1
|
Chen CY, Cai X, Konkle BA, Miao CH. Rescue of the endogenous FVIII expression in hemophilia A mice using CRISPR-Cas9 mRNA LNPs. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102383. [PMID: 39640016 PMCID: PMC11617921 DOI: 10.1016/j.omtn.2024.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Gene editing provides a promising alternative approach that may achieve long-term FVIII expression for hemophilia A (HemA) treatment. In this study, we investigated in vivo correction of a mutant factor VIII (FVIII) gene in HemA mice. We first developed MC3-based LNPs for efficient mRNA delivery into liver sinusoidal endothelial cells (LSECs), the major site of FVIII biosynthesis. To target a five base pair deletion in FVIII exon 1 in a specific HemA mouse strain, we injected LNPs encapsulating Cas9 mRNA and specifically designed sgRNAs intravenously for in vivo gene editing of the mutant FVIII. Indel variants generated at the mutant site contained mostly a single base-pair deletion, resulting in frameshift correction of FVIII gene. Sustained endogenous FVIII activity up to 6% was achieved over 26 weeks in treated HemA mice. Sequencing data indicated an average gene editing rate of 15.3% in LSECs. Our study suggests that optimized MC3 LNP formulations, combined with CRISPR-Cas9 technology, can effectively correct the mutant FVIII gene in LSECs and restore FVIII activity for therapeutic treatment of HemA.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Xiaohe Cai
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Barbara A. Konkle
- Washington Center for Bleeding Disorders, Seattle, WA 98101, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Carol H. Miao
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Lyu P, Yadav MK, Yoo KW, Jiang C, Li Q, Atala A, Lu B. Gene therapy of Dent disease type 1 in newborn ClC-5 null mice for sustained transgene expression and gene therapy effects. Gene Ther 2024; 31:563-571. [PMID: 39322766 DOI: 10.1038/s41434-024-00490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Dent disease type 1 is caused by changes in the chloride voltage-gated channel 5 (CLCN5) gene on chromosome X, resulting in the lack or dysfunction of chloride channel ClC-5. Individuals affected by Dent disease type 1 show proteinuria and hypercalciuria. Previously we found that lentiviral vector-mediated hCLCN5 cDNA supplementary therapy in ClC-5 null mice was effective only for three months following gene delivery, and the therapeutic effects disappeared four months after treatment, most likely due to immune responses to the ClC-5 proteins expressed in the treated cells. Here we tried two strategies to reduce possible immune responses: 1) confining the expression of ClC-5 expression to the tubular cells with tubule-specific Npt2a and Sglt2 promoters, and 2) performing gene therapy in newborn mutant mice whose immune system has not fully developed. We found that although Npt2a and Sglt2 promoters successfully drove ClC-5 expression in the kidneys of the mutant mice, the treatment did not ameliorate the phenotypes. However, gene delivery to the kidneys of newborn Clcn5 mutant mice enabled long-term transgene expression and phenotype improvement. Our data suggest that performing gene therapy on Dent disease affected subjects soon after birth could be a promising strategy to attenuate immune responses in Dent disease type 1 gene therapy.
Collapse
Affiliation(s)
- Pin Lyu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Manish Kumar Yadav
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kyung Whan Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Cuili Jiang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Qingqi Li
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
3
|
Samelson-Jones BJ, Small JC, George LA. Roctavian gene therapy for hemophilia A. Blood Adv 2024; 8:5179-5189. [PMID: 38991118 PMCID: PMC11530397 DOI: 10.1182/bloodadvances.2023011847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
ABSTRACT After successful efforts in adeno-associated virus (AAV) gene addition for hemophilia B gene therapy, the development of valoctocogene roxaparvovec (Roctavian; Biomarin) over the past decade represents a potential new hemophilia A (HA) treatment paradigm. Roctavian is the first licensed HA gene therapy that was conditionally approved in Europe in August 2022 and approved in the United States in June 2023. Beyond Roctavian, there are ongoing pivotal trials of additional AAV vectors for HA, others that are progressing through preclinical development or early-phase clinical trial, as well as non-AAV approaches in clinical development. This review focuses on the clinical development of Roctavian for which the collective clinical trials represent the largest body of work thus far available for any licensed AAV product. From this pioneering clinical development, several outstanding questions have emerged for which the answers will undoubtedly be important to the clinical adaptation of Roctavian and future efforts in HA gene therapy. Most notably, unexplained year-over-year declines in factor VIII (FVIII) expression after Roctavian treatment contrast with stable FVIII expression observed in other AAV HA gene therapy clinical trials with more modest initial FVIII expression. This observation has been qualitatively replicated in animal models that may permit mechanistic study. The development and approval of Roctavian is a landmark in HA therapeutics, although next-generation approaches are needed before HA gene therapy fulfills its promise of stable FVIII expression that normalizes hemostasis.
Collapse
Affiliation(s)
- Benjamin J. Samelson-Jones
- Clinical In Vivo Gene Therapy and Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Juliana C. Small
- Clinical In Vivo Gene Therapy and Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lindsey A. George
- Clinical In Vivo Gene Therapy and Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
4
|
Gonzalez-Visiedo M, Herzog RW, Munoz-Melero M, Blessinger SA, Cook-Mills JM, Daniell H, Markusic DM. Viral Vector Based Immunotherapy for Peanut Allergy. Viruses 2024; 16:1125. [PMID: 39066287 PMCID: PMC11281582 DOI: 10.3390/v16071125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Food allergy (FA) is estimated to impact up to 10% of the population and is a growing health concern. FA results from a failure in the mucosal immune system to establish or maintain immunological tolerance to innocuous dietary antigens, IgE production, and the release of histamine and other mediators upon exposure to a food allergen. Of the different FAs, peanut allergy has the highest incidence of severe allergic responses, including systemic anaphylaxis. Despite the recent FDA approval of peanut oral immunotherapy and other investigational immunotherapies, a loss of protection following cessation of therapy can occur, suggesting that these therapies do not address the underlying immune response driving FA. Our lab has shown that liver-directed gene therapy with an adeno-associated virus (AAV) vector induces transgene product-specific regulatory T cells (Tregs), eradicates pre-existing pathogenic antibodies, and protects against anaphylaxis in several models, including ovalbumin induced FA. In an epicutaneous peanut allergy mouse model, the hepatic AAV co-expression of four peanut antigens Ara h1, Ara h2, Ara h3, and Ara h6 together or the single expression of Ara h3 prevented the development of a peanut allergy. Since FA patients show a reduction in Treg numbers and/or function, we believe our approach may address this unmet need.
Collapse
Affiliation(s)
- Miguel Gonzalez-Visiedo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Roland W. Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Maite Munoz-Melero
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Sophia A. Blessinger
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Joan M. Cook-Mills
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - David M. Markusic
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| |
Collapse
|
5
|
Milani M, Canepari C, Assanelli S, Merlin S, Borroni E, Starinieri F, Biffi M, Russo F, Fabiano A, Zambroni D, Annoni A, Naldini L, Follenzi A, Cantore A. GP64-pseudotyped lentiviral vectors target liver endothelial cells and correct hemophilia A mice. EMBO Mol Med 2024; 16:1427-1450. [PMID: 38684862 PMCID: PMC11178766 DOI: 10.1038/s44321-024-00072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Lentiviral vectors (LV) are efficient vehicles for in vivo gene delivery to the liver. LV integration into the chromatin of target cells ensures their transmission upon proliferation, thus allowing potentially life-long gene therapy following a single administration, even to young individuals. The glycoprotein of the vesicular stomatitis virus (VSV.G) is widely used to pseudotype LV, as it confers broad tropism and high stability. The baculovirus-derived GP64 envelope protein has been proposed as an alternative for in vivo liver-directed gene therapy. Here, we perform a detailed comparison of VSV.G- and GP64-pseudotyped LV in vitro and in vivo. We report that VSV.G-LV transduced hepatocytes better than GP64-LV, however the latter showed improved transduction of liver sinusoidal endothelial cells (LSEC). Combining GP64-pseudotyping with the high surface content of the phagocytosis inhibitor CD47 further enhanced LSEC transduction. Coagulation factor VIII (FVIII), the gene mutated in hemophilia A, is naturally expressed by LSEC, thus we exploited GP64-LV to deliver a FVIII transgene under the control of the endogenous FVIII promoter and achieved therapeutic amounts of FVIII and correction of hemophilia A mice.
Collapse
Affiliation(s)
- Michela Milani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cesare Canepari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Simone Assanelli
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Ester Borroni
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Francesco Starinieri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mauro Biffi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Fabiano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
6
|
Borroni E, Borsotti C, Cirsmaru RA, Kalandadze V, Famà R, Merlin S, Brown B, Follenzi A. Immune tolerance promotion by LSEC-specific lentiviral vector-mediated expression of the transgene regulated by the stabilin-2 promoter. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102116. [PMID: 38333675 PMCID: PMC10850788 DOI: 10.1016/j.omtn.2024.102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024]
Abstract
Liver sinusoidal endothelial cells (LSECs) are specialized endocytic cells that clear the body from blood-borne pathogens and waste macromolecules through scavenger receptors (SRs). Among the various SRs expressed by LSECs is stabilin-2 (STAB2), a class H SR that binds to several ligands, among which endogenous coagulation products. Given the well-established tolerogenic function of LSECs, we asked whether the STAB2 promoter (STAB2p) would enable us to achieve LSEC-specific lentiviral vector (LV)-mediated transgene expression, and whether the expression of this transgene would be maintained over the long term due to tolerance induction. Here, we show that STAB2p ensures LSEC-specific green fluorescent protein (GFP) expression by LV in the absence of a specific cytotoxic CD8+ T cell immune response, even in the presence of GFP-specific CD8+ T cells, confirming the robust tolerogenic function of LSECs. Finally, we show that our delivery system can partially and permanently restore FVIII activity in a mouse model of severe hemophilia A without the formation of anti-FVIII antibodies. Overall, our findings establish the suitability of STAB2p for long-term LSEC-restricted expression of therapeutic proteins, such as FVIII, or to achieve antigen-specific immune tolerance in auto-immune diseases.
