1
|
Abstract
Type 2 diabetes mellitus (T2DM) and other metabolic diseases are essential links in the structure of morbidity and mortality in the modern world. The accepted strategy for the correction of T2DM and insulin resistance is drug therapy aimed at delivering insulin from the outside, stimulating the secretion of own insulin and reducing the concentration of blood glucose. However, modern studies demonstrate a great potential for the use of gene therapy approaches for the correction of T2DM and insulin resistance. In the present review, the main variants of plasmid gene therapy of T2DM using the genes of adiponectin and type 1 glucagon-like peptide, as well as the main variants of viral gene therapy of T2DM using the genes of type 1 and leptin are considered. T2DM gene therapy is currently not ready to enter into routine clinical practice, but, subject to improvements in delivery systems, it can be a powerful link in combination therapy for diabetes.
Collapse
Affiliation(s)
- Yu S Stafeev
- National Medical Research Centre for Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia.,M.V. Lomonosov Moscow State University, Moscow, Russia
| | - M Yu Menshikov
- National Medical Research Centre for Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Ye V Parfyonova
- National Medical Research Centre for Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia.,M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Cha S, Lee SH, Kang SH, Hasan MN, Kim YJ, Cho S, Lee YK. Antibody-mediated oral delivery of therapeutic DNA for type 2 diabetes mellitus. Biomater Res 2018; 22:19. [PMID: 30065848 PMCID: PMC6062860 DOI: 10.1186/s40824-018-0129-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/27/2018] [Indexed: 12/02/2022] Open
Abstract
Background Diabetes mellitus (DM) is a chronic progressive metabolic disease that involves uncontrolled elevation of blood glucose levels. Among various therapeutic approaches, GLP-1 prevents type 2 diabetes mellitus (T2DM) patients from experiencing hyperglycemic episodes. However, the short half-life (< 5 min) and rapid clearance of GLP-1 often limits its therapeutic use. Here, we developed an oral GLP-1 gene delivery system to achieve an extended antidiabetic effect. Methods Human IgG1 (hIgG1)-Fc-Arg/pDNA complexes were prepared by an electrostatic complexation of the expression plasmid with various ratios of the positively modified Fc fragments of an antibody (hIgG1-Fc-Arg) having a targeting ability to FcRn receptor. The shape and size of the complexes were examined by atomic force and field emission electron microscope. The stability of the complexes was tested in simulated gastrointestinal pH and physiological serum condition. Cellular uptake, transport, and toxicity of the complexes were tested in the Caco-2 cells. Biodistribution and antidiabetic effect of the complexes were observed in either Balb/c mice or Lepdb/db mice. Results A 50/1 ratio of the hIgG1-Fc-Arg/pDNA produced a complex structure having approximately 40 ~ 60 nm size and also demonstrated protection of pDNA in the complex from the physiological pH and serum conditions. Cellular uptake and transport of the complex were demonstrated in Caco-2 cells having FcRn receptor expression and forming the monolayer-polarized structure. The cellular toxicity of both delivery vehicle and the complex revealed their minimal toxicity comparable with nontoxicity of a commercial transfection reagent. Biodistribution of the complex showed the detectable distribution of the complex in the most parts of gastrointestinal tract due to ubiquitous expression of the FcRn receptors. An in vivo type 2 diabetes treatment study of oral administration of hIgG1-Fc-9Arg/pGLP-1 complexes showed absorption and expression in GI tract of either Balb/c mice or Lepdb/db mice. Conclusion In this study, we developed an oral GLP-1 gene delivery system on the platform of cationic hIgG1-Fc-9Arg. Prolonged t1/2, less immunoactivity, and better bioactivities of hIgG-Fc-9Arg/pGLP-1 complexes appeared to be a promising approach to achieve potent treatment of type 2 diabetes treatment. Electronic supplementary material The online version of this article (10.1186/s40824-018-0129-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seungbin Cha
- 1Department of Biomedical Chemistry, Konkuk University, Chungju, 27478 Republic of Korea
| | | | | | - Mohammad Nazmul Hasan
- 3Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469 Republic of Korea
| | - Young Jun Kim
- 1Department of Biomedical Chemistry, Konkuk University, Chungju, 27478 Republic of Korea
| | - Sungpil Cho
- 44D Biomaterials Center, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
| | - Yong-Kyu Lee
- KB-Biomed, Chungju, 27469 Republic of Korea.,3Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469 Republic of Korea.,44D Biomaterials Center, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
| |
Collapse
|
3
|
