bruno A S de Medeiros
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- Field Museum of Natural History, Chicago, Illinois, United States
| |
Collapse
|
2
|
Skojec C, Earl C, Couch CD, Masonick P, Kawahara AY. Phylogeny and divergence time estimation of Io moths and relatives (Lepidoptera: Saturniidae: Automeris). PeerJ 2024; 12:e17365. [PMID: 38827314 PMCID: PMC11144400 DOI: 10.7717/peerj.17365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/18/2024] [Indexed: 06/04/2024] Open
Abstract
The saturniid moth genus Automeris includes 145 described species. Their geographic distribution ranges from the eastern half of North America to as far south as Peru. Automeris moths are cryptically colored, with forewings that resemble dead leaves, and conspicuously colored, elaborate eyespots hidden on their hindwings. Despite their charismatic nature, the evolutionary history and relationships within Automeris and between closely related genera, remain poorly understood. In this study, we present the most comprehensive phylogeny of Automeris to date, including 80 of the 145 described species. We also incorporate two morphologically similar hemileucine genera, Pseudautomeris and Leucanella, as well as a morphologically distinct genus, Molippa. We obtained DNA data from both dry-pinned and ethanol-stored museum specimens and conducted Anchored Hybrid Enrichment (AHE) sequencing to assemble a high-quality dataset for phylogenetic analysis. The resulting phylogeny supports Automeris as a paraphyletic genus, with Leucanella and Pseudautomeris nested within, with the most recent common ancestor dating back to 21 mya. This study lays the foundation for future research on various aspects of Automeris biology, including geographical distribution patterns, potential drivers of speciation, and ecological adaptations such as antipredator defense mechanisms.
Collapse
Affiliation(s)
- Chelsea Skojec
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America
- Department of Biology, University of Florida, Gainesville, FL, United States of America
| | - Chandra Earl
- Bishop Museum, Bernice Pauahi, Honolulu, HI, United States of America
| | - Christian D. Couch
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America
- Department of Biology, University of Florida, Gainesville, FL, United States of America
| | - Paul Masonick
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America
| | - Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America
- Department of Biology, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
3
|
Liang W, Nunes R, Leong JV, Carvalho APS, Müller CJ, Braby MF, Pequin O, Hoshizaki S, Morinaka S, Peggie D, Badon JAT, Mohagan AB, Beaver E, Hsu YF, Inayoshi Y, Monastyrskii A, Vlasanek P, Toussaint EFA, Benítez HA, Kawahara AY, Pierce NE, Lohman DJ. To and fro in the archipelago: Repeated inter-island dispersal and New Guinea's orogeny affect diversification of Delias, the world's largest butterfly genus. Mol Phylogenet Evol 2024; 194:108022. [PMID: 38325534 DOI: 10.1016/j.ympev.2024.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/20/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
The world's largest butterfly genus Delias, commonly known as Jezebels, comprises ca. 251 species found throughout Asia, Australia, and Melanesia. Most species are endemic to islands in the Indo-Australian Archipelago or to New Guinea and nearby islands in Melanesia, and many species are restricted to montane habitats over 1200 m. We inferred an extensively sampled and well-supported molecular phylogeny of the group to better understand the spatial and temporal dimensions of its diversification. The remarkable diversity of Delias evolved in just ca. 15-16 Myr (crown age). The most recent common ancestor of a clade with most of the species dispersed out of New Guinea ca. 14 Mya, but at least six subsequently diverging lineages dispersed back to the island. Diversification was associated with frequent dispersal of lineages among the islands of the Indo-Australian Archipelago, and the divergence of sister taxa on a single landmass was rare and occurred only on the largest islands, most notably on New Guinea. We conclude that frequent inter-island dispersal during the Neogene-likely facilitated by frequent sea level change-sparked much diversification during that period. Many extant New Guinea lineages started diversifying 5 Mya, suggesting that orogeny facilitated their diversification. Our results largely agree with the most recently proposed species group classification system, and we use our large taxon sample to extend this system to all described species. Finally, we summarize recent insights to speculate how wing pattern evolution, mimicry, and sexual selection might also contribute to these butterflies' rapid speciation and diversification.
Collapse
Affiliation(s)
- Weijun Liang
- Department of Biology, City College of New York, City University of New York, USA
| | - Renato Nunes
- Department of Biology, City College of New York, City University of New York, USA; PhD Program in Biology, Graduate Center, City University of New York, New York, NY, USA
| | - Jing V Leong
- Department of Biology, City College of New York, City University of New York, USA; Biology Centre of the Czech Academy of Sciences, Branisovska 31, Ceske Budejovice, Czech Republic; Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Ana Paula S Carvalho
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | | | - Michael F Braby
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia; Australian National Insect Collection, Canberra, ACT, Australia
| | | | - Sugihiko Hoshizaki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | - Djunijanti Peggie
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency, Cibinong-Bogor, Indonesia
| | - Jade Aster T Badon
- Animal Biology Division, Institute of Biological Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Alma B Mohagan
- Department of Biology, College of Arts and Sciences, and Center for Biodiversity Research & Extension in Mindanao, Central Mindanao University, Musuan, Maramag, Bukidnon, Philippines
| | - Ethan Beaver
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia; Australian National Insect Collection, Canberra, ACT, Australia
| | - Yu-Feng Hsu
- College of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yutaka Inayoshi
- Sritana Condominium 2, 96/173, Huay Kaeo Rd. T. Suthep, A. Muang, Chiang Mai, Thailand
| | - Alexander Monastyrskii
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Viet Nam
| | - Petr Vlasanek
- T.G. Masaryk Water Research Institute, Prague, Czech Republic
| | | | - Hugo A Benítez
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA; Entomology & Nematology Department and Department of Biology, University of Florida, Gainesville, FL, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - David J Lohman
- Department of Biology, City College of New York, City University of New York, USA; PhD Program in Biology, Graduate Center, City University of New York, New York, NY, USA; Entomology Section, National Museum of Natural History, Manila, Philippines.
