1
|
Elder JB, Lonser RR. Direct Convective Delivery for Nervous System Gene Therapy. Neurosurg Clin N Am 2025; 36:101-111. [PMID: 39542544 DOI: 10.1016/j.nec.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Convection-enhanced delivery for central nervous system gene therapy is an emerging treatment strategy to modify the course of previously untreatable or inadequately treated neurologic conditions, including brain tumors, metabolic disorders, epilepsy, and neurodegenerative disorders. Ongoing nervous system gene therapy clinical trials highlight advantages and ongoing challenges to this therapeutic paradigm.
Collapse
Affiliation(s)
- James Bradley Elder
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Russell R Lonser
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Kim J, Chang MY. Gene Therapy for Parkinson's Disease Using Midbrain Developmental Genes to Regulate Dopaminergic Neuronal Maintenance. Int J Mol Sci 2024; 25:12369. [PMID: 39596436 PMCID: PMC11594980 DOI: 10.3390/ijms252212369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. It is characterized by the progressive loss of dopaminergic (DAnergic) neurons in the substantia nigra and decreased dopamine (DA) levels, which lead to both motor and non-motor symptoms. Conventional PD treatments aim to alleviate symptoms, but do not delay disease progression. PD gene therapy offers a promising approach to improving current treatments, with the potential to alleviate significant PD symptoms and cause fewer adverse effects than conventional therapies. DA replacement approaches and DA enzyme expression do not slow disease progression. However, DA replacement gene therapies, such as adeno-associated virus (AAV)-glutamic acid decarboxylase (GAD) and L-amino acid decarboxylase (AADC) gene therapies, which increase DA transmitter levels, have been demonstrated to be safe and efficient in early-phase clinical trials. Disease-modifying strategies, which aim to slow disease progression, appear to be potent. These include therapies targeting downstream pathways, neurotrophic factors, and midbrain DAnergic neuronal factors, all of which have shown potential in preclinical and clinical trials. These approaches focus on maintaining the integrity of DAnergic neurons, not just targeting the DA transmitter level itself. In particular, critical midbrain developmental and maintenance factors, such as Nurr1 and Foxa2, can interact synergistically with neighboring glia, in a paracrine mode of action, to protect DAnergic neurons against various toxic factors. Similar outcomes could be achieved by targeting both DAnergic neurons and glial cells with other candidate gene therapies, but in-depth research is needed. Neurotrophic factors, such as neurturin, the glial-cell-line-derived neurotrophic factor (GDNF), the brain-derived neurotrophic factor (BDNF), and the vascular endothelial growth factor (VEGF), are also being investigated for their potential to support DAnergic neuron survival. Additionally, gene therapies targeting key downstream pathways, such as the autophagy-lysosome pathway, mitochondrial function, and endoplasmic reticulum (ER) stress, offer promising avenues. Gene editing and delivery techniques continue to evolve, presenting new opportunities to develop effective gene therapies for PD.
Collapse
Affiliation(s)
- Jintae Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Republic of Korea;
| | - Mi-Yoon Chang
- Department of Premedicine, College of Medicine, Hanyang University, FTC12, 222 Wangsimni-ro, Seoul 04763, Republic of Korea
- Biomedical Research Institute, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
3
|
Somerville EN, Gan-Or Z. Genetic-based diagnostics of Parkinson's disease and other Parkinsonian syndromes. Expert Rev Mol Diagn 2024:1-13. [PMID: 39545628 DOI: 10.1080/14737159.2024.2427625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Parkinson's disease (PD) is a complex disorder with vast clinical heterogeneity. Recent genetic, imaging and clinical evidence suggest that there are multiple subtypes of PD, and perhaps even distinct clinical entities, which are being diagnosed under the umbrella of PD. These might have similar clinical presentation, but potentially different underlying mechanisms, which, in future, will require different treatments. Despite extensive genetic research progress, genetic testing is still not a common practice in clinical patient care. AREAS COVERED This review examines the numerous genes that have been discovered to affect the risk of, or cause, PD. We also outline genetic variants that affect PD age at onset, its progression, and the presence or severity of motor and non-motor symptoms. We differentiate between PD, other synucleinopathies, and atypical parkinsonism syndromes, and describe genes responsible for familial forms of typical PD and atypical parkinsonism. Lastly, we present current clinical trails that are underway for targeted therapies, particularly for GBA1-PD and LRRK2-PD which are the most significant subtypes. EXPERT OPINION While genetic studies alone cannot be diagnostic for PD, proper utilization of genetic screening for PD could improve diagnostic accuracy and predictions for prognosis, guide treatment, and identify individuals that qualify for clinical trials.
Collapse
Affiliation(s)
- Emma N Somerville
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Ziv Gan-Or
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| |
Collapse
|
4
|
Mullagulova AI, Timechko EE, Solovyeva VV, Yakimov AM, Ibrahim A, Dmitrenko DD, Sufianov AA, Sufianova GZ, Rizvanov AA. Adeno-Associated Viral Vectors in the Treatment of Epilepsy. Int J Mol Sci 2024; 25:12081. [PMID: 39596149 PMCID: PMC11593886 DOI: 10.3390/ijms252212081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Epilepsy is a brain disorder characterized by a persistent predisposition to epileptic seizures. With various etiologies of epilepsy, a significant proportion of patients develop pharmacoresistance to antiepileptic drugs, which necessitates the search for new therapeutic methods, in particular, using gene therapy. This review discusses the use of adeno-associated viral (AAV) vectors in gene therapy for epilepsy, emphasizing their advantages, such as high efficiency of neuronal tissue transduction and low immunogenicity/cytotoxicity. AAV vectors provide the possibility of personalized therapy due to the diversity of serotypes and genomic constructs, which allows for increasing the specificity and effectiveness of treatment. Promising orientations include the modulation of the expression of neuropeptides, ion channels, transcription, and neurotrophic factors, as well as the use of antisense oligonucleotides to regulate seizure activity, which can reduce the severity of epileptic disorders. This review summarizes the current advances in the use of AAV vectors for the treatment of epilepsy of various etiologies, demonstrating the significant potential of AAV vectors for the development of personalized and more effective approaches to reducing seizure activity and improving patient prognosis.
Collapse
Affiliation(s)
- Aysilu I. Mullagulova
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
| | - Elena E. Timechko
- Department of Medical Genetics and Clinical Neurophysiology, Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, Krasnoyarsk 660022, Russia; (E.E.T.); (A.M.Y.); (D.D.D.)
| | - Valeriya V. Solovyeva
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
| | - Alexey M. Yakimov
- Department of Medical Genetics and Clinical Neurophysiology, Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, Krasnoyarsk 660022, Russia; (E.E.T.); (A.M.Y.); (D.D.D.)
| | - Ahmad Ibrahim
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
| | - Diana D. Dmitrenko
- Department of Medical Genetics and Clinical Neurophysiology, Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, Krasnoyarsk 660022, Russia; (E.E.T.); (A.M.Y.); (D.D.D.)
| | - Albert A. Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia;
- The Research and Educational Institute of Neurosurgery, Peoples’ Friendship University of Russia, Moscow 117198, Russia
| | - Galina Z. Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen 625023, Russia;
| | - Albert A. Rizvanov
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
- Division of Medical and Biological Sciences, Academy of Sciences of the Republic of Tatarstan, Kazan 420111, Russia
| |
Collapse
|
5
|
Du A, Yang K, Zhou X, Ren L, Liu N, Zhou C, Liang J, Yan N, Gao G, Wang D. Systemic gene therapy corrects the neurological phenotype in a mouse model of NGLY1 deficiency. JCI Insight 2024; 9:e183189. [PMID: 39137042 PMCID: PMC11466192 DOI: 10.1172/jci.insight.183189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
The cytoplasmic peptide:N-glycanase (NGLY1) is ubiquitously expressed and functions as a de-N-glycosylating enzyme that degrades misfolded N-glycosylated proteins. NGLY1 deficiency due to biallelic loss-of-function NGLY1 variants is an ultrarare autosomal recessive deglycosylation disorder with multisystemic involvement; the neurological manifestations represent the main disease burden. Currently, there is no treatment for this disease. To develop a gene therapy, we first characterized a tamoxifen-inducible Ngly1-knockout (iNgly1) C57BL/6J mouse model, which exhibited symptoms recapitulating human disease, including elevation of the biomarker GlcNAc-Asn, motor deficits, kyphosis, Purkinje cell loss, and gait abnormalities. We packaged a codon-optimized human NGLY1 transgene cassette into 2 adeno-associated virus (AAV) capsids, AAV9 and AAV.PHPeB. Systemic administration of the AAV.PHPeB vector to symptomatic iNgly1 mice corrected multiple disease features at 8 weeks after treatment. Furthermore, another cohort of AAV.PHPeB-treated iNgly1 mice were monitored over a year and showed near-complete normalization of the neurological aspects of the disease phenotype, demonstrating the durability of gene therapy. Our data suggested that brain-directed NGLY1 gene replacement via systemic delivery is a promising therapeutic strategy for NGLY1 deficiency. Although the superior CNS tropism of AAV.PHPeB vector does not translate to primates, emerging AAV capsids with enhanced primate CNS tropism will enable future translational studies.
Collapse
Affiliation(s)
- Ailing Du
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Kun Yang
- Department of Immunology and
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xuntao Zhou
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lingzhi Ren
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Nan Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Chen Zhou
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jialing Liang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Nan Yan
- Department of Immunology and
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems and
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
6
|
Wang Q, Gu X, Yang L, Jiang Y, Zhang J, He J. Emerging perspectives on precision therapy for Parkinson's disease: multidimensional evidence leading to a new breakthrough in personalized medicine. Front Aging Neurosci 2024; 16:1417515. [PMID: 39026991 PMCID: PMC11254646 DOI: 10.3389/fnagi.2024.1417515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
PD is a prevalent and progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Genes play a significant role in the onset and progression of the disease. While the complexity and pleiotropy of gene expression networks have posed challenges for gene-targeted therapies, numerous pathways of gene variant expression show promise as therapeutic targets in preclinical studies, with some already in clinical trials. With the recognition of the numerous genes and complex pathways that can influence PD, it may be possible to take a novel approach to choose a treatment for the condition. This approach would be based on the symptoms, genomics, and underlying mechanisms of the disease. We discuss the utilization of emerging genetic and pathological knowledge of PD patients to categorize the disease into subgroups. Our long-term objective is to generate new insights for the therapeutic approach to the disease, aiming to delay and treat it more effectively, and ultimately reduce the burden on individuals and society.