Lee M, Kim MJ, Oh J, Piao C, Park YW, Lee DY. Gene delivery to pancreatic islets for effective transplantation in diabetic animal. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Ito K, Ookawara S, Ishibashi K, Morishita Y. Transgene and islet cell delivery systems using nano-sized carriers for the treatment of diabetes mellitus. NANO REVIEWS & EXPERIMENTS 2017; 8:1341758. [PMID: 30410709 PMCID: PMC6167029 DOI: 10.1080/20022727.2017.1341758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/05/2017] [Indexed: 11/09/2022]
Abstract
Gene therapy that targets the pancreas and intestines with delivery systems using nano-sized carriers such as viral and non-viral vectors could improve the control of blood glucose levels, resulting in an improved prognosis for patients with diabetes mellitus. Allogenic pancreatic islet cell transplantations using such delivery systems have been developed as therapeutic options for diabetes mellitus. This review focuses on transgenes and islet cell delivery systems using nano-sized carriers for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Kiyonori Ito
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
5
|
Wang FZ, Xie ZS, Xing L, Zhang BF, Zhang JL, Cui PF, Qiao JB, Shi K, Cho CS, Cho MH, Xu X, Li P, Jiang HL. Biocompatible polymeric nanocomplexes as an intracellular stimuli-sensitive prodrug for type-2 diabetes combination therapy. Biomaterials 2015; 73:149-59. [PMID: 26409000 DOI: 10.1016/j.biomaterials.2015.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022]
Abstract
Combination therapy is usually considered as a promising strategy owing to its advantages such as reduced doses, minimized side effects and improved therapeutic efficiency in a variety of diseases including diabetes. Here we synthesized a new highly intracellular stimuli-sensitive chitosan-graft-metformin (CS-MET) prodrug by imine reaction between oxidative chitosan and metformin for type 2 diabetes (T2D) therapy. Hypothetically, CS-MET functions dually as an anti-diabetes prodrug as well as a gene delivery vector without superfluous materials. CS-MET formed nanocomplexes with therapeutic gene through electrostatic interactions and entered cells by Organic Cation Transporter (OCT)-independent endocytosis. The incorporation of metformin into chitosan has been found to increase endosomal escape via the proton sponge effect. When vector carrying a short-hairpin RNA (shRNA) silencing sterol regulatory element-binding protein (SREBP), a major transcription factor involved in de novo lipogenisis, it reduced the SREBP mRNA and proteins efficiently. Furthermore, by intraperitoneal injection, CS-MET/shSREBP nanocomplexes effectively knocked down SREBP in livers of western-type diet (WD)-induced obese C57BL/6J mice, markedly reversed insulin resistance and alleviated the fatty liver phenotype without obvious toxic effects. Thus we were able to show that the intracellular stimuli-sensitive CS-MET prodrug renders a potential platform to increase the anti-diabetes activity with synergistic enhancement of gene therapy.
Collapse
Affiliation(s)
- Feng-Zhen Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Zhi-Shen Xie
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Bing-Feng Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Liang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Peng-Fei Cui
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Bin Qiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Kun Shi
- Department of Orthopedics, Xuzhou Central Hospital, Xuzhou 221009, China
| | - Chong-Su Cho
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Myung-Haing Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea; Department of Nano Fusion Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270, South Korea; Graduate Group of Tumor Biology, Seoul National University, Seoul 151-742, South Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 443-270, South Korea
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Asayama S, Matsuda K, Negishi Y, Kawakami H. Intracellular co-delivery of zinc ions and plasmid DNA for enhancing gene transfection activity. Metallomics 2014; 6:82-7. [PMID: 24084762 DOI: 10.1039/c3mt00226h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Zinc ions, methylated poly(1-vinylimidazole) (PVIm-Me) and plasmid DNA (pDNA) have formed ternary complexes for gene delivery. The resulting Zn-PVIm-Me-pDNA complexes have delivered both Zn(2+) ions and pDNA inside cells, leading to the nuclear translocation of the pDNA. By use of the pDNA containing a nuclear protein, NF-κB, binding sequence, the intracellular co-delivery of Zn(2+) ions and pDNA has enhanced gene expression. These results suggest that the intracellular Zn(2+) ions delivered by Zn-PVIm-Me-pDNA complexes activated the NF-κB, enhancing the nuclear translocation of the pDNA. In conclusion, it has been demonstrated that the Zn-PVIm-Me-pDNA complex is capable of enhancing the gene transfection activity by a synergic effect of the PVIm-Me and the co-delivered intracellular Zn(2+) ions.
