1
|
Xue X, Zhang C, Li X, Wang J, Zhang H, Feng Y, Xu N, Li H, Tan C, Jiang Y, Tan Y. mRNA PROTACs: engineering PROTACs for high-efficiency targeted protein degradation. MedComm (Beijing) 2024; 5:e478. [PMID: 38374873 PMCID: PMC10876204 DOI: 10.1002/mco2.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 02/21/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) are essential bifunctional molecules that target proteins of interest (POIs) for degradation by cellular ubiquitination machinery. Despite significant progress made in understanding PROTACs' functions, their therapeutic potential remains largely untapped. As a result of the success of highly flexible, scalable, and low-cost mRNA therapies, as well as the advantages of the first generation of peptide PROTACs (p-PROTACs), we present for the first time an engineering mRNA PROTACs (m-PROTACs) strategy. This design combines von Hippel-Lindau (VHL) recruiting peptide encoding mRNA and POI-binding peptide encoding mRNA to form m-PROTAC and promote cellular POI degradation. We then performed proof-of-concept experiments using two m-PROTACs targeting two cancer-related proteins, estrogen receptor alpha and B-cell lymphoma-extra large protein. Our results demonstrated that m-PROTACs could successfully degrade the POIs in different cell lines and more effectively inhibit cell proliferation than the traditional p-PROTACs. Moreover, the in vivo experiment demonstrated that m-PROTAC led to significant tumor regression in the 4T1 mouse xenograft model. This finding highlights the enormous potential of m-PROTAC as a promising approach for targeted protein degradation therapy.
Collapse
Affiliation(s)
- Xiaoqi Xue
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Chen Zhang
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Xiaolin Li
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Junqiao Wang
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Haowei Zhang
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Ying Feng
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Naihan Xu
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
- School of Food and DrugShenzhen Polytechnic UniversityShenzhenChina
| | - Hongyan Li
- Shenzhen NeoCura Biotechnology Co., Ltd.ShenzhenChina
| | - Chunyan Tan
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Yuyang Jiang
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Ying Tan
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| |
Collapse
|
2
|
Raman SNT, Zetner A, Hashem AM, Patel D, Wu J, Gravel C, Gao J, Zhang W, Pfeifle A, Tamming L, Parikh K, Cao J, Tam R, Safronetz D, Chen W, Johnston MJ, Wang L, Sauve S, Rosu-Myles M, Domselaar GV, Li X. Bivalent vaccines effectively protect mice against influenza A and respiratory syncytial viruses. Emerg Microbes Infect 2023; 12:2192821. [PMID: 36927227 PMCID: PMC10171128 DOI: 10.1080/22221751.2023.2192821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Influenza and Respiratory Syncytial virus (RSV) infections together contribute significantly to the burden of acute lower respiratory tract infections. Despite the disease burden, no approved RSV vaccine is available. While approved vaccines are available for influenza, seasonal vaccination is required to maintain protection. In addition to both being respiratory viruses, they follow a common seasonality, which warrants the necessity for a concerted vaccination approach. Here, we designed bivalent vaccines by utilizing highly conserved sequences, targeting both influenza A and RSV, as either a chimeric antigen or individual antigens separated by a ribosome skipping sequence. These vaccines were found to be effective in protecting the animals from challenge by either virus, with mechanisms of protection being substantially interrogated in this communication.
Collapse
Affiliation(s)
- Sathya N. Thulasi Raman
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Adrian Zetner
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Devina Patel
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Jianguo Wu
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Caroline Gravel
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Jun Gao
- Centre for Vaccines Clinical Trials and Biostatistics, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Wanyue Zhang
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Annabelle Pfeifle
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Levi Tamming
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Karan Parikh
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Jingxin Cao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Roger Tam
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - David Safronetz
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, Canada
| | - Michael J.W. Johnston
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Chemistry, Carleton University, Ottawa, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Simon Sauve
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Michael Rosu-Myles
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Xuguang Li
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
Tur-Planells V, García-Sastre A, Cuadrado-Castano S, Nistal-Villan E. Engineering Non-Human RNA Viruses for Cancer Therapy. Vaccines (Basel) 2023; 11:1617. [PMID: 37897020 PMCID: PMC10611381 DOI: 10.3390/vaccines11101617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Alongside the development and progress in cancer immunotherapy, research in oncolytic viruses (OVs) continues advancing novel treatment strategies to the clinic. With almost 50 clinical trials carried out over the last decade, the opportunities for intervention using OVs are expanding beyond the old-fashioned concept of "lytic killers", with promising breakthrough therapeutic strategies focused on leveraging the immunostimulatory potential of different viral platforms. This review presents an overview of non-human-adapted RNA viruses engineered for cancer therapy. Moreover, we describe the diverse strategies employed to manipulate the genomes of these viruses to optimize their therapeutic capabilities. By focusing on different aspects of this particular group of viruses, we describe the insights into the promising advancements in the field of virotherapy and its potential to revolutionize cancer treatment.
Collapse
Affiliation(s)
- Vicent Tur-Planells
- Microbiology Section, Department of Pharmaceutical Science and Health, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain;
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Cuadrado-Castano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Genomics Institute (IGI), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Estanislao Nistal-Villan
- Microbiology Section, Department of Pharmaceutical Science and Health, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain;
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, 28668 Boadilla del Monte, Spain
| |
Collapse
|
4
|
de Lima JGS, Lanza DCF. 2A and 2A-like Sequences: Distribution in Different Virus Species and Applications in Biotechnology. Viruses 2021; 13:v13112160. [PMID: 34834965 PMCID: PMC8623073 DOI: 10.3390/v13112160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 01/20/2023] Open
Abstract
2A is an oligopeptide sequence that mediates a ribosome “skipping” effect and can mediate a co-translation cleavage of polyproteins. These sequences are widely distributed from insect to mammalian viruses and could act by accelerating adaptive capacity. These sequences have been used in many heterologous co-expression systems because they are versatile tools for cleaving proteins of biotechnological interest. In this work, we review and update the occurrence of 2A/2A-like sequences in different groups of viruses by screening the sequences available in the National Center for Biotechnology Information database. Interestingly, we reported the occurrence of 2A-like for the first time in 69 sequences. Among these, 62 corresponded to positive single-stranded RNA species, six to double stranded RNA viruses, and one to a negative-sense single-stranded RNA virus. The importance of these sequences for viral evolution and their potential in biotechnological applications are also discussed.
Collapse
Affiliation(s)
- Juliana G. S. de Lima
- Applied Molecular Biology Lab—LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil;
- Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil
| | - Daniel C. F. Lanza
- Applied Molecular Biology Lab—LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil;
- Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil
- Correspondence: ; Tel.: +55-84-3215-3416; Fax: +55-84-3215-3415
| |
Collapse
|
5
|
Multifunctional Alleles: A novel method for the generation of "All-In-One" null and conditional alleles. Methods 2019; 164-165:91-99. [PMID: 31039396 DOI: 10.1016/j.ymeth.2019.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/07/2019] [Accepted: 04/22/2019] [Indexed: 11/20/2022] Open
Abstract
The engineering of conditional alleles has evolved from simple floxing of regions of genes to more elaborate methods. Previously, we developed Conditional by Inversion (COIN), an allele design that utilizes an exon-splitting intron and an invertible genetrap-like module (COIN module) to create null alleles upon Cre-mediated inversion. Here we build upon COINs by generating a new Multifunctional Allele (MFA), that utilizes a single gene-targeting step and three site-specific recombination systems, to generate four allelic states: 1. The initial MFA (generated upon targeting) functions as a null with reporter (plus drug selection cassette) allele, wherein the gene of interest is inactivated by both inversion of a critical region of its coding sequence and simultaneous insertion of a reporter gene. MFAs can also be used as 'reverse-conditional' alleles as they are functionally wild type when they are converted to COIN alleles. 2. Null with reporter (minus drug selection cassette), wherein the selection cassette, the inverted critical region, and the COIN module are removed. 3. COIN-based conditional-null via removal of the selection cassette and reporter and simultaneous re-inversion of the critical region of the target. 4. Inverted COIN allele, wherein the COIN allele in turn is reconverted to a null allele by taking advantage of the COIN module's gene trap while simultaneously deleting the critical region.
Collapse
|
6
|
DelBove CE, Strothman CE, Lazarenko RM, Huang H, Sanders CR, Zhang Q. Reciprocal modulation between amyloid precursor protein and synaptic membrane cholesterol revealed by live cell imaging. Neurobiol Dis 2019; 127:449-461. [PMID: 30885793 PMCID: PMC6588454 DOI: 10.1016/j.nbd.2019.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/03/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
The amyloid precursor protein (APP) has been extensively studied because of its association with Alzheimer's disease (AD). However, APP distribution across different subcellular membrane compartments and its function in neurons remains unclear. We generated an APP fusion protein with a pH-sensitive green fluorescent protein at its ectodomain and a pH-insensitive blue fluorescent protein at its cytosolic domain and used it to measure APP's distribution, subcellular trafficking, and cleavage in live neurons. This reporter, closely resembling endogenous APP, revealed only a limited correlation between synaptic activities and APP trafficking. However, the synaptic surface fraction of APP was increased by a reduction in membrane cholesterol levels, a phenomenon that involves APP's cholesterol-binding motif. Mutations at or near binding sites not only reduced both the surface fraction of APP and membrane cholesterol levels in a dominant negative manner, but also increased synaptic vulnerability to moderate membrane cholesterol reduction. Our results reveal reciprocal modulation of APP and membrane cholesterol levels at synaptic boutons.
Collapse
Affiliation(s)
- Claire E DelBove
- Department of Pharmacology, Vanderbilt University, United States of America
| | - Claire E Strothman
- Department of Cell and Developmental Biology, Vanderbilt University, United States of America
| | - Roman M Lazarenko
- Department of Pharmacology, Vanderbilt University, United States of America
| | - Hui Huang
- Department of Biochemistry, Vanderbilt University, United States of America
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, United States of America; Department of Medicine, Vanderbilt University Medical Center, United States of America
| | - Qi Zhang
- Department of Pharmacology, Vanderbilt University, United States of America; Brain Institute, Florida Atlantic University, United States of America.
| |
Collapse
|
7
|
A Newly Designed EGFP-2A Peptide Monocistronic Baculoviral Vector for Concatenating the Expression of Recombinant Proteins in Insect Cells. Processes (Basel) 2019. [DOI: 10.3390/pr7050291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recombinant proteins produced by the baculovirus expression vector system (BVES) have been widely applied in the agricultural and medical fields. However, the procedure for protein expression is inefficient and needs to be improved. Herein, we propose a simple construct that incorporates a selectable marker (enhanced green fluorescent protein, EGFP) and a picorna viral-derived “self-cleaving” 2A-like peptide to separate the EGFP and target proteins in a monocistronic baculovirus vector to facilitate isolation of the recombinant baculovirus in the BVES. In this study, porcine adiponectin (ADN), a secreted, multimeric protein with insulin-sensitizing properties, was used to demonstrate its utility in our EGFP-2A-based expression system. EGFP and ADN were simultaneously expressed by a recombinant alphabaculovirus. Co-expression of EGFP facilitates the manipulation of the following processes, such as determining expression kinetics and harvesting ADN. The results showed that the 2A “self-cleaving” process does not interfere with EGFP activity or with signal peptide removal and the secretion of recombinant ADN. Posttranslational modifications, including glycosylation, of the recombinant ADN occurred in insect cells, and the formation of various multimers was further verified. Most importantly, the insect-produced ADN showed a similar bioactivity to that of mammalian cells. This concept provides a practical and economic approach that utilizes a new combination of alphabaculovirus/insect cell expression systems for future applications.