| |
Collapse
|
4
|
Carvalho APS, Owens HL, St Laurent RA, Earl C, Dexter KM, Messcher RL, Willmott KR, Aduse-Poku K, Collins SC, Homziak NT, Hoshizaki S, Hsu YF, Kizhakke AG, Kunte K, Martins DJ, Mega NO, Morinaka S, Peggie D, Romanowski HP, Sáfián S, Vila R, Wang H, Braby MF, Espeland M, Breinholt JW, Pierce NE, Kawahara AY, Lohman DJ. Comprehensive phylogeny of Pieridae butterflies reveals strong correlation between diversification and temperature. iScience 2024; 27:109336. [PMID: 38500827 PMCID: PMC10945170 DOI: 10.1016/j.isci.2024.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/28/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Temperature is thought to be a key factor influencing global species richness patterns. We investigate the link between temperature and diversification in the butterfly family Pieridae by combining next generation DNA sequences and published molecular data with fine-grained distribution data. We sampled nearly 600 pierid butterfly species to infer the most comprehensive molecular phylogeny of the family and curated a distribution dataset of more than 800,000 occurrences. We found strong evidence that species in environments with more stable daily temperatures or cooler maximum temperatures in the warm seasons have higher speciation rates. Furthermore, speciation and extinction rates decreased in tandem with global temperatures through geological time, resulting in a constant net diversification.
Collapse
Affiliation(s)
- Ana Paula S. Carvalho
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
| | - Hannah L. Owens
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Ryan A. St Laurent
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Chandra Earl
- Department of Natural Sciences, Bernice Pauahi Bishop Museum, Honolulu, HI, USA
| | - Kelly M. Dexter
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
| | - Rebeccah L. Messcher
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
| | - Keith R. Willmott
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
| | | | | | - Nicholas T. Homziak
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Sugihiko Hoshizaki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yu-Feng Hsu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, R.O.C
| | - Athulya G. Kizhakke
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| | - Dino J. Martins
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
- Insect Committee of Nature Kenya, The East Africa Natural History Society, Nairobi, Kenya
| | - Nicolás O. Mega
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sadaharu Morinaka
- Saitama Study Center, The Open University of Japan, Omiya-ku, Saitama City, Japan
| | - Djunijanti Peggie
- Museum Zoologi Bogor, Research Center for Biosystematics and Evolution, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Cibinong, Bogor, Indonesia
| | - Helena P. Romanowski
- Laboratório de Ecologia de Insetos, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Szabolcs Sáfián
- African Butterfly Research Institute, Karen, Nairobi, Kenya
- Institute of Silviculture and Forest Protection, University of Sopron, Sopron, Hungary
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, Spain
| | - Houshuai Wang
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Michael F. Braby
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
- Australian National Insect Collection, National Research Collections Australia, Canberra, ACT, Australia
| | - Marianne Espeland
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Jesse W. Breinholt
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
- Intermountain Healthcare, Intermountain Precision Genomics, St. George, UT, USA
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - David J. Lohman
- Department of Biology, City University of New York, New York, NY, USA
- PhD Program in Biology, Graduate Center, City University of New York, New York, NY, USA
- Entomology Section, National Museum of Natural History, Manila, Philippines
| |
Collapse
|
5
|
Kawahara AY, Storer C, Carvalho APS, Plotkin DM, Condamine FL, Braga MP, Ellis EA, St Laurent RA, Li X, Barve V, Cai L, Earl C, Frandsen PB, Owens HL, Valencia-Montoya WA, Aduse-Poku K, Toussaint EFA, Dexter KM, Doleck T, Markee A, Messcher R, Nguyen YL, Badon JAT, Benítez HA, Braby MF, Buenavente PAC, Chan WP, Collins SC, Rabideau Childers RA, Dankowicz E, Eastwood R, Fric ZF, Gott RJ, Hall JPW, Hallwachs W, Hardy NB, Sipe RLH, Heath A, Hinolan JD, Homziak NT, Hsu YF, Inayoshi Y, Itliong MGA, Janzen DH, Kitching IJ, Kunte K, Lamas G, Landis MJ, Larsen EA, Larsen TB, Leong JV, Lukhtanov V, Maier CA, Martinez JI, Martins DJ, Maruyama K, Maunsell SC, Mega NO, Monastyrskii A, Morais ABB, Müller CJ, Naive MAK, Nielsen G, Padrón PS, Peggie D, Romanowski HP, Sáfián S, Saito M, Schröder S, Shirey V, Soltis D, Soltis P, Sourakov A, Talavera G, Vila R, Vlasanek P, Wang H, Warren AD, Willmott KR, Yago M, Jetz W, Jarzyna MA, Breinholt JW, Espeland M, Ries L, Guralnick RP, Pierce NE, Lohman DJ. A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins. Nat Ecol Evol 2023; 7:903-913. [PMID: 37188966 PMCID: PMC10250192 DOI: 10.1038/s41559-023-02041-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 03/16/2023] [Indexed: 05/17/2023]
Abstract
Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin ~100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants.