Collapse
Affiliation(s)
- Shoichiro Asayama
- Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | | | | | | |
Collapse
|
7
|
Lee YS, Kim SW. Bioreducible polymers for therapeutic gene delivery. J Control Release 2014; 190:424-39. [PMID: 24746626 DOI: 10.1016/j.jconrel.2014.04.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 01/18/2023]
Abstract
Most currently available cationic polymers have significant acute toxicity concerns such as cellular toxicity, aggregation of erythrocytes, and entrapment in the lung capillary bed, largely due to their poor biocompatibility and non-degradability under physiological conditions. To develop more intelligent polymers, disulfide bonds are introduced in the design of biodegradable polymers. Herein, the sustained innovations of biomimetic nano-sized constructs with bioreducible poly(disulfide amine)s demonstrate a viable clinical tool for the treatment of cardiovascular disease, anemia, diabetes, and cancer.
Collapse
Affiliation(s)
- Young Sook Lee
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, USA.
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, USA; Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Abstract
Glucagon-like peptide (GLP)-1 is an incretin hormone with several antidiabetic functions including stimulation of glucose-dependent insulin secretion, increase in insulin gene expression and beta-cell survival. Despite the initial technical difficulties and profound inefficiency of direct gene transfer into the pancreas that seriously restricted in vivo gene transfer experiments with GLP-1, recent exploitation of various routes of gene delivery and alternative means of gene transfer has permitted the detailed assessment of the therapeutic efficacy of GLP-1 in animal models of type 2 diabetes (T2DM). As a result, many clinical benefits of GLP-1 peptide/analogues observed in clinical trials involving induction of glucose tolerance, reduction of hyperglycaemia, suppression of appetite and food intake linked to weight loss have been replicated in animal models using gene therapy. Furthermore, GLP-1-centered gene therapy not only improved insulin sensitivity, but also reduced abdominal and/or hepatic fat associated with obesity-induced T2DM with drastic alterations in adipokine profiles in treated subjects. Thus, a comprehensive assessment of recent GLP-1-mediated gene therapy approaches with detailed analysis of current hurdles and resolutions, is discussed.
Collapse
|
9
|
Chen S, Bastarrachea RA, Roberts BJ, Voruganti VS, Frost PA, Nava-Gonzalez EJ, Arriaga-Cazares HE, Chen J, Huang P, DeFronzo RA, Comuzzie AG, Grayburn PA. Successful β cells islet regeneration in streptozotocin-induced diabetic baboons using ultrasound-targeted microbubble gene therapy with cyclinD2/CDK4/GLP1. Cell Cycle 2014; 13:1145-51. [PMID: 24553120 DOI: 10.4161/cc.27997] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Both major forms of diabetes mellitus (DM) involve β-cell destruction and dysfunction. New treatment strategies have focused on replenishing the deficiency of β-cell mass common to both major forms of diabetes by islet transplantation or β-cell regeneration. The pancreas, not the liver, is the ideal organ for islet regeneration, because it is the natural milieu for islets. Since islet mass is known to increase during obesity and pregnancy, the concept of stimulating pancreatic islet regeneration in vivo is both rational and physiologic. This paper proposes a novel approach in which non-viral gene therapy is targeted to pancreatic islets using ultrasound targeted microbubble destruction (UTMD) in a non-human primate model (NHP), the baboon. Treated baboons received a gene cocktail comprised of cyclinD2, CDK, and GLP1, which in rats results in robust and durable islet regeneration with normalization of blood glucose, insulin, and C-peptide levels. We were able to generate important preliminary data indicating that gene therapy by UTMD can achieve in vivo normalization of the intravenous (IV) glucose tolerance test (IVGTT) curves in STZ hyperglycemic-induced conscious tethered baboons. Immunohistochemistry clearly demonstrated evidence of islet regeneration and restoration of β-cell mass.