Collapse
|
8
|
Venditti R, Rega LR, Masone MC, Santoro M, Polishchuk E, Sarnataro D, Paladino S, D'Auria S, Varriale A, Olkkonen VM, Di Tullio G, Polishchuk R, De Matteis MA. Molecular determinants of ER-Golgi contacts identified through a new FRET-FLIM system. J Cell Biol 2019; 218:1055-1065. [PMID: 30659100 PMCID: PMC6400564 DOI: 10.1083/jcb.201812020] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/05/2023] Open
Abstract
ER-TGN contact sites (ERTGoCS) have been visualized by electron microscopy, but their location in the crowded perinuclear area has hampered their analysis via optical microscopy as well as their mechanistic study. To overcome these limits we developed a FRET-based approach and screened several candidates to search for molecular determinants of the ERTGoCS. These included the ER membrane proteins VAPA and VAPB and lipid transfer proteins possessing dual (ER and TGN) targeting motifs that have been hypothesized to contribute to the maintenance of ERTGoCS, such as the ceramide transfer protein CERT and several members of the oxysterol binding proteins. We found that VAP proteins, OSBP1, ORP9, and ORP10 are required, with OSBP1 playing a redundant role with ORP9, which does not involve its lipid transfer activity, and ORP10 being required due to its ability to transfer phosphatidylserine to the TGN. Our results indicate that both structural tethers and a proper lipid composition are needed for ERTGoCS integrity.
Collapse
Affiliation(s)
- Rossella Venditti
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy .,Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Medical School, Naples, Italy
| | - Laura Rita Rega
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Michele Santoro
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Medical School, Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Medical School, Naples, Italy
| | - Sabato D'Auria
- Institute of Food Science, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | - Antonio Varriale
- Institute of Food Science, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | - Vesa M Olkkonen
- Department of Anatomy, Faculty of Medicine, FI-00014 University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Biomedicum 2U Helsinki, Helsinki, Finland
| | | | | | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy .,Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Medical School, Naples, Italy
| |
Collapse
|
9
|
DelBove CE, Deng XZ, Zhang Q. The Fate of Nascent APP in Hippocampal Neurons: A Live Cell Imaging Study. ACS Chem Neurosci 2018; 9:2225-2232. [PMID: 29869871 DOI: 10.1021/acschemneuro.8b00226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Amyloid precursor protein (APP) is closely associated with Alzheimer's disease (AD) because its proteolytic products form amyloid plaques and its mutations are linked to familial AD patients. As a membrane protein, APP is involved in neuronal development and plasticity. However, it remains unclear how nascent APP is distributed and transported to designated membrane compartments to execute its diverse functions. Here, we employed a dual-tagged APP fusion protein in combination with a synaptic vesicle marker to study the surface trafficking and cleavage of APP in hippocampal neurons immediately after its synthesis. Using long-term time-lapse imaging, we found that a considerable amount of nascent APP was directly transported to the somatodendritic surface, from which it propagates to distal neurites. Some APP in the plasma membrane was endocytosed and some was cleaved by α-secretase. Hence, we conclude that surface transportation of APP is a major step preceding its proteolytic processing and neuritic distribution.
Collapse
Affiliation(s)
- Claire E. DelBove
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Xian-zhen Deng
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Qi Zhang
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| |
Collapse
|
10
|
Efimova VS, Isaeva LV, Makeeva DS, Rubtsov MA, Novikova LA. Expression of Cholesterol Hydroxylase/Lyase System Proteins in Yeast S. cerevisiae Cells as a Self-Processing Polyprotein. Mol Biotechnol 2018; 59:394-406. [PMID: 28799023 DOI: 10.1007/s12033-017-0028-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
2A peptide discovered in Picornaviridae is capable of self-cleavage providing an opportunity to carry out synthesis of several proteins using one transcript. Dissociation in the 2A sequence during translation leads to the individual proteins formation. We constructed cDNA including genes of the bovine cholesterol hydroxylase/lyase (CHL) system proteins-cytochrome P450scc (CYP11A1), adrenodoxin (Adx) and adrenodoxin reductase (AdR), that are fused into a single ORF using FMDV 2A nucleotide sequences. The constructed vectors direct the expression of cDNA encoding polyprotein P450scc-2A-Adx-2A-AdR (CHL-2A) in Escherichia coli and Saccharomyces cerevisiae. The induced bacterial cells exhibit a high level of CHL-2A expression, but polyprotein is not cleaved at the FMDV sites. In yeast S. cerevisiae, the discrete proteins P450scc-2A, Adx-2A and AdR are expressed. Moreover, a significant proportion of AdR and Adx is present in a fusion Adx-2A-AdR. Thus, the first 2A linker provides an efficient cleavage of the polyprotein, while the second 2A linker demonstrates lower efficiency. Cholesterol hydroxylase/lyase activity registered in the recombinant yeast cell homogenate indicates that the catalytically active CHL system is present in these cells. Consequently, for the first time the mammalian system of cytochrome P450 has been successfully reconstructed in yeast cells through expressing the self-processing polyprotein.
Collapse
Affiliation(s)
- Vera S Efimova
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, Moscow, Russia, 119234. .,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France. .,LIA 1066 French-Russian Joint Cancer Research Laboratory, Moscow, Russia.
| | - Ludmila V Isaeva
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Desislava S Makeeva
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail A Rubtsov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, Moscow, Russia, 119234.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France.,Department of Biochemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Strategic Management Department, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Moscow, Russia
| | - Ludmila A Novikova
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
11
|
Gupta N, Susa K, Yoda Y, Bonventre JV, Valerius MT, Morizane R. CRISPR/Cas9-based Targeted Genome Editing for the Development of Monogenic Diseases Models with Human Pluripotent Stem Cells. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2018; 45:e50. [PMID: 30040245 PMCID: PMC6060633 DOI: 10.1002/cpsc.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human pluripotent stem cells (hPSCs) represent a formidable tool for disease modeling, drug discovery, and regenerative medicine using human cells and tissues in vitro. Evolving techniques of targeted genome editing, specifically the CRISPR/Cas9 system, allow for the generation of cell lines bearing gene-specific knock-outs, knock-in reporters, and precise mutations. However, there are increasing concerns related to the transfection efficiency, cell viability, and maintenance of pluripotency provided by genome-editing techniques. The procedure presented here employs transient antibiotic selection that overcomes reduced transfection efficiency, avoids cytotoxic flow sorting for increased viability, and generates multiple genome-edited pluripotent hPSC lines expanded from a single parent cell. Avoidance of xenogeneic contamination from feeder cells and reduced operator workload, owing to single-cell passaging rather than clump passaging, are additional benefits. The outlined methods may enable researchers with limited means and technical experience to create human stem cell lines containing desired gene-specific mutations. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Navin Gupta
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Koichiro Susa
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Yoko Yoda
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Joseph V Bonventre
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - M Todd Valerius
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Ryuji Morizane
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
12
|
Hofacre A, Yagiz K, Mendoza D, Lopez Espinoza F, Munday AW, Burrascano C, Singer O, Gruber HE, Jolly DJ, Lin AH. Efficient Therapeutic Protein Expression Using Retroviral Replicating Vector with 2A Peptide in Cancer Models. Hum Gene Ther 2018; 29:437-451. [PMID: 29216761 DOI: 10.1089/hum.2017.205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toca 511, a retroviral replicating vector (RRV), uses an internal ribosomal entry site (IRES) to express an optimized yeast cytosine deaminase (yCD2), which converts 5-fluorocytosine to 5-fluorouracil. This configuration is genetically stable in both preclinical mouse models and human clinical trials. However, the use of IRES (∼600 bp) restricts choices of therapeutic transgenes due to limits in RRV genome size. This study replaced IRES with 2A peptides derived from picornaviruses with or without a GSG linker. The data show that GSG-linked 2A (g2A) peptide resulted in higher polyprotein separation efficiency than non-GSG linked 2A peptide. The study also shows that RRV can tolerate insertion of two separate 2A peptides to allow expression of two transgenes without compromising the assembly and function of the virus in addition to insertion of a single 2A peptide to confirm genetic stability with yCD2, green fluorescent protein, and HSV-1 thymidine kinase. In a parallel comparison of the RRV-IRES-yCD2 and RRV-g2A-yCD2 configurations, the study shows the yCD2 protein expressed from RRV-g2A-yCD2 has higher activity, resulting in a higher survival benefit in an intracranial tumor mouse model. These data enable a wider range of potential product candidates that could be developed using the RRV platform.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Amy H Lin
- Tocagen, Inc. , San Diego, California
| |
Collapse
|
13
|
Chen AYY, Tully T. A stress-enhanced model for discovery of disease-modifying gene: Ece1-suppresses the toxicity of α-synuclein A30P. Neurobiol Dis 2018. [PMID: 29524599 DOI: 10.1016/j.nbd.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a progressive motor neurodegenerative disorder, characterized by a selective loss of dopaminergic neurons in the substantia nigra. The complexity of disease etiology includes both genetic and environmental factors. No effective drug that can modify disease progression and protect dopamine neurons from degeneration is presently available. Human α-Synuclein A30P (A30P) is a mutant gene identified in early onset PD and showed to result selective dopamine neuron loss in transgenic A30P flies and mice. Paraquat (PQ) is an herbicide and an oxidative stress generator, linked to sporadic PD. We hypothesized that vital PD modifier genes are conserved across species and would show unique transcriptional changes to oxidative stress in animals expressing a PD-associated gene, such as A30P. We also hypothesized that manipulation of PD modifier genes would provide neuroprotection across species. To identify disease modifier genes, we performed two independently-duplicated experiments of microarray, capturing genome-wide transcriptional changes in A30P flies, chronically fed with PQ-contaminated food. We hypothesized that the best time point of identifying a disease modifier gene is at time when flies showed maximal combined toxicity of A30P transgene and PQ treatment during an early stage of disease and that effective disease modifiers gene are those showing transcriptional changes to oxidative stress in A30P expressing and not in wild type animals. Fly Neprilysin3 (Nep3) is one identified gene that is highly conserved. Its mouse and human homolog is endothelin-converting enzyme-1 (Ece1). To investigate the neuroprotective effect of Ece1, we used NS1 cells and mouse midbrain neurons expressing A30P, treated with or without PQ. We found that ECE1 expression protected against A30P toxicity on cell viability, on neurite outgrowth and ameliorated A30P accumulation in vitro. Expression of ECE1 in vivo suppressed dopamine neuron loss and alleviated the corresponding motor deficits in mice with A30P-expression. Our study leverages a new approach to identify disease modifier genes using a stress-enhanced PD animal model.