Collapse
Affiliation(s)
- Ester Borroni
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Chiara Borsotti
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Roberta A. Cirsmaru
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Vakhtang Kalandadze
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Rosella Famà
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Brian Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
- Department of Attività Integrate Ricerca Innovazione, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e C.Arrigo, Alessandria, Italy
| |
Collapse
|
7
|
Annoni A, Cantore A. LSpECifying transgene expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102144. [PMID: 38384446 PMCID: PMC10879793 DOI: 10.1016/j.omtn.2024.102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Affiliation(s)
- Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- "Vita-Salute San Raffaele" University, Milan, Italy
| |
Collapse
|
8
|
Giacca G, Naldini L, Squadrito ML. Harnessing lentiviral vectors for in vivo gene therapy of liver metastases. Clin Transl Med 2024; 14:e1542. [PMID: 38230542 PMCID: PMC10792462 DOI: 10.1002/ctm2.1542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024] Open
Affiliation(s)
- Giovanna Giacca
- Targeted Cancer Gene Therapy UnitSan Raffaele Telethon Institute for Gene TherapyIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita Salute San Raffaele UniversityMilanItaly
| | - Luigi Naldini
- Targeted Cancer Gene Therapy UnitSan Raffaele Telethon Institute for Gene TherapyIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita Salute San Raffaele UniversityMilanItaly
| | - Mario Leonardo Squadrito
- Targeted Cancer Gene Therapy UnitSan Raffaele Telethon Institute for Gene TherapyIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita Salute San Raffaele UniversityMilanItaly
| |
Collapse
|
9
|
Valentino LA, Ozelo MC, Herzog RW, Key NS, Pishko AM, Ragni MV, Samelson-Jones BJ, Lillicrap D. A review of the rationale for gene therapy for hemophilia A with inhibitors: one-shot tolerance and treatment? J Thromb Haemost 2023; 21:3033-3044. [PMID: 37225021 DOI: 10.1016/j.jtha.2023.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023]
Abstract
The therapeutic landscape for people living with hemophilia A (PwHA) has changed dramatically in recent years, but many clinical challenges remain, including the development of inhibitory antibodies directed against factor VIII (FVIII) that occur in approximately 30% of people with severe hemophilia A. Emicizumab, an FVIII mimetic bispecific monoclonal antibody, provides safe and effective bleeding prophylaxis for many PwHA, but clinicians still explore therapeutic strategies that result in immunologic tolerance to FVIII to enable effective treatment with FVIII for problematic bleeding events. This immune tolerance induction (ITI) to FVIII is typically accomplished through repeated long-term exposure to FVIII using a variety of protocols. Meanwhile, gene therapy has recently emerged as a novel ITI option that provides an intrinsic, consistent source of FVIII. As gene therapy and other therapies now expand therapeutic options for PwHA, we review the persistent unmet medical needs with respect to FVIII inhibitors and effective ITI in PwHA, the immunology of FVIII tolerization, the latest research on tolerization strategies, and the role of liver-directed gene therapy to mediate FVIII ITI.
Collapse
Affiliation(s)
- Leonard A Valentino
- National Hemophilia Foundation, New York, New York, USA; Rush University, Chicago, Illinois, USA.
| | | | - Roland W Herzog
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nigel S Key
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | | | | | | |
Collapse
|
10
|
Gong J, Yang R, Zhou M, Chang LJ. Improved intravenous lentiviral gene therapy based on endothelial-specific promoter-driven factor VIII expression for hemophilia A. Mol Med 2023; 29:74. [PMID: 37308845 DOI: 10.1186/s10020-023-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Hemophilia A (HA) is an X-linked monogenic disorder caused by deficiency of the factor VIII (FVIII) gene in the intrinsic coagulation cascade. The current protein replacement therapy (PRT) of HA has many limitations including short term effectiveness, high cost, and life-time treatment requirement. Gene therapy has become a promising treatment for HA. Orthotopic functional FVIII biosynthesis is critical to its coagulation activities. METHODS To investigate targeted FVIII expression, we developed a series of advanced lentiviral vectors (LVs) carrying either a universal promoter (EF1α) or a variety of tissue-specific promoters, including endothelial-specific (VEC), endothelial and epithelial-specific (KDR), and megakaryocyte-specific (Gp and ITGA) promoters. RESULTS To examine tissue specificity, the expression of a B-domain deleted human F8 (F8BDD) gene was tested in human endothelial and megakaryocytic cell lines. Functional assays demonstrated FVIII activities of LV-VEC-F8BDD and LV-ITGA-F8BDD in the therapeutic range in transduced endothelial and megakaryocytic cells, respectively. In F8 knockout mice (F8 KO mice, F8null mice), intravenous (iv) injection of LVs illustrated different degrees of phenotypic correction as well as anti-FVIII immune response for the different vectors. The iv delivery of LV-VEC-F8BDD and LV-Gp-F8BDD achieved 80% and 15% therapeutic FVIII activities over 180 days, respectively. Different from the other LV constructs, the LV-VEC-F8BDD displayed a low FVIII inhibitory response in the treated F8null mice. CONCLUSIONS The LV-VEC-F8BDD exhibited high LV packaging and delivery efficiencies, with endothelial specificity and low immunogenicity in the F8null mice, thus has a great potential for clinical applications.
Collapse
Affiliation(s)
- Jie Gong
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Rui Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Min Zhou
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Shenzhen Geno-Immune Medical Institute, 6 Yuexing 2nd Rd., 2nd Floor, Nanshan Dist., Shenzhen, 518057, Guangdong Province, China.
| |
Collapse
|
11
|
Arruda VR, Lillicrap D, Herzog RW. Immune complications and their management in inherited and acquired bleeding disorders. Blood 2022; 140:1075-1085. [PMID: 35793465 PMCID: PMC9461471 DOI: 10.1182/blood.2022016530] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Disorders of coagulation, resulting in serious risks for bleeding, may be caused by autoantibody formation or by mutations in genes encoding coagulation factors. In the latter case, antidrug antibodies (ADAs) may form against the clotting factor protein drugs used in replacement therapy, as is well documented in the treatment of the X-linked disease hemophilia. Such neutralizing antibodies against factors VIII or IX substantially complicate treatment. Autoantibody formation against factor VIII leads to acquired hemophilia. Although rare, antibody formation may occur in the treatment of other clotting factor deficiencies (eg, against von Willebrand factor [VWF]). The main strategies that have emerged to address these immune responses include (1) clinical immune tolerance induction (ITI) protocols; (2) immune suppression therapies (ISTs); and (3) the development of drugs that can improve hemostasis while bypassing the antibodies against coagulation factors altogether (some of these nonfactor therapies/NFTs are antibody-based, but they are distinct from traditional immunotherapy as they do not target the immune system). Choice of immune or alternative therapy and criteria for selection of a specific regimen for inherited and autoimmune bleeding disorders are explained. ITI serves as an important proof of principle that antigen-specific immune tolerance can be achieved in humans through repeated antigen administration, even in the absence of immune suppression. Finally, novel immunotherapy approaches that are still in the preclinical phase, such as cellular (for instance, regulatory T cell [Treg]) immunotherapies, gene therapy, and oral antigen administration, are discussed.
Collapse
Affiliation(s)
- Valder R Arruda
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics at The Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada; and
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
12
|
Abstract
INTRODUCTION Hemophilia A (HA) or B (HB) is an X-linked recessive disorder caused by a defect in the factor VIII (FVIII) or factor IX (FIX) gene which leads to the dysfunction of blood coagulation. Protein replacement therapy (PRT) uses recombinant proteins and plasma-derived products, which incurs high cost and inconvenience requiring routine intravenous infusions and life-time treatment. Understanding of detailed molecular mechanisms on FVIII gene function could provide innovative solutions to amend this disorder. In recent decades, gene therapeutics have advanced rapidly and a one-time cure solution has been proposed. AREAS COVERED This review summarizes current understanding of molecular pathways involved in blood coagulation, with emphasis on FVIII's functional role. The existing knowledge and challenges on FVIII gene expression, from transcription, translation, post-translational modification including glycosylation to protein processing and secretion, and co-factor interactions are deciphered and potential molecular interventions discussed. EXPERT OPINION This article reviews the potential treatment targets for HA and HB, including antibodies, small molecules and gene therapeutics, based on molecular mechanisms of FVIII biosynthesis, and further, assessing the pros and cons of these various treatment strategies. Understanding detailed FVIII protein synthesis and secretory pathways could provide exciting opportunities in identifying novel therapeutics to ameliorate hemophilia state.