Collapse
Affiliation(s)
- Qiaoli Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuan Gu
- Department of Trauma center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Le Yang
- Department of Endocrinology, The People’s Hospital of Jilin Province, Changchun, China
| | - Yan Jiang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiao Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinting He
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Hull A, Atilano ML, Gergi L, Kinghorn KJ. Lysosomal storage, impaired autophagy and innate immunity in Gaucher and Parkinson's diseases: insights for drug discovery. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220381. [PMID: 38368939 PMCID: PMC10874704 DOI: 10.1098/rstb.2022.0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/08/2023] [Indexed: 02/20/2024] Open
Abstract
Impairment of autophagic-lysosomal pathways is increasingly being implicated in Parkinson's disease (PD). GBA1 mutations cause the lysosomal storage disorder Gaucher disease (GD) and are the commonest known genetic risk factor for PD. GBA1 mutations have been shown to cause autophagic-lysosomal impairment. Defective autophagic degradation of unwanted cellular constituents is associated with several pathologies, including loss of normal protein homeostasis, particularly of α-synuclein, and innate immune dysfunction. The latter is observed both peripherally and centrally in PD and GD. Here, we will discuss the mechanistic links between autophagy and immune dysregulation, and the possible role of these pathologies in communication between the gut and brain in these disorders. Recent work in a fly model of neuronopathic GD (nGD) revealed intestinal autophagic defects leading to gastrointestinal dysfunction and immune activation. Rapamycin treatment partially reversed the autophagic block and reduced immune activity, in association with increased survival and improved locomotor performance. Alterations in the gut microbiome are a critical driver of neuroinflammation, and studies have revealed that eradication of the microbiome in nGD fly and mouse models of PD ameliorate brain inflammation. Following these observations, lysosomal-autophagic pathways, innate immune signalling and microbiome dysbiosis are discussed as potential therapeutic targets in PD and GD. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Alexander Hull
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Magda L Atilano
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Laith Gergi
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Kerri J Kinghorn
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
8
|
Firdaus Z, Li X. Unraveling the Genetic Landscape of Neurological Disorders: Insights into Pathogenesis, Techniques for Variant Identification, and Therapeutic Approaches. Int J Mol Sci 2024; 25:2320. [PMID: 38396996 PMCID: PMC10889342 DOI: 10.3390/ijms25042320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Genetic abnormalities play a crucial role in the development of neurodegenerative disorders (NDDs). Genetic exploration has indeed contributed to unraveling the molecular complexities responsible for the etiology and progression of various NDDs. The intricate nature of rare and common variants in NDDs contributes to a limited understanding of the genetic risk factors associated with them. Advancements in next-generation sequencing have made whole-genome sequencing and whole-exome sequencing possible, allowing the identification of rare variants with substantial effects, and improving the understanding of both Mendelian and complex neurological conditions. The resurgence of gene therapy holds the promise of targeting the etiology of diseases and ensuring a sustained correction. This approach is particularly enticing for neurodegenerative diseases, where traditional pharmacological methods have fallen short. In the context of our exploration of the genetic epidemiology of the three most prevalent NDDs-amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease, our primary goal is to underscore the progress made in the development of next-generation sequencing. This progress aims to enhance our understanding of the disease mechanisms and explore gene-based therapies for NDDs. Throughout this review, we focus on genetic variations, methodologies for their identification, the associated pathophysiology, and the promising potential of gene therapy. Ultimately, our objective is to provide a comprehensive and forward-looking perspective on the emerging research arena of NDDs.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Kim MJ, Kim S, Reinheckel T, Krainc D. Inhibition of cysteine protease cathepsin L increases the level and activity of lysosomal glucocerebrosidase. JCI Insight 2024; 9:e169594. [PMID: 38329128 PMCID: PMC10967467 DOI: 10.1172/jci.insight.169594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/13/2023] [Indexed: 02/09/2024] Open
Abstract
The glucocerebrosidase (GCase) encoded by the GBA1 gene hydrolyzes glucosylceramide (GluCer) to ceramide and glucose in lysosomes. Homozygous or compound heterozygous GBA1 mutations cause the lysosomal storage disease Gaucher disease (GD) due to severe loss of GCase activity. Loss-of-function variants in the GBA1 gene are also the most common genetic risk factor for Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Restoring lysosomal GCase activity represents an important therapeutic approach for GBA1-associated diseases. We hypothesized that increasing the stability of lysosomal GCase protein could correct deficient GCase activity in these conditions. However, it remains unknown how GCase stability is regulated in the lysosome. We found that cathepsin L, a lysosomal cysteine protease, cleaves GCase and regulates its stability. In support of these data, GCase protein was elevated in the brain of cathepsin L-KO mice. Chemical inhibition of cathepsin L increased both GCase levels and activity in fibroblasts from patients with GD. Importantly, inhibition of cathepsin L in dopaminergic neurons from a patient GBA1-PD led to increased GCase levels and activity as well as reduced phosphorylated α-synuclein. These results suggest that targeting cathepsin L-mediated GCase degradation represents a potential therapeutic strategy for GCase deficiency in PD and related disorders that exhibit decreased GCase activity.
Collapse
Affiliation(s)
- Myung Jong Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Soojin Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Medical Faculty and BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
10
|
Huang Q, Chan KY, Lou S, Keyes C, Wu J, Botticello-Romero NR, Zheng Q, Johnston J, Mills A, Brauer PP, Clouse G, Pacouret S, Harvey JW, Beddow T, Hurley JK, Tobey IG, Powell M, Chen AT, Barry AJ, Eid FE, Chan YA, Deverman BE. An AAV capsid reprogrammed to bind human Transferrin Receptor mediates brain-wide gene delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572615. [PMID: 38187643 PMCID: PMC10769326 DOI: 10.1101/2023.12.20.572615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Developing vehicles that efficiently deliver genes throughout the human central nervous system (CNS) will broaden the range of treatable genetic diseases. We engineered an AAV capsid, BI-hTFR1, that binds human Transferrin Receptor (TfR1), a protein expressed on the blood-brain barrier (BBB). BI-hTFR1 was actively transported across a human brain endothelial cell layer and, relative to AAV9, provided 40-50 times greater reporter expression in the CNS of human TFRC knock-in mice. The enhanced tropism was CNS-specific and absent in wild type mice. When used to deliver GBA1, mutations of which cause Gaucher disease and are linked to Parkinson's disease, BI-hTFR1 substantially increased brain and cerebrospinal fluid glucocerebrosidase activity compared to AAV9. These findings establish BI-hTFR1 as a promising vector for human CNS gene therapy.
Collapse
Affiliation(s)
- Qin Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Ken Y. Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Shan Lou
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Casey Keyes
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Jason Wu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | | | - Qingxia Zheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Jencilin Johnston
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Allan Mills
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Pamela P. Brauer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Gabrielle Clouse
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Simon Pacouret
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - John W. Harvey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Thomas Beddow
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Jenna K. Hurley
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Isabelle G. Tobey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Megan Powell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Albert T. Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Andrew J. Barry
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Fatma-Elzahraa Eid
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
- Department of Systems and Computer Engineering, Faculty of Engineering, Al-Azhar University; Cairo, Egypt
| | - Yujia A. Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Benjamin E. Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| |
Collapse
|
11
|
Connolly KJ, Margaria J, Di Biase E, Cooper O, Hallett PJ, Isacson O. Loss of Lipid Carrier ApoE Exacerbates Brain Glial and Inflammatory Responses after Lysosomal GBA1 Inhibition. Cells 2023; 12:2564. [PMID: 37947642 PMCID: PMC10647680 DOI: 10.3390/cells12212564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Tightly regulated and highly adaptive lipid metabolic and transport pathways are critical to maintaining brain cellular lipid homeostasis and responding to lipid and inflammatory stress to preserve brain function and health. Deficits in the lipid handling genes APOE and GBA1 are the most significant genetic risk factors for Lewy body dementia and related dementia syndromes. Parkinson's disease patients who carry both APOE4 and GBA1 variants have accelerated cognitive decline compared to single variant carriers. To investigate functional interactions between brain ApoE and GBA1, in vivo GBA1 inhibition was tested in WT versus ApoE-deficient mice. The experiments demonstrated glycolipid stress caused by GBA1 inhibition in WT mice induced ApoE expression in several brain regions associated with movement and dementia disorders. The absence of ApoE in ApoE-KO mice amplified complement C1q elevations, reactive microgliosis and astrocytosis after glycolipid stress. Mechanistically, GBA1 inhibition triggered increases in cell surface and intracellular lipid transporters ABCA1 and NPC1, respectively. Interestingly, the absence of NPC1 in mice also triggered elevations of brain ApoE levels. These new data show that brain ApoE, GBA1 and NPC1 functions are interconnected in vivo, and that the removal or reduction of ApoE would likely be detrimental to brain function. These results provide important insights into brain ApoE adaptive responses to increased lipid loads.
Collapse
Affiliation(s)
| | | | | | | | - Penelope J. Hallett
- Departments of Psychiatry and Neurology Harvard Medical School, Neuroregeneration Institute, McLean Hospital, Belmont, MA 02478, USA
| | - Ole Isacson
- Departments of Psychiatry and Neurology Harvard Medical School, Neuroregeneration Institute, McLean Hospital, Belmont, MA 02478, USA
| |
Collapse
|
12
|
Lim MJ, Boschen SL, Kurti A, Castanedes Casey M, Phillips VR, Fryer JD, Dickson D, Jansen-West KR, Petrucelli L, Delenclos M, McLean PJ. Investigating the Pathogenic Interplay of Alpha-Synuclein, Tau, and Amyloid Beta in Lewy Body Dementia: Insights from Viral-Mediated Overexpression in Transgenic Mouse Models. Biomedicines 2023; 11:2863. [PMID: 37893236 PMCID: PMC10604054 DOI: 10.3390/biomedicines11102863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Lewy body dementia (LBD) is an often misdiagnosed and mistreated neurodegenerative disorder clinically characterized by the emergence of neuropsychiatric symptoms followed by motor impairment. LBD falls within an undefined range between Alzheimer's disease (AD) and Parkinson's disease (PD) due to the potential pathogenic synergistic effects of tau, beta-amyloid (Aβ), and alpha-synuclein (αsyn). A lack of reliable and relevant animal models hinders the elucidation of the molecular characteristics and phenotypic consequences of these interactions. Here, the goal was to evaluate whether the viral-mediated overexpression of αsyn in adult hTau and APP/PS1 mice or the overexpression of tau in Line 61 hThy1-αsyn mice resulted in pathology and behavior resembling LBD. The transgenes were injected intravenously via the tail vein using AAV-PHP.eB in 3-month-old hThy1-αsyn, hTau, or APP/PS1 mice that were then aged to 6-, 9-, and 12-months-old for subsequent phenotypic and histological characterization. Although we achieved the widespread expression of αsyn in hTau and tau in hThy1-αsyn mice, no αsyn pathology in hTau mice and only mild tau pathology in hThy1-αsyn mice was observed. Additionally, cognitive, motor, and limbic behavior phenotypes were not affected by overexpression of the transgenes. Furthermore, our APP/PS1 mice experienced premature deaths starting at 3 months post-injection (MPI), therefore precluding further analyses at later time points. An evaluation of the remaining 3-MPI indicated no αsyn pathology or cognitive and motor behavioral changes. Taken together, we conclude that the overexpression of αsyn in hTau and APP/PS1 mice and tau in hThy1-αsyn mice does not recapitulate the behavioral and neuropathological phenotypes observed in LBD.