Collapse
Affiliation(s)
- Alex Yen-Yu Chen
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA; Graduate Program in Neuroscience, Life Sciences 550, SUNY at Stony Brook, Stony Brook, NY 11794, USA; Dart Neuroscience LLC, 12278 Scripps Summit Dr., San Diego, CA 92131, USA.
| | - Tim Tully
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA; Dart Neuroscience LLC, 12278 Scripps Summit Dr., San Diego, CA 92131, USA.
| |
Collapse
|
14
|
Luke GA, Ryan MD. Using the 2A Protein Coexpression System: Multicistronic 2A Vectors Expressing Gene(s) of Interest and Reporter Proteins. Methods Mol Biol 2018; 1755:31-48. [PMID: 29671261 DOI: 10.1007/978-1-4939-7724-6_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To date, a huge range of different proteins-many with cotranslational and posttranslational subcellular localization signals-have been coexpressed together with various reporter proteins in vitro and in vivo using 2A peptides. The pros and cons of 2A co-expression technology are considered below, followed by a simple example of a "how to" protocol to concatenate multiple genes of interest, together with a reporter gene, into a single gene linked via 2As for easy identification or selection of transduced cells.
Collapse
Affiliation(s)
- Garry A Luke
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, Fife, Scotland, UK.
| | - Martin D Ryan
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, Fife, Scotland, UK
| |
Collapse
|
15
|
Ma Y, Yu L, Pan S, Gao S, Chen W, Zhang X, Dong W, Li J, Zhou R, Huang L, Han Y, Bai L, Zhang L, Zhang L. CRISPR/Cas9-mediated targeting of the Rosa26 locus produces Cre reporter rat strains for monitoring Cre-loxP-mediated lineage tracing. FEBS J 2017; 284:3262-3277. [PMID: 28763160 DOI: 10.1111/febs.14188] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/11/2017] [Accepted: 07/27/2017] [Indexed: 12/01/2022]
Abstract
The rat is an important laboratory animal for physiological, toxicological and pharmacological studies. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) is a simple and efficient tool to generate precise genetic modifications in rats, which will promote the accumulation of genetic resources and enable more precise studies of gene function. To monitor Cre-loxP-mediated excision in vivo, we generated a Cre reporter rat strain (Rosa26-imCherry) by knockin of a Cre reporter cassette at the Rosa26 locus using CRISPR/Cas9. Rosa26-imCherry rats exhibited inducible expression of the mCherry cassette (imCherry) using the Cre-loxP system, whereas normal rats exhibited ubiquitous expression of eGFP but not mCherry in the whole body. Injection of adeno-associated virus serotype 9-Cre into the hippocampus and skeletal muscle resulted in mCherry expression in virus-infected cells. Cre-loxP-mediated mCherry expression was then evaluated by crossing Rosa26-imCherry rats with transgenic rats ubiquitously expressing CAG-Cre, heart-specific α-MHC-Cre transgenic rats and liver-specific Alb-Cre knockin rats. Finally, using the established system the expression pattern of Cre driven by two endogenous gene promoters (Wfs1-Cre knockin rat, FabP2-Cre knockin rat) was traced. In summary, we demonstrated excision of the loxP-flanked allele in Rosa26-imCherry rats via activation of mCherry expression in the presence of Cre recombinase. This newly established Rosa26-imCherry rat strain represents a useful tool to facilitate Cre-expression pattern determination and tracing experiments.
Collapse
MESH Headings
- Animals
- CRISPR-Cas Systems
- Crosses, Genetic
- Dependovirus/genetics
- Dependovirus/metabolism
- Embryo, Mammalian
- Female
- Gene Editing/methods
- Gene Expression Regulation
- Gene Knock-In Techniques
- Gene Targeting
- Genes, Reporter
- Genetic Loci
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Integrases/genetics
- Integrases/metabolism
- Liver/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Male
- Myocardium/metabolism
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Rats
- Rats, Transgenic
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Yu
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuo Pan
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Gao
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Chen
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Zhang
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Li
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Zhou
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lan Huang
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yunlin Han
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Bai
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Zhang
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Sun H, Zhou N, Wang H, Huang D, Lang Z. Processing and targeting of proteins derived from polyprotein with 2A and LP4/2A as peptide linkers in a maize expression system. PLoS One 2017; 12:e0174804. [PMID: 28358924 PMCID: PMC5373624 DOI: 10.1371/journal.pone.0174804] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 03/15/2017] [Indexed: 01/24/2023] Open
Abstract
In the transformation of multiple genes, gene fusion is an attractive alternative to other methods, including sexual crossing, re-transformation, and co-transformation, among others. The 2A peptide from the foot-and-mouth disease virus (FMDV) causes the co-translational “cleavage” of polyprotein and operates in a wide variety of eukaryotic cells. LP4, a linker peptide that originates from a natural polyprotein occurring in the seed of Impatiens balsamina, can be split between the first and second amino acids in post-translational processing. LP4/2A is a hybrid linker peptide that contains the first nine amino acids of LP4 and 20 amino acids of 2A. The three linkers have been used as a suitable technique to link the expression of genes in some transgenic plants, but to date the cleavage efficiency of three linkers have not been comprehensively demonstrated in the same transformation system, especially in the staple crop. To verify the functions of 2A, LP4, and LP4/2A linker peptides in transgenic maize, six fusion protein vectors that each encoded a single open reading frame (ORF) incorporating two report genes, Green Fluorescent Protein (GFP) and β-glucuronidase (GUS), separated by 2A (or modified 2A), LP4 or LP4/2A were assembled to compare the cleavage efficiency of the three linkers in a maize transient expression system. The results demonstrated the more protein production and higher cleavage splicing efficiency with the polyprotein construct linked by the LP4/2A peptide than those of the polyprotein constructs linked by 2A or LP4 alone. Seven other fusion proteins that each encoded a single ORF incorporating two different genes GFP and Red Fluorecent Protein (RFP) with different signal peptides were assembled to study the subcellular localization of genes linked by LP4/2A. The subcellular localization experiments suggested that both types of signal peptide, co-translational and post-translational, could lead their proteins to the target localization in maize protoplast transformed by LP4/2A polyprotein construct and it implied the LP4/2A linker peptide could alleviate the inhibition of 2A processing by the carboxy-terminal region of upstream protein of 2A when translocated into the ER.
Collapse
Affiliation(s)
- He Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ni Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dafang Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhihong Lang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
17
|
Conti R, Assayag O, de Sars V, Guillon M, Emiliani V. Computer Generated Holography with Intensity-Graded Patterns. Front Cell Neurosci 2016; 10:236. [PMID: 27799896 PMCID: PMC5065964 DOI: 10.3389/fncel.2016.00236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/28/2016] [Indexed: 11/16/2022] Open
Abstract
Computer Generated Holography achieves patterned illumination at the sample plane through phase modulation of the laser beam at the objective back aperture. This is obtained by using liquid crystal-based spatial light modulators (LC-SLMs), which modulate the spatial phase of the incident laser beam. A variety of algorithms is employed to calculate the phase modulation masks addressed to the LC-SLM. These algorithms range from simple gratings-and-lenses to generate multiple diffraction-limited spots, to iterative Fourier-transform algorithms capable of generating arbitrary illumination shapes perfectly tailored on the base of the target contour. Applications for holographic light patterning include multi-trap optical tweezers, patterned voltage imaging and optical control of neuronal excitation using uncaging or optogenetics. These past implementations of computer generated holography used binary input profile to generate binary light distribution at the sample plane. Here we demonstrate that using graded input sources, enables generating intensity graded light patterns and extend the range of application of holographic light illumination. At first, we use intensity-graded holograms to compensate for LC-SLM position dependent diffraction efficiency or sample fluorescence inhomogeneity. Finally we show that intensity-graded holography can be used to equalize photo evoked currents from cells expressing different levels of chanelrhodopsin2 (ChR2), one of the most commonly used optogenetics light gated channels, taking into account the non-linear dependence of channel opening on incident light.