Collapse
Affiliation(s)
- Jie Gong
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Hao-Lin Wang
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China.,Geno-Immune Medical Institute, Shenzhen, China
| |
Collapse
|
13
|
Milani M, Canepari C, Liu T, Biffi M, Russo F, Plati T, Curto R, Patarroyo-White S, Drager D, Visigalli I, Brombin C, Albertini P, Follenzi A, Ayuso E, Mueller C, Annoni A, Naldini L, Cantore A. Liver-directed lentiviral gene therapy corrects hemophilia A mice and achieves normal-range factor VIII activity in non-human primates. Nat Commun 2022; 13:2454. [PMID: 35508619 PMCID: PMC9068791 DOI: 10.1038/s41467-022-30102-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Liver gene therapy with adeno-associated viral (AAV) vectors delivering clotting factor transgenes into hepatocytes has shown multiyear therapeutic benefit in adults with hemophilia. However, the mostly episomal nature of AAV vectors challenges their application to young pediatric patients. We developed lentiviral vectors, which integrate in the host cell genome, that achieve efficient liver gene transfer in mice, dogs and non-human primates, by intravenous delivery. Here we first compare engineered coagulation factor VIII transgenes and show that codon-usage optimization improved expression 10-20-fold in hemophilia A mice and that inclusion of an unstructured XTEN peptide, known to increase the half-life of the payload protein, provided an additional >10-fold increase in overall factor VIII output in mice and non-human primates. Stable nearly life-long normal and above-normal factor VIII activity was achieved in hemophilia A mouse models. Overall, we show long-term factor VIII activity and restoration of hemostasis, by lentiviral gene therapy to hemophilia A mice and normal-range factor VIII activity in non-human primate, paving the way for potential clinical application. “Lentiviral gene therapy to the liver establishes stable long-term normal to supra-normal coagulation factor VIII activity in mouse models of hemophilia A and in non-human primates, representing a potential new treatment option for people with hemophilia A.”.
Collapse
Affiliation(s)
- Michela Milani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cesare Canepari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | | | - Mauro Biffi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tiziana Plati
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosalia Curto
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Ilaria Visigalli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Brombin
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Albertini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Eduard Ayuso
- INSERM UMR1089, University of Nantes, CHU de Nantes, 44093, Nantes, France
| | | | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
14
|
Olgasi C, Borsotti C, Merlin S, Bergmann T, Bittorf P, Adewoye AB, Wragg N, Patterson K, Calabria A, Benedicenti F, Cucci A, Borchiellini A, Pollio B, Montini E, Mazzuca DM, Zierau M, Stolzing A, Toleikis P, Braspenning J, Follenzi A. Efficient and safe correction of hemophilia A by lentiviral vector-transduced BOECs in an implantable device. Mol Ther Methods Clin Dev 2021; 23:551-566. [PMID: 34853801 PMCID: PMC8606349 DOI: 10.1016/j.omtm.2021.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022]
Abstract
Hemophilia A (HA) is a rare bleeding disorder caused by deficiency/dysfunction of the FVIII protein. As current therapies based on frequent FVIII infusions are not a definitive cure, long-term expression of FVIII in endothelial cells through lentiviral vector (LV)-mediated gene transfer holds the promise of a one-time treatment. Thus, here we sought to determine whether LV-corrected blood outgrowth endothelial cells (BOECs) implanted through a prevascularized medical device (Cell Pouch) would rescue the bleeding phenotype of HA mice. To this end, BOECs from HA patients and healthy donors were isolated, expanded, and transduced with an LV carrying FVIII driven by an endothelial-specific promoter employing GMP-like procedures. FVIII-corrected HA BOECs were either directly transplanted into the peritoneal cavity or injected into a Cell Pouch implanted subcutaneously in NSG-HA mice. In both cases, FVIII secretion was sufficient to improve the mouse bleeding phenotype. Indeed, FVIII-corrected HA BOECs reached a relatively short-term clinically relevant engraftment being detected up to 16 weeks after transplantation, and their genomic integration profile did not show enrichment for oncogenes, confirming the process safety. Overall, this is the first preclinical study showing the safety and feasibility of transplantation of GMP-like produced LV-corrected BOECs within an implantable device for the long-term treatment of HA.
Collapse
Affiliation(s)
- Cristina Olgasi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Chiara Borsotti
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Thorsten Bergmann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97082 Würzburg, Germany
| | - Patrick Bittorf
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97082 Würzburg, Germany
| | - Adeolu Badi Adewoye
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Nicholas Wragg
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST47QB Stoke-on-Trent, UK
| | | | | | | | - Alessia Cucci
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Alessandra Borchiellini
- Haematology Unit Regional Center for Hemorrhagic and Thrombotic Diseases, City of Health and Science University Hospital of Molinette, 10126 Turin, Italy
| | - Berardino Pollio
- Immune-Haematology and Transfusion Medicine, Regina Margherita Children Hospital, City of Health and Science University Hospital of Molinette, 10126 Turin, Italy
| | | | | | - Martin Zierau
- IMS Integrierte Management Systeme e. K., 64646 Heppenheim, Germany
| | - Alexandra Stolzing
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, LE113TU Loughborough, UK
- SENS Research Foundation, Mountain View, CA 94041, USA
| | | | - Joris Braspenning
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97082 Würzburg, Germany
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
15
|
Famà R, Borroni E, Merlin S, Airoldi C, Pignani S, Cucci A, Corà D, Bruscaggin V, Scardellato S, Faletti S, Pelicci G, Pinotti M, Walker GE, Follenzi A. Deciphering the Ets-1/2-mediated transcriptional regulation of F8 gene identifies a minimal F8 promoter for hemophilia A gene therapy. Haematologica 2021; 106:1624-1635. [PMID: 32467137 PMCID: PMC8168518 DOI: 10.3324/haematol.2019.239202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 11/09/2022] Open
Abstract
Amajor challenge in the development of a gene therapy for hemophilia A is the selection of cell type- or tissue-specific promoters to ensure factor VIII (FVIII) expression without eliciting an immune response. As liver sinusoidal endothelial cells are the major FVIII source, understanding the transcriptional F8 regulation in these cells would help to optimize the minimal F8 promoter (pF8) to efficiently drive FVIII expression. In silico analyses predicted several binding sites (BS) for the E26 transformation-specific (Ets) transcription factors Ets-1 and Ets-2 in the pF8. Reporter assays demonstrated a significant up-regulation of pF8 activity by Ets-1 or Ets- 1/Est-2 combination, while Ets-2 alone was ineffective. Moreover, Ets-1/Ets- 2-DNA binding domain mutants (DBD) abolished promoter activation only when the Ets-1 DBD was removed, suggesting that pF8 up-regulation may occur through Ets-1/Ets-2 interaction with Ets-1 bound to DNA. pF8 carrying Ets-BS deletions unveiled two Ets-BS essential for pF8 activity and response to Ets overexpression. Lentivirus-mediated delivery of green fluorescent protein (GFP) or FVIII cassettes driven by the shortened promoters, led to GFP expression mainly in endothelial cells in the liver and to longterm FVIII activity without inhibitor formation in HA mice. These data strongly support the potential application of these promoters in hemophilia A gene therapy.
Collapse
Affiliation(s)
- Rosella Famà
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Ester Borroni
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Chiara Airoldi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Pignani
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Alessia Cucci
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Davide Corà
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | | | - Sharon Scardellato
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Stefania Faletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuliana Pelicci
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, Universita' di Ferrara, Italy
| | - Gillian E Walker
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
16
|
Castro-Mollo M, Gera S, Ruiz-Martinez M, Feola M, Gumerova A, Planoutene M, Clementelli C, Sangkhae V, Casu C, Kim SM, Ostland V, Han H, Nemeth E, Fleming R, Rivella S, Lizneva D, Yuen T, Zaidi M, Ginzburg Y. The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry. eLife 2021; 10:e68217. [PMID: 34002695 PMCID: PMC8205482 DOI: 10.7554/elife.68217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 01/19/2023] Open
Abstract
Background Erythroblast erythroferrone (ERFE) secretion inhibits hepcidin expression by sequestering several bone morphogenetic protein (BMP) family members to increase iron availability for erythropoiesis. Methods To address whether ERFE functions also in bone and whether the mechanism of ERFE action in bone involves BMPs, we utilize the Erfe-/- mouse model as well as β-thalassemic (Hbbth3/+) mice with systemic loss of ERFE expression. In additional, we employ comprehensive skeletal phenotyping analyses as well as functional assays in vitro to address mechanistically the function of ERFE in bone. Results We report that ERFE expression in osteoblasts is higher compared with erythroblasts, is independent of erythropoietin, and functional in suppressing hepatocyte hepcidin expression. Erfe-/- mice display low-bone-mass arising from increased bone resorption despite a concomitant increase in bone formation. Consistently, Erfe-/- osteoblasts exhibit enhanced mineralization, Sost and Rankl expression, and BMP-mediated signaling ex vivo. The ERFE effect on osteoclasts is mediated through increased osteoblastic RANKL and sclerostin expression, increasing osteoclastogenesis in Erfe-/- mice. Importantly, Erfe loss in Hbbth3/+mice, a disease model with increased ERFE expression, triggers profound osteoclastic bone resorption and bone loss. Conclusions Together, ERFE exerts an osteoprotective effect by modulating BMP signaling in osteoblasts, decreasing RANKL production to limit osteoclastogenesis, and prevents excessive bone loss during expanded erythropoiesis in β-thalassemia. Funding YZG acknowledges the support of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (R01 DK107670 to YZG and DK095112 to RF, SR, and YZG). MZ acknowledges the support of the National Institute on Aging (U19 AG60917) and NIDDK (R01 DK113627). TY acknowledges the support of the National Institute on Aging (R01 AG71870). SR acknowledges the support of NIDDK (R01 DK090554) and Commonwealth Universal Research Enhancement (CURE) Program Pennsylvania.