Collapse
Affiliation(s)
| | - Raul A Bastarrachea
- Texas Biomedical Research Institute; San Antonio, TX USA; Southwest National Primate Research Center; San Antonio, TX USA
| | - Brad J Roberts
- Baylor Research Institute; Dallas, TX USA; Department of Internal Medicine; Division of Cardiology; Baylor Heart and Vascular Institute; Baylor University Medical Center; Dallas, TX USA
| | | | - Patrice A Frost
- Texas Biomedical Research Institute; San Antonio, TX USA; Southwest National Primate Research Center; San Antonio, TX USA
| | - Edna J Nava-Gonzalez
- Texas Biomedical Research Institute; San Antonio, TX USA; University of Nuevo Leon School of Nutrition and Public Health; Monterrey, Mexico
| | - Hector E Arriaga-Cazares
- Texas Biomedical Research Institute; San Antonio, TX USA; Hospital Infantil de Tamaulipas; Ciudad Victoria, Mexico
| | - Jiaxi Chen
- Baylor Research Institute; Dallas, TX USA
| | - Pintong Huang
- Department of Ultrasonography; The 2nd Affiliated Hospital of Zhejiang University College of Medicine; Hangzhou, Zhejiang Province, PR China
| | - Ralph A DeFronzo
- Diabetes Division; Department of Medicine; The University of Texas Health Science Center at San Antonio; San Antonio, TX USA
| | - Anthony G Comuzzie
- Texas Biomedical Research Institute; San Antonio, TX USA; Southwest National Primate Research Center; San Antonio, TX USA
| | - Paul A Grayburn
- Department of Internal Medicine; Division of Cardiology; Baylor Heart and Vascular Institute; Baylor University Medical Center; Dallas, TX USA
| |
Collapse
|
10
|
Tonne JM, Sakuma T, Deeds MC, Munoz-Gomez M, Barry MA, Kudva YC, Ikeda Y. Global gene expression profiling of pancreatic islets in mice during streptozotocin-induced β-cell damage and pancreatic Glp-1 gene therapy. Dis Model Mech 2013; 6:1236-45. [PMID: 23828045 PMCID: PMC3759343 DOI: 10.1242/dmm.012591] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptozotocin (STZ), a glucosamine-nitrosourea compound, has potent genotoxic effects on pancreatic β-cells and is frequently used to induce diabetes in experimental animals. Glucagon-like peptide-1 (GLP-1) has β-cell protective effects and is known to preserve β-cells from STZ treatment. In this study, we analyzed the mechanisms of STZ-induced diabetes and GLP-1-mediated β-cell protection in STZ-treated mice. At 1 week after multiple low-dose STZ administrations, pancreatic β-cells showed impaired insulin expression, while maintaining expression of nuclear Nkx6.1. This was accompanied by significant upregulation of p53-responsive genes in islets, including a mediator of cell cycle arrest, p21 (also known as Waf1 and Cip1). STZ treatment also suppressed expression of a wide range of genes linked with key β-cell functions or diabetes development, such as G6pc2, Slc2a2 (Glut2), Slc30a8, Neurod1, Ucn3, Gad1, Isl1, Foxa2, Vdr, Pdx1, Fkbp1b and Abcc8, suggesting global β-cell defects in STZ-treated islets. The Tmem229B, Prss53 and Ttc28 genes were highly expressed in untreated islets and strongly suppressed by STZ, suggesting their potential roles in β-cell function. When a pancreas-targeted adeno-associated virus (AAV) vector was employed for long-term Glp-1 gene delivery, pancreatic GLP-1 expression protected mice from STZ-induced diabetes through preservation of the β-cell mass. Despite its potent β-cell protective effects, however, pancreatic GLP-1 overexpression showed limited effects on the global gene expression profiles in the islets. Network analysis identified the programmed-cell-death-associated pathways as the most relevant network in Glp-1 gene therapy. Upon pancreatic GLP-1 expression, upregulation of Cxcl13 and Nptx2 was observed in STZ-damaged islets, but not in untreated normal islets. Given the pro-β-cell-survival effects of Cxcl12 (Sdf-1) in inducing GLP-1 production in α-cells, pancreatic GLP-1-mediated Cxcl13 induction might also play a crucial role in maintaining the integrity of β-cells in damaged islets.
Collapse
Affiliation(s)
- Jason M Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Yue Y, Wu C. Progress and perspectives in developing polymeric vectors for in vitro gene delivery. Biomater Sci 2013; 1:152-170. [DOI: 10.1039/c2bm00030j] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Chen S, Shimoda M, Chen J, Matsumoto S, Grayburn PA. Transient overexpression of cyclin D2/CDK4/GLP1 genes induces proliferation and differentiation of adult pancreatic progenitors and mediates islet regeneration. Cell Cycle 2012; 11:695-705. [PMID: 22373529 DOI: 10.4161/cc.11.4.19120] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The molecular mechanism of β-cell regeneration remains poorly understood. Cyclin D2/CDK4 expresses in normal β cells and maintains adult β-cell growth. We hypothesized that gene therapy with cyclin D2/CDK4/GLP-1 plasmids targeted to the pancreas of STZ-treated rats by ultrasound-targeted microbubble destruction (UTMD) would force cell cycle re-entry of residual G(0)-phase islet cells into G(1)/S phase to regenerate β cells. A single UTMD treatment induced β-cell regeneration with reversal of diabetes for 6 mo without evidence of toxicity. We observed that this β-cell regeneration was not mediated by self-replication of pre-existing β cells. Instead, cyclin D2/CDK4/GLP-1 initiated robust proliferation of adult pancreatic progenitor cells that exist within islets and terminally differentiate to mature islets with β cells and α cells.