Collapse
Affiliation(s)
- Rossella Conti
- Wave Front Engineering Microscopy Group, Neurophotonics Laboratory, Centre National de la Recherche Scientifique, UMR 8250, University Paris Descartes Paris, France
| | - Osnath Assayag
- Wave Front Engineering Microscopy Group, Neurophotonics Laboratory, Centre National de la Recherche Scientifique, UMR 8250, University Paris Descartes Paris, France
| | - Vincent de Sars
- Wave Front Engineering Microscopy Group, Neurophotonics Laboratory, Centre National de la Recherche Scientifique, UMR 8250, University Paris Descartes Paris, France
| | - Marc Guillon
- Wave Front Engineering Microscopy Group, Neurophotonics Laboratory, Centre National de la Recherche Scientifique, UMR 8250, University Paris Descartes Paris, France
| | - Valentina Emiliani
- Wave Front Engineering Microscopy Group, Neurophotonics Laboratory, Centre National de la Recherche Scientifique, UMR 8250, University Paris Descartes Paris, France
| |
Collapse
|
18
|
van Diemen FR, Kruse EM, Hooykaas MJG, Bruggeling CE, Schürch AC, van Ham PM, Imhof SM, Nijhuis M, Wiertz EJHJ, Lebbink RJ. CRISPR/Cas9-Mediated Genome Editing of Herpesviruses Limits Productive and Latent Infections. PLoS Pathog 2016; 12:e1005701. [PMID: 27362483 PMCID: PMC4928872 DOI: 10.1371/journal.ppat.1005701] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/23/2016] [Indexed: 12/15/2022] Open
Abstract
Herpesviruses infect the majority of the human population and can cause significant morbidity and mortality. Herpes simplex virus (HSV) type 1 causes cold sores and herpes simplex keratitis, whereas HSV-2 is responsible for genital herpes. Human cytomegalovirus (HCMV) is the most common viral cause of congenital defects and is responsible for serious disease in immuno-compromised individuals. Epstein-Barr virus (EBV) is associated with infectious mononucleosis and a broad range of malignancies, including Burkitt’s lymphoma, nasopharyngeal carcinoma, Hodgkin’s disease, and post-transplant lymphomas. Herpesviruses persist in their host for life by establishing a latent infection that is interrupted by periodic reactivation events during which replication occurs. Current antiviral drug treatments target the clinical manifestations of this productive stage, but they are ineffective at eliminating these viruses from the infected host. Here, we set out to combat both productive and latent herpesvirus infections by exploiting the CRISPR/Cas9 system to target viral genetic elements important for virus fitness. We show effective abrogation of HCMV and HSV-1 replication by targeting gRNAs to essential viral genes. Simultaneous targeting of HSV-1 with multiple gRNAs completely abolished the production of infectious particles from human cells. Using the same approach, EBV can be almost completely cleared from latently infected EBV-transformed human tumor cells. Our studies indicate that the CRISPR/Cas9 system can be effectively targeted to herpesvirus genomes as a potent prophylactic and therapeutic anti-viral strategy that may be used to impair viral replication and clear latent virus infection. Herpesviruses are large DNA viruses that are carried by almost 100% of the adult human population. Herpesviruses include several important human pathogens, such as herpes simplex viruses (HSV) type 1 and 2 (causing cold sores and genital herpes, respectively), human cytomegalovirus (HCMV; the most common viral cause of congenital defects, and responsible for serious disease in immuno-compromised individuals), and Epstein-Barr virus (EBV; associated with infectious mononucleosis and a wide range of malignancies). Current antiviral drug treatments are not effective in clearing herpesviruses from infected individuals. Therefore, there is a need for alternative strategies to combat these pathogenic viruses and prevent or cure herpesvirus-associated diseases. Here, we have assessed whether a direct attack of herpesvirus genomes within virus-infected cells can inactivate these viruses. For this, we have made use of the recently developed CRISPR/Cas9 genome-engineering system to target and alter specific regions within the genome of these viruses. By targeting sites in the genomes of three different herpesviruses (HSV-1, HCMV, and EBV), we show complete inhibition of viral replication and in some cases even eradication of the viral genomes from infected cells. The findings presented in this study open new avenues for the development of therapeutic strategies to combat pathogenic human herpesviruses using novel genome-engineering technologies.
Collapse
Affiliation(s)
- Ferdy R. van Diemen
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elisabeth M. Kruse
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Anita C. Schürch
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petra M. van Ham
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saskia M. Imhof
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique Nijhuis
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Robert Jan Lebbink
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
19
|
Chu JS, Villarreal DO, Weiner DB. DNA Vaccines: A Strategy for Developing Novel Multivalent TB Vaccines. Methods Mol Biol 2016; 1403:355-361. [PMID: 27076140 DOI: 10.1007/978-1-4939-3387-7_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Multivalent DNA vaccines that are delivered by electroporation (EP) through muscle tissue provide a novel method for eliciting immunity against tuberculosis (TB) as well as a broad range of diseases including HIV and cancers. Proper plasmid construction containing suitable protective TB antigens capable of evoking desired vaccine-induced responses would lead to the appropriate induction of both humoral and cellular immunity. DNA vaccines are safe and of low cost in comparison to traditional vaccines while also providing potentially effective prophylactic or therapeutic modalities against currently untreatable diseases. Here, we describe the steps for developing a rational multivalent TB DNA vaccine delivered with intramuscular EP in mice.
Collapse
Affiliation(s)
- Jaemi S Chu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 505 Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Daniel O Villarreal
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 505 Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - David B Weiner
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 505 Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Zielke N, van Straaten M, Bohlen J, Edgar BA. Using the Fly-FUCCI System for the Live Analysis of Cell Cycle Dynamics in Cultured Drosophila Cells. Methods Mol Biol 2016; 1342:305-20. [PMID: 26254933 DOI: 10.1007/978-1-4939-2957-3_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cultured Drosophila cells are an attractive system for live imaging experiments, as this cell type is not very demanding in terms of temperature and media composition. Moreover, cultured Drosophila cell lines are very responsive to RNAi without being prone to off-target effects, and thus have become important for use in high-content screening. We have developed a fly-specific fluorescent, ubiquitination-based cell cycle indicator (FUCCI) system that enables faithful detection of G1, S, and G2 phases, and is thus a powerful tool for the analysis of cell cycle dynamics in living or fixed cells. Here, we describe a protocol for the generation of cell lines stably expressing the Fly-FUCCI sensors, followed by a description of how these cell lines can be employed in studies of cell cycle oscillation using live microscopy.
Collapse
Affiliation(s)
- N Zielke
- German Cancer Research Center (Deutsches Krebsforschungszentrum; DKFZ), Im Neuenheimer Feld 282, 69120, Heidelberg, Germany,
| | | | | | | |
Collapse
|
21
|
de Amorim Araújo J, Ferreira TC, Rubini MR, Duran AGG, De Marco JL, de Moraes LMP, Torres FAG. Coexpression of cellulases in Pichia pastoris as a self-processing protein fusion. AMB Express 2015; 5:84. [PMID: 26698316 PMCID: PMC4689727 DOI: 10.1186/s13568-015-0170-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023] Open
Abstract
The term cellulase refers to any component of the enzymatic complex produced by some fungi, bacteria and protozoans which act serially or synergistically to catalyze the cleavage of cellulosic materials. Cellulases have been widely used in many industrial applications ranging from food industry to the production of second generation ethanol. In an effort to develop new strategies to minimize the costs of enzyme production we describe the development of a Pichia pastoris strain able to coproduce two different cellulases. For that purpose the eglII (endoglucanase II) and cbhII (cellobiohydrolase II) genes from Trichoderma reesei were fused in-frame separated by the self-processing 2A peptide sequence from the foot-and-mouth disease virus. The protein fusion construct was placed under the control of the strong inducible AOX1 promoter. Analysis of culture supernatants from methanol-induced yeast transformants showed that the protein fusion was effectively processed. Enzymatic assay showed that the processed enzymes were fully functional with the same catalytic properties of the individual enzymes produced separately. Furthermore, when combined both enzymes acted synergistically on filter paper to produce cellobiose as the main end-product. Based on these results we propose that P. pastoris should be considered as an alternative platform for the production of cellulases at competitive costs.
Collapse
|
22
|
A system for creating stable cell lines that express a gene of interest from a bidirectional and regulatable herpes simplex virus type 1 promoter. PLoS One 2015; 10:e0122253. [PMID: 25823013 PMCID: PMC4378986 DOI: 10.1371/journal.pone.0122253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/10/2015] [Indexed: 12/03/2022] Open
Abstract
Expression systems used to study the biological function of a gene of interest can have limited utility due to three major factors: i) weak or heterogeneous gene expression; ii) poorly controlled gene expression; and iii) low efficiencies of stable integration and persistent expression. We envisioned that the ideal system should be tightly controlled and coupled with the ability to efficiently create and identify stable cell lines. Herein, we describe a system based upon a bidirectional Herpes simplex virus type 1 promoter that is naturally responsive to the VP16 transactivator and modified to permit tetracycline-regulated transcription on one side while maintaining constitutive activity on the other side. Incorporation of this element into the Sleeping Beauty transposon resulted in a novel bidirectional system with the capacity for high-efficiency stable integration. Using this system, we created stable cell lines in which expression of a gene of interest was tightly and uniformly controlled across a broad range of levels via a novel combination of doxycycline-sensitive de-repression and VP16-mediated sequence-specific induction. The unique characteristics of this system address major limitations of current methods and provide an excellent strategy to investigate the effects of gene dosing in mammalian models.
Collapse
|
23
|
Kumar S, AlAbed D, Whitteck JT, Chen W, Bennett S, Asberry A, Wang X, DeSloover D, Rangasamy M, Wright TR, Gupta M. A combinatorial bidirectional and bicistronic approach for coordinated multi-gene expression in corn. PLANT MOLECULAR BIOLOGY 2015; 87:341-53. [PMID: 25657118 DOI: 10.1007/s11103-015-0281-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/31/2014] [Indexed: 05/22/2023]
Abstract
Transgene stacking in trait development process through genetic engineering is becoming complex with increased number of desired traits and multiple modes of action for each trait. We demonstrate here a novel gene stacking strategy by combining bidirectional promoter (BDP) and bicistronic approaches to drive coordinated expression of multi-genes in corn. A unidirectional promoter, Ubiquitin-1 (ZMUbi1), from Zea mays was first converted into a synthetic BDP, such that a single promoter can direct the expression of two genes from each end of the promoter. The BDP system was then combined with a bicistronic organization of genes at both ends of the promoter by using a Thosea asigna virus 2A auto-cleaving domain. With this gene stacking configuration, we have successfully obtained expression in transgenic corn of four transgenes; three transgenes conferring insect (cry34Ab1 and cry35Ab1) and herbicide (aad1) resistance, and a phiyfp reporter gene using a single ZMUbi1 bidirectional promoter. Gene expression analyses of transgenic corn plants confirmed better coordinated expression of the four genes compared to constructs driving each gene by independent unidirectional ZmUbi1 promoter. To our knowledge, this is the first report that demonstrates application of a single promoter for co-regulation of multiple genes in a crop plant. This stacking technology would be useful for engineering metabolic pathways both for basic and applied research.
Collapse
Affiliation(s)
- Sandeep Kumar
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pierce J, Murphy AJ, Panzer A, de Caestecker C, Ayers GD, Neblett D, Saito-Diaz K, de Caestecker M, Lovvorn HN. SIX2 Effects on Wilms Tumor Biology. Transl Oncol 2014; 7:800-11. [PMID: 25500091 PMCID: PMC4311027 DOI: 10.1016/j.tranon.2014.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/17/2014] [Indexed: 11/25/2022] Open
Abstract
Wilms tumor (WT) blastema retains gene expression profiles characteristic of the multipotent nephron progenitor pool, or cap mesenchyme (CM), in the developing kidney. As a result, WT blastema and the CM are believed to represent contextual analogues of one another. Sine oculis homeobox 2 (SIX2) is a transcription factor expressed specifically in the CM, provides a critical mechanism for CM self-renewal, and remains persistently active in WT blastema, although its purpose in this childhood malignancy remains unclear. We hypothesized that SIX2, analogous to its function in development, confers a survival pathway to blastema, the putative WT stem cell. To test its functional significance in WT biology, wild-type SIX2 was overexpressed in the human WT cell line, WiT49. After validating this model, SIX2 effects on anchorage-independent growth, proliferation, invasiveness, canonical WNT pathway signaling, and gene expression of specific WNT pathway participants were evaluated. Relative to controls, WiT49 cells overexpressing SIX2 showed significantly enhanced anchorage-independent growth and early-passage proliferation representing surrogates of cell survival. Interestingly, overexpression of SIX2 generally repressed TCF/LEF-dependent canonical WNT signaling, which activates and coordinates both differentiation and stem pathways, but significantly heightened canonical WNT signaling through the survivin promoter, a mechanism that exclusively maintains the stem state. In summary, when overexpressed in a human WT cell line, SIX2 enhances cell survival and appears to shift the balance in WNT/β-catenin signaling away from a differentiation path and toward a stem cell survival path.