Collapse
Affiliation(s)
- Melina J. Lim
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; (M.J.L.); (S.L.B.); (A.K.); (M.C.C.); (V.R.P.); (D.D.); (K.R.J.-W.); (L.P.); (M.D.)
| | - Suelen L. Boschen
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; (M.J.L.); (S.L.B.); (A.K.); (M.C.C.); (V.R.P.); (D.D.); (K.R.J.-W.); (L.P.); (M.D.)
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; (M.J.L.); (S.L.B.); (A.K.); (M.C.C.); (V.R.P.); (D.D.); (K.R.J.-W.); (L.P.); (M.D.)
| | - Monica Castanedes Casey
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; (M.J.L.); (S.L.B.); (A.K.); (M.C.C.); (V.R.P.); (D.D.); (K.R.J.-W.); (L.P.); (M.D.)
| | - Virginia R. Phillips
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; (M.J.L.); (S.L.B.); (A.K.); (M.C.C.); (V.R.P.); (D.D.); (K.R.J.-W.); (L.P.); (M.D.)
| | - John D. Fryer
- Department of Neuroscience, Mayo Clinic, 13400 E. Shea Blvd, Scottsdale, AZ 85259, USA;
| | - Dennis Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; (M.J.L.); (S.L.B.); (A.K.); (M.C.C.); (V.R.P.); (D.D.); (K.R.J.-W.); (L.P.); (M.D.)
| | - Karen R. Jansen-West
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; (M.J.L.); (S.L.B.); (A.K.); (M.C.C.); (V.R.P.); (D.D.); (K.R.J.-W.); (L.P.); (M.D.)
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; (M.J.L.); (S.L.B.); (A.K.); (M.C.C.); (V.R.P.); (D.D.); (K.R.J.-W.); (L.P.); (M.D.)
| | - Marion Delenclos
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; (M.J.L.); (S.L.B.); (A.K.); (M.C.C.); (V.R.P.); (D.D.); (K.R.J.-W.); (L.P.); (M.D.)
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; (M.J.L.); (S.L.B.); (A.K.); (M.C.C.); (V.R.P.); (D.D.); (K.R.J.-W.); (L.P.); (M.D.)
| |
Collapse
|
13
|
Ferlazzo GM, Gambetta AM, Amato S, Cannizzaro N, Angiolillo S, Arboit M, Diamante L, Carbognin E, Romani P, La Torre F, Galimberti E, Pflug F, Luoni M, Giannelli S, Pepe G, Capocci L, Di Pardo A, Vanzani P, Zennaro L, Broccoli V, Leeb M, Moro E, Maglione V, Martello G. Genome-wide screening in pluripotent cells identifies Mtf1 as a suppressor of mutant huntingtin toxicity. Nat Commun 2023; 14:3962. [PMID: 37407555 DOI: 10.1038/s41467-023-39552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by CAG-repeat expansions in the huntingtin (HTT) gene. The resulting mutant HTT (mHTT) protein induces toxicity and cell death via multiple mechanisms and no effective therapy is available. Here, we employ a genome-wide screening in pluripotent mouse embryonic stem cells (ESCs) to identify suppressors of mHTT toxicity. Among the identified suppressors, linked to HD-associated processes, we focus on Metal response element binding transcription factor 1 (Mtf1). Forced expression of Mtf1 counteracts cell death and oxidative stress caused by mHTT in mouse ESCs and in human neuronal precursor cells. In zebrafish, Mtf1 reduces malformations and apoptosis induced by mHTT. In R6/2 mice, Mtf1 ablates motor defects and reduces mHTT aggregates and oxidative stress. Our screening strategy enables a quick in vitro identification of promising suppressor genes and their validation in vivo, and it can be applied to other monogenic diseases.
Collapse
Affiliation(s)
- Giorgia Maria Ferlazzo
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
- Aptuit (Verona) S.r.l., an Evotec Company, Campus Levi-Montalcini, 37135, Verona, Italy
| | - Anna Maria Gambetta
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131, Padua, Italy
| | - Sonia Amato
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131, Padua, Italy
- Department of Neuroscience, University of Padova, Via Belzoni, 160, 35131, Padua, Italy
| | - Noemi Cannizzaro
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | - Silvia Angiolillo
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | - Mattia Arboit
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | - Linda Diamante
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131, Padua, Italy
| | - Elena Carbognin
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131, Padua, Italy
| | - Patrizia Romani
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | - Federico La Torre
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131, Padua, Italy
| | - Elena Galimberti
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030, Vienna, Austria
| | - Florian Pflug
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030, Vienna, Austria
| | - Mirko Luoni
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Serena Giannelli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | | | | | | | - Paola Vanzani
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | - Lucio Zennaro
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20854, Vedrano al Lambro, Italy
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030, Vienna, Austria
| | - Enrico Moro
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | | | - Graziano Martello
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131, Padua, Italy.
| |
Collapse
|
14
|
Yang X, Liu Y, Zhong W, Li Y, Zhang W. Netrin-1 controls inflammation in response to ischemic stroke through altering microglia phenotype. Front Immunol 2023; 14:1178638. [PMID: 37388740 PMCID: PMC10304015 DOI: 10.3389/fimmu.2023.1178638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/24/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction The current approaches that are used to treat ischemic stroke suffer from poor targeting, lack of effectiveness, and potential off-target effects, necessitating the development of new therapeutic strategies to enhance neuronal cell survival and regeneration. This study aimed to investigate the role of microglial Netrin-1 in ischemic stroke, a topic that has not been fully understood. Methods Netrin-1 levels and its primary receptor expressions were investigated in cerebral microglia from acute ischemic stroke patients and age-matched control subjects. A public database (GEO148350), which supplied RNAseq results for rat cerebral microglia in a middle cerebral artery occlusion (MCAO) model, was analyzed to assess the expression of Netrin-1, its major receptors, and genes related to macrophage function. A microglia-specific gene targeting approach and a delivery system allowing for crossing the blood-brain barrier were applied in a mouse model for ischemic stroke to investigate the role of microglial Netrin-1. Netrin-1 receptor signaling in microglia was observed and the effects on microglial phenotype, apoptosis, and migration were analyzed. Results Across human patients, rat and mouse models, activation of Netrin-1 receptor signaling was mainly conducted via its receptor UNC5a in microglia, which resulted in a shift in microglial phenotype towards an anti-inflammatory or M2-like state, leading to a reduction in apoptosis and migration of microglia. Netrin-1-induced phenotypic change in microglia exerted protective effects on neuronal cells in vivo during ischemic stroke. Conclusion Our study highlights the potential of targeting Netrin-1 and its receptors as a promising therapeutic strategy for promoting post-ischemic survival and functional recovery.
Collapse
Affiliation(s)
- Xiaosheng Yang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yang Liu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Weijie Zhong
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yi Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wenchuan Zhang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Palmieri M, Pozzer D, Landsberger N. Advanced genetic therapies for the treatment of Rett syndrome: state of the art and future perspectives. Front Neurosci 2023; 17:1172805. [PMID: 37304036 PMCID: PMC10248472 DOI: 10.3389/fnins.2023.1172805] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Loss and gain of functions mutations in the X-linked MECP2 (methyl-CpG-binding protein 2) gene are responsible for a set of generally severe neurological disorders that can affect both genders. In particular, Mecp2 deficiency is mainly associated with Rett syndrome (RTT) in girls, while duplication of the MECP2 gene leads, mainly in boys, to the MECP2 duplication syndrome (MDS). No cure is currently available for MECP2 related disorders. However, several studies have reported that by re-expressing the wild-type gene is possible to restore defective phenotypes of Mecp2 null animals. This proof of principle endorsed many laboratories to search for novel therapeutic strategies to cure RTT. Besides pharmacological approaches aimed at modulating MeCP2-downstream pathways, genetic targeting of MECP2 or its transcript have been largely proposed. Remarkably, two studies focused on augmentative gene therapy were recently approved for clinical trials. Both use molecular strategies to well-control gene dosage. Notably, the recent development of genome editing technologies has opened an alternative way to specifically target MECP2 without altering its physiological levels. Other attractive approaches exclusively applicable for nonsense mutations are the translational read-through (TR) and t-RNA suppressor therapy. Reactivation of the MECP2 locus on the silent X chromosome represents another valid choice for the disease. In this article, we intend to review the most recent genetic interventions for the treatment of RTT, describing the current state of the art, and the related advantages and concerns. We will also discuss the possible application of other advanced therapies, based on molecular delivery through nanoparticles, already proposed for other neurological disorders but still not tested in RTT.
Collapse
Affiliation(s)
- Michela Palmieri
- Rett Research Unit, Division of Neuroscience, San Raffaele Hospital (IRCCS), Milan, Italy
| | - Diego Pozzer
- Rett Research Unit, Division of Neuroscience, San Raffaele Hospital (IRCCS), Milan, Italy
| | - Nicoletta Landsberger
- Rett Research Unit, Division of Neuroscience, San Raffaele Hospital (IRCCS), Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Calabria A, Cipriani C, Spinozzi G, Rudilosso L, Esposito S, Benedicenti F, Albertini A, Pouzolles M, Luoni M, Giannelli S, Broccoli V, Guilbaud M, Adjali O, Taylor N, Zimmermann VS, Montini E, Cesana D. Intrathymic AAV delivery results in therapeutic site-specific integration at TCR loci in mice. Blood 2023; 141:2316-2329. [PMID: 36790505 PMCID: PMC10356579 DOI: 10.1182/blood.2022017378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/22/2022] [Accepted: 01/21/2023] [Indexed: 02/16/2023] Open
Abstract
Adeno-associated virus (AAV) vectors have been successfully exploited in gene therapy applications for the treatment of several genetic disorders. AAV is considered an episomal vector, but it has been shown to integrate within the host cell genome after the generation of double-strand DNA breaks or nicks. Although AAV integration raises some safety concerns, it can also provide therapeutic benefit; the direct intrathymic injection of an AAV harboring a therapeutic transgene results in integration in T-cell progenitors and long-term T-cell immunity. To assess the mechanisms of AAV integration, we retrieved and analyzed hundreds of AAV integration sites from lymph node-derived mature T cells and compared these with liver and brain tissue from treated mice. Notably, we found that although AAV integrations in the liver and brain were distributed across the entire mouse genome, >90% of the integrations in T cells were clustered within the T-cell receptor α, β, and γ genes. More precisely, the insertion mapped to DNA breaks created by the enzymatic activity of recombination activating genes (RAGs) during variable, diversity, and joining recombination. Our data indicate that RAG activity during T-cell receptor maturation induces a site-specific integration of AAV genomes and opens new therapeutic avenues for achieving long-term AAV-mediated gene transfer in dividing cells.