Collapse
Affiliation(s)
- Shuyuan Chen
- Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | | | | | | | | |
Collapse
|
13
|
Di Pasquale G, Dicembrini I, Raimondi L, Pagano C, Egan JM, Cozzi A, Cinci L, Loreto A, Manni ME, Berretti S, Morelli A, Zheng C, Michael DG, Maggi M, Vettor R, Chiorini JA, Mannucci E, Rotella CM. Sustained exendin-4 secretion through gene therapy targeting salivary glands in two different rodent models of obesity/type 2 diabetes. PLoS One 2012; 7:e40074. [PMID: 22808093 PMCID: PMC3396615 DOI: 10.1371/journal.pone.0040074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/05/2012] [Indexed: 11/19/2022] Open
Abstract
Exendin-4 (Ex-4) is a Glucagon-like peptide 1 (GLP-1) receptor agonist approved for the treatment of Type 2 Diabetes (T2DM), which requires daily subcutaneous administration. In T2DM patients, GLP-1 administration is reported to reduce glycaemia and HbA1c in association with a modest, but significant weight loss. The aim of present study was to characterize the site-specific profile and metabolic effects of Ex-4 levels expressed from salivary glands (SG) in vivo, following adeno-associated virus-mediated (AAV) gene therapy in two different animal models of obesity prone to impaired glucose tolerance and T2DM, specifically, Zucker fa/fa rats and high fed diet (HFD) mice. Following percutaneous injection of AAV5 into the salivary glands, biologically active Ex-4 was detected in the blood of both animal models and expression persisted in salivary gland ductal cell until the end of the study. In treated mice, Ex-4 levels averaged 138.9±42.3 pmol/L on week 6 and in treated rats, mean circulating Ex-4 levels were 238.2±72 pmol/L on week 4 and continued to increase through week 8. Expression of Ex-4 resulted in a significant decreased weight gain in both mice and rats, significant improvement in glycemic control and/or insulin sensitivity as well as visceral adipose tissue adipokine profile. In conclusion, these results suggest that sustained site-specific expression of Ex-4 following AAV5-mediated gene therapy is feasible and may be useful in the treatment of obesity as well as trigger improved metabolic profile.
Collapse
Affiliation(s)
- Giovanni Di Pasquale
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ilaria Dicembrini
- Section of Endocrinology, Department of Clinical Pathophysiology, University of Florence, Florence, Italy
| | - Laura Raimondi
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Claudio Pagano
- Endocrine-metabolic Laboratory, Department of Medical and Surgical Sciences, University of Padua, Padua, Italy
| | - Josephine M. Egan
- Diabetes Section, National Institute on Aging and Health, Baltimore, Maryland, United States of America
| | - Andrea Cozzi
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Lorenzo Cinci
- Section of Histology, Department of Anatomy, University of Florence, Florence, Italy
| | - Andrea Loreto
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Maria E. Manni
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Silvia Berretti
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Annamaria Morelli
- Sexual Medicine and Andrology Unit, Department of Clinical Physiopathology, University of Florence, Florence, Italy
| | - Changyu Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Drew G. Michael
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mario Maggi
- Sexual Medicine and Andrology Unit, Department of Clinical Physiopathology, University of Florence, Florence, Italy
| | - Roberto Vettor
- Endocrine-metabolic Laboratory, Department of Medical and Surgical Sciences, University of Padua, Padua, Italy
| | - John A. Chiorini
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JAC); (CMR)
| | | | - Carlo M. Rotella
- Section of Endocrinology, Department of Clinical Pathophysiology, University of Florence, Florence, Italy
- * E-mail: (JAC); (CMR)
| |
Collapse
|
14
|
Kim PH, Lee M, Kim SW. Delivery of two-step transcription amplification exendin-4 plasmid system with arginine-grafted bioreducible polymer in type 2 diabetes animal model. J Control Release 2012; 162:9-18. [PMID: 22705459 DOI: 10.1016/j.jconrel.2012.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/24/2012] [Accepted: 06/05/2012] [Indexed: 11/18/2022]
Abstract