Collapse
Affiliation(s)
- Melanie Castro-Mollo
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sakshi Gera
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Marc Ruiz-Martinez
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Maria Feola
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anisa Gumerova
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Marina Planoutene
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Cara Clementelli
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Veena Sangkhae
- Center for Iron Disorders, University of California, Los Angeles (UCLA)Los AngelesUnited States
| | - Carla Casu
- Department of Pediatrics, Division of Hematology, and Penn Center for Musculoskeletal Disorders, Children’s Hospital of Philadelphia (CHOP), University of Pennsylvania, Perelman School of MedicinePhiladelphiaUnited States
| | - Se-Min Kim
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Huiling Han
- Intrinsic Lifesciences, LLCLaJollaUnited States
| | - Elizabeta Nemeth
- Center for Iron Disorders, University of California, Los Angeles (UCLA)Los AngelesUnited States
| | - Robert Fleming
- Department of Pediatrics, Saint Louis University School of MedicineSt LouisUnited States
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, and Penn Center for Musculoskeletal Disorders, Children’s Hospital of Philadelphia (CHOP), University of Pennsylvania, Perelman School of MedicinePhiladelphiaUnited States
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Mone Zaidi
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Yelena Ginzburg
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
17
|
Abstract
Decades of preclinical and clinical studies developing gene therapy for hemophilia are poised to bear fruit with current promising pivotal studies likely to lead to regulatory approval. However, this recent success should not obscure the multiple challenges that were overcome to reach this destination. Gene therapy for hemophilia A and B benefited from advancements in the general gene therapy field, such as the development of adeno-associated viral vectors, as well as disease-specific breakthroughs, like the identification of B-domain deleted factor VIII and hyperactive factor IX Padua. The gene therapy field has also benefited from hemophilia B clinical studies, which revealed for the first time critical safety concerns related to immune responses to the vector capsid not anticipated in preclinical models. Preclinical studies have also investigated gene transfer approaches for other rare inherited bleeding disorders, including factor VII deficiency, von Willebrand disease, and Glanzmann thrombasthenia. Here we review the successful gene therapy journey for hemophilia and pose some unanswered questions. We then discuss the current state of gene therapy for these other rare inherited bleeding disorders and how the lessons of hemophilia gene therapy may guide clinical development.
Collapse
Affiliation(s)
- Valder R. Arruda
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Division of Hematology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania
| | - Jesse Weber
- Department of Pediatrics, Division of Hematology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin J. Samelson-Jones
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Division of Hematology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Biswas M, Palaschak B, Kumar SRP, Rana J, Markusic DM. B Cell Depletion Eliminates FVIII Memory B Cells and Enhances AAV8-coF8 Immune Tolerance Induction When Combined With Rapamycin. Front Immunol 2020; 11:1293. [PMID: 32670285 PMCID: PMC7327091 DOI: 10.3389/fimmu.2020.01293] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/21/2020] [Indexed: 01/19/2023] Open
Abstract
Hemophilia A is an inherited coagulation disorder resulting in the loss of functional clotting factor VIII (FVIII). Presently, the most effective treatment is prophylactic protein replacement therapy. However, this requires frequent life-long intravenous infusions of plasma derived or recombinant clotting factors and is not a cure. A major complication is the development of inhibitory antibodies that nullify the replacement factor. Immune tolerance induction (ITI) therapy to reverse inhibitors can last from months to years, requires daily or every other day infusions of supraphysiological levels of FVIII and is effective in only up to 70% of hemophilia A patients. Preclinical and recent clinical studies have shown that gene replacement therapy with AAV vectors can effectively cure hemophilia A patients. However, it is unclear how hemophilia patients with high risk inhibitor F8 mutations or with established inhibitors will respond to gene therapy, as these patients have been excluded from ongoing clinical trials. AAV8-coF8 gene transfer in naïve BALB/c-F8e16−/Y mice (BALB/c-HA) results in anti-FVIII IgG1 inhibitors following gene transfer, which can be prevented by transient immune modulation with anti-mCD20 (18B12) and oral rapamycin. We investigated if we could improve ITI in inhibitor positive mice by combining anti-mCD20 and rapamycin with AAV8-coF8 gene therapy. Our hypothesis was that continuous expression of FVIII protein from gene transfer compared to transient FVIII from weekly protein therapy, would enhance regulatory T cell induction and promote deletion of FVIII reactive B cells, following reconstitution. Mice that received anti-CD20 had a sharp decline in inhibitors, which corresponded to FVIII memory B (Bmem) cell deletion. Importantly, only mice receiving both anti-mCD20 and rapamycin failed to increase inhibitors following rechallenge with intravenous FVIII protein therapy. Our data show that B and T cell immune modulation complements AAV8-coF8 gene therapy in naïve and inhibitor positive hemophilia A mice and suggest that such protocols should be considered for AAV gene therapy in high risk or inhibitor positive hemophilia patients.
Collapse
Affiliation(s)
- Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brett Palaschak
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Sandeep R P Kumar
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jyoti Rana
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - David M Markusic
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
19
|
Cantore A, Naldini L. WFH State-of-the-art paper 2020: In vivo lentiviral vector gene therapy for haemophilia. Haemophilia 2020; 27 Suppl 3:122-125. [PMID: 32537776 PMCID: PMC7984334 DOI: 10.1111/hae.14056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Over the last decade, the development of new treatments for haemophilia has progressed at a very rapid pace. Despite all the promising advances in protein products, the prospect offered by gene therapy of a single potentially lifelong treatment remains attractive for people with haemophilia. Transfer to the liver of coagulation factor VIII (FVIII) or factor IX (FIX) transgenes has indeed the potential to stably restore the dysfunctional coagulation process. Recombinant adeno‐associated virus (AAV)‐derived vectors are widely employed for liver‐directed gene therapy, given their very good efficacy and safety profile, shown in several preclinical and clinical studies. However, there are some limitations associated with AAV vectors, such as their predominantly episomal nature in the nucleus of target cells and the widespread pre‐existing immunity against the parental virus in humans. By contrast, HIV‐derived lentiviral vectors (LV) integrate into the target cell chromatin and are maintained as the cells duplicate their genome, a potential advantage for establishing long‐term expression especially in paediatric patients, in which the liver undergoes substantial growth. Systemic administration of LV allowed stable multi‐year transgene expression in the liver of mice and dogs. More recently, improved phagocytosis‐shielded LV were generated, which, following intravenous administration to non‐human primates, showed selective targeting of liver and spleen and enhanced hepatocyte gene transfer, achieving up to supra‐normal activity of both human FVIII and FIX transgenes. These studies support further preclinical assessment and clinical evaluation of in vivo liver‐directed LV gene therapy for haemophilia.
Collapse
Affiliation(s)
- Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,"Vita Salute San Raffaele" University, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,"Vita Salute San Raffaele" University, Milan, Italy
| |
Collapse
|
20
|
Elnaggar M, Al-Mohannadi A, Kizhakayil D, Raynaud CM, Al-Mannai S, Gentilcore G, Pavlovski I, Sathappan A, Van Panhuys N, Borsotti C, Follenzi A, Grivel JC, Deola S. Flow-Cytometry Platform for Intracellular Detection of FVIII in Blood Cells: A New Tool to Assess Gene Therapy Efficiency for Hemophilia A. Mol Ther Methods Clin Dev 2020; 17:1-12. [PMID: 31886317 PMCID: PMC6920166 DOI: 10.1016/j.omtm.2019.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/03/2019] [Indexed: 01/08/2023]
Abstract
Detection of factor VIII (FVIII) in cells by flow cytometry is controversial, and no monoclonal fluorescent antibody is commercially available. In this study, we optimized such an assay and successfully used it as a platform to study the functional properties of phosphoglycerate kinase (PGK)-FVIII lentiviral vector-transduced cells by directly visualizing FVIII in cells after different gene transfer conditions. We could measure cellular stress parameters after transduction by correlating gene expression and protein accumulation data. Flow cytometry performed on transduced cell lines showed that increasing MOI rates resulted in increased protein levels, plateauing after an MOI of 30. We speculated that, at higher MOI, FVIII production could be impaired by a limiting factor required for proper folding. To test this hypothesis, we interfered with the unfolded protein response by blocking proteasomal degradation and measured the accumulation of intracellular misfolded protein. Interestingly, at higher MOIs the cells displayed signs of toxicity with reactive oxygen species accumulation. This suggests the need for identifying a safe window of transduction dose to avoid consequent cell toxicity. Herein, we show that our flow cytometry platform for intracytoplasmic FVIII protein detection is a reliable method for optimizing gene therapy protocols in hemophilia A by shedding light on the functional status of cells after gene transfer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Igor Pavlovski
- Research Department, Sidra Medicine, PO Box 26999, Doha, Qatar
| | | | | | - Chiara Borsotti
- Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro,” 28100 Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro,” 28100 Novara, Italy
| | | | - Sara Deola
- Research Department, Sidra Medicine, PO Box 26999, Doha, Qatar
| |
Collapse
|
21
|
Shi Q, Carman CV, Chen Y, Sage PT, Xue F, Liang XM, Gilbert GE. Unexpected enhancement of FVIII immunogenicity by endothelial expression in lentivirus-transduced and transgenic mice. Blood Adv 2020; 4:2272-2285. [PMID: 32453842 PMCID: PMC7252558 DOI: 10.1182/bloodadvances.2020001468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
Factor VIII (FVIII) replacement therapy for hemophilia A is complicated by development of inhibitory antibodies (inhibitors) in ∼30% of patients. Because endothelial cells (ECs) are the primary physiologic expression site, we probed the therapeutic potential of genetically restoring FVIII expression selectively in ECs in hemophilia A mice (FVIIInull). Expression of FVIII was driven by the Tie2 promoter in the context of lentivirus (LV)-mediated in situ transduction (T2F8LV) or embryonic stem cell-mediated transgenesis (T2F8Tg). Both endothelial expression approaches were associated with a strikingly robust immune response. Following in situ T2F8LV-mediated EC transduction, all FVIIInull mice developed inhibitors but had no detectable plasma FVIII. In the transgenic approach, the T2F8Tg mice had normalized plasma FVIII levels, but showed strong sensitivity to developing an FVIII immune response upon FVIII immunization. A single injection of FVIII with incomplete Freund adjuvant led to high titers of inhibitors and reduction of plasma FVIII to undetectable levels. Because ECs are putative major histocompatibility complex class II (MHCII)-expressing nonhematopoietic, "semiprofessional" antigen-presenting cells (APCs), we asked whether they might directly influence the FVIII immune responses. Imaging and flow cytometric studies confirmed that both murine and human ECs express MHCII and efficiently bind and take up FVIII protein in vitro. Moreover, microvascular ECs preconditioned ex vivo with inflammatory cytokines could functionally present exogenously taken-up FVIII to previously primed CD4+/CXCR5+ T follicular helper (Tfh) cells to drive FVIII-specific proliferation. Our results show an unanticipated immunogenicity of EC-expressed FVIII and suggest a context-dependent role for ECs in the regulation of inhibitors as auxiliary APCs for Tfh cells.