Collapse
Affiliation(s)
- Janene Pierce
- Department of Pediatric Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Andrew J Murphy
- Department of Pediatric Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexis Panzer
- Department of Pediatric Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Christian de Caestecker
- Department of Pediatric Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gregory D Ayers
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Neblett
- Department of Pediatric Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kenyi Saito-Diaz
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark de Caestecker
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Harold N Lovvorn
- Department of Pediatric Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
25
|
Hazen M, Bhakta S, Vij R, Randle S, Kallop D, Chiang V, Hötzel I, Jaiswal BS, Ervin KE, Li B, Weimer RM, Polakis P, Scheller RH, Junutula JR, Hongo JAS. An improved and robust DNA immunization method to develop antibodies against extracellular loops of multi-transmembrane proteins. MAbs 2014; 6:95-107. [PMID: 24121517 DOI: 10.4161/mabs.26761] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Multi-transmembrane proteins are especially difficult targets for antibody generation largely due to the challenge of producing a protein that maintains its native conformation in the absence of a stabilizing membrane. Here, we describe an immunization strategy that successfully resulted in the identification of monoclonal antibodies that bind specifically to extracellular epitopes of a 12 transmembrane protein, multi-drug resistant protein 4 (MRP4). These monoclonal antibodies were developed following hydrodynamic tail vein immunization with a cytomegalovirus (CMV) promoter-based plasmid expressing MRP4 cDNA and were characterized by flow cytometry. As expected, the use of the immune modulators fetal liver tyrosine kinase 3 ligand (Flt3L) and granulocyte-macrophage colony-stimulating factor positively enhanced the immune response against MRP4. Imaging studies using CMV-based plasmids expressing luciferase showed that the in vivo half-life of the target antigen was less than 48 h using CMV-based plasmids, thus necessitating frequent boosting with DNA to achieve an adequate immune response. We also describe a comparison of plasmids, which contained MRP4 cDNA with either the CMV or CAG promoters, used for immunizations. The observed luciferase activity in this comparison demonstrated that the CAG promoter-containing plasmid pCAGGS induced prolonged constitutive expression of MRP4 and an increased anti-MRP4 specific immune response even when the plasmid was injected less frequently. The method described here is one that can be broadly applicable as a general immunization strategy to develop antibodies against multi-transmembrane proteins, as well as target antigens that are difficult to express or purify in native and functionally active conformation.
Collapse
|
26
|
Kim C, Wilson T, Fischer KF, Williams MA. Sustained interactions between T cell receptors and antigens promote the differentiation of CD4⁺ memory T cells. Immunity 2013; 39:508-20. [PMID: 24054329 DOI: 10.1016/j.immuni.2013.08.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/09/2013] [Indexed: 02/05/2023]
Abstract
During CD4⁺ T cell activation, T cell receptor (TCR) signals impact T cell fate, including recruitment, expansion, differentiation, trafficking, and survival. To determine the impact of TCR signals on the fate decision of activated CD4⁺ T cells to become end-stage effector or long-lived memory T helper 1 (Th1) cells, we devised a deep-sequencing-based approach that allowed us to track the evolution of TCR repertoires after acute infection. The transition of effector Th1 cells into the memory pool was associated with a significant decrease in repertoire diversity, and the major histocompatibility complex (MHC) class II tetramer off rate, but not tetramer avidity, was a key predictive factor in the representation of individual clonal T cell populations at the memory stage. We conclude that stable and sustained interactions with antigens during the development of Th1 responses to acute infection are a determinative factor in promoting the differentiation of Th1 memory cells.
Collapse
Affiliation(s)
- Chulwoo Kim
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84121, USA
| | | | | | | |
Collapse
|
27
|
Lin JY, Sann SB, Zhou K, Nabavi S, Proulx CD, Malinow R, Jin Y, Tsien RY. Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI). Neuron 2013; 79:241-53. [PMID: 23889931 DOI: 10.1016/j.neuron.2013.05.022] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 12/18/2022]
Abstract
Optogenetic techniques provide effective ways of manipulating the functions of selected neurons with light. In the current study, we engineered an optogenetic technique that directly inhibits neurotransmitter release. We used a genetically encoded singlet oxygen generator, miniSOG, to conduct chromophore assisted light inactivation (CALI) of synaptic proteins. Fusions of miniSOG to VAMP2 and synaptophysin enabled disruption of presynaptic vesicular release upon illumination with blue light. In cultured neurons and hippocampal organotypic slices, synaptic release was reduced up to 100%. Such inhibition lasted >1 hr and had minimal effects on membrane electrical properties. When miniSOG-VAMP2 was expressed panneuronally in Caenorhabditis elegans, movement of the worms was reduced after illumination, and paralysis was often observed. The movement of the worms recovered overnight. We name this technique Inhibition of Synapses with CALI (InSynC). InSynC is a powerful way to silence genetically specified synapses with light in a spatially and temporally precise manner.
Collapse
Affiliation(s)
- John Y Lin
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0647, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Luke GA, Ryan MD. The protein coexpression problem in biotechnology and biomedicine: virus 2A and 2A-like sequences provide a solution. Future Virol 2013. [DOI: 10.2217/fvl.13.82] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Synthetic biology enables us to create genes virtually at will. Ensuring that multiple genes are efficiently coexpressed within the same cell in order to assemble multimeric complexes, transfer biochemical pathways and transfer traits is more problematic. Viruses such as picornaviruses accomplish exactly this task: they generate multiple different proteins from a single open reading frame. The study of how foot-and-mouth disease virus controls its protein biogenesis led to the discovery of a short oligopeptide sequence, ‘2A’, that is able to mediate a cotranslational cleavage between proteins. 2A and ‘2A-like’ sequences (from other viruses and cellular sequences) can be used to concatenate multiple gene sequences into a single gene, ensuring their coexpression within the same cell. These sequences are now being used in the treatment of cancer, in the production of pluripotent stem cells, and to create transgenic plants and animals among a host of other biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Garry A Luke
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, UK
| | - Martin D Ryan
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, UK
| |
Collapse
|
29
|
Xu HH, Liu SH, Guo QF, Liu QH, Li XY. Osteogenesis induced in goat bone marrow progenitor cells by recombinant adenovirus coexpressing bone morphogenetic protein 2 and basic fibroblast growth factor. Braz J Med Biol Res 2013; 46:809-14. [PMID: 24068195 PMCID: PMC3854432 DOI: 10.1590/1414-431x20132929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 06/24/2013] [Indexed: 01/26/2023] Open
Abstract
Bone morphogenetic protein 2 (BMP2) and basic fibroblast growth factor (bFGF) have been shown to exhibit a synergistic effect to promote bone repair and healing. In this study, we constructed a novel adenovirus with high coexpression of BMP2 and bFGF and evaluated its effect on osteogenic differentiation of goat bone marrow progenitor cells (BMPCs). Recombinant adenovirus Ad-BMP2-bFGF was constructed by using the T2A sequence. BMPCs were isolated from goats by density gradient centrifugation and adherent cell culture, and were then infected with Ad-BMP2-bFGF or Ad-BMP2. Expression of BMP2 and bFGF was detected by ELISA, and alkaline phosphatase (ALP) activity was detected by an ALP assay kit. In addition, von Kossa staining and immunocytochemical staining of collagen II were performed on BMPCs 21 days after infection. There was a high coexpression of BMP2 and bFGF in BMPCs infected with Ad-BMP2-bFGF. Twenty-one days after infection, ALP activity was significantly higher in BMPCs infected with Ad-BMP2-bFGF than in those infected with Ad-BMP2. Larger and more mineralized calcium nodules, as well as stronger collagen II staining, were observed in BMPCs infected with Ad-BMP2-bFGF than in those infected with Ad-BMP2. In summary, we developed a novel adenovirus vector Ad-BMP2-bFGF for simultaneous high coexpression of BMP2 and bFGF, which could induce BMPCs to differentiate efficiently into osteoblasts.
Collapse
Affiliation(s)
- H H Xu
- Department of Orthopedics, Guangzhou First Municipal People's Hospital Affiliated to Guangzhou Medical University, Guangzhou, China
| | | | | | | | | |
Collapse
|
30
|
Lin JY. Production and validation of recombinant adeno-associated virus for channelrhodopsin expression in neurons. Methods Mol Biol 2013; 998:401-15. [PMID: 23529447 DOI: 10.1007/978-1-62703-351-0_31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Recent discovery of the light-activated ion channel, channelrhodopsin (ChR), has provided researchers a powerful and convenient tool to manipulate the membrane potential of specific cells with light. With genetic targeting of these channels and illumination of light to a specific location, the experimenter can selectively activate the voltage-gated ion channels (VGICs) of ChR-expressing cells, initiating electrical signaling in temporally and spatially precise manners. In neuroscience research, this can be used to study electrical signal processing within one neuron at the cellular level, or the synaptic connectivity between neurons at the circuitry level. To conduct experiments with ChRs, these exogenous channels need to be introduced into the cells of interest, commonly through a viral approach. This chapter provides an overview of the design, production, and validation of recombinant adeno-associated virus (rAAV) for ChR expression that can be used in vitro or in vivo to infect neurons. The virus produced can be used to conduct "optogenetic" experiments in behaving animals, in vitro preparations and cultured cells, and can be used to study signal transduction and processing at a cellular or circuitry level.
Collapse
Affiliation(s)
- John Y Lin
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
31
|
Expression analysis of combinatorial genes using a bi-cistronic T2A expression system in porcine fibroblasts. PLoS One 2013; 8:e70486. [PMID: 23922997 PMCID: PMC3726604 DOI: 10.1371/journal.pone.0070486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/20/2013] [Indexed: 01/16/2023] Open
Abstract
In pig-to-primate xenotransplantation, multiple transgenic pigs are required to overcome a series of transplant rejections. The generation of multiple transgenic pigs either by breeding or the introduction of several mono-cistronic vectors has been hampered by the differential expression patterns of the target genes. To achieve simultaneous expression of multiple genes, a poly-cistronic expression system using the 2A peptide derived from the Thosea asigna virus (T2A) can be considered an alternative choice. Before applying T2A expression system to pig generation, the expression patterns of multiple genes in this system should be precisely evaluated. In this study, we constructed several bi-cistronic T2A expression vectors, which combine target genes that are frequently used in the xenotransplantation field, and introduced them into porcine fibroblasts. The proteins targeted to the same or different subcellular regions were efficiently expressed without affecting the localization or expression levels of the other protein. However, when a gene with low expression efficiency was inserted into the upstream region of the T2A sequences, the expression level of the downstream gene was significantly decreased compared with the expression efficiency without the insertion. A small interfering RNA targeting one gene in this system resulted in the significant downregulation of both the target gene and the other gene, indicating that multiple genes combined into a T2A expression vector can be considered as a single gene in terms of transcription and translation. In summary, the efficient expression of a downstream gene can be achieved if the expression of the upstream gene is efficient.