Collapse
Affiliation(s)
- Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA.
- Department of Biology, University of Florida, Gainesville, FL, USA.
| | - Caroline Storer
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Ana Paula S Carvalho
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - David M Plotkin
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Fabien L Condamine
- CNRS, Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier), Montpellier, France
| | - Mariana P Braga
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Emily A Ellis
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Ryan A St Laurent
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Xuankun Li
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Center for Biodiversity Research, Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Vijay Barve
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Liming Cai
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Chandra Earl
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Hannah L Owens
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Wendy A Valencia-Montoya
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Kwaku Aduse-Poku
- Biology Department, City College of New York, City University of New York, New York, NY, USA
- Department of Life and Earth Sciences, Perimeter College, Georgia State University, Decatur, GA, USA
| | - Emmanuel F A Toussaint
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Entomology, Natural History Museum of Geneva, Geneva, Switzerland
| | - Kelly M Dexter
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Tenzing Doleck
- Biology Department, City College of New York, City University of New York, New York, NY, USA
- PhD Program in Biology, Graduate Center, City University of New York, New York, NY, USA
| | - Amanda Markee
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Rebeccah Messcher
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Y-Lan Nguyen
- Biology Department, City College of New York, City University of New York, New York, NY, USA
| | - Jade Aster T Badon
- Animal Biology Division, Institute of Biological Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Hugo A Benítez
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Michael F Braby
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
- Australian National Insect Collection, Canberra, Australian Capital Territory, Australia
| | | | - Wei-Ping Chan
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | | | - Richard A Rabideau Childers
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Even Dankowicz
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Rod Eastwood
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Zdenek F Fric
- Biology Centre CAS, České Budějovice, Czech Republic
| | - Riley J Gott
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Jason P W Hall
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Winnie Hallwachs
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nate B Hardy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Rachel L Hawkins Sipe
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Alan Heath
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Iziko South African Museum, Cape Town, South Africa
| | - Jomar D Hinolan
- Botany and National Herbarium Division, National Museum of the Philippines, Manila, Philippines
| | - Nicholas T Homziak
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Yu-Feng Hsu
- College of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | - Micael G A Itliong
- Biology Department, City College of New York, City University of New York, New York, NY, USA
| | - Daniel H Janzen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Gerardo Lamas
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Michael J Landis
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Elise A Larsen
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Jing V Leong
- Biology Department, City College of New York, City University of New York, New York, NY, USA
- Biology Centre CAS, České Budějovice, Czech Republic
- Faculty of Science, Department of Zoology, University of South Bohemia, České Budějovice, Czech Republic
| | - Vladimir Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russia
| | - Crystal A Maier
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Jose I Martinez
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Dino J Martins
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | | | - Sarah C Maunsell
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Nicolás Oliveira Mega
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexander Monastyrskii
- Vietnam Programme, Fauna & Flora International, Hanoi, Vietnam
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ana B B Morais
- Centro de Ciências Naturais e Exatas, Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Mark Arcebal K Naive
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Arts and Sciences, Jose Rizal Memorial State University, Tampilisan, Philippines
| | | | - Pablo Sebastián Padrón
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology Laboratory, Museo de Zoología, Universidad del Azuay, Cuenca, Ecuador
| | - Djunijanti Peggie
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong-Bogor, Indonesia
| | | | - Szabolcs Sáfián
- Institute of Silviculture and Forest Protection, University of West Hungary, Sopron, Hungary
| | - Motoki Saito
- The Research Institute of Evolutionary Biology (Insect Study Division), Setagaya, Japan
| | | | - Vaughn Shirey
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Doug Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Pamela Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Andrei Sourakov
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Gerard Talavera
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, Spain
| | - Petr Vlasanek
- T.G. Masaryk Water Research Institute, Prague, Czech Republic
| | - Houshuai Wang
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Andrew D Warren
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Keith R Willmott
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Masaya Yago
- The University Museum, The University of Tokyo, Tokyo, Japan
| | - Walter Jetz
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| | - Marta A Jarzyna
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Jesse W Breinholt
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- RAPiD Genomics, Gainesville, FL, USA
| | - Marianne Espeland
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Leslie Ries
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA.
| | - David J Lohman
- Biology Department, City College of New York, City University of New York, New York, NY, USA.
- PhD Program in Biology, Graduate Center, City University of New York, New York, NY, USA.
- Entomology Section, National Museum of Natural History, Manila, Philippines.