Collapse
Affiliation(s)
- Qizhen Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Children's Research Institute, Children's Wisconsin, Milwaukee, WI
- Midwest Athletes Against Childhood Cancer Fund Research Center, Milwaukee, WI
| | - Christopher V Carman
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
| | - Yingyu Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Peter T Sage
- Renal Division, Transplant Research Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; and
| | - Feng Xue
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Xin M Liang
- Department of Medicine, Veterans Affairs Boston Healthcare System and Harvard Medical School, Boston, MA
| | - Gary E Gilbert
- Department of Medicine, Veterans Affairs Boston Healthcare System and Harvard Medical School, Boston, MA
| |
Collapse
|
22
|
Famà R, Borroni E, Zanolini D, Merlin S, Bruscaggin V, Walker GE, Olgasi C, Babu D, Agnelli Giacchello J, Valeri F, Giordano M, Borchiellini A, Follenzi A. Identification and functional characterization of a novel splicing variant in the F8 coagulation gene causing severe hemophilia A. J Thromb Haemost 2020; 18:1050-1064. [PMID: 32078252 DOI: 10.1111/jth.14779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND We have identified a synonymous F8 variation in a severe hemophilia A (HA) patient who developed inhibitors following factor VIII (FVIII) prophylaxis. The unreported c.6273 G > A variant targets the consensus splicing site of exon 21. OBJECTIVES To determine the impact of c.6273 G > A nucleotide substitution on F8 splicing and its translated protein. METHODS Patient peripheral blood mononuclear cells were isolated and differentiated into monocyte-derived macrophages (MDMs). FVIII distribution in cell compartments was evaluated by immunofluorescence. The splicing of mutated exon 21 was assessed by exon trapping. Identified FVIII splicing variants were generated by site-directed mutagenesis, inserted into a lentiviral vector (LV) to transduce Chinese hamster ovary (CHO) cells, and inject into B6/129 HA-mice. FVIII activity was assessed by activated partial thromboplastin time, whereas anti-FVIII antibodies and FVIII antigen, by ELISA. RESULTS HA-MDMs demonstrated a predominant retention of FVIII around the endoplasmic reticulum. Exon trapping revealed the production of two isoforms: one retaining part of intron 21 and the other skipping exon 21. These variants, predicted to truncate FVIII in the C1 domain, were detected in the patient. CHO cells transduced with the two FVIII transcripts confirmed protein retention and absence of the C2 domain. HA mice injected with LV carrying FVIII mutants, partially recovered FVIII activity without the appearance of anti-FVIII antibodies. CONCLUSIONS Herein, we demonstrate the aberrant impact of a FVIII synonymous mutation on its transcription, activity, and pathological outcomes. Our data underline the importance of increasing the knowledge regarding the functional consequences of F8 mutations and their link to inhibitor development and an effective replacement therapy.
Collapse
Affiliation(s)
- Rosella Famà
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Ester Borroni
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Diego Zanolini
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Gillian E Walker
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Cristina Olgasi
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Deepak Babu
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Federica Valeri
- Hemostasis and Thrombosis Unit, Città Della Salute e Della Scienza, Molinette, Turin, Italy
| | - Mara Giordano
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
23
|
Patel SR, Lundgren TS, Spencer HT, Doering CB. The Immune Response to the fVIII Gene Therapy in Preclinical Models. Front Immunol 2020; 11:494. [PMID: 32351497 PMCID: PMC7174743 DOI: 10.3389/fimmu.2020.00494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Neutralizing antibodies to factor VIII (fVIII), referred to as "inhibitors," remain the most challenging complication post-fVIII replacement therapy. Preclinical development of novel fVIII products involves studies incorporating hemophilia A (HA) and wild-type animal models. Though immunogenicity is a critical aspect of preclinical pharmacology studies, gene therapy studies tend to focus on fVIII expression levels without major consideration for immunogenicity. Therefore, little clarity exists on whether preclinical testing can be predictive of clinical immunogenicity risk. Despite this, but perhaps due to the potential for transformative benefits, clinical gene therapy trials have progressed rapidly. In more than two decades, no inhibitors have been observed. However, all trials are conducted in previously treated patients without a history of inhibitors. The current review thus focuses on our understanding of preclinical immunogenicity for HA gene therapy candidates and the potential indication for inhibitor treatment, with a focus on product- and platform-specific determinants, including fVIII transgene sequence composition and tissue/vector biodistribution. Currently, the two leading clinical gene therapy vectors are adeno-associated viral (AAV) and lentiviral (LV) vectors. For HA applications, AAV vectors are liver-tropic and employ synthetic, high-expressing, liver-specific promoters. Factors including vector serotype and biodistribution, transcriptional regulatory elements, transgene sequence, dosing, liver immunoprivilege, and host immune status may contribute to tipping the scale between immunogenicity and tolerance. Many of these factors can also be important in delivery of LV-fVIII gene therapy, especially when delivered intravenously for liver-directed fVIII expression. However, ex vivo LV-fVIII targeting and transplantation of hematopoietic stem and progenitor cells (HSPC) has been demonstrated to achieve durable and curative fVIII production without inhibitor development in preclinical models. A critical variable appears to be pre-transplantation conditioning regimens that suppress and/or ablate T cells. Additionally, we and others have demonstrated the potential of LV-fVIII HSPC and liver-directed AAV-fVIII gene therapy to eradicate pre-existing inhibitors in murine and canine models of HA, respectively. Future preclinical studies will be essential to elucidate immune mechanism(s) at play in the context of gene therapy for HA, as well as strategies for preventing adverse immune responses and promoting immune tolerance even in the setting of pre-existing inhibitors.
Collapse
Affiliation(s)
- Seema R. Patel
- Hemostasis and Thrombosis Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Taran S. Lundgren
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - H. Trent Spencer
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Christopher B. Doering
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| |
Collapse
|
24
|
FVIII expression by its native promoter sustains long-term correction avoiding immune response in hemophilic mice. Blood Adv 2020; 3:825-838. [PMID: 30862611 DOI: 10.1182/bloodadvances.2018027979] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/04/2019] [Indexed: 12/20/2022] Open
Abstract
Here we describe a successful gene therapy approach for hemophilia A (HA), using the natural F8 promoter (pF8) to direct gene replacement to factor VIII (FVIII)-secreting cells. The promoter sequence and the regulatory elements involved in the modulation of F8 expression are still poorly characterized and biased by the historical assumption that FVIII expression is mainly in hepatocytes. Bioinformatic analyses have highlighted an underestimated complexity in gene expression at this locus, suggesting an activation of pF8 in more cell types than those previously expected. C57Bl/6 mice injected with a lentiviral vector expressing green fluorescent protein (GFP) under the pF8 (lentiviral vector [LV].pF8.GFP) confirm the predominant GFP expression in liver sinusoidal endothelial cells, with a few positive cells detectable also in hematopoietic organs. Therapeutic gene delivery (LV.pF8.FVIII) in hemophilic C57/Bl6 and 129-Bl6 mice successfully corrected the bleeding phenotype, rescuing up to 25% FVIII activity, using a codon-optimized FVIII, with sustained activity for the duration of the experiment (1 year) without inhibitor formation. Of note, LV.pF8.FVIII delivery in FVIII-immunized HA mice resulted in the complete reversion of the inhibitor titer with the recovery of therapeutic FVIII activity. Depletion of regulatory T cells (Tregs) in LV-treated mice allowed the formation of anti-FVIII antibodies, indicating a role for Tregs in immune tolerance induction. The significant blood loss reduction observed in all LV.pF8.FVIII-treated mice 1 year after injection confirmed the achievement of a long-term phenotypic correction. Altogether, our results highlight the potency of pF8-driven transgene expression to correct the bleeding phenotype in HA, as well as potentially in other diseases in which an endothelial-specific expression is required.