Collapse
|
32
|
Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat Methods 2013; 9:1171-9. [PMID: 23169303 PMCID: PMC5734860 DOI: 10.1038/nmeth.2215] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/24/2012] [Indexed: 12/11/2022]
Abstract
Optogenetics with microbial opsin genes has enabled high-speed control of genetically specified cell populations in intact tissue. However, it remains a challenge to independently control subsets of cells within the genetically targeted population. Although spatially precise excitation of target molecules can be achieved using two-photon laser-scanning microscopy (TPLSM) hardware, the integration of two-photon excitation with optogenetics has thus far required specialized equipment or scanning and has not yet been widely adopted. Here we take a complementary approach, developing opsins with custom kinetic, expression and spectral properties uniquely suited to scan times typical of the raster approach that is ubiquitous in TPLSMlaboratories. We use a range of culture, slice and mammalian in vivo preparations to demonstrate the versatility of this toolbox, and we quantitatively map parameter space for fast excitation, inhibition and bistable control. Together these advances may help enable broad adoption of integrated optogenetic and TPLSMtechnologies across experimental fields and systems.
Collapse
|
33
|
Huang M, Li Z, Huang X, Gao W, Zhu C, Xu H, Yuan Y, Shuai L, Chen R, Zhenfang Wu, Dewu Liu. Co-expression of two fibrolytic enzyme genes in CHO cells and transgenic mice. Transgenic Res 2013; 22:779-90. [PMID: 23338789 DOI: 10.1007/s11248-012-9681-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
Abstract
Cellulose is the main non-starch polysaccharides (NSP) in plant cell walls and acts as anti-nutritional factor in animal feed. However, monogastric animals do not synthesize enzymes that cleave such plant structural polysaccharides and thus waste of resources and pollute the environment. We described the vectors construction and co-expressions of a multi-functional cellulase EGX (with the activities of exo-β-1,4-glucanase, endo-β-1,4-glucanase, and endo-β-1,4-xylanase activities) from mollusca, Ampullaria crossean and a β-glucosidase BGL1 from Asperjillus niger in CHO cells and the transgenic mice. The recombinant enzymes were synthesised, secreted by the direction of pig PSP signal peptide and functionally active in the eukaryote systems including both of CHO cells and transgenic mice by RT-PCR analysis, western blot analysis and cellulolytic enzymes activities assays. Expressions were salivary glands-specific dependent under the control of pig PSP promoter in transgenic mice. 2A peptide was used as the self-cleaving sequence to mediate co-expression of the fusion genes and the cleavage efficiency was very high both in vitro and in vivo according to the western blot analysis. In summary, we have demonstrated that the single ORF containing EGX and BGL1 were co-expressed by 2A peptide in CHO cells and transgenic mice. It presents a viable technology for efficient disruption of plant cell wall and liberation of nutrients. To our knowledge, this is the first report using 2A sequence to produce multiple cellulases in mammalian cells and transgenic animals.
Collapse
Affiliation(s)
- Miaorong Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu XQ, Liu HY, Chen QJ, Yang MM, Xin HY, Bai L, Peng JY, Zhao HB, Cao BY. Construction of Foot-and-mouth disease virus 2A-based bicistronic expression vector and coexpression of two genes in goat mammary epithelial cells. ANIMAL PRODUCTION SCIENCE 2013. [DOI: 10.1071/an12235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using animal mammary glands as bioreactors for producing commercially important proteins is a cutting-edge direction in the field of biotechnology development and application. Dairy goats are an important dairy livestock, with roughage-resistance, fast propagation, long lactation periods and high milk production per bodyweight; these characteristics make dairy goats ideal for use as mammary gland bioreactors. Foot-and-mouth disease virus 2A (FMDV 2A) is an efficient viral cleavage element that mediates proteolytic cleavage independent of the presence of other FMDV sequences. It is often incorporated into recombinant vectors to generate cleavage in the presence of heterologous sequences. To achieve specific co-expression of two heterologous genes in goat mammary gland epithelial (GMGE) cells, a mammary gland-specific bicistronic expression vector, pFIEβ, containing the β-casein 5′ flanking sequence and FMDV 2A, was successfully constructed and the specific expression of human interleukin 2 (hIL-2) and enhanced green fluorescent protein (EGFP) was conducted in primary GMGE cells. Another bicistronic expression vector, pFIEC, driven by the cytomegalovirus promoter, was constructed as a positive control. In cells transfected with pFIEβ and pFIEC, RT-PCR verified the existence of recombinant fusion mRNA of hIL-2 upstream of EGFP within the FMDV 2A cassette fragment and western blot analysis showed the existence of the fusion between hIL-2 and EGFP. It is concluded that FMDV 2A generated specific co-expression of multiple genes for the first time in primary GMGE cells driven by the β-casein promoter.
Collapse
|
35
|
Poirier JT, Reddy PS, Idamakanti N, Li SS, Stump KL, Burroughs KD, Hallenbeck PL, Rudin CM. Characterization of a full-length infectious cDNA clone and a GFP reporter derivative of the oncolytic picornavirus SVV-001. J Gen Virol 2012; 93:2606-2613. [DOI: 10.1099/vir.0.046011-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Seneca Valley virus (SVV-001) is an oncolytic picornavirus with selective tropism for a subset of human cancers with neuroendocrine differentiation. To characterize further the specificity of SVV-001 and its patterns and kinetics of intratumoral spread, bacterial plasmids encoding a cDNA clone of the full-length wild-type virus and a derivative virus expressing GFP were generated. The full-length cDNA of the SVV-001 RNA genome was cloned into a bacterial plasmid under the control of the T7 core promoter sequence to create an infectious cDNA clone, pNTX-09. A GFP reporter virus cDNA clone, pNTX-11, was then generated by cloning a fusion protein of GFP and the 2A protein from foot-and-mouth disease virus immediately following the native SVV-001 2A sequence. Recombinant GFP-expressing reporter virus, SVV–GFP, was rescued from cells transfected with in vitro RNA transcripts from pNTX-11 and propagated in cell culture. The proliferation kinetics of SVV-001 and SVV–GFP were indistinguishable. The SVV–GFP reporter virus was used to determine that a subpopulation of permissive cells is present in small-cell lung cancer cell lines previously thought to lack permissivity to SVV-001. Finally, it was shown that SVV–GFP administered to tumour-bearing animals homes in to and infects tumours whilst having no detectable tropism for normal mouse tissues at 1×1011 viral particles kg−1, a dose equivalent to that administered in ongoing clinical trials. These infectious clones will be of substantial value in further characterizing the biology of this virus and as a backbone for the generation of additional oncolytic derivatives.
Collapse
Affiliation(s)
- John T. Poirier
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | - Shawn S. Li
- Neotropix, Inc., 351 Phoenixville Pike, Malvern, PA 19355, USA
| | | | | | | | - Charles M. Rudin
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
36
|
Sun H, Lang Z, Zhu L, Huang D. Acquiring transgenic tobacco plants with insect resistance and glyphosate tolerance by fusion gene transformation. PLANT CELL REPORTS 2012; 31:1877-87. [PMID: 22777591 DOI: 10.1007/s00299-012-1301-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/19/2012] [Accepted: 06/08/2012] [Indexed: 05/27/2023]
Abstract
The advantages of gene 'stacking' or 'pyramiding' are obvious in genetically modified (GM) crops, and several different multi-transgene-stacking methods are available. Using linker peptides for multiple gene transformation is considered to be a good method to meet a variety of needs. In our experiment, the Bt cry1Ah gene, which encodes the insect-resistance protein, and the mG ( 2 ) -epsps gene, which encodes the glyphosate-tolerance protein, were connected by a 2A or LP4/2A linker. Linker 2A is a peptide from the foot-and-mouth disease virus (FMDV) that has self-cleavage activity. LP4 is a peptide from Raphanus sativus seeds that has a recognition site and is cleaved by a protease. LP4/2A is a hybrid peptide that contains the first 9 amino acids of LP4 and 20 amino acids from 2A. We used the linker peptide to construct four coordinated expression vectors: pHAG, pHLAG, pGAH and pGLAH. Two single gene expression vectors, pSAh and pSmG(2), were used as controls. The six expression vectors and the pCAMBIA2301 vector were transferred into tobacco by Agrobacterium tumefaciens-mediated transformation, and 529 transformants were obtained. Molecular detection and bioassay detection data demonstrated that the transgenic tobaccos possessed good pest resistance and glyphosate tolerance. The two genes in the fusion vector were expressed simultaneously. The plants with the genes linked by the LP4/2A peptide showed better pest resistance and glyphosate tolerance than the plants with the genes linked by 2A. The expression level of the two genes linked by LP4/2A was not significantly different from the single gene vector. Key message The expression level of the two genes linked by LP4/2A was higher than those linked by 2A and was not significantly different from the single gene vector.
Collapse
Affiliation(s)
- He Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | | | | | | |
Collapse
|
37
|
Calder A, Roth-Albin I, Bhatia S, Pilquil C, Lee JH, Bhatia M, Levadoux-Martin M, McNicol J, Russell J, Collins T, Draper JS. Lengthened G1 phase indicates differentiation status in human embryonic stem cells. Stem Cells Dev 2012; 22:279-95. [PMID: 22827698 DOI: 10.1089/scd.2012.0168] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The cell cycle in pluripotent stem cells is notable for the brevity of the G1 phase, permitting rapid proliferation and reducing the duration of differentiation signal sensitivity associated with the G1 phase. Changes in the length of G1 phase are understood to accompany the differentiation of human embryonic stem cells (hESCs), but the timing and extent of such changes are poorly defined. Understanding the early steps governing the differentiation of hESCs will facilitate better control over differentiation for regenerative medicine and drug discovery applications. Here we report the first use of real-time cell cycle reporters in hESCs. We coexpressed the chromatin-decorating H2B-GFP fusion protein and the fluorescence ubiquitination cell cycle indicator (FUCCI)-G1 fusion protein, a G1 phase-specific reporter, in hESCs to measure the cell cycle status in live cells. We found that FUCCI-G1 expression is weakly detected in undifferentiated hESCs, but rapidly increases upon differentiation. hESCs in the G1 phase display a reduction in undifferentiated colony-initiating cell function, underscoring the relationship between G1 phase residence and differentiation. Importantly, we demonstrate inter- and intracolony variation in response to chemicals that induce differentiation, implying extensive cell-cell variation in the threshold necessary to alter the G1 phase length. Finally, gain of differentiation markers appears to be coincident with G1 phase lengthening, with distinct G1 phase profiles associated with different markers of early hESC differentiation. Our data demonstrate the tight coupling of cell cycle changes to hESC differentiation, and highlight the cell cycle reporter system and assays we have implemented as a novel avenue for investigating pluripotency and differentiation.