| |
Collapse
|
6
|
Nunes R, Storer C, Doleck T, Kawahara AY, Pierce NE, Lohman DJ. Predictors of sequence capture in a large-scale anchored phylogenomics project. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.943361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Next-generation sequencing (NGS) technologies have revolutionized phylogenomics by decreasing the cost and time required to generate sequence data from multiple markers or whole genomes. Further, the fragmented DNA of biological specimens collected decades ago can be sequenced with NGS, reducing the need for collecting fresh specimens. Sequence capture, also known as anchored hybrid enrichment, is a method to produce reduced representation libraries for NGS sequencing. The technique uses single-stranded oligonucleotide probes that hybridize with pre-selected regions of the genome that are sequenced via NGS, culminating in a dataset of numerous orthologous loci from multiple taxa. Phylogenetic analyses using these sequences have the potential to resolve deep and shallow phylogenetic relationships. Identifying the factors that affect sequence capture success could save time, money, and valuable specimens that might be destructively sampled despite low likelihood of sequencing success. We investigated the impacts of specimen age, preservation method, and DNA concentration on sequence capture (number of captured sequences and sequence quality) while accounting for taxonomy and extracted tissue type in a large-scale butterfly phylogenomics project. This project used two probe sets to extract 391 loci or a subset of 13 loci from over 6,000 butterfly specimens. We found that sequence capture is a resilient method capable of amplifying loci in samples of varying age (0–111 years), preservation method (alcohol, papered, pinned), and DNA concentration (0.020 ng/μl - 316 ng/ul). Regression analyses demonstrate that sequence capture is positively correlated with DNA concentration. However, sequence capture and DNA concentration are negatively correlated with sample age and preservation method. Our findings suggest that sequence capture projects should prioritize the use of alcohol-preserved samples younger than 20 years old when available. In the absence of such specimens, dried samples of any age can yield sequence data, albeit with returns that diminish with increasing age.
Collapse
|
7
|
Wang Z, Da W, Negi CS, Ghimire PL, Wangdi K, Yadav PK, Pubu Z, Lama L, Yarpel K, Maunsell SC, Liu Y, Kunte K, Bawa KS, Yang D, Pierce NE. Profiling, monitoring and conserving caterpillar fungus in the Himalayan region using anchored hybrid enrichment markers. Proc Biol Sci 2022; 289:20212650. [PMID: 35473372 PMCID: PMC9043734 DOI: 10.1098/rspb.2021.2650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The collection of caterpillar fungus accounts for 50–70% of the household income of thousands of Himalayan communities and has an estimated market value of $5–11 billion across Asia. However, Himalayan collectors are at multiple economic disadvantages compared with collectors on the Tibetan Plateau because their product is not legally recognized. Using a customized hybrid-enrichment probe set and market-grade caterpillar fungus (with samples up to 30 years old) from 94 production zones across Asia, we uncovered clear geography-based signatures of historical dispersal and significant isolation-by-distance among caterpillar fungus hosts. This high-throughput approach can readily distinguish samples from major production zones with definitive geographical resolution, especially for samples from the Himalayan region that form monophyletic clades in our analysis. Based on these results, we propose a two-step procedure to help local communities authenticate their produce and improve this multi-national trade-route without creating opportunities for illegal exports and other forms of economic exploitation. We argue that policymakers and conservation practitioners must encourage the fair trade of caterpillar fungus in addition to sustainable harvesting to support a trans-boundary conservation effort that is much needed for this natural commodity in the Himalayan region.
Collapse
Affiliation(s)
- Zhengyang Wang
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Wa Da
- Tibetan Plateau Institute of Biology, Tibet Autonomous Region, Lhasa 850001, People's Republic of China
| | - Chandra Singh Negi
- Department of Zoology, M B Government Postgraduate College, Haldwani (Nainital) 263139, Uttarakhand, India
| | - Puspa Lal Ghimire
- Asia Network for Sustainable Agriculture and Bioresources (ANSAB), Baneshwor, Kathmandu, Nepal
| | - Karma Wangdi
- Ugyen Wangchuck Institute for Conservation and Environmental Research, Lamai Goempa, Bumthang, Jakar 32001, Bhutan
| | - Pramod K Yadav
- Department of Parks, Recreation, and Tourism Management, Clemson University, Clemson, SC 29634-0735, USA
| | - Zhuoma Pubu
- Tibetan Plateau Institute of Biology, Tibet Autonomous Region, Lhasa 850001, People's Republic of China
| | - Laiku Lama
- Himalayan Herbs Traders, Baluwatar-4 Bagta Marga 161, Kathmandu, Nepal
| | | | - Sarah C Maunsell
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Yong Liu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, People's Republic of China
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Kamaljit S Bawa
- University of Massachusetts, Boston, MA 02125, USA.,Ashoka Trust for Research in Ecology and the Environment, Bangalore 560024, India
| | - Darong Yang
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, People's Republic of China
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Günther B, Marre S, Defois C, Merzi T, Blanc P, Peyret P, Arnaud-Haond S. Capture by hybridization for full-length barcode-based eukaryotic and prokaryotic biodiversity inventories of deep sea ecosystems. Mol Ecol Resour 2021; 22:623-637. [PMID: 34486815 DOI: 10.1111/1755-0998.13500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023]
Abstract
Biodiversity inventory of marine systems remains limited due to unbalanced access to the three ocean dimensions. The use of environmental DNA (eDNA) for metabarcoding allows fast and effective biodiversity inventory and is forecast as a future biodiversity research and biomonitoring tool. However, in poorly understood ecosystems, eDNA results remain difficult to interpret due to large gaps in reference databases and PCR bias limiting the detection of some major phyla. Here, we aimed to circumvent these limitations by avoiding PCR and recollecting larger DNA fragments to improve assignment of detected taxa through phylogenetic reconstruction. We applied capture by hybridization (CBH) to enrich DNA from deep-sea sediment samples and compared the results with those obtained through an up-to-date metabarcoding PCR-based approach (MTB). Originally developed for bacterial communities and targeting 16S rDNA, the CBH approach was applied to 18S rDNA to improve the detection of species forming benthic communities of eukaryotes, with a particular focus on metazoans. The results confirmed the possibility of extending CBH to metazoans with two major advantages: (i) CBH revealed a broader spectrum of prokaryotic, eukaryotic, and particularly metazoan diversity, and (ii) CBH allowed much more robust phylogenetic reconstructions of full-length barcodes with up to 1900 base pairs. This is particularly important for taxa whose assignment is hampered by gaps in reference databases. This study provides a database and probes to apply 18S CBH to diverse marine systems, confirming this promising new tool to improve biodiversity assessments in data-poor ecosystems such as those in the deep sea.