Collapse
|
25
|
Merlin S, Follenzi A. Escape or Fight: Inhibitors in Hemophilia A. Front Immunol 2020; 11:476. [PMID: 32265927 PMCID: PMC7105606 DOI: 10.3389/fimmu.2020.00476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/02/2020] [Indexed: 01/07/2023] Open
Abstract
Replacement therapy with coagulation factor VIII (FVIII) represents the current clinical treatment for patients affected by hemophilia A (HA). This treatment while effective is, however, hampered by the formation of antibodies which inhibit the activity of infused FVIII in up to 30% of treated patients. Immune tolerance induction (ITI) protocols, which envisage frequent infusions of high doses of FVIII to confront this side effect, dramatically increase the already high costs associated to a patient's therapy and are not always effective in all treated patients. Therefore, there are clear unmet needs that must be addressed in order to improve the outcome of these treatments for HA patients. Taking advantage of preclinical mouse models of hemophilia, several strategies have been proposed in recent years to prevent inhibitor formation and eradicate the pre-existing immunity to FVIII inhibitor positive patients. Herein, we will review some of the most promising strategies developed to avoid and eradicate inhibitors, including the use of immunomodulatory drugs or molecules, oral or transplacental delivery as well as cell and gene therapy approaches. The goal is to improve and potentiate the current ITI protocols and eventually make them obsolete.
Collapse
Affiliation(s)
- Simone Merlin
- Laboratory of Histology, Department of Health Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", Novara, Italy.,Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Novara, Italy
| | - Antonia Follenzi
- Laboratory of Histology, Department of Health Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", Novara, Italy.,Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Novara, Italy
| |
Collapse
|
26
|
Abstract
Several viral vector-based gene therapy drugs have now received marketing approval. A much larger number of additional viral vectors are in various stages of clinical trials for the treatment of genetic and acquired diseases, with many more in pre-clinical testing. Efficiency of gene transfer and ability to provide long-term therapy make these vector systems very attractive. In fact, viral vector gene therapy has been able to treat or even cure diseases for which there had been no or only suboptimal treatments. However, innate and adaptive immune responses to these vectors and their transgene products constitute substantial hurdles to clinical development and wider use in patients. This review provides an overview of the type of immune responses that have been documented in animal models and in humans who received gene transfer with one of three widely tested vector systems, namely adenoviral, lentiviral, or adeno-associated viral vectors. Particular emphasis is given to mechanisms leading to immune responses, efforts to reduce vector immunogenicity, and potential solutions to the problems. At the same time, we point out gaps in our knowledge that should to be filled and problems that need to be addressed going forward.
Collapse
Affiliation(s)
- Jamie L Shirley
- Gene Therapy Center, University of Massachusetts, Worchester, MA, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
27
|
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer death globally, mainly due to lack of effective treatments – a problem that gene therapy is poised to solve. Successful gene therapy requires safe and efficient delivery vectors, and recent advances in both viral and nonviral vectors have made an important impact on HCC gene therapy delivery. This review explores how adenoviral, retroviral and adeno-associated viral vectors have been modified to increase safety and delivery capacity, highlighting studies and clinical trials using these vectors for HCC gene therapy. Nanoparticles, liposomes, exosomes and virosomes are also featured in their roles as HCC gene delivery vectors. Finally, new discoveries in gene editing technology and their impacts on HCC gene therapy are discussed.
Collapse
|
28
|
Guo XL, Chung TH, Qin Y, Zheng J, Zheng H, Sheng L, Wynn T, Chang LJ. Hemophilia Gene Therapy: New Development from Bench to Bed Side. Curr Gene Ther 2019; 19:264-273. [PMID: 31549954 DOI: 10.2174/1566523219666190924121836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/30/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022]
Abstract
Novel gene therapy strategies have changed the prognosis of many inherited diseases in recent years. New development in genetic tools and study models has brought us closer to a complete cure for hemophilia. This review will address the latest gene therapy research in hemophilia A and B including gene therapy tools, genetic strategies and animal models. It also summarizes the results of recent clinical trials. Potential solutions are discussed regarding the current barriers in gene therapy for hemophilia.
Collapse
Affiliation(s)
- Xiao-Lu Guo
- Geno-immune Medical Institute, Shenzhen, China
| | | | - Yue Qin
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Jie Zheng
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Huyong Zheng
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Liyuan Sheng
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, China
| | - Tung Wynn
- Department of Pediatrics and Division of Hematology/Oncology, University of Florida, Gainesville, FL, United States
| | | |
Collapse
|
29
|
Aspesi A, Borsotti C, Follenzi A. Emerging Therapeutic Approaches for Diamond Blackfan Anemia. Curr Gene Ther 2019; 18:327-335. [PMID: 30411682 PMCID: PMC6637096 DOI: 10.2174/1566523218666181109124538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 01/05/2023]
Abstract
Diamond Blackfan Anemia (DBA) is an inherited erythroid aplasia with onset in childhood. Patients carry heterozygous mutations in one of 19 Ribosomal Protein (RP) genes, that lead to defective ribosome biogenesis and function. Standard treatments include steroids or blood transfusions but the only definitive cure is allogeneic Hematopoietic Stem Cell Transplantation (HSCT). Although advances in HSCT have greatly improved the success rate over the last years, the risk of adverse events and mor-tality is still significant. Clinical trials employing gene therapy are now in progress for a variety of monogenic diseases and the development of innovative stem cell-based strategies may open new alternatives for DBA treatment as well. In this review, we summarize the most recent progress toward the implementation of new thera-peutic approaches for this disorder. We present different DNA- and RNA-based technologies as well as new candidate pharmacological treatments and discuss their relevance and potential applicability for the cure of DBA.
Collapse
Affiliation(s)
- Anna Aspesi
- Department of Health Sciences, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| | - Chiara Borsotti
- Department of Health Sciences, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| |
Collapse
|
30
|
Gollomp KL, Doshi BS, Arruda VR. Gene therapy for hemophilia: Progress to date and challenges moving forward. Transfus Apher Sci 2019; 58:602-612. [DOI: 10.1016/j.transci.2019.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Keeler GD, Markusic DM, Hoffman BE. Liver induced transgene tolerance with AAV vectors. Cell Immunol 2019; 342:103728. [PMID: 29576315 PMCID: PMC5988960 DOI: 10.1016/j.cellimm.2017.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/24/2022]
Abstract
Immune tolerance is a vital component of immunity, as persistent activation of immune cells causes significant tissue damage and loss of tolerance leads to autoimmunity. Likewise, unwanted immune responses can occur in inherited disorders, such as hemophilia and Pompe disease, in which patients lack any expression of protein, during treatment with enzyme replacement therapy, or gene therapy. While the liver has long been known as being tolerogenic, it was only recently appreciated in the last decade that liver directed adeno-associated virus (AAV) gene therapy can induce systemic tolerance to a transgene. In this review, we look at the mechanisms behind liver induced tolerance, discuss different factors influencing successful tolerance induction with AAV, and applications where AAV mediated tolerance may be helpful.
Collapse
Affiliation(s)
- Geoffrey D Keeler
- Department of Pediatrics, Div. Cell and Molecular Therapy, University of Florida, United States
| | - David M Markusic
- Department of Pediatrics, Div. Cell and Molecular Therapy, University of Florida, United States
| | - Brad E Hoffman
- Department of Pediatrics, Div. Cell and Molecular Therapy, University of Florida, United States; Department of Neuroscience, University of Florida, United States.
| |
Collapse
|
32
|
Meeks SL, Herzog RW. The national blueprint for future basic and translational research to understand factor VIII immunogenicity: NHLBI State of the Science Workshop on factor VIII inhibitors. Haemophilia 2019; 25:595-602. [DOI: 10.1111/hae.13740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/29/2019] [Accepted: 02/22/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Shannon L. Meeks
- Aflac Cancer and Blood Disorders Service; Emory University; Atlanta Georgia
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research; Indiana University; Indianapolis Indiana
| | | |
Collapse
|
33
|
Pena SA, Iyengar R, Eshraghi RS, Bencie N, Mittal J, Aljohani A, Mittal R, Eshraghi AA. Gene therapy for neurological disorders: challenges and recent advancements. J Drug Target 2019; 28:111-128. [DOI: 10.1080/1061186x.2019.1630415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefanie A. Pena
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Iyengar
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rebecca S. Eshraghi
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nicole Bencie
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Abdulrahman Aljohani
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adrien A. Eshraghi
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
34
|
Merlin S, Follenzi A. Transcriptional Targeting and MicroRNA Regulation of Lentiviral Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:223-232. [PMID: 30775404 PMCID: PMC6365353 DOI: 10.1016/j.omtm.2018.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gene expression regulation is the result of complex interactions between transcriptional and post-transcriptional controls, resulting in cell-type-specific gene expression patterns that are determined by the developmental and differentiation stage of pathophysiological conditions. Understanding the complexity of gene expression regulatory networks is fundamental to gene therapy, an approach which has the potential to treat and cure inherited disorders by delivering the correct gene to patient specific cells or tissues by means of both viral and non-viral vectors. Besides the issues of biosafety, in recent years efforts have focused on achieving a robust and sustained transgene expression, which attains a phenotypic correction in several diseases, while avoiding transgene-related adverse effects, such as overexpression-associated cytotoxicity and/or immune responses to the transgene. In this sense, the use of cell-type-specific promoters and microRNA target sequences (miRTs) in gene transfer expression cassettes have allowed for a restricted expression after gene transfer in several studies. This review will focus on the use of transcriptional and post-transcriptional regulation to achieve a highly specific and safe transgene expression, as well as their application in ex vivo and in vivo gene therapeutic approaches.