Collapse
Affiliation(s)
- Ashley Calder
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, McMaster University , Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Suree N, Koizumi N, Sahakyan A, Shimizu S, An DS. A novel HIV-1 reporter virus with a membrane-bound Gaussia princeps luciferase. J Virol Methods 2012; 183:49-56. [PMID: 22483780 DOI: 10.1016/j.jviromet.2012.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 03/15/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
Abstract
HIV-1 reporter viruses are a critical tool for investigating HIV-1 infection. By having a reporter gene incorporated into the HIV-1 genome, the expressed reporter protein acts as a specific tag, thus enabling specific detection of HIV-1 infected cells. Currently existing HIV-1 reporter viruses utilize reporters for the detection of HIV-1 infected cells by a single assay. A reporter virus enabling the detection of viral particles as well as HIV-1 infected cells by two assays can be more versatile for many applications. In this report, a novel reporter HIV-1 was generated by introducing a membrane-anchored form of the Gaussia princeps luciferase gene (mGluc) upstream of the nef gene in the HIV-1(NL4-3) genome using a picornaviral 2A-like sequence. The resulting HIV-1(NL4-3mGluc) virus expresses G. princeps luciferase efficiently on viral membrane and the cell surface of infected human T cell lines and primary peripheral blood mononuclear cells. This HIV-1 reporter is replication competent and the reporter gene mGluc is expressed during multiple rounds of infection. Importantly, viral particles can be detected by bioluminescence and infected cells can be detected simultaneously by bioluminescence and flow cytometric assays. With the versatility of two sensitive detection methods, this novel luciferase reporter has many applications such as cell-based screening for anti-HIV-1 agents or studies of HIV-1 pathogenicity.
Collapse
Affiliation(s)
- Nuttee Suree
- School of Nursing, University of California, Los Angeles, UCLA AIDS Institute, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
39
|
Wälchli S, Løset GÅ, Kumari S, Nergård Johansen J, Yang W, Sandlie I, Olweus J. A practical approach to T-cell receptor cloning and expression. PLoS One 2011; 6:e27930. [PMID: 22132171 PMCID: PMC3221687 DOI: 10.1371/journal.pone.0027930] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/27/2011] [Indexed: 11/25/2022] Open
Abstract
Although cloning and expression of T-cell Receptors (TcRs) has been performed for almost two decades, these procedures are still challenging. For example, the use of T-cell clones that have undergone limited expansion as starting material to limit the loss of interesting TcRs, must be weighed against the introduction of mutations by excess PCR cycles. The recent interest in using specific TcRs for cancer immunotherapy has, however, increased the demand for practical and robust methods to rapidly clone and express TcRs. Two main technologies for TcR cloning have emerged; the use of a set of primers specifically annealing to all known TcR variable domains, and 5′-RACE amplification. We here present an improved 5′-RACE protocol that represents a fast and reliable way to identify a TcR from 105 cells only, making TcR cloning feasible without a priori knowledge of the variable domain sequence. We further present a detailed procedure for the subcloning of TcRα and β chains into an expression system. We show that a recombination-based cloning protocol facilitates simple and rapid transfer of the TcR transgene into different expression systems. The presented comprehensive method can be performed in any laboratory with standard equipment and with a limited amount of starting material. We finally exemplify the straightforwardness and reliability of our procedure by cloning and expressing several MART-1-specific TcRs and demonstrating their functionality.
Collapse
MESH Headings
- Cloning, Molecular/methods
- Electroporation
- Genetic Vectors/genetics
- Humans
- Jurkat Cells
- MART-1 Antigen/genetics
- MART-1 Antigen/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Recombination, Genetic/genetics
- Reproducibility of Results
- Retroviridae/genetics
Collapse
Affiliation(s)
- Sébastien Wälchli
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- * E-mail: (SW); (JO)
| | - Geir Åge Løset
- Department of Molecular Biosciences and Centre for Immune Regulation, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Shraddha Kumari
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Jorunn Nergård Johansen
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Weiwen Yang
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Inger Sandlie
- Department of Molecular Biosciences and Centre for Immune Regulation, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Johanna Olweus
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- * E-mail: (SW); (JO)
| |
Collapse
|
40
|
Lebbink RJ, Lowe M, Chan T, Khine H, Wang X, McManus MT. Polymerase II promoter strength determines efficacy of microRNA adapted shRNAs. PLoS One 2011; 6:e26213. [PMID: 22031824 PMCID: PMC3198731 DOI: 10.1371/journal.pone.0026213] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 09/22/2011] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of RNAi and microRNAs more than 10 years ago, much research has focused on the development of systems that usurp microRNA pathways to downregulate gene expression in mammalian cells. One of these systems makes use of endogenous microRNA pri-cursors that are expressed from polymerase II promoters where the mature microRNA sequence is replaced by gene specific duplexes that guide RNAi (shRNA-miRs). Although shRNA-miRs are effective in directing target mRNA knockdown and hence reducing protein expression in many cell types, variability of RNAi efficacy in cell lines has been an issue. Here we show that the choice of the polymerase II promoter used to drive shRNA expression is of critical importance to allow effective mRNA target knockdown. We tested the abundance of shRNA-miRs expressed from five different polymerase II promoters in 6 human cell lines and measured their ability to drive target knockdown. We observed a clear positive correlation between promoter strength, siRNA expression levels, and protein target knockdown. Differences in RNAi from the shRNA-miRs expressed from the various promoters were particularly pronounced in immune cells. Our findings have direct implications for the design of shRNA-directed RNAi experiments and the preferred RNAi system to use for each cell type.
Collapse
Affiliation(s)
- Robert Jan Lebbink
- Department of Microbiology and Immunology, Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Maggie Lowe
- Department of Microbiology and Immunology, Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Theresa Chan
- Department of Microbiology and Immunology, Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Htet Khine
- Department of Microbiology and Immunology, Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Xiaoyin Wang
- Department of Microbiology and Immunology, Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Michael T. McManus
- Department of Microbiology and Immunology, Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Nefzger CM, Haynes JM, Pouton CW. Directed expression of Gata2, Mash1, and Foxa2 synergize to induce the serotonergic neuron phenotype during in vitro differentiation of embryonic stem cells. Stem Cells 2011; 29:928-39. [PMID: 21472823 DOI: 10.1002/stem.640] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Investigation of serotonergic neuronal activity and its relationship to disease has been limited by a lack of physiologically relevant in vitro cell models. Serotonergic neurons derived from embryonic stem cells (ESCs) could provide a platform for such studies and provide models for use in drug discovery. Here, we report enhancement of serotonergic differentiation using a genetic approach. Expression of Gata2 increased the yield of serotonergic neurons. Enhancement was only achieved when Gata2 was expressed under the control of the tissue-specific promoter of the transcription factor Nkx6.1. High levels of Gata2 expression in ESCs compromised pluripotency and induced non-neuronal differentiation. Combined directed expression of Gata2, proneural gene Mash1, and forkhead transcription factor Foxa2 further enhanced serotonergic neural differentiation, resulting in a 10-fold increase in serotonin content. These neurons were also capable of depolarization (KCl, 30 mM)-induced elevations of intracellular Ca(2+) . The presence of sonic hedgehog during differentiation produced a further modest increase in numbers (1.5-fold). Transgene expression did not influence the number of tyrosine hydroxylase positive neurons in the cultures after 20 days, implying that Gata2, Mash1, and Foxa2 modulate in vitro differentiation at a time beyond the decision-point for dopaminergic or nondopaminergic commitment. This study demonstrates that the directed expression of specific transcription factors enhances serotonergic neuron differentiation in vitro and highlights the importance of transgene expression at the right stage of ESC differentiation to effect the generation of a desired neural subtype.
Collapse
Affiliation(s)
- Christian M Nefzger
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Australia
| | | | | |
Collapse
|
42
|
González M, Martín-Ruíz I, Jiménez S, Pirone L, Barrio R, Sutherland JD. Generation of stable Drosophila cell lines using multicistronic vectors. Sci Rep 2011; 1:75. [PMID: 22355594 PMCID: PMC3216562 DOI: 10.1038/srep00075] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/09/2011] [Indexed: 12/18/2022] Open
Abstract
Insect cell culture is becoming increasingly important for applications including recombinant protein production and cell-based screening with chemical or RNAi libraries. While stable mammalian cell lines expressing a protein of interest can be efficiently prepared using IRES-based vectors or viral-based approaches, options for stable insect cell lines are more limited. Here, we describe pAc5-STABLEs, new vectors for use in Drosophila cell culture to facilitate stable transformation. We show that viral-derived 2A-like (or "CHYSEL") peptides function in Drosophila cells and can mediate the multicistronic expression of two or three proteins of interest under control of the Actin5C constitutive promoter. The current vectors allow mCherry and/or GFP fusions to be generated for positive selection by G418 resistance in cells and should serve as a flexible platform for future applications.
Collapse
Affiliation(s)
- Monika González
- Gene Silencing Platform, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Osborn MJ, DeFeo AP, Blazar BR, Tolar J. Synthetic zinc finger nuclease design and rapid assembly. Hum Gene Ther 2011; 22:1155-65. [PMID: 21663559 DOI: 10.1089/hum.2011.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Engineered zinc finger nucleases (ZFNs) are a tool for genome manipulation that are of great interest to scientists in many fields. To meet the needs of researchers wishing to employ ZFNs, an inexpensive, rapid assembly procedure would be beneficial to laboratories that do not have access to the proprietary reagents often required for ZFN production. Using freely available sequence data derived from the Zinc Finger Targeter database, we developed a protocol for synthesis and directed insertion of user-defined ZFNs into a versatile plasmid expression system. This oligonucleotide-based isothermal DNA assembly protocol was used to determine whether we could generate functional nucleases capable of endogenous gene editing. We targeted the human α-l-iduronidase (IDUA) gene on chromosome 4, mutations of which result in the severe lysosomal storage disease mucopolysaccharidosis type I. In approximately 1 week we were able to design, assemble, and test six IDUA-specific ZFNs. In a single-stranded annealing assay five of the six candidates we tested performed at a level comparable to or surpassing previously reported ZFNs. One of the five subsequently showed nuclease activity at the endogenous genomic IDUA locus. To our knowledge, this is the first demonstration of in silico-designed, oligonucleotide-assembled, synthetic ZFNs, requiring no specialized templates or reagents that are capable of endogenous human gene target site activity. This method, termed CoDA-syn (context-dependent assembly-synthetic), should facilitate a more widespread use of ZFNs in the research community.