Collapse
Affiliation(s)
- Babett Günther
- MARBEC, Universite of Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Sophie Marre
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - Clémence Defois
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - Thomas Merzi
- Total SE, Centre Scientifique et Technique Jean Feger, Pau, France
| | - Philippe Blanc
- Total SE, Centre Scientifique et Technique Jean Feger, Pau, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | | |
Collapse
|
9
|
Ellis EA, Storer CG, Kawahara AY. De novo genome assemblies of butterflies. Gigascience 2021; 10:6291117. [PMID: 34076242 PMCID: PMC8170690 DOI: 10.1093/gigascience/giab041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/22/2020] [Accepted: 05/05/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The availability of thousands of genomes has enabled new advancements in biology. However, many genomes have not been investigated for their quality. Here we examine quality trends in a taxonomically diverse and well-known group, butterflies (Papilionoidea), and provide draft, de novo assemblies for all available butterfly genomes. Owing to massive genome sequencing investment and taxonomic curation, this is an excellent group to explore genome quality. FINDINGS We provide de novo assemblies for all 822 available butterfly genomes and interpret their quality in terms of completeness and continuity. We identify the 50 highest quality genomes across butterflies and conclude that the ringlet, Aphantopus hyperantus, has the highest quality genome. Our post-processing of draft genome assemblies identified 118 butterfly genomes that should not be reused owing to contamination or extremely low quality. However, many draft genomes are of high utility, especially because permissibility of low-quality genomes is dependent on the objective of the study. Our assemblies will serve as a key resource for papilionid genomics, especially for researchers without computational resources. CONCLUSIONS Quality metrics and assemblies are typically presented with annotated genome accessions but rarely with de novo genomes. We recommend that studies presenting genome sequences provide the assembly and some metrics of quality because quality will significantly affect downstream results. Transparency in quality metrics is needed to improve the field of genome science and encourage data reuse.
Collapse
Affiliation(s)
- Emily A Ellis
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611-2710, USA
| | - Caroline G Storer
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611-2710, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611-2710, USA
| |
Collapse
|
10
|
Valencia-Montoya WA, Quental TB, Tonini JFR, Talavera G, Crall JD, Lamas G, Busby RC, Carvalho APS, Morais AB, Oliveira Mega N, Romanowski HP, Liénard MA, Salzman S, Whitaker MRL, Kawahara AY, Lohman DJ, Robbins RK, Pierce NE. Evolutionary trade-offs between male secondary sexual traits revealed by a phylogeny of the hyperdiverse tribe Eumaeini (Lepidoptera: Lycaenidae). Proc Biol Sci 2021; 288:20202512. [PMID: 33975481 PMCID: PMC8113907 DOI: 10.1098/rspb.2020.2512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
Male butterflies in the hyperdiverse tribe Eumaeini possess an unusually complex and diverse repertoire of secondary sexual characteristics involved in pheromone production and dissemination. Maintaining multiple sexually selected traits is likely to be metabolically costly, potentially resulting in trade-offs in the evolution of male signals. However, a phylogenetic framework to test hypotheses regarding the evolution and maintenance of male sexual traits in Eumaeini has been lacking. Here, we infer a comprehensive, time-calibrated phylogeny from 379 loci for 187 species representing 91% of the 87 described genera. Eumaeini is a monophyletic group that originated in the late Oligocene and underwent rapid radiation in the Neotropics. We examined specimens of 818 of the 1096 described species (75%) and found that secondary sexual traits are present in males of 91% of the surveyed species. Scent pads and scent patches on the wings and brush organs associated with the genitalia were probably present in the common ancestor of Eumaeini and are widespread throughout the tribe. Brush organs and scent pads are negatively correlated across the phylogeny, exhibiting a trade-off in which lineages with brush organs are unlikely to regain scent pads and vice versa. In contrast, scent patches seem to facilitate the evolution of scent pads, although they are readily lost once scent pads have evolved. Our results illustrate the complex interplay between natural and sexual selection in the origin and maintenance of multiple male secondary sexual characteristics and highlight the potential role of sexual selection spurring diversification in this lineage.