Collapse
Affiliation(s)
- Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Cipriani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Spinozzi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Rudilosso
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simona Esposito
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Albertini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marie Pouzolles
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Mirko Luoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Giannelli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroscience Institute, National Research Council of Italy, Milan, Italy
| | - Mickael Guilbaud
- Translational Gene Therapy Laboratory, INSERM and Nantes University, Nantes, France
| | - Oumeya Adjali
- Translational Gene Therapy Laboratory, INSERM and Nantes University, Nantes, France
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Paris, France
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Valérie S. Zimmermann
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
17
|
Menozzi E, Toffoli M, Schapira AHV. Targeting the GBA1 pathway to slow Parkinson disease: Insights into clinical aspects, pathogenic mechanisms and new therapeutic avenues. Pharmacol Ther 2023; 246:108419. [PMID: 37080432 DOI: 10.1016/j.pharmthera.2023.108419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
The GBA1 gene encodes the lysosomal enzyme glucocerebrosidase (GCase), which is involved in sphingolipid metabolism. Biallelic variants in GBA1 cause Gaucher disease (GD), a lysosomal storage disorder characterised by loss of GCase activity and aberrant intracellular accumulation of GCase substrates. Carriers of GBA1 variants have an increased risk of developing Parkinson disease (PD), with odds ratio ranging from 2.2 to 30 according to variant severity. GBA1 variants which do not cause GD in homozygosis can also increase PD risk. Patients with PD carrying GBA1 variants show a more rapidly progressive phenotype compared to non-carriers, emphasising the need for disease modifying treatments targeting the GBA1 pathway. Several mechanisms secondary to GCase dysfunction are potentially responsible for the pathological changes leading to PD. Misfolded GCase proteins induce endoplasmic reticulum stress and subsequent unfolded protein response and impair the autophagy-lysosomal pathway. This results in α-synuclein accumulation and spread, and promotes neurodegenerative changes. Preclinical evidence also shows that products of GCase activity can promote accumulation of α-synuclein, however there is no convincing evidence of substrate accumulation in GBA1-PD brains. Altered lipid homeostasis secondary to loss of GCase activity could also contribute to PD pathology. Treatments that target the GBA1 pathway could reverse these pathological processes and halt/slow the progression of PD. These range from augmentation of GCase activity via GBA1 gene therapy, restoration of normal intracellular GCase trafficking via molecular chaperones, and substrate reduction therapy. This review discusses the pathways associated with GBA1-PD and related novel GBA1-targeted interventions for PD treatment.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
18
|
Hong D, Iakoucheva LM. Therapeutic strategies for autism: targeting three levels of the central dogma of molecular biology. Transl Psychiatry 2023; 13:58. [PMID: 36792602 PMCID: PMC9931756 DOI: 10.1038/s41398-023-02356-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
The past decade has yielded much success in the identification of risk genes for Autism Spectrum Disorder (ASD), with many studies implicating loss-of-function (LoF) mutations within these genes. Despite this, no significant clinical advances have been made so far in the development of therapeutics for ASD. Given the role of LoF mutations in ASD etiology, many of the therapeutics in development are designed to rescue the haploinsufficient effect of genes at the transcriptional, translational, and protein levels. This review will discuss the various therapeutic techniques being developed from each level of the central dogma with examples including: CRISPR activation (CRISPRa) and gene replacement at the DNA level, antisense oligonucleotides (ASOs) at the mRNA level, and small-molecule drugs at the protein level, followed by a review of current delivery methods for these therapeutics. Since central nervous system (CNS) penetrance is of utmost importance for ASD therapeutics, it is especially necessary to evaluate delivery methods that have higher efficiency in crossing the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Derek Hong
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lilia M Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Day-Cooney J, Dalangin R, Zhong H, Mao T. Genetically encoded fluorescent sensors for imaging neuronal dynamics in vivo. J Neurochem 2023; 164:284-308. [PMID: 35285522 PMCID: PMC11322610 DOI: 10.1111/jnc.15608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
The brain relies on many forms of dynamic activities in individual neurons, from synaptic transmission to electrical activity and intracellular signaling events. Monitoring these neuronal activities with high spatiotemporal resolution in the context of animal behavior is a necessary step to achieve a mechanistic understanding of brain function. With the rapid development and dissemination of highly optimized genetically encoded fluorescent sensors, a growing number of brain activities can now be visualized in vivo. To date, cellular calcium imaging, which has been largely used as a proxy for electrical activity, has become a mainstay in systems neuroscience. While challenges remain, voltage imaging of neural populations is now possible. In addition, it is becoming increasingly practical to image over half a dozen neurotransmitters, as well as certain intracellular signaling and metabolic activities. These new capabilities enable neuroscientists to test previously unattainable hypotheses and questions. This review summarizes recent progress in the development and delivery of genetically encoded fluorescent sensors, and highlights example applications in the context of in vivo imaging.
Collapse
Affiliation(s)
- Julian Day-Cooney
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Rochelin Dalangin
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
20
|
Mächtel R, Boros FA, Dobert JP, Arnold P, Zunke F. From Lysosomal Storage Disorders to Parkinson's Disease - Challenges and Opportunities. J Mol Biol 2022:167932. [PMID: 36572237 DOI: 10.1016/j.jmb.2022.167932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Lysosomes are specialized organelles with an acidic pH that act as recycling hubs for intracellular and extracellular components. They harbour numerous different hydrolytic enzymes to degrade substrates like proteins, peptides, and glycolipids. Reduced catalytic activity of lysosomal enzymes can cause the accumulation of these substrates and loss of lysosomal integrity, resulting in lysosomal dysfunction and lysosomal storage disorders (LSDs). Post-mitotic cells, such as neurons, seem to be highly sensitive to damages induced by lysosomal dysfunction, thus LSDs often manifest with neurological symptoms. Interestingly, some LSDs and Parkinson's disease (PD) share common cellular pathomechanisms, suggesting convergence of aetiology of the two disease types. This is further underlined by genetic associations of several lysosomal genes involved in LSDs with PD. The increasing number of lysosome-associated genetic risk factors for PD makes it necessary to understand functions and interactions of lysosomal proteins/enzymes both in health and disease, thereby holding the potential to identify new therapeutic targets. In this review, we highlight genetic and mechanistic interactions between the complex lysosomal network, LSDs and PD, and elaborate on methodical challenges in lysosomal research.
Collapse
Affiliation(s)
- Rebecca Mächtel
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany
| | | | - Jan Philipp Dobert
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Friederike Zunke
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany.
| |
Collapse
|
21
|
Jang S, Shen HK, Ding X, Miles TF, Gradinaru V. Structural basis of receptor usage by the engineered capsid AAV-PHP.eB. Mol Ther Methods Clin Dev 2022; 26:343-354. [PMID: 36034770 PMCID: PMC9382559 DOI: 10.1016/j.omtm.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Adeno-associated virus serotype 9 (AAV9) is a promising gene therapy vector for treating neurodegenerative diseases due to its ability to penetrate the blood-brain barrier. PHP.eB was engineered from AAV9 by insertion of a 7-amino acid peptide and point mutation of neighboring residues, thereby enhancing potency in the central nervous system. Here, we report a 2.24-Å resolution cryo-electron microscopy structure of PHP.eB, revealing conformational differences from other 7-mer insertion capsid variants. In PHP.eB, the 7-mer loop adopts a bent conformation, mediated by an interaction between engineered lysine and aspartate residues. Further, we identify PKD2 as the main AAV receptor (AAVR) domain recognizing both AAV9 and PHP.eB and find that the PHP.eB 7-mer partially destabilizes this interaction. Analysis of previously reported AAV structures together with our pull-down data demonstrate that the 7-mer topology determined by the lysine-aspartate interaction dictates AAVR binding strength. Our results suggest that PHP.eB's altered tropism may arise from both an additional interaction with LY6A and weakening of its AAVR interaction. Changing the insertion length, but not sequence, modifies PKD2 binding affinity, suggesting that a steric clash impedes AAVR binding. This research suggests improved library designs for future AAV selections to identify non-LY6A-dependent vectors and modulate AAVR interaction strength.
Collapse
Affiliation(s)
- Seongmin Jang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hao K Shen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xiaozhe Ding
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Timothy F Miles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
22
|
Adult re-expression of IRSp53 rescues NMDA receptor function and social behavior in IRSp53-mutant mice. Commun Biol 2022; 5:838. [PMID: 35982261 PMCID: PMC9388611 DOI: 10.1038/s42003-022-03813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
IRSp53 (or BAIAP2) is an abundant excitatory postsynaptic scaffolding/adaptor protein that is involved in actin regulation and has been implicated in autism spectrum disorders, schizophrenia, and attention-deficit/hyperactivity disorder. IRSp53 deletion in mice leads to enhanced NMDA receptor (NMDAR) function and social deficits that are responsive to NMDAR inhibition. However, it remains unclear whether IRSp53 re-expression in the adult IRSp53-mutant mouse brain after the completion of brain development could reverse these synaptic and behavioral dysfunctions. Here we employed a brain-blood barrier (BBB)-penetrant adeno-associated virus (AAV) known as PHP.eB to drive adult IRSp53 re-expression in IRSp53-mutant mice. The adult IRSp53 re-expression normalized social deficits without affecting hyperactivity or anxiety-like behavior. In addition, adult IRSp53 re-expression normalized NMDAR-mediated excitatory synaptic transmission in the medial prefrontal cortex. Our results suggest that adult IRSp53 re-expression can normalize synaptic and behavioral deficits in IRSp53-mutant mice and that BBB-penetrant adult gene re-expression has therapeutic potential.