Collapse
Affiliation(s)
- Mark J Osborn
- University of Minnesota Masonic Cancer Center and Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Pediatrics, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
44
|
Khodosevich K, Watanabe Y, Monyer H. EphA4 preserves postnatal and adult neural stem cells in an undifferentiated state in vivo. J Cell Sci 2011; 124:1268-79. [DOI: 10.1242/jcs.076059] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the postnatal brain, new neurons continue to be generated in two neurogenic areas, the subventricular zone of the lateral ventricles (SVZ) and the subgranular zone of the hippocampus. There is evidence that ephrins and their Eph receptors belong to a signaling network that regulates neurogenesis. On the basis of previous data, we have identified Eph receptor A4 (EphA4) as a potential regulator of neurogenesis. We showed by immunohistochemistry that in adult neurogenic niches EphA4 is expressed only by neural stem cells (NSCs). Using in vitro and in vivo assays, we demonstrated that EphA4 expression maintains NSCs in an undifferentiated state. Specifically, in neurosphere cultures Epha4 knockdown resulted in a decrease of NSC proliferation and premature differentiation. In postnatal and adult brain, Epha4 knockdown caused a decrease in NSCs in the SVZ, eventually resulting in a reduced number of postnatally generated neuroblasts. Both in vitro and in vivo effects were rescued by co-infection with a modified EphA4 that was resistant to Epha4 shRNA.
Collapse
Affiliation(s)
- Konstantin Khodosevich
- Department of Clinical Neurobiology, Heidelberg University Medical Center, 69120 Heidelberg, Germany
- Department of Clinical Neurobiology/A230, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Yasuhito Watanabe
- Department of Clinical Neurobiology, Heidelberg University Medical Center, 69120 Heidelberg, Germany
- Department of Clinical Neurobiology/A230, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, Heidelberg University Medical Center, 69120 Heidelberg, Germany
- Department of Clinical Neurobiology/A230, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
45
|
Rothwell DG, Crossley R, Bridgeman JS, Sheard V, Zhang Y, Sharp TV, Hawkins RE, Gilham DE, McKay TR. Functional expression of secreted proteins from a bicistronic retroviral cassette based on foot-and-mouth disease virus 2A can be position dependent. Hum Gene Ther 2011; 21:1631-7. [PMID: 20528679 DOI: 10.1089/hum.2009.197] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The expression of two or more genes from a single viral vector has been widely used to label or select for cells containing the transgenic element. Identification of the foot-and-mouth disease virus (FMDV) 2A cleavage peptide as a polycistronic linker capable of producing equivalent levels of transgene expression has greatly improved this approach in the field of gene therapy. However, as a consequence of 2A posttranslational cleavage the upstream protein is left with a residual 19 amino acids from the 2A sequence on its carboxy terminus, and the downstream protein is left with an additional 2 to 5 amino acids on its amino terminus. Here we have assessed the functional consequences of the FMDV 2A cleavage motif on two secreted proteins (interleukin [IL]-2 and transforming growth factor [TGF]-β) when expressed from a retroviral bicistronic vector. Whereas IL-2 expression and function were found to be unaffected by the 2A motif in either orientation, functional expression of secreted TGF-β was significantly abrogated when the transgene was expressed upstream of the 2A sequence. We believe this is a consequence of aberrant cleavage and intracellular trafficking of the TGF-β polyprotein. These results highlight that to achieve functional expression of secreted proteins consideration must be taken of the transgenic protein's posttranslational modification and trafficking when using 2A-based bicistronic cassettes.
Collapse
Affiliation(s)
- Dominic G Rothwell
- Cancer Research UK Department of Medical Oncology, School of Cancer and Imaging Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Trust, Manchester M20 4BX, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
de Felipe P, Luke GA, Brown JD, Ryan MD. Inhibition of 2A-mediated 'cleavage' of certain artificial polyproteins bearing N-terminal signal sequences. Biotechnol J 2010; 5:213-23. [PMID: 19946875 PMCID: PMC2978324 DOI: 10.1002/biot.200900134] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Where 2A oligopeptide sequences occur within ORFs, the formation of the glycyl-prolyl peptide bond at the C-terminus of (each) 2A does not occur. This property can be used to concatenate sequences encoding several proteins into a single ORF: each component of such an artificial polyprotein is generated as a discrete translation product. 2A and ‘2A-like’ sequences have become widely utilised in biotechnology and biomedicine. Individual proteins may also be co- and post-translationally targeted to a variety of sub-cellular sites. In the case of polyproteins bearing N-terminal signal sequences we observed, however, that the protein downstream of 2A (no signal) was translocated into the endoplasmic reticulum (ER). We interpreted these data as a form of ‘slipstream’ translocation: downstream proteins, without signals, were translocated through a translocon pore already formed by the signal sequence at the N-terminus of the polyprotein. Here we show this effect is, in fact, due to inhibition of the 2A reaction (formation of fusion protein) by the C-terminal region (immediately upstream of 2A) of some proteins when translocated into the ER. Solutions to this problem include the use of longer 2As (with a favourable upstream context) or modifying the order of proteins comprising polyproteins.
Collapse
Affiliation(s)
- Pablo de Felipe
- Centre for Biomolecular Sciences, North Haugh, University of St. Andrews, St. Andrews, Scotland, UK
| | | | | | | |
Collapse
|
47
|
Zhao B, Song A, Haque R, Lei F, Weiler L, Xiong X, Wu Y, Croft M, Song J. Cooperation between molecular targets of costimulation in promoting T cell persistence and tumor regression. THE JOURNAL OF IMMUNOLOGY 2009; 182:6744-52. [PMID: 19454669 DOI: 10.4049/jimmunol.0804387] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Costimulation regulates multiple cellular processes of T cells inducing proliferation, expansion, and survival. The molecular targets of costimulation might then be useful to augment T cell activities. Two defined targets of costimulatory signals in primary T cells are the anti-apoptotic bcl-2 family molecule Bcl-x(L), and survivin, an inhibitor of apoptosis family member that might regulate both cell division and survival. However, the relative importance of, and relationship between, these molecules in primary T cells is not clear. To understand whether they have overlapping or cooperative functions, we used retrovirus-mediated transduction to introduce Bcl-x(L) and survivin separately, or together linked by a 2A picornavirus self-cleaving peptide, into Ag-responding CD8(+) T cells. We found that CD8(+) effector T cells expressing both Bcl-x(L) and survivin strongly expanded at an early stage and had a long-term survival advantage over cells transduced with either molecule alone. In vivo, with response to tumor-expressed Ag following adoptive T cell transfer, Ag-reactive CD8(+) T cells expressing both Bcl-x(L) and survivin displayed greatly enhanced tumor protective activity compared with CD8(+) T cells expressing either molecule introduced separately. These results indicate that Bcl-x(L) and survivin can critically contribute in a cooperative, nonredundant manner to augment the accumulation and persistence of CD8(+) T cells following encounter with Ag. The data provide new insights into why costimulatory signals might need to be sustained over time and suggest a potential novel approach to augment cellular immunotherapy for cancer.
Collapse
Affiliation(s)
- Baohua Zhao
- Department of Microbiology and Immunology and Pennsylvania State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nowotschin S, Eakin GS, Hadjantonakis AK. Dual transgene strategy for live visualization of chromatin and plasma membrane dynamics in murine embryonic stem cells and embryonic tissues. Genesis 2009; 47:330-6. [PMID: 19358158 PMCID: PMC2875877 DOI: 10.1002/dvg.20500] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To simultaneously follow multiple subcellular characteristics, for example, cell position and cell morphology, in living specimens requires multiple subcellular labels. Toward this goal, we generated dual-tagged mouse embryonic stem (ES) cells constitutively expressing differentially localized, spectrally distinct, genetically encoded fluorescent protein fusions. We have used human histone H2B fusions to fluorescent proteins to mark chromatin. This provides a descriptor of cell position, division, and death. An additional descriptor of cell morphology is achieved by combining this transgene with select lipid-modified fluorescent protein fusions that mark the plasma membrane. Using this strategy, wewere able to live image cellular dynamics in three dimensions over time both in cultured ES cells and in mouse embryos generated using dual-tagged ES cells. This study, therefore, presents the feasibility of applying multiple spectrally and subcellularly distinct fluorescent protein reporters for live imaging studies in ES cells and mouse embryos. Furthermore, the increasing availability of spectral variant fluorescent proteins along with the development of methods that permit improved spectral separation now facilitate multiplexing of fluorescent reporters to provide readouts of a variety of anatomical and physiological behaviors simultaneously in living specimens.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York
| | - Guy S. Eakin
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York
| | | |
Collapse
|
49
|
Luke GA, Escuin H, Felipe PD, Ryan MD. 2A to the Fore – Research, Technology and Applications. Biotechnol Genet Eng Rev 2009; 26:223-60. [DOI: 10.5661/bger-26-223] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Targeting of the CNS in MPS-IH using a nonviral transferrin-alpha-L-iduronidase fusion gene product. Mol Ther 2008; 16:1459-1466. [PMID: 18523448 DOI: 10.1038/mt.2008.119] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 05/06/2008] [Indexed: 11/09/2022] Open
Abstract
Mucopolysaccharidosis type I (Hurler syndrome) is caused by a deficiency of the enzyme alpha-L-iduronidase (IDUA), and is characterized by widespread lysosomal glycosaminoglycan (GAG) accumulation. Successful treatment of central nervous system (CNS) diseases is limited by the presence of the blood-brain barrier, which prevents penetration of the therapeutic enzyme. Given that the brain capillary endothelial cells that form this barrier express high levels of the transferrin receptor (TfR), we hypothesized that the coupling of IDUA to transferrin (Tf) would facilitate IDUA delivery to the CNS. A plasmid bearing a fusion gene consisting of Tf and IDUA was constructed which, when delivered in vivo, resulted in the production of high levels of an enzymatically active protein that was transported into the CNS by TfR-mediated endocytosis. Short-term treatment resulted in a decrease in GAGs in the cerebellum of mucopolysaccharidosis type I (MPS I) mice. This approach, therefore, represents a potential strategy for the delivery of therapeutic enzyme to the CNS.
Collapse
|