Exendin-4, glucagon-like peptide 1 (GLP-1) receptor agonist, is an exocrine hormone, which has potent insulinotropic actions similar to GLP-1 such as stimulating insulin biosynthesis, facilitating glucose concentration dependent insulin secretion, slowing gastric emptying, reducing food intake and stimulating β-cell proliferation. Exendin-4, also, has a longer half-life than GLP-1, due to its resistance to degradation by dipeptidyl peptidase-IV (DPP-IV). In spite of its many advantages as a therapeutic agent for diabetes, its clinical application is still restricted. Thus, to improve the activity of exendin-4 in vivo, gene therapy system was developed as an alternative method. An exendin-4 expression system was constructed using the two-step transcription amplification (TSTA) system, which is composed of pβ-Gal4-p65 and pUAS-SP-exendin-4 with combining the advantages of signal peptide (SP) in order to facilitate its secretion in ectopic cells or tissue. Arginine-grafted cyctaminebisacrylamide-diaminohexane polymer (ABP) was used as a gene carrier. Increased expression of exendin-4, glucose dependent insulin secretion in NIT-1 insulinoma cells, and high insulin expression in the presence of DPP-IV were evaluated in vitro after delivery of ABP/TSTA-SP-exendin-4. Blood glucose levels in diabetic mice were decreased dramatically from the third day for experimental period after single intravenous administration with ABP/TSTA-SP-exendin-4. The highest insulinotropic effect of exendin-4 was also observed in the ABP/TSTA/SP-exendin-4-treated mice groups, compared with the others groups from the 3rd day after injection. TSTA exendin-4 expression system with SP and ABP polymer has a potential gene therapy for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Pyung-Hwan Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
15
|
Kim PH, Kim SW. Polymer-based delivery of glucagon-like Peptide-1 for the treatment of diabetes. ISRN ENDOCRINOLOGY 2012; 2012:340632. [PMID: 22701182 PMCID: PMC3369441 DOI: 10.5402/2012/340632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/16/2012] [Indexed: 01/19/2023]
Abstract
The incretin hormones, glucagon-like peptide-1 (GLP-1) and its receptor agonist (exendin-4), are well known for glucose homeostasis, insulinotropic effect, and effects on weight loss and food intake. However, due to the rapid degradation of GLP-1 by dipeptidylpeptidase-IV (DPP-IV) enzyme and renal elimination of exendin-4, their clinical applications have been restricted. Although exendin-4 has longer half-life than GLP-1, it still requires frequent injections to maintain efficacy for the treatment of diabetes. In recent decades, various polymeric delivery systems have been developed for the delivery of GLP-1 and exendin-4 genes or peptides for their long-term action and the extra production in ectopic tissues. Herein, we discuss the modification of the expression cassettes and peptides for long-term production and secretion of the native peptides. In addition, the characteristics of nonviral or viral system used for a delivery of a modified GLP-1 or exendin-4 are described. Furthermore, recent efforts to improve the biological half-life of GLP-1 or exendin-4 peptide via chemical conjugation with various smart polymers via chemical conjugation compared with native peptide are discussed.
Collapse
Affiliation(s)
- Pyung-Hwan Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
16
|
Kim TI, Lee M, Kim SW. Efficient GLP-1 gene delivery using two-step transcription amplification plasmid system with a secretion signal peptide and arginine-grafted bioreducible polymer. J Control Release 2011; 157:243-8. [PMID: 21945681 DOI: 10.1016/j.jconrel.2011.09.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 08/11/2011] [Accepted: 09/12/2011] [Indexed: 01/15/2023]
Abstract
Glucagon-like peptide (GLP-1) encoding dual plasmid (pDNA) system (TSTA (SP-GLP-1)) which is composed of pβ-Gal4-p65 and pUAS-SP-GLP-1 was constructed to improve the production and secretion of expressed GLP-1 by combining the advantages of signal peptide (SP) and two-step transcription amplification (TSTA) system. Its potential for GLP-1 gene delivery system was investigated with employment of arginine-grafted bioreducible polymer (ABP) as a gene carrier. Their polyplexes have about 140nm-sizes and 20mV Zeta-potential values. ABP showed no cytotoxicity contrary to PEI25k. It was found in RT-PCR experiments that TSTA-SP pDNA systems showed increased GLP-1 gene transcription level in comparison with mono pDNA system (pβ-GLP-1). It was also observed in GLP-1 ELISA that GLP-1 secretion level of TSTA (SP-GLP-1) pDNA system was 2.7-3.4 times higher than those of pβ-GLP-1 and 1.5-1.7 times than TSTA (GLP-1). Additionally, 2.5-3.5 folds increased level of GLP-1 secretion was found in ABP gene carrier system in comparison with PEI25k. When transfection medium containing secreted GLP-1 was transferred to NIT-1 insulinoma cells, the highest secretion level of insulin was induced in ABP/TSTA (SP-GLP-1) polyplex medium-treated cells. Therefore, this novel system could be utilized as a safe and efficient GLP-1 gene delivery system for type 2 diabetes therapy.