Collapse
Affiliation(s)
- Wendy A. Valencia-Montoya
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Tiago B. Quental
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Instituto de Biociências, Universidade de São Paulo, Brazil
| | - João Filipe R. Tonini
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), 08038 Barcelona, Catalonia, Spain
| | - James D. Crall
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Gerardo Lamas
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | | - Ana Paula S. Carvalho
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Ana B. Morais
- Departamento de Ecologia e Evolução, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Nicolás Oliveira Mega
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501970, Brazil
| | - Helena Piccoli Romanowski
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501970, Brazil
| | | | - Shayla Salzman
- School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Melissa R. L. Whitaker
- Entomological Collection, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - David J. Lohman
- Biology Department, City College of New York, City University of New York, New York, NY 10031, USA
- PhD Program in Biology, Graduate Center, City University of New York, New York, NY 10016, USA
- Entomology Section, Zoology Division, Philippine National Museum of Natural History, Manila 1000, Philippines
| | - Robert K. Robbins
- Department of Entomology, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
11
|
Earl C, Belitz MW, Laffan SW, Barve V, Barve N, Soltis DE, Allen JM, Soltis PS, Mishler BD, Kawahara AY, Guralnick R. Spatial phylogenetics of butterflies in relation to environmental drivers and angiosperm diversity across North America. iScience 2021; 24:102239. [PMID: 33997666 PMCID: PMC8101049 DOI: 10.1016/j.isci.2021.102239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/13/2020] [Accepted: 02/23/2021] [Indexed: 11/25/2022] Open
Abstract
Broad-scale, quantitative assessments of insect biodiversity and the factors shaping it remain particularly poorly explored. Here we undertook a spatial phylogenetic analysis of North American butterflies to test whether climate stability and temperature gradients have shaped their diversity and endemism. We also performed the first quantitative comparisons of spatial phylogenetic patterns between butterflies and flowering plants. We expected concordance between the two groups based on shared historical environmental drivers and presumed strong butterfly-host plant specializations. We instead found that biodiversity patterns in butterflies are strikingly different from flowering plants, especially warm deserts. In particular, butterflies show different patterns of phylogenetic clustering compared with flowering plants, suggesting differences in habitat conservation between the two groups. These results suggest that shared biogeographic histories and trophic associations do not necessarily assure similar diversity outcomes. The work has applied value in conservation planning, documenting warm deserts as a North American butterfly biodiversity hotspot.
Collapse
Affiliation(s)
- Chandra Earl
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Michael W. Belitz
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, FL 32611, USA
| | - Shawn W. Laffan
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Vijay Barve
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Narayani Barve
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, FL 32611, USA
| | - Julie M. Allen
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, FL 32611, USA
| | - Brent D. Mishler
- University of Jepson Herbaria, University of California, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Akito Y. Kawahara
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Robert Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
12
|
Toussaint EFA, Ellis EA, Gott RJ, Warren AD, Dexter KM, Storer C, Lohman DJ, Kawahara AY. Historical biogeography of Heteropterinae skippers via Beringian and post‐Tethyan corridors. ZOOL SCR 2020. [DOI: 10.1111/zsc.12457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emmanuel F. A. Toussaint
- Natural History Museum of Geneva Geneva Switzerland
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History University of Florida Gainesville FL USA
| | - Emily A. Ellis
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History University of Florida Gainesville FL USA
| | - Riley J. Gott
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History University of Florida Gainesville FL USA
| | - Andrew D. Warren
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History University of Florida Gainesville FL USA
| | - Kelly M. Dexter
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History University of Florida Gainesville FL USA
| | - Caroline Storer
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History University of Florida Gainesville FL USA
| | - David J. Lohman
- Biology Department City College of New YorkCity University of New York New York NY USA
- Ph.D. Program in Biology, Graduate Center City University of New York New York NY USA
- Entomology Section National Museum of Natural History Manila Philippines
| | - Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History University of Florida Gainesville FL USA
| |
Collapse
|
13
|
McCullagh BS, Alexiuk MR, Payment JE, Hamilton RV, Lalonde MML, Marcus JM. It's a moth! It's a butterfly! It's the complete mitochondrial genome of the American moth-butterfly Macrosoma conifera (Warren, 1897) (Insecta: Lepidoptera: Hedylidae)! MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:3633-3635. [PMID: 33367038 PMCID: PMC7594742 DOI: 10.1080/23802359.2020.1831991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
The taxonomic placement of the moth-butterfly, Macrosoma conifera (Warren 1897) (Lepidoptera: Hedylidae), has been controversial. The 15,344 bp complete M. conifera circular mitogenome, assembled by genome skimming, consists of 81.7% AT nucleotides, 22 tRNAs, 13 protein-coding genes, 2 rRNAs and a control region in the typical butterfly gene order. Macrosoma conifera COX1 features an atypical CGA start codon while ATP6, COX1, COX2, and ND5 exhibit incomplete stop codons completed by the post-transcriptional addition of 3' A residues. Phylogenetic reconstruction places M. conifera as sister to the skippers (Hesperiidae), which is consistent with several recent phylogenetic analyses.
Collapse
Affiliation(s)
- Bonnie S McCullagh
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mackenzie R Alexiuk
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Josephine E Payment
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rayna V Hamilton
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Melanie M L Lalonde
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jeffrey M Marcus
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
14
|
Carvalho APS, St Laurent RA, Toussaint EFA, Storer C, Dexter KM, Aduse-Poku K, Kawahara AY. Is Sexual Conflict a Driver of Speciation? A Case Study With a Tribe of Brush-footed Butterflies. Syst Biol 2020; 70:413-420. [PMID: 32882028 DOI: 10.1093/sysbio/syaa070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 07/16/2020] [Accepted: 08/23/2020] [Indexed: 01/09/2023] Open
Abstract
Understanding the evolutionary mechanisms governing the uneven distribution of species richness across the tree of life is a great challenge in biology. Scientists have long argued that sexual conflict is a key driver of speciation. This hypothesis, however, has been highly debated in light of empirical evidence. Recent advances in the study of macroevolution make it possible to test this hypothesis with more data and increased accuracy. In the present study, we use phylogenomics combined with four different diversification rate analytical approaches to test whether sexual conflict is a driver of speciation in brush-footed butterflies of the tribe Acraeini. The presence of a sphragis, an external mating plug found in most species among Acraeini, was used as a proxy for sexual conflict. Diversification analyses statistically rejected the hypothesis that sexual conflict is associated with shifts in diversification rates in Acraeini. This result contrasts with earlier studies and suggests that the underlying mechanisms driving diversification are more complex than previously considered. In the case of butterflies, natural history traits acting in concert with abiotic factors possibly play a stronger role in triggering speciation than does sexual conflict. [Acraeini butterflies; arms race; exon capture phylogenomics; Lepidoptera macroevolution; sexual selection; sphragis.].