Collapse
Affiliation(s)
- Simone Merlin
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
35
|
Protein-Engineered Coagulation Factors for Hemophilia Gene Therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:184-201. [PMID: 30705923 PMCID: PMC6349562 DOI: 10.1016/j.omtm.2018.12.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hemophilia A (HA) and hemophilia B (HB) are X-linked bleeding disorders due to inheritable deficiencies in either coagulation factor VIII (FVIII) or factor IX (FIX), respectively. Recently, gene therapy clinical trials with adeno-associated virus (AAV) vectors and protein-engineered transgenes, B-domain deleted (BDD) FVIII and FIX-Padua, have reported near-phenotypic cures in subjects with HA and HB, respectively. Here, we review the biology and the clinical development of FVIII-BDD and FIX-Padua as transgenes. We also examine alternative bioengineering strategies for FVIII and FIX, as well as the immunological challenges of these approaches. Other engineered proteins and their potential use in gene therapy for hemophilia with inhibitors are also discussed. Continued advancement of gene therapy for HA and HB using protein-engineered transgenes has the potential to alleviate the substantial medical and psychosocial burdens of the disease.
Collapse
|
36
|
Update on clinical gene therapy for hemophilia. Blood 2018; 133:407-414. [PMID: 30559260 DOI: 10.1182/blood-2018-07-820720] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
In contrast to other diverse therapies for the X-linked bleeding disorder hemophilia that are currently in clinical development, gene therapy holds the promise of a lasting cure with a single drug administration. Near-to-complete correction of hemophilia A (factor VIII deficiency) and hemophilia B (factor IX deficiency) have now been achieved in patients by hepatic in vivo gene transfer. Adeno-associated viral vectors with different viral capsids that have been engineered to express high-level, and in some cases hyperactive, coagulation factors were employed. Patient data support that sustained endogenous production of clotting factor as a result of gene therapy eliminates the need for infusion of coagulation factors (or alternative drugs that promote coagulation), and may therefore ultimately also reduce treatment costs. However, mild liver toxicities have been observed in some patients receiving high vector doses. In some but not all instances, the toxicities correlated with a T-cell response directed against the viral capsid, prompting use of immune suppression. In addition, not all patients can be treated because of preexisting immunity to viral capsids. Nonetheless, studies in animal models of hemophilia suggest that the approach can also be used for immune tolerance induction to prevent or eliminate inhibitory antibodies against coagulation factors. These can form in traditional protein replacement therapy and represent a major complication of treatment. The current review provides a summary and update on advances in clinical gene therapies for hemophilia and its continued development.
Collapse
|
37
|
Olgasi C, Talmon M, Merlin S, Cucci A, Richaud-Patin Y, Ranaldo G, Colangelo D, Di Scipio F, Berta GN, Borsotti C, Valeri F, Faraldi F, Prat M, Messina M, Schinco P, Lombardo A, Raya A, Follenzi A. Patient-Specific iPSC-Derived Endothelial Cells Provide Long-Term Phenotypic Correction of Hemophilia A. Stem Cell Reports 2018; 11:1391-1406. [PMID: 30416049 PMCID: PMC6294075 DOI: 10.1016/j.stemcr.2018.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 11/15/2022] Open
Abstract
We generated patient-specific disease-free induced pluripotent stem cells (iPSCs) from peripheral blood CD34+ cells and differentiated them into functional endothelial cells (ECs) secreting factor VIII (FVIII) for gene and cell therapy approaches to cure hemophilia A (HA), an X-linked bleeding disorder caused by F8 mutations. iPSCs were transduced with a lentiviral vector carrying FVIII transgene driven by an endothelial-specific promoter (VEC) and differentiated into bona fide ECs using an optimized protocol. FVIII-expressing ECs were intraportally transplanted in monocrotaline-conditioned non-obese diabetic (NOD) severe combined immune-deficient (scid)-IL2rγ null HA mice generating a chimeric liver with functional human ECs. Transplanted cells engrafted and proliferated in the liver along sinusoids, in the long term showed stable therapeutic FVIII activity (6%). These results demonstrate that the hemophilic phenotype can be rescued by transplantation of ECs derived from HA FVIII-corrected iPSCs, confirming the feasibility of cell-reprogramming strategy in patient-derived cells as an approach for HA gene and cell therapy.
Collapse
Affiliation(s)
- Cristina Olgasi
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Maria Talmon
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Alessia Cucci
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Yvonne Richaud-Patin
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Durans Reynals, Hospitalet de Llobregat, 08908 Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Gabriella Ranaldo
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Donato Colangelo
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | | | | | - Chiara Borsotti
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Federica Valeri
- A.O.U. Città della Salute e della Scienza, 10126 Torino, Italy
| | | | - Maria Prat
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Maria Messina
- A.O.U. Città della Salute e della Scienza, 10126 Torino, Italy
| | | | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy; San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Durans Reynals, Hospitalet de Llobregat, 08908 Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy.
| |
Collapse
|
38
|
Borsotti C, Follenzi A. New technologies in gene therapy for inducing immune tolerance in hemophilia A. Expert Rev Clin Immunol 2018; 14:1013-1019. [PMID: 30345839 DOI: 10.1080/1744666x.2018.1539667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Conventional hemophilia treatment is based on repeated infusion of the missing clotting factor. This therapy is lifelong, expensive and can result in the formation of neutralizing antibodies, thus causing failure of the treatment and requiring higher doses of the replacement drug. Areas covered: Gene and cell therapies offer the advantage of providing a definitive and long-lasting correction of the mutated gene, promoting its physiological expression and preventing neutralizing antibody development. This review focuses on the most recent approaches that have been shown to prevent and even eradicate immune response toward the replaced factor. Expert commentary: Despite the encouraging data demonstrated by ongoing clinical trials and pre-clinical studies, more extensive investigations are necessary to establish the long-term safety and efficacy of gene therapy treatments in maintaining immune tolerance.
Collapse
Affiliation(s)
- Chiara Borsotti
- a Department of Health Sciences , Università del Piemonte Orientale , Novara , Italy
| | - Antonia Follenzi
- a Department of Health Sciences , Università del Piemonte Orientale , Novara , Italy
| |
Collapse
|
39
|
Deola S, Guerrouahen BS, Sidahmed H, Al-Mohannadi A, Elnaggar M, Elsadig R, Abdelalim EM, Petrovski G, Gadina M, Thrasher A, Wels WS, Hunger SP, Wang E, Marincola FM, Maccalli C, Cugno C. Tailoring cells for clinical needs: Meeting report from the Advanced Therapy in Healthcare symposium (October 28-29 2017, Doha, Qatar). J Transl Med 2018; 16:276. [PMID: 30305089 PMCID: PMC6180452 DOI: 10.1186/s12967-018-1652-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023] Open
Abstract
New technologies and therapies designed to facilitate development of personalized treatments are rapidly emerging in the field of biomedicine. Strikingly, the goal of personalized medicine refined the concept of therapy by developing cell-based therapies, the so-called “living drugs”. Breakthrough advancements were achieved in this regard in the fields of gene therapy, cell therapy, tissue-engineered products and advanced therapeutic techniques. The Advanced Therapies in Healthcare symposium, organized by the Clinical Research Center Department of Sidra Medicine, in Doha, Qatar (October 2017), brought together world-renowned experts from the fields of oncology, hematology, immunology, inflammation, autoimmune disorders, and stem cells to offer a comprehensive picture of the status of worldwide advanced therapies in both pre-clinical and clinical development, providing insights to the research phase, clinical data and regulatory aspects of these therapies. Highlights of the meeting are provided in this meeting report.
Collapse
Affiliation(s)
- Sara Deola
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar
| | | | - Heba Sidahmed
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar
| | - Anjud Al-Mohannadi
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar
| | - Muhammad Elnaggar
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar
| | - Ramaz Elsadig
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar
| | - Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| | | | | | - Adrian Thrasher
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Winfried S Wels
- Georg Speyer Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | | | - Ena Wang
- Immune Oncology Discovery and System Biology, AbbVie, Redwood City, CA, USA
| | | | | | - Cristina Maccalli
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar
| | - Chiara Cugno
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Hemophilia is an X-linked blood coagulation genetic disorder, which can cause significant disability. Replacement therapy for coagulation factor VIII (hemophilia A) or factor IX (hemophilia B) may result in the development of high-affinity alloantibodies ('inhibitors') to the replacement therapy, thus making it ineffective. Therefore, there is interest in directing immunological responses towards tolerance to infused factors. RECENT FINDINGS In this review, we will discuss latest advancements in the development of potentially less immunogenic replacement clotting factors, optimization of current tolerance induction protocols (ITI), preclinical and clinical data of pharmacological immune modulation, hepatic gene therapy, and the rapidly advancing field of cell therapies. We will also evaluate publications reporting data from preclinical studies on oral tolerance induction using chloroplast-transgenic (transplastomic) plants. SUMMARY Until now, no clinical prophylactic immune modulatory protocol exists to prevent inhibitor formation to infused clotting factors. Recent innovative technologies provide hope for improved eradication and perhaps even prevention of inhibitors.