Collapse
Affiliation(s)
- Tae-Il Kim
- Department of Biosystems and Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | |
Collapse
|
17
|
Abstract
Several polymers were used to delivery genes to diabetic animals. Polyaminobutyl glycolic acid was utilized to deliver IL-10 plasmid DNA to prevent autoimmune insulitis of non-obese diabetic (NOD) mouse. Polyethylene glycol grafted polylysine was combined with antisense glutamic acid decarboxylase (GAD) MRNA to represent GAD autoantigene expression. GLP1 and TSTA (SP-EX4) were delivered by bioreducible polymer to stop diabetic progression. Fas siRNA delivery was carried out to treat diabetic NOD mice animal.
Collapse
Affiliation(s)
- Sung Wan Kim
- Department of Pharmaceutics and Pharmaceutical Chemistry and Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
- Department of Bioengineering, Hanyang University, Seoul, Korea
| |
Collapse
|
18
|
Rowzee AM, Cawley NX, Chiorini JA, Di Pasquale G. Glucagon-like peptide-1 gene therapy. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:601047. [PMID: 21747830 PMCID: PMC3124282 DOI: 10.1155/2011/601047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 04/07/2011] [Indexed: 12/16/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is a small peptide component of the prohormone, proglucagon, that is produced in the gut. Exendin-4, a GLP-1 receptor agonist originally isolated from the saliva of H. suspectum or Gila monster, is a peptide that shares sequence and functional homology with GLP-1. Both peptides have been demonstrated to stimulate insulin secretion, inhibit glucagon secretion, promote satiety and slow gastric emptying. As such, GLP-1 and Exendin-4 have become attractive pharmaceutical targets as an adjunctive therapy for individuals with type II diabetes mellitus, with several products currently available clinically. Herein we summarize the cell biology leading to GLP-1 production and secretion from intestinal L-cells and the endocrine functions of this peptide and Exendin-4 in humans. Additionally, gene therapeutic applications of GLP-1 and Exendin-4 are discussed with a focus on recent work using the salivary gland as a gene therapy target organ for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Anne M. Rowzee
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892-2190, USA
| | - Niamh X. Cawley
- Section on Cellular Neurobiology, Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A. Chiorini
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892-2190, USA
| | - Giovanni Di Pasquale
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892-2190, USA
| |
Collapse
|
19
|
Kim SW. Biomaterials to gene delivery. J Control Release 2011; 155:116-8. [PMID: 21457735 DOI: 10.1016/j.jconrel.2011.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/17/2011] [Indexed: 11/16/2022]
Abstract
It has been over 40 years since I started biomaterials research. This article is a short summary of past research in my laboratory.
Collapse
Affiliation(s)
- Sung Wan Kim
- Department of Pharmaceutics, Pharmaceutical Chemistry, University of Utah, 20 South 2030 East, Salt Lake City, Utah 84112-5820, United States
| |
Collapse
|
20
|
Riedel MJ, Kieffer TJ. Treatment of diabetes with glucagon-like peptide-1 gene therapy. Expert Opin Biol Ther 2010; 10:1681-92. [PMID: 21029027 DOI: 10.1517/14712598.2010.532786] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
IMPORTANCE OF THE FIELD Glucagon-like peptide (GLP)-1 receptor agonists are in widespread clinical use for the treatment of diabetes. While effective, these peptides require frequent injections to maintain efficacy. Therefore, alternative delivery methods including gene therapy are currently being evaluated. AREAS COVERED IN THIS REVIEW Here, we review the biology of GLP-1, evidence supporting the clinical use of the native peptide as well as synthetic GLP-1 receptor agonists, and the rationale for their delivery by gene therapy. We then review progress made in the field of GLP-1 gene therapy for both type 1 and type 2 diabetes. WHAT THE READER WILL GAIN Efforts to improve the biological half-life of GLP-1 receptor agonists are discussed. We focus on the development of both viral and non-viral gene delivery methods, highlighting vector designs and the strengths and weaknesses of these approaches. We also discuss the utility of targeting regulated GLP-1 production to tissues including the liver, muscle, islet and gut. TAKE HOME MESSAGE GLP-1 is a natural peptide possessing several actions that effectively combat diabetes. Current delivery methods for GLP-1-based drugs are cumbersome and do not recapitulate the normal secretion pattern of the native hormone. Gene therapy offers a useful method for directing long-term production and secretion of the native peptide. Targeted production of GLP-1 using tissue-specific promoters and delivery methods may improve therapeutic efficacy, while also eliminating the burden of frequent injections.