Collapse
|
23
|
Gene-Based Therapeutics for Parkinson’s Disease. Biomedicines 2022; 10:biomedicines10081790. [PMID: 35892690 PMCID: PMC9331241 DOI: 10.3390/biomedicines10081790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a complex multifactorial disorder that is not yet fully surmised, and it is only when such a disease is tackled on multiple levels simultaneously that we should expect to see fruitful results. Gene therapy is a modern medical practice that theoretically and, so far, practically, has demonstrated its capability in joining the battle against PD and other complex disorders on most if not all fronts. This review discusses how gene therapy can efficiently replace current forms of therapy such as drugs, personalized medicine or invasive surgery. Furthermore, we discuss the importance of enhancing delivery techniques to increase the level of transduction and control of gene expression or tissue specificity. Importantly, the results of current trials establish the safety, efficacy and applicability of gene therapy for PD. Gene therapy’s variety of potential in interfering with PD’s pathology by improving basal ganglial circuitry, enhancing dopamine synthesis, delivering neuroprotection or preventing neurodegeneration may one day achieve symptomatic benefit, disease modification and eradication.
Collapse
|
24
|
Wang J, Chen S, Pan C, Li G, Tang Z. Application of Small Molecules in the Central Nervous System Direct Neuronal Reprogramming. Front Bioeng Biotechnol 2022; 10:799152. [PMID: 35875485 PMCID: PMC9301571 DOI: 10.3389/fbioe.2022.799152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
The lack of regenerative capacity of neurons leads to poor prognoses for some neurological disorders. The use of small molecules to directly reprogram somatic cells into neurons provides a new therapeutic strategy for neurological diseases. In this review, the mechanisms of action of different small molecules, the approaches to screening small molecule cocktails, and the methods employed to detect their reprogramming efficiency are discussed, and the studies, focusing on neuronal reprogramming using small molecules in neurological disease models, are collected. Future research efforts are needed to investigate the in vivo mechanisms of small molecule-mediated neuronal reprogramming under pathophysiological states, optimize screening cocktails and dosing regimens, and identify safe and effective delivery routes to promote neural regeneration in different neurological diseases.
Collapse
Affiliation(s)
| | | | | | - Gaigai Li
- *Correspondence: Gaigai Li, ; Zhouping Tang,
| | | |
Collapse
|
25
|
Glucocerebrosidase-associated Parkinson disease: Pathogenic mechanisms and potential drug treatments. Neurobiol Dis 2022; 166:105663. [DOI: 10.1016/j.nbd.2022.105663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
|
26
|
Challis RC, Ravindra Kumar S, Chen X, Goertsen D, Coughlin GM, Hori AM, Chuapoco MR, Otis TS, Miles TF, Gradinaru V. Adeno-Associated Virus Toolkit to Target Diverse Brain Cells. Annu Rev Neurosci 2022; 45:447-469. [PMID: 35440143 DOI: 10.1146/annurev-neuro-111020-100834] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recombinant adeno-associated viruses (AAVs) are commonly used gene delivery vehicles for neuroscience research. They have two engineerable features: the capsid (outer protein shell) and cargo (encapsulated genome). These features can be modified to enhance cell type or tissue tropism and control transgene expression, respectively. Several engineered AAV capsids with unique tropisms have been identified, including variants with enhanced central nervous system transduction, cell type specificity, and retrograde transport in neurons. Pairing these AAVs with modern gene regulatory elements and state-of-the-art reporter, sensor, and effector cargo enables highly specific transgene expression for anatomical and functional analyses of brain cells and circuits. Here, we discuss recent advances that provide a comprehensive (capsid and cargo) AAV toolkit for genetic access to molecularly defined brain cell types. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Rosemary C Challis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA;
| | - Sripriya Ravindra Kumar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA;
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA;
| | - David Goertsen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA;
| | - Gerard M Coughlin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA;
| | - Acacia M Hori
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA;
| | - Miguel R Chuapoco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA;
| | - Thomas S Otis
- Sainsbury Wellcome Centre, University College London, London, United Kingdom
| | - Timothy F Miles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA;
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA;
| |
Collapse
|
27
|
El Ganainy SO, Cijsouw T, Ali MA, Schoch S, Hanafy AS. Stereotaxic-assisted gene therapy in Alzheimer's and Parkinson's diseases: therapeutic potentials and clinical frontiers. Expert Rev Neurother 2022; 22:319-335. [PMID: 35319338 DOI: 10.1080/14737175.2022.2056446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) and Parkinson's disease (PD) are neurodegenerative disorders causing cognitive deficits and motor difficulties in the elderly. Conventional treatments are mainly symptomatic with little ability to halt disease progression. Gene therapies to correct or silence genetic mutations predisposing to AD or PD are currently being developed in preclinical studies and clinical trials, relying mostly on systemic delivery, which reduces their effectiveness. Imaging-guided stereotaxic procedures are used to locally deliver therapeutic cargos to well-defined brain sites, hence raising the question whether stereotaxic-assisted gene therapy has therapeutic potentials. AREAS COVERED The authors summarize the studies that investigated the use of gene therapy in PD and AD in animal and clinical studies over the past five years, with a special emphasis on the combinatorial potential with stereotaxic delivery. The advantages, limitations and futuristic challenges of this technique are discussed. EXPERT OPINION Robotic stereotaxis combined with intraoperative imaging has revolutionized brain surgeries. While gene therapies are bringing huge innovations to the medical field and new hope to AD and PD patients and medical professionals, the efficient and targeted delivery of such therapies is a bottleneck. We propose that careful application of stereotaxic delivery of gene therapies can improve PD and AD management. [Figure: see text].
Collapse
Affiliation(s)
- Samar O El Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Tony Cijsouw
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Susanne Schoch
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | | |
Collapse
|
28
|
GBA Variants and Parkinson Disease: Mechanisms and Treatments. Cells 2022; 11:cells11081261. [PMID: 35455941 PMCID: PMC9029385 DOI: 10.3390/cells11081261] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
The GBA gene encodes for the lysosomal enzyme glucocerebrosidase (GCase), which maintains glycosphingolipid homeostasis. Approximately 5–15% of PD patients have mutations in the GBA gene, making it numerically the most important genetic risk factor for Parkinson disease (PD). Clinically, GBA-associated PD is identical to sporadic PD, aside from the earlier age at onset (AAO), more frequent cognitive impairment and more rapid progression. Mutations in GBA can be associated with loss- and gain-of-function mechanisms. A key hallmark of PD is the presence of intraneuronal proteinaceous inclusions named Lewy bodies, which are made up primarily of alpha-synuclein. Mutations in the GBA gene may lead to loss of GCase activity and lysosomal dysfunction, which may impair alpha-synuclein metabolism. Models of GCase deficiency demonstrate dysfunction of the autophagic-lysosomal pathway and subsequent accumulation of alpha-synuclein. This dysfunction can also lead to aberrant lipid metabolism, including the accumulation of glycosphingolipids, glucosylceramide and glucosylsphingosine. Certain mutations cause GCase to be misfolded and retained in the endoplasmic reticulum (ER), activating stress responses including the unfolded protein response (UPR), which may contribute to neurodegeneration. In addition to these mechanisms, a GCase deficiency has also been associated with mitochondrial dysfunction and neuroinflammation, which have been implicated in the pathogenesis of PD. This review discusses the pathways associated with GBA-PD and highlights potential treatments which may act to target GCase and prevent neurodegeneration.
Collapse
|
29
|
Fajardo-Serrano A, Rico AJ, Roda E, Honrubia A, Arrieta S, Ariznabarreta G, Chocarro J, Lorenzo-Ramos E, Pejenaute A, Vázquez A, Lanciego JL. Adeno-Associated Viral Vectors as Versatile Tools for Neurological Disorders: Focus on Delivery Routes and Therapeutic Perspectives. Biomedicines 2022; 10:biomedicines10040746. [PMID: 35453499 PMCID: PMC9025350 DOI: 10.3390/biomedicines10040746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 11/24/2022] Open
Abstract
It is without doubt that the gene therapy field is currently in the spotlight for the development of new therapeutics targeting unmet medical needs. Thus, considering the gene therapy scenario, neurological diseases in general and neurodegenerative disorders in particular are emerging as the most appealing choices for new therapeutic arrivals intended to slow down, stop, or even revert the natural progressive course that characterizes most of these devastating neurodegenerative processes. Since an extensive coverage of all available literature is not feasible in practical terms, here emphasis was made in providing some advice to beginners in the field with a narrow focus on elucidating the best delivery route available for fulfilling any given AAV-based therapeutic approach. Furthermore, it is worth nothing that the number of ongoing clinical trials is increasing at a breath-taking speed. Accordingly, a landscape view of preclinical and clinical initiatives is also provided here in an attempt to best illustrate what is ongoing in this quickly expanding field.
Collapse
Affiliation(s)
- Ana Fajardo-Serrano
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Correspondence: (A.F.-S.); (J.L.L.)
| | - Alberto J. Rico
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Elvira Roda
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Adriana Honrubia
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Sandra Arrieta
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Goiaz Ariznabarreta
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Julia Chocarro
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Elena Lorenzo-Ramos
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Alvaro Pejenaute
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Alfonso Vázquez
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Department of Neurosurgery, Servicio Navarro de Salud, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - José Luis Lanciego
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Correspondence: (A.F.-S.); (J.L.L.)