Collapse
Affiliation(s)
- Ana Paula S Carvalho
- Department of Entomology and Nematology, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA.,McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611, USA
| | - Ryan A St Laurent
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611, USA.,Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611, USA
| | | | - Caroline Storer
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611, USA
| | - Kelly M Dexter
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611, USA
| | - Kwaku Aduse-Poku
- Biology Department, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA.,Life & Earth Sciences Department, Georgia State University, Perimeter College, Atlanta, GA 30302, USA
| | - Akito Y Kawahara
- Department of Entomology and Nematology, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA.,McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611, USA.,Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611, USA
| |
Collapse
|
15
|
Andermann T, Torres Jiménez MF, Matos-Maraví P, Batista R, Blanco-Pastor JL, Gustafsson ALS, Kistler L, Liberal IM, Oxelman B, Bacon CD, Antonelli A. A Guide to Carrying Out a Phylogenomic Target Sequence Capture Project. Front Genet 2020; 10:1407. [PMID: 32153629 PMCID: PMC7047930 DOI: 10.3389/fgene.2019.01407] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
High-throughput DNA sequencing techniques enable time- and cost-effective sequencing of large portions of the genome. Instead of sequencing and annotating whole genomes, many phylogenetic studies focus sequencing effort on large sets of pre-selected loci, which further reduces costs and bioinformatic challenges while increasing coverage. One common approach that enriches loci before sequencing is often referred to as target sequence capture. This technique has been shown to be applicable to phylogenetic studies of greatly varying evolutionary depth. Moreover, it has proven to produce powerful, large multi-locus DNA sequence datasets suitable for phylogenetic analyses. However, target capture requires careful considerations, which may greatly affect the success of experiments. Here we provide a simple flowchart for designing phylogenomic target capture experiments. We discuss necessary decisions from the identification of target loci to the final bioinformatic processing of sequence data. We outline challenges and solutions related to the taxonomic scope, sample quality, and available genomic resources of target capture projects. We hope this review will serve as a useful roadmap for designing and carrying out successful phylogenetic target capture studies.
Collapse
Affiliation(s)
- Tobias Andermann
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Maria Fernanda Torres Jiménez
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Pável Matos-Maraví
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Romina Batista
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, PPG GCBEv–Instituto Nacional de Pesquisas da Amazônia—INPA Campus II, Manaus, Brazil
- Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, Brazil
| | - José L. Blanco-Pastor
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, Lusignan, France
| | | | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Isabel M. Liberal
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Christine D. Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Royal Botanic Gardens, Kew, Richmond-Surrey, United Kingdom
| |
Collapse
|
16
|
Toussaint EFA, Warren AD. A review of red-eye pigmentation and diel activity patterns in skippers (Lepidoptera, Papilionoidea, Hesperiidae). J NAT HIST 2019. [DOI: 10.1080/00222933.2019.1692090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Andrew D. Warren
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Zhang Y, Deng S, Liang D, Zhang P. Sequence capture across large phylogenetic scales by using pooled PCR-generated baits: A case study of Lepidoptera. Mol Ecol Resour 2019; 19:1037-1051. [PMID: 31012219 DOI: 10.1111/1755-0998.13026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/03/2019] [Accepted: 04/16/2019] [Indexed: 11/30/2022]
Abstract
Sequence capture across large phylogenetic scales is not easy because hybridization capture is only effective when the genetic distance between the bait and target is small. Here, we propose a simple but effective strategy to tackle this issue: pooling DNA from a number of selected representative species of different clades to prepare PCR-generated baits to minimize the genetic distance between the bait and target. To demonstrate the utility of this strategy, we newly developed a set of universal nuclear markers (including 94 nuclear protein-coding genes) for Lepidoptera, a superdiverse insect group. We used a DNA pool from six lepidopteran species (representing six superfamilies) to prepare PCR baits for the 94 markers. These homemade PCR baits were used to capture sequence data from 43 species of 17 lepidopteran families, and 94% of the target loci were recovered. We constructed two data sets from the obtained data (one containing ~90 kb target coding sequences and the other containing ~120 kb target + flanking coding sequences). Both data sets yielded highly similar and well-resolved trees with 90% of nodes having >95% bootstrap support. Our capture experiment indicated that using DNA mixtures pooled from different clade-representative species of Lepidoptera to prepare PCR baits can reliably capture a large number of targeted nuclear markers across different Lepidoptera lineages. We hope that this newly developed nuclear marker set will serve as a new phylogenetic tool for Lepidoptera phylogenetics, and the PCR bait preparation strategy can facilitate the application of sequence capture techniques by researchers to accelerate data collection.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou, China
| | - Shaohong Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou, China
| | - Dan Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou, China
| | - Peng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
18
|