Collapse
Affiliation(s)
- Michael J Riedel
- University of British Columbia, Department of Cellular and Physiological Sciences, Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | | |
Collapse
|
21
|
Jeong JH, Kim SH, Christensen LV, Feijen J, Kim SW. Reducible poly(amido ethylenimine)-based gene delivery system for improved nucleus trafficking of plasmid DNA. Bioconjug Chem 2010; 21:296-301. [PMID: 20078099 DOI: 10.1021/bc9003525] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a nonviral gene delivery system, localization of a plasmid DNA in the nucleus is a prerequisite for expression of a desired therapeutic protein encoded in the plasmid DNA. In this study, a reducible polymer-based gene delivery system for improved intracellular trafficking and nuclear translocation of plasmid DNA is introduced. The system is consisted of two components, a plasmid DNA having repeated binding sequence for a karyophilic protein, NFkappaB, and a reducible polymer. A reducible poly(amido ethylenimine), poly(TETA-CBA), was synthesized by a Michael-type addition polymerization between cystamine bisacrylamide and triethyl tetramine. The polymer forming tight complexes with plasmid DNA could be degraded in the reductive cytosol to release the plasmid DNA. The triggered release mechanism in the cytosol could facilitate the interaction between cytosolic NFkappaB and the plasmid DNA having repeated NFkappaB biding motif. Upon activation of NFkappaB by interleukin-1beta (IL-1beta), most of the plasmid distributed in the cytoplasm was localized within the nucleus, resulting in significantly higher gene transfection efficiency than controls with nondegradable PEI. The current study suggests an alternative way of improving transfection efficiency by taking advantage of endogenous transport machinery for intracellular trafficking and nuclear translocation of a plasmid DNA.
Collapse
Affiliation(s)
- Ji Hoon Jeong
- College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | |
Collapse
|
22
|
Ah Kim H, Lee S, Park JH, Lee S, Lee BW, Hee Ihm S, Kim TI, Wan Kim S, Soo Ko K, Lee M. Enhanced protection of Ins-1 β cells from apoptosis under hypoxia by delivery of DNA encoding secretion signal peptide-linked exendin-4. J Drug Target 2009; 17:242-8. [DOI: 10.1080/10611860902718664] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Parsons GB, Souza DW, Wu H, Yu D, Wadsworth SG, Gregory RJ, Armentano D. Ectopic expression of glucagon-like peptide 1 for gene therapy of type II diabetes. Gene Ther 2006; 14:38-48. [PMID: 16929351 DOI: 10.1038/sj.gt.3302842] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is a promising candidate for the treatment of type II diabetes. However, the short in vivo half-life of GLP-1 has made peptide-based treatments challenging. Gene therapy aimed at achieving continuous GLP-1 expression presents one way to circumvent the rapid turnover of GLP-1. We have created a GLP-1 minigene that can direct the secretion of active GLP-1 (amino acids 7-37). Plasmid and adenoviral expression vectors encoding the 31-amino-acid peptide linked to leader sequences required for secretion of GLP-1 yielded sustained levels of active GLP-1 that were significantly greater than endogenous levels. Systemic administration of expression vectors to animals using two diabetic rodent models, db/db mice and Zucker Diabetic Fatty (ZDF) rats, yielded elevated GLP-1 levels that lowered both the fasting and random-fed hyperglycemia present in these animals. Because the insulinotropic actions of GLP-1 are glucose dependent, no evidence of hypoglycemia was observed. Improved glucose homeostasis was demonstrated by improvements in %HbA1c (glycated hemoglobin) and in glucose tolerance tests. GLP-1-treated animals had higher circulating insulin levels and increased insulin immunostaining of pancreatic sections. GLP-1-treated ZDF rats showed diminished food intake and, in the first few weeks following vector administration, a diminished weight gain. These results demonstrate the feasibility of gene therapy for type II diabetes using GLP-1 expression vectors.
Collapse
Affiliation(s)
- G B Parsons
- Department of Molecular Biology, Genzyme Corporation, Framingham, MA 01701, USA.
| | | | | | | | | | | | | |
Collapse
|