| |
Collapse
|
30
|
Zheng W, Fan D. Glucocerebrosidase Mutations Cause Mitochondrial and Lysosomal Dysfunction in Parkinson’s Disease: Pathogenesis and Therapeutic Implications. Front Aging Neurosci 2022; 14:851135. [PMID: 35401150 PMCID: PMC8984109 DOI: 10.3389/fnagi.2022.851135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease and is characterized by multiple motor and non-motor symptoms. Mutations in the glucocerebrosidase (GBA) gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase), which hydrolyzes glucosylceramide (GlcCer) to glucose and ceramide, are the most important and common genetic PD risk factors discovered to date. Homozygous GBA mutations result in the most common lysosomal storage disorder, Gaucher’s disease (GD), which is classified according to the presence (neuronopathic types, type 2 and 3 GD) or absence (non-neuronopathic type, type 1 GD) of neurological symptoms. The clinical manifestations of PD in patients with GBA mutations are indistinguishable from those of sporadic PD at the individual level. However, accumulating data have indicated that GBA-associated PD patients exhibit a younger age of onset and a greater risk for cognitive impairment and psychiatric symptoms. The mechanisms underlying the increased risk of developing PD in GBA mutant carriers are currently unclear. Contributors to GBA-PD pathogenesis may include mitochondrial dysfunction, autophagy-lysosomal dysfunction, altered lipid homeostasis and enhanced α-synuclein aggregation. Therapeutic strategies for PD and GD targeting mutant GCase mainly include enzyme replacement, substrate reduction, gene and pharmacological small-molecule chaperones. Emerging clinical, genetic and pathogenic studies on GBA mutations and PD are making significant contributions to our understanding of PD-associated pathogenetic pathways, and further elucidating the interactions between GCase activity and neurodegeneration may improve therapeutic approaches for slowing PD progression.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- *Correspondence: Dongsheng Fan,
| |
Collapse
|
31
|
Bo RX, Li YY, Zhou TT, Chen NH, Yuan YH. The neuroinflammatory role of glucocerebrosidase in Parkinson's disease. Neuropharmacology 2022; 207:108964. [PMID: 35065083 DOI: 10.1016/j.neuropharm.2022.108964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
Abstract
The lysosomal enzyme glucocerebrosidase (GCase), encoded by the GBA1 gene, is a membrane-associated protein catalyzing the cleavage of glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Homologous GBA1 mutations cause Gaucher disease (GD) and heterologous mutations cause Parkinson's disease (PD). Importantly, heterologous GBA1 mutations are recognized as the second risk factor of PD. The pathological features of PD are Lewy neurites (LNs) and Lewy bodies (LBs) composed of pathological α-synuclein. Oxidative stress, inflammatory response, autophagic impairment, and α-synuclein accumulation play critical roles in PD pathogenic cascades, but the pathogenesis of PD has not yet been fully elucidated. What's more, PD treatment drugs can only relieve symptoms to a certain extent, but cannot alleviate neurodegenerative progression. Therefore, it's urgent to explore new targets that can alleviate the neurodegenerative process. Deficient GCase can cause lysosomal dysfunction, obstructing the metabolism of α-synuclein. Meanwhile, GCase dysfunction causes accumulation of its substrates, leading to lipid metabolism disorders. Subsequently, astrocytes and microglia are activated, releasing amounts of pro-inflammatory mediators and causing extensive neuroinflammation. All these cascades can induce neuron damage and death, eventually promoting PD pathology. This review aims to summarize these points and the potential of GCase as an original target to provide some ideas for elucidating the pathogenesis of PD.
Collapse
Affiliation(s)
- Ru-Xue Bo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yan-Yan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Tian-Tian Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
32
|
Abeliovich A, Hefti F, Sevigny J. Gene Therapy for Parkinson's Disease Associated with GBA1 Mutations. JOURNAL OF PARKINSON'S DISEASE 2022; 11:S183-S188. [PMID: 34151863 PMCID: PMC8543272 DOI: 10.3233/jpd-212739] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 11/24/2022]
Abstract
Human genetic studies as well as studies in animal models indicate that lysosomal dysfunction plays a key role in the pathogenesis of Parkinson's disease. Among the lysosomal genes involved, GBA1 has the largest impact on Parkinson's disease risk. Deficiency in the GBA1 encoded enzyme glucocerebrosidase (GCase) leads to the accumulation of the GCase glycolipid substrates glucosylceramide and glucosylsphingosine and ultimately results in toxicity and inflammation and negatively affect many clinical aspects of Parkinson's disease, including disease risk, the severity of presentation, age of onset, and likelihood of progression to dementia. These findings support the view that re-establishing normal levels of GCase enzyme activity may reduce the progression of Parkinson's disease in patients carrying GBA1 mutations. Studies in mouse models indicate that PR001, a AAV9 vector-based gene therapy designed to deliver a functional GBA1 gene to the brain, suggest that this therapeutic approach may slow or stop disease progression. PR001 is currently being evaluated in clinical trials with Parkinson's disease patients carrying GBA1 mutations.
Collapse
Affiliation(s)
- Asa Abeliovich
- Prevail Therapeutics, A Wholly-Owned Subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Franz Hefti
- Prevail Therapeutics, A Wholly-Owned Subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Jeffrey Sevigny
- Prevail Therapeutics, A Wholly-Owned Subsidiary of Eli Lilly and Company, New York, NY, USA
| |
Collapse
|
33
|
AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat Neurosci 2022; 25:106-115. [PMID: 34887588 DOI: 10.1038/s41593-021-00969-4] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/22/2021] [Indexed: 11/09/2022]
Abstract
Genetic intervention is increasingly being explored as a therapeutic option for debilitating disorders of the central nervous system. The safety and efficacy of gene therapies rely upon expressing a transgene in affected cells while minimizing off-target expression. Here we show organ-specific targeting of adeno-associated virus (AAV) capsids after intravenous delivery, which we achieved by employing a Cre-transgenic-based screening platform and sequential engineering of AAV-PHP.eB between the surface-exposed AA452 and AA460 of VP3. From this selection, we identified capsid variants that were enriched in the brain and targeted away from the liver in C57BL/6J mice. This tropism extends to marmoset (Callithrix jacchus), enabling robust, non-invasive gene delivery to the marmoset brain after intravenous administration. Notably, the capsids identified result in distinct transgene expression profiles within the brain, with one exhibiting high specificity to neurons. The ability to cross the blood-brain barrier with neuronal specificity in rodents and non-human primates enables new avenues for basic research and therapeutic possibilities unattainable with naturally occurring serotypes.
Collapse
|
34
|
Arotcarena ML, Dovero S, Biendon N, Dutheil N, Planche V, Bezard E, Dehay B. Pilot Study Assessing the Impact of Intrathecal Administration of Variants AAV-PHP.B and AAV-PHP.eB on Brain Transduction in Adult Rhesus Macaques. Front Bioeng Biotechnol 2021; 9:762209. [PMID: 34869273 PMCID: PMC8634843 DOI: 10.3389/fbioe.2021.762209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023] Open
Abstract
Adeno-associated virus (AAV) vectors are increasingly used as an effective and safe approach to deliver genetic material to the central nervous system (CNS). The AAV9-derived variants, AAV-PHP. B and AAV-PHP.eB, reportedly broadly transduce cells throughout the CNS compared to the original serotype 9, AAV9. As non-human primate data are scarce, we here evaluated the CNS transduction efficiencies after lumbar intrathecal bolus delivery of identical doses of either AAV-PHP. B:CAG-EGFP or AAV-PHP. eB:CAG-EGFP in rhesus macaque monkeys. AAV-PHP.eB achieved a more efficient and widespread CNS transduction compared to AAV-PHP.B. We report a strong neuronal and oligodendroglial tropism for both variants in the putamen and in the hippocampus. This proof-of-concept experiment highlights the potential value of intrathecal infusions of AAV-PHP.eB to distribute genetic material in the CNS with cell-type specificity and introduces a new opportunity to model brain diseases in rhesus macaque monkeys and further develop gene therapies targeting the CNS in humans.
Collapse
Affiliation(s)
| | - Sandra Dovero
- CNRS, IMN, UMR 5293, Univ. Bordeaux, Bordeaux, France
| | | | | | - Vincent Planche
- CNRS, IMN, UMR 5293, Univ. Bordeaux, Bordeaux, France.,Centre Memoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| | - Erwan Bezard
- CNRS, IMN, UMR 5293, Univ. Bordeaux, Bordeaux, France
| | | |
Collapse
|
35
|
Ding Y, Shusta EV, Palecek SP. Integrating in vitro disease models of the neurovascular unit into discovery and development of neurotherapeutics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100341. [PMID: 34693102 PMCID: PMC8530278 DOI: 10.1016/j.cobme.2021.100341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The blood-brain barrier (BBB) regulates the transport of small molecules, proteins, and cells between the bloodstream and the central nervous system (CNS). Brain microvascular endothelial cells work with other resident brain cell types, including pericytes, astrocytes, neurons, and microglia, to form the neurovascular unit (NVU) and maintain BBB integrity. The restrictive barrier influences the pathogenesis of many CNS diseases, and impedes the delivery of neurotherapeutics into the CNS. In vitro NVU models enable the discovery of complex cell-cell interactions involved in human BBB pathophysiology in diseases including Alzheimer's Disease (AD), Parkinson's Disease (PD) and viral infections of the brain. In vitro NVU models have also been deployed to study the delivery of neurotherapeutics across the BBB, including small molecule drugs, monoclonal antibodies, gene therapy vectors and immune cells. The high scalability, accessibility, and phenotype fidelity of in vitro NVU models can facilitate the discovery and development of effective neurotherapeutics.
Collapse
Affiliation(s)
- Yunfeng Ding
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
36
|
Cui F, Xu Z, Lv Y, Hu J. Role of spindle pole body component 25 in neurodegeneration. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1432. [PMID: 34733984 PMCID: PMC8506722 DOI: 10.21037/atm-21-4064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/03/2021] [Indexed: 01/02/2023]
Abstract
Background Aberrant growth and polarization of microglia are critical for pathological initiation and progression of neurodegenerative conditions like Alzheimer’s disease (AD). However, the molecular signals that govern the outgrowth of microglia have not yet been fully determined. Spindle pole body component 25 (SPC25) is an important part for forming NDC80 complex, which plays a key role in the assembly of the microtubule-binding domain of kinetochores. Nevertheless, the role of SPC25 in microglial growth during neurodegeneration has not been described before, and was thus addressed in the current study. Methods We generated an adeno-associated virus (AAV) serotype PHP.B carrying short hairpin RNA (shRNA) for SPC25 (shSPC25) under a microglia-specific TMEM119 promoter (AAV-pTMEM-shSPC25). Serotype PHP.B allowed the virus to cross blood-brain barrier, while TMEM119 promoter allowed specific targeting microglia in vitro and in vivo. We intravenously administrated AAV-pTMEM-shSPC25 to AD-prone APP/PS1 male and female mice and determined this effect on microglia proliferation and mouse behavior. Results Depletion of SPC25 did not alter polarization of microglia cell polarization in vitro. On the other hand, AD-prone APP/PS1 mice that had received AAV-pTMEM-shSPC25 significantly decreased SPC25 levels in microglia and attenuated microglia proliferation, resulting in significant improvement of the performance of the mice in behavior tests. Conclusions Specific depletion of SPC25 in microglia may prevent AD development through suppression of microglia outgrowth. SPC25 may be a promising novel target for preventing AD through microglia.