Anchored hybrid enrichment phylogenomics resolves the backbone of erebine moths. Mol Phylogenet Evol 2018; 131:99-105. [PMID: 30391315 DOI: 10.1016/j.ympev.2018.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/26/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022]
Abstract
The subfamily Erebinae (Lepidoptera, Erebidae) includes approximately 10,000 species with many still undescribed. It is one of the most diverse clades within the moth superfamily Noctuoidea and encompasses a diversity of ecological habits. Erebine caterpillars feed on a broad range of host plants including several economically important crops. Adults possess a unique array of adaptations for predator defense, including some of the most sensitive hearing organs (tympana) across the Lepidoptera and striking wing coloration to startle visual predators. Despite the relevance of these moths to agriculture and ecological research, a robust phylogenetic framework is lacking. Here we used anchored hybrid enrichment, a relatively new approach in phylogenomics, to resolve relationships among the subfamily. Using the recently developed Lep1 anchored hybrid enrichment probe set, 658 gene fragments with an average length of 320 bp were captured from an exemplar set of 75 erebine species, representing 73 genera and 23 tribes. While the total number of erebine tribes is not firmly established, this represents at least 75% of known tribal level diversity. Anchored hybrid enrichment data were partitioned by locus and by codon position for maximum likelihood phylogenetic analysis and coalescent-based species-tree approaches. Results from our study provided strong nodal support (BP ≥ 95) for nearly all nodes in the partitioned ML tree, solidifying many relationships that were previously uncertain or moderately supported based on morphology or a smaller number of gene fragments. Likelihood analyses confidently resolved the placement of Acantholipini as a sister tribe to Sypnini and all other Erebinae. The remaining tribes were placed in a single, strongly supported clade split into two major subclades. Additionally, 25 tropical species that did not have previous tribal assignments are confidently placed on the phylogeny. Statistical comparisons with Shimodaira-Hasegawa (SH) tests found that our maximum likelihood trees were significantly more likely than alternative hypotheses. This study demonstrates the utility of anchored phylogenomics for resolving relationships within subfamilies of Lepidoptera.
Collapse
|
19
|
Toussaint EFA, Breinholt JW, Earl C, Warren AD, Brower AVZ, Yago M, Dexter KM, Espeland M, Pierce NE, Lohman DJ, Kawahara AY. Anchored phylogenomics illuminates the skipper butterfly tree of life. BMC Evol Biol 2018; 18:101. [PMID: 29921227 PMCID: PMC6011192 DOI: 10.1186/s12862-018-1216-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 06/07/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Butterflies (Papilionoidea) are perhaps the most charismatic insect lineage, yet phylogenetic relationships among them remain incompletely studied and controversial. This is especially true for skippers (Hesperiidae), one of the most species-rich and poorly studied butterfly families. METHODS To infer a robust phylogenomic hypothesis for Hesperiidae, we sequenced nearly 400 loci using Anchored Hybrid Enrichment and sampled all tribes and more than 120 genera of skippers. Molecular datasets were analyzed using maximum-likelihood, parsimony and coalescent multi-species phylogenetic methods. RESULTS All analyses converged on a novel, robust phylogenetic hypothesis for skippers. Different optimality criteria and methodologies recovered almost identical phylogenetic trees with strong nodal support at nearly all nodes and all taxonomic levels. Our results support Coeliadinae as the sister group to the remaining skippers, the monotypic Euschemoninae as the sister group to all other subfamilies but Coeliadinae, and the monophyly of Eudaminae plus Pyrginae. Within Pyrginae, Celaenorrhinini and Tagiadini are sister groups, the Neotropical firetips, Pyrrhopygini, are sister to all other tribes but Celaenorrhinini and Tagiadini. Achlyodini is recovered as the sister group to Carcharodini, and Erynnini as sister group to Pyrgini. Within the grass skippers (Hesperiinae), there is strong support for the monophyly of Aeromachini plus remaining Hesperiinae. The giant skippers (Agathymus and Megathymus) once classified as a subfamily, are recovered as monophyletic with strong support, but are deeply nested within Hesperiinae. CONCLUSIONS Anchored Hybrid Enrichment sequencing resulted in a large amount of data that built the foundation for a new, robust evolutionary tree of skippers. The newly inferred phylogenetic tree resolves long-standing systematic issues and changes our understanding of the skipper tree of life. These resultsenhance understanding of the evolution of one of the most species-rich butterfly families.
Collapse
Affiliation(s)
- Emmanuel F A Toussaint
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA.
| | - Jesse W Breinholt
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
- , RAPiD Genomics 747 SW 2nd Avenue IMB#14, Gainesville, FL, 32601, USA
| | - Chandra Earl
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
| | - Andrew D Warren
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
| | - Andrew V Z Brower
- Evolution and Ecology Group, Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Masaya Yago
- The University Museum, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kelly M Dexter
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
| | - Marianne Espeland
- Arthropoda Department, Zoological Research Museum Alexander Koenig, Adenauer Allee 160, 53113, Bonn, Germany
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David J Lohman
- Biology Department, City College of New York, City University of New York, New York, NY, 10031, USA
- Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY, 10016, USA
- Entomology Section, National Museum of the Philippines, 1000, Manila, Philippines
| | - Akito Y Kawahara
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
| |
Collapse
|