Collapse
Affiliation(s)
- Alexandra Sherman
- Department Pediatrics, Indiana University, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
41
|
Doshi BS, Arruda VR. Gene therapy for hemophilia: what does the future hold? Ther Adv Hematol 2018; 9:273-293. [PMID: 30210756 DOI: 10.1177/2040620718791933] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/09/2018] [Indexed: 01/19/2023] Open
Abstract
Recent phase I/II adeno-associated viral vector-mediated gene therapy clinical trials have reported remarkable success in ameliorating disease phenotype in hemophilia A and B. These trials, which highlight the challenges overcome through decades of preclinical and first in human clinical studies, have generated considerable excitement for patients and caregivers alike. Optimization of vector and transgene expression has significantly improved the ability to achieve therapeutic factor levels in these subjects. Long-term follow-up studies will guide standardization of the approach with respect to the combination of serotype, promoter, dose, and manufacturing processes and inform safety for inclusion of young patients. Certain limitations preclude universal applicability of gene therapy, including transient liver transaminase elevations due to the immune responses to vector capsids or as yet undefined mechanisms, underlying liver disease from iatrogenic viral hepatitis, and neutralizing antibodies to clotting factors. Integrating vectors show promising preclinical results, but manufacturing and safety concerns still remain. The prospect of gene editing for correction of the underlying mutation is on the horizon with considerable potential. Herein, we review the advances and limitations that have resulted in these recent successful clinical trials and outline avenues that will allow for broader applicability of gene therapy.
Collapse
Affiliation(s)
- Bhavya S Doshi
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Valder R Arruda
- Department of Pediatrics, The Children's Hospital of Philadelphia, 3501 Civic Center Blvd, 5056 Colket Translational Research Center, Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Dhungel B, Ramlogan-Steel CA, Steel JC. MicroRNA-Regulated Gene Delivery Systems for Research and Therapeutic Purposes. Molecules 2018; 23:E1500. [PMID: 29933586 PMCID: PMC6099389 DOI: 10.3390/molecules23071500] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022] Open
Abstract
Targeted gene delivery relies on the ability to limit the expression of a transgene within a defined cell/tissue population. MicroRNAs represent a class of highly powerful and effective regulators of gene expression that act by binding to a specific sequence present in the corresponding messenger RNA. Involved in almost every aspect of cellular function, many miRNAs have been discovered with expression patterns specific to developmental stage, lineage, cell-type, or disease stage. Exploiting the binding sites of these miRNAs allows for construction of targeted gene delivery platforms with a diverse range of applications. Here, we summarize studies that have utilized miRNA-regulated systems to achieve targeted gene delivery for both research and therapeutic purposes. Additionally, we identify criteria that are important for the effectiveness of a particular miRNA for such applications and we also discuss factors that have to be taken into consideration when designing miRNA-regulated expression cassettes.
Collapse
Affiliation(s)
- Bijay Dhungel
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, 102 Newdegate Street, Brisbane, QLD 4120, Australia.
- Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, Brisbane, QLD 4006, Australia.
- University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Charmaine A Ramlogan-Steel
- Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, Brisbane, QLD 4006, Australia.
- Layton Vision Foundation, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Jason C Steel
- Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, Brisbane, QLD 4006, Australia.
- OcuGene, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
43
|
Evens H, Chuah MK, VandenDriessche T. Haemophilia gene therapy: From trailblazer to gamechanger. Haemophilia 2018; 24 Suppl 6:50-59. [DOI: 10.1111/hae.13494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/24/2022]
Affiliation(s)
- H. Evens
- Department of Gene Therapy & Regenerative Medicine Faculty of Medicine & Pharmacy Vrije Universiteit Brussel (VUB) Brussels Belgium
| | - M. K. Chuah
- Department of Gene Therapy & Regenerative Medicine Faculty of Medicine & Pharmacy Vrije Universiteit Brussel (VUB) Brussels Belgium
- Department of Cardiovascular Sciences Center for Molecular & Vascular Biology University of Leuven Leuven Belgium
| | - T. VandenDriessche
- Department of Gene Therapy & Regenerative Medicine Faculty of Medicine & Pharmacy Vrije Universiteit Brussel (VUB) Brussels Belgium
- Department of Cardiovascular Sciences Center for Molecular & Vascular Biology University of Leuven Leuven Belgium
| |
Collapse
|
44
|
Modulation of immune responses in lentiviral vector-mediated gene transfer. Cell Immunol 2018; 342:103802. [PMID: 29735164 PMCID: PMC6695505 DOI: 10.1016/j.cellimm.2018.04.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Lentiviral vectors (LV) are widely used vehicles for gene transfer and therapy in pre-clinical animal models and clinical trials with promising safety and efficacy results. However, host immune responses against vector- and/or transgene-derived antigens remain a major obstacle to the success and broad applicability of gene therapy. Here we review the innate and adaptive immunological barriers to successful gene therapy, both in the context of ex vivo and in vivo LV gene therapy, mostly concerning systemic LV delivery and discuss possible means to overcome them, including vector design and production and immune modulatory strategies.
Collapse
|
45
|
Biswas M, Kumar SRP, Terhorst C, Herzog RW. Gene Therapy With Regulatory T Cells: A Beneficial Alliance. Front Immunol 2018; 9:554. [PMID: 29616042 PMCID: PMC5868074 DOI: 10.3389/fimmu.2018.00554] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 03/05/2018] [Indexed: 12/12/2022] Open
Abstract
Gene therapy aims to replace a defective or a deficient protein at therapeutic or curative levels. Improved vector designs have enhanced safety, efficacy, and delivery, with potential for lasting treatment. However, innate and adaptive immune responses to the viral vector and transgene product remain obstacles to the establishment of therapeutic efficacy. It is widely accepted that endogenous regulatory T cells (Tregs) are critical for tolerance induction to the transgene product and in some cases the viral vector. There are two basic strategies to harness the suppressive ability of Tregs: in vivo induction of adaptive Tregs specific to the introduced gene product and concurrent administration of autologous, ex vivo expanded Tregs. The latter may be polyclonal or engineered to direct specificity to the therapeutic antigen. Recent clinical trials have advanced adoptive immunotherapy with Tregs for the treatment of autoimmune disease and in patients receiving cell transplants. Here, we highlight the potential benefit of combining gene therapy with Treg adoptive transfer to achieve a sustained transgene expression. Furthermore, techniques to engineer antigen-specific Treg cell populations, either through reprogramming conventional CD4+ T cells or transferring T cell receptors with known specificity into polyclonal Tregs, are promising in preclinical studies. Thus, based upon these observations and the successful use of chimeric (IgG-based) antigen receptors (CARs) in antigen-specific effector T cells, different types of CAR-Tregs could be added to the repertoire of inhibitory modalities to suppress immune responses to therapeutic cargos of gene therapy vectors. The diverse approaches to harness the ability of Tregs to suppress unwanted immune responses to gene therapy and their perspectives are reviewed in this article.
Collapse
Affiliation(s)
- Moanaro Biswas
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Sandeep R P Kumar
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, United States
| | - Roland W Herzog
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
46
|
Sherman A, Biswas M, Herzog RW. Innovative Approaches for Immune Tolerance to Factor VIII in the Treatment of Hemophilia A. Front Immunol 2017; 8:1604. [PMID: 29225598 PMCID: PMC5705551 DOI: 10.3389/fimmu.2017.01604] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/07/2017] [Indexed: 01/19/2023] Open
Abstract
Hemophilia A (coagulation factor VIII deficiency) is a debilitating genetic disorder that is primarily treated with intravenous replacement therapy. Despite a variety of factor VIII protein formulations available, the risk of developing anti-dug antibodies (“inhibitors”) remains. Overall, 20–30% of patients with severe disease develop inhibitors. Current clinical immune tolerance induction protocols to eliminate inhibitors are not effective in all patients, and there are no prophylactic protocols to prevent the immune response. New experimental therapies, such as gene and cell therapies, show promising results in pre-clinical studies in animal models of hemophilia. Examples include hepatic gene transfer with viral vectors, genetically engineered regulatory T cells (Treg), in vivo Treg induction using immune modulatory drugs, and maternal antigen transfer. Furthermore, an oral tolerance protocol is being developed based on transgenic lettuce plants, which suppressed inhibitor formation in hemophilic mice and dogs. Hopefully, some of these innovative approaches will reduce the risk of and/or more effectively eliminate inhibitor formation in future treatment of hemophilia A.
Collapse
Affiliation(s)
- Alexandra Sherman
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Moanaro Biswas
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
47
|
VandenDriessche T, Chuah MK. Hemophilia Gene Therapy: Ready for Prime Time? Hum Gene Ther 2017; 28:1013-1023. [DOI: 10.1089/hum.2017.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Marinee K. Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
48
|
Affiliation(s)
- Jennielle Jobson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian D Brown
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|