Collapse
Affiliation(s)
- Feilun Cui
- Department of Urology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Zhipeng Xu
- Department of Urology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Yumei Lv
- Department of Health Management Section, Zhenjiang College, Zhenjiang, China
| | - Jianpeng Hu
- Department of Urology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
37
|
Vieira SRL, Schapira AHV. Glucocerebrosidase mutations: A paradigm for neurodegeneration pathways. Free Radic Biol Med 2021; 175:42-55. [PMID: 34450264 DOI: 10.1016/j.freeradbiomed.2021.08.230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Biallelic (homozygous or compound heterozygous) glucocerebrosidase gene (GBA) mutations cause Gaucher disease, whereas heterozygous mutations are numerically the most important genetic risk factor for Parkinson disease (PD) and are associated with the development of other synucleinopathies, notably Dementia with Lewy Bodies. This phenomenon is not limited to GBA, with converging evidence highlighting further examples of autosomal recessive disease genes increasing neurodegeneration risk in heterozygous mutation carriers. Nevertheless, despite extensive research, the cellular mechanisms by which mutations in GBA, encoding lysosomal enzyme β-glucocerebrosidase (GCase), predispose to neurodegeneration remain incompletely understood. Alpha-synuclein (A-SYN) accumulation, autophagic lysosomal dysfunction, mitochondrial abnormalities, ER stress and neuroinflammation have been proposed as candidate pathogenic pathways in GBA-linked PD. The observation of GCase and A-SYN interactions in PD initiated the development and evaluation of GCase-targeted therapeutics in PD clinical trials.
Collapse
Affiliation(s)
- Sophia R L Vieira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
38
|
Fischell JM, Fishman PS. A Multifaceted Approach to Optimizing AAV Delivery to the Brain for the Treatment of Neurodegenerative Diseases. Front Neurosci 2021; 15:747726. [PMID: 34630029 PMCID: PMC8497810 DOI: 10.3389/fnins.2021.747726] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Despite major advancements in gene therapy technologies, there are no approved gene therapies for diseases which predominantly effect the brain. Adeno-associated virus (AAV) vectors have emerged as the most effective delivery vector for gene therapy owing to their simplicity, wide spread transduction and low immunogenicity. Unfortunately, the blood-brain barrier (BBB) makes IV delivery of AAVs, to the brain highly inefficient. At IV doses capable of widespread expression in the brain, there is a significant risk of severe immune-mediated toxicity. Direct intracerebral injection of vectors is being attempted. However, this method is invasive, and only provides localized delivery for diseases known to afflict the brain globally. More advanced methods for AAV delivery will likely be required for safe and effective gene therapy to the brain. Each step in AAV delivery, including delivery route, BBB transduction, cellular tropism and transgene expression provide opportunities for innovative solutions to optimize delivery efficiency. Intra-arterial delivery with mannitol, focused ultrasound, optimized AAV capsid evolution with machine learning algorithms, synthetic promotors are all examples of advanced strategies which have been developed in pre-clinical models, yet none are being investigated in clinical trials. This manuscript seeks to review these technological advancements, and others, to improve AAV delivery to the brain, and to propose novel strategies to build upon this research. Ultimately, it is hoped that the optimization of AAV delivery will allow for the human translation of many gene therapies for neurodegenerative and other neurologic diseases.
Collapse
Affiliation(s)
- Jonathan M Fischell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paul S Fishman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
39
|
Senkevich K, Rudakou U, Gan-Or Z. New therapeutic approaches to Parkinson's disease targeting GBA, LRRK2 and Parkin. Neuropharmacology 2021; 202:108822. [PMID: 34626666 DOI: 10.1016/j.neuropharm.2021.108822] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/23/2023]
Abstract
Parkinson's disease (PD) is defined as a complex disorder with multifactorial pathogenesis, yet a more accurate definition could be that PD is not a single entity, but rather a mixture of different diseases with similar phenotypes. Attempts to classify subtypes of PD have been made based on clinical phenotypes or biomarkers. However, the most practical approach, at least for a portion of the patients, could be to classify patients based on genes involved in PD. GBA and LRRK2 mutations are the most common genetic causes or risk factors of PD, and PRKN is the most common cause of autosomal recessive form of PD. Patients carrying variants in GBA, LRRK2 or PRKN differ in some of their clinical characteristics, pathology and biochemical parameters. Thus, these three PD-associated genes are of special interest for drug development. Existing therapeutic approaches in PD are strictly symptomatic, as numerous clinical trials aimed at modifying PD progression or providing neuroprotection have failed over the last few decades. The lack of precision medicine approach in most of these trials could be one of the reasons why they were not successful. In the current review we discuss novel therapeutic approaches targeting GBA, LRRK2 and PRKN and discuss different aspects related to these genes and clinical trials.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada; First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Uladzislau Rudakou
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
40
|
Davidson CD, Gibson AL, Gu T, Baxter LL, Deverman BE, Beadle K, Incao AA, Rodriguez-Gil JL, Fujiwara H, Jiang X, Chandler RJ, Ory DS, Gradinaru V, Venditti CP, Pavan WJ. Improved systemic AAV gene therapy with a neurotrophic capsid in Niemann-Pick disease type C1 mice. Life Sci Alliance 2021; 4:e202101040. [PMID: 34407999 PMCID: PMC8380657 DOI: 10.26508/lsa.202101040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Niemann-Pick C1 disease (NPC1) is a rare, fatal neurodegenerative disease caused by mutations in NPC1, which encodes the lysosomal cholesterol transport protein NPC1. Disease pathology involves lysosomal accumulation of cholesterol and lipids, leading to neurological and visceral complications. Targeting the central nervous system (CNS) from systemic circulation complicates treatment of neurological diseases with gene transfer techniques. Selected and engineered capsids, for example, adeno-associated virus (AAV)-PHP.B facilitate peripheral-to-CNS transfer and hence greater CNS transduction than parental predecessors. We report that systemic delivery to Npc1 m1N/m1N mice using an AAV-PHP.B vector ubiquitously expressing NPC1 led to greater disease amelioration than an otherwise identical AAV9 vector. In addition, viral copy number and biodistribution of GFP-expressing reporters showed that AAV-PHP.B achieved more efficient, albeit variable, CNS transduction than AAV9 in Npc1 m1N/m1N mice. This variability was associated with segregation of two alleles of the putative AAV-PHP.B receptor Ly6a in Npc1 m1N/m1N mice. Our data suggest that robust improvements in NPC1 disease phenotypes occur even with modest CNS transduction and that improved neurotrophic capsids have the potential for superior NPC1 AAV gene therapy vectors.
Collapse
Affiliation(s)
- Cristin D Davidson
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alana L Gibson
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tansy Gu
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin E Deverman
- Division of Biology and Biological Engineering, California Institutes of Technology, Pasadena, CA, USA
| | - Keith Beadle
- Division of Biology and Biological Engineering, California Institutes of Technology, Pasadena, CA, USA
| | - Arturo A Incao
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jorge L Rodriguez-Gil
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hideji Fujiwara
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Randy J Chandler
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institutes of Technology, Pasadena, CA, USA
| | - Charles P Venditti
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
41
|
Bastien J, Menon S, Messa M, Nyfeler B. Molecular targets and approaches to restore autophagy and lysosomal capacity in neurodegenerative disorders. Mol Aspects Med 2021; 82:101018. [PMID: 34489092 DOI: 10.1016/j.mam.2021.101018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 01/18/2023]
Abstract
Autophagy is a catabolic process that promotes cellular fitness by clearing aggregated protein species, pathogens and damaged organelles through lysosomal degradation. The autophagic process is particularly important in the nervous system where post-mitotic neurons rely heavily on protein and organelle quality control in order to maintain cellular health throughout the lifetime of the organism. Alterations of autophagy and lysosomal function are hallmarks of various neurodegenerative disorders. In this review, we conceptualize some of the mechanistic and genetic evidence pointing towards autophagy and lysosomal dysfunction as a causal driver of neurodegeneration. Furthermore, we discuss rate-limiting pathway nodes and potential approaches to restore pathway activity, from autophagy initiation, cargo sequestration to lysosomal capacity.
Collapse
Affiliation(s)
- Julie Bastien
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Suchithra Menon
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Mirko Messa
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Beat Nyfeler
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| |
Collapse
|
42
|
Finneran DJ, Njoku IP, Flores-Pazarin D, Ranabothu MR, Nash KR, Morgan D, Gordon MN. Toward Development of Neuron Specific Transduction After Systemic Delivery of Viral Vectors. Front Neurol 2021; 12:685802. [PMID: 34512509 PMCID: PMC8426581 DOI: 10.3389/fneur.2021.685802] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Widespread transduction of the CNS with a single, non-invasive systemic injection of adeno-associated virus is now possible due to the creation of blood-brain barrier-permeable capsids. However, as these capsids are mutants of AAV9, they do not have specific neuronal tropism. Therefore, it is necessary to use genetic tools to restrict expression of the transgene to neuronal tissues. Here we compare the strength and specificity of two neuron-specific promoters, human synapsin 1 and mouse calmodulin/calcium dependent kinase II, to the ubiquitous CAG promoter. Administration of a high titer of virus is necessary for widespread CNS transduction. We observed the neuron-specific promoters drive comparable overall expression in the brain to the CAG promoter. Furthermore, the neuron-specific promoters confer significantly less transgene expression in peripheral tissues compared with the CAG promoter. Future experiments will utilize these delivery platforms to over-express the Alzheimer-associated pathological proteins amyloid-beta and tau to create mouse models without transgenesis.
Collapse
Affiliation(s)
- Dylan J. Finneran
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Ikenna P. Njoku
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Diego Flores-Pazarin
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Meghana R. Ranabothu
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Kevin R. Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - David Morgan
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Marcia N. Gordon
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| |
Collapse
|
43
|
Pietersz KL, Plessis FD, Pouw SM, Liefhebber JM, van Deventer SJ, Martens GJM, Konstantinova PS, Blits B. PhP.B Enhanced Adeno-Associated Virus Mediated-Expression Following Systemic Delivery or Direct Brain Administration. Front Bioeng Biotechnol 2021; 9:679483. [PMID: 34414171 PMCID: PMC8370029 DOI: 10.3389/fbioe.2021.679483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/24/2021] [Indexed: 01/14/2023] Open
Abstract
Of the adeno-associated viruses (AAVs), AAV9 is known for its capability to cross the blood–brain barrier (BBB) and can, therefore, be used as a noninvasive method to target the central nervous system. Furthermore, the addition of the peptide PhP.B to AAV9 increases its transduction across the BBB by 40-fold. Another neurotropic serotype, AAV5, has been shown as a gene therapeutic delivery vehicle to ameliorate several neurodegenerative diseases in preclinical models, but its administration requires invasive surgery. In this study, AAV9-PhP.B and AAV5-PhP.B were designed and produced in an insect cell–based system. To AAV9, the PhP.B peptide TLAVPFK was added, whereas in AAV5-PhP.B (AQTLAVPFKAQAQ), with AQ-AQAQ sequences used to swap with the corresponding sequence of AAV5. The addition of PhP.B to AAV5 did not affect its capacity to cross the mouse BBB, while increased transduction of liver tissue was observed. Then, intravenous (IV) and intrastriatal (IStr) delivery of AAV9-PhP.B and AAV5 were compared. For AAV9-PhP.B, similar transduction and expression levels were achieved in the striatum and cortex, irrespective of the delivery method used. IStr administration of AAV5 resulted in significantly higher amounts of vector DNA and therapeutic miRNA in the target regions such as striatum and cortex when compared with an IV administration of AAV9-PhP.B. These results illustrate the challenge in developing a vector that can be delivered noninvasively while achieving a transduction level similar to that of direct administration of AAV5. Thus, for therapeutic miRNA delivery with high local expression requirements, intraparenchymal delivery of AAV5 is preferred, whereas a humanized AAV9-PhP.B may be useful when widespread brain (and peripheral) transduction is needed.
Collapse
Affiliation(s)
- Kimberly L Pietersz
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, Netherlands.,Department of Molecular Animal Physiology, Faculty of Science, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Francois Du Plessis
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, Netherlands
| | - Stephan M Pouw
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, Netherlands
| | - Jolanda M Liefhebber
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, Netherlands
| | - Sander J van Deventer
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, Netherlands.,Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Faculty of Science, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | | | - Bas Blits
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, Netherlands
| |
Collapse
|
44
|
Custodia A, Aramburu-Núñez M, Correa-Paz C, Posado-Fernández A, Gómez-Larrauri A, Castillo J, Gómez-Muñoz A, Sobrino T, Ouro A. Ceramide Metabolism and Parkinson's Disease-Therapeutic Targets. Biomolecules 2021; 11:945. [PMID: 34202192 PMCID: PMC8301871 DOI: 10.3390/biom11070945] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Ceramide is a bioactive sphingolipid involved in numerous cellular processes. In addition to being the precursor of complex sphingolipids, ceramides can act as second messengers, especially when they are generated at the plasma membrane of cells. Its metabolic dysfunction may lead to or be a consequence of an underlying disease. Recent reports on transcriptomics and electrospray ionization mass spectrometry analysis have demonstrated the variation of specific levels of sphingolipids and enzymes involved in their metabolism in different neurodegenerative diseases. In the present review, we highlight the most relevant discoveries related to ceramide and neurodegeneration, with a special focus on Parkinson's disease.
Collapse
Affiliation(s)
- Antía Custodia
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Marta Aramburu-Núñez
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Clara Correa-Paz
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Adrián Posado-Fernández
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Ana Gómez-Larrauri
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48980 Bilbao, Spain; (A.G.-L.); (A.G.-M.)
- Respiratory Department, Cruces University Hospital, Barakaldo, 48903 Bizkaia, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Antonio Gómez-Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48980 Bilbao, Spain; (A.G.-L.); (A.G.-M.)
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Alberto Ouro
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| |
Collapse
|
45
|
Adeno-Associated Viral Vectors as Versatile Tools for Parkinson's Research, Both for Disease Modeling Purposes and for Therapeutic Uses. Int J Mol Sci 2021; 22:ijms22126389. [PMID: 34203739 PMCID: PMC8232322 DOI: 10.3390/ijms22126389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
It is without any doubt that precision medicine therapeutic strategies targeting neurodegenerative disorders are currently witnessing the spectacular rise of newly designed approaches based on the use of viral vectors as Trojan horses for the controlled release of a given genetic payload. Among the different types of viral vectors, adeno-associated viruses (AAVs) rank as the ones most commonly used for the purposes of either disease modeling or for therapeutic strategies. Here, we reviewed the current literature dealing with the use of AAVs within the field of Parkinson’s disease with the aim to provide neuroscientists with the advice and background required when facing a choice on which AAV might be best suited for addressing a given experimental challenge. Accordingly, here we will be summarizing some insights on different AAV serotypes, and which would be the most appropriate AAV delivery route. Next, the use of AAVs for modeling synucleinopathies is highlighted, providing potential readers with a landscape view of ongoing pre-clinical and clinical initiatives pushing forward AAV-based therapeutic approaches for Parkinson’s disease and related synucleinopathies.
Collapse
|
46
|
Abe T, Kuwahara T. Targeting of Lysosomal Pathway Genes for Parkinson's Disease Modification: Insights From Cellular and Animal Models. Front Neurol 2021; 12:681369. [PMID: 34194386 PMCID: PMC8236816 DOI: 10.3389/fneur.2021.681369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
Previous genetic studies on hereditary Parkinson's disease (PD) have identified a set of pathogenic gene mutations that have strong impacts on the pathogenicity of PD. In addition, genome-wide association studies (GWAS) targeted to sporadic PD have nominated an increasing number of genetic variants that influence PD susceptibility. Although the clinical and pathological characteristics in hereditary PD are not identical to those in sporadic PD, α-synuclein, and LRRK2 are definitely associated with both types of PD, with LRRK2 mutations being the most frequent cause of autosomal-dominant PD. On the other hand, a significant portion of risk genes identified from GWAS have been associated with lysosomal functions, pointing to a critical role of lysosomes in PD pathogenesis. Experimental studies have suggested that the maintenance or upregulation of lysosomal activity may protect against neuronal dysfunction or degeneration. Here we focus on the roles of representative PD gene products that are implicated in lysosomal pathway, namely LRRK2, VPS35, ATP13A2, and glucocerebrosidase, and provide an overview of their disease-associated functions as well as their cooperative actions in the pathogenesis of PD, based on the evidence from cellular and animal models. We also discuss future perspectives of targeting lysosomal activation as a possible strategy to treat neurodegeneration.
Collapse
Affiliation(s)
- Tetsuro Abe
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
47
|
Pickering CA, Mazarakis ND. Viral Vector Delivery of DREADDs for CNS Therapy. Curr Gene Ther 2021; 21:191-206. [PMID: 33573551 DOI: 10.2174/1566523221666210211102435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 11/22/2022]
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are genetically modified G-protein-coupled receptors (GPCRs), that can be activated by a synthetic ligand which is otherwise inert at endogenous receptors. DREADDs can be expressed in cells in the central nervous system (CNS) and subsequently offer the opportunity for remote and reversible silencing or activation of the target cells when the synthetic ligand is systemically administered. In neuroscience, DREADDs have thus far shown to be useful tools for several areas of research and offer considerable potential for the development of gene therapy strategies for neurological disorders. However, in order to design a DREADD-based gene therapy, it is necessary to first evaluate the viral vector delivery methods utilised in the literature to deliver these chemogenetic tools. This review evaluates each of the prominent strategies currently utilised for DREADD delivery, discussing their respective advantages and limitations. We focus on adeno-associated virus (AAV)-based and lentivirus-based systems, and the manipulation of these through cell-type specific promoters and pseudotyping. Furthermore, we address how virally mediated DREADD delivery could be improved in order to make it a viable gene therapy strategy and thus expand its translational potential.
Collapse
Affiliation(s)
- Ceri A Pickering
- Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nicholas D Mazarakis
- Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
48
|
Jin J, Guo J, Cai H, Zhao C, Wang H, Liu Z, Ge ZM. M2-Like Microglia Polarization Attenuates Neuropathic Pain Associated with Alzheimer's Disease. J Alzheimers Dis 2021; 76:1255-1265. [PMID: 32280102 DOI: 10.3233/jad-200099] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many Alzheimer's disease (AD) patients suffer from persistent neuropathic pain (NP), which is mediated, at least partially, but microglia. Nevertheless, the exact underlying mechanism is unknown. Moreover, a clinically translatable approach through modulating microglia for treating AD-associated NP is not available. Here, in a doxycycline-induced mouse model (rTg4510) for AD, we showed development of NP. We found that the total number of microglia in the CA3 region was not increased, but polarized to pro-inflammatory M1-like phenotype, with concomitant increases in production and secretion of pro-inflammatory cytokines. To examine whether this microglia polarization plays an essential role in the AD-associated NP, we generated an adeno-associated virus (AAV) serotype PHP.B (capable of crossing the blood-brain barrier) carrying shRNA for DNA methyltransferase 1 (DNMT1) under a microglia-specific TMEM119 promoter (AAV-pTMEM119-shDNMT1), which specifically targeted microglia and induced a M2-like polarization in vitro and in vivo in doxycycline-treated rTg4510 mice. Intravenous infusion of AAV-pTMEM119-shDNMT1 induced M2-polarization of microglia and attenuated both AD-associated behavior impairment but also NP in the doxycycline-treated rTg4510 mice. Thus, our data suggest that AD-associated NP may be treated through M2-polarization of microglia.
Collapse
Affiliation(s)
- Jing Jin
- Department of Neurology, the Second Hospital of Lanzhou University, Lanzhou, China
| | - Jia Guo
- Department of Neurology, the Second Hospital of Lanzhou University, Lanzhou, China
| | - Hongbin Cai
- Department of Neurology, the Second Hospital of Lanzhou University, Lanzhou, China
| | - Chongchong Zhao
- Department of Neurology, the Second Hospital of Lanzhou University, Lanzhou, China
| | - Huan Wang
- Department of Neurology, the Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhiyan Liu
- Department of Neurology, the Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhao-Ming Ge
- Department of Neurology, the Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
49
|
Yang L, Slone J, Li Z, Lou X, Hu YC, Queme LF, Jankowski MP, Huang T. Systemic administration of AAV-Slc25a46 mitigates mitochondrial neuropathy in Slc25a46-/- mice. Hum Mol Genet 2021; 29:649-661. [PMID: 31943007 DOI: 10.1093/hmg/ddz277] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial disorders are the result of nuclear and mitochondrial DNA mutations that affect multiple organs, with the central and peripheral nervous system often affected. Currently, there is no cure for mitochondrial disorders. Currently, gene therapy offers a novel approach for treating monogenetic disorders, including nuclear genes associated with mitochondrial disorders. We utilized a mouse model carrying a knockout of the mitochondrial fusion-fission-related gene solute carrier family 25 member 46 (Slc25a46) and treated them with neurotrophic AAV-PHP.B vector carrying the mouse Slc25a46 coding sequence. Thereafter, we used immunofluorescence staining and western blot to test the transduction efficiency of this vector. Toluidine blue staining and electronic microscopy were utilized to assess the morphology of optic and sciatic nerves following treatment, and the morphology and respiratory chain activity of mitochondria within these tissues were determined as well. The adeno-associated virus (AAV) vector effectively transduced in the cerebrum, cerebellum, heart, liver and sciatic nerves. AAV-Slc25a46 treatment was able to rescue the premature death in the mutant mice (Slc25a46-/-). The treatment-improved electronic conductivity of the peripheral nerves increased mobility and restored mitochondrial complex activities. Most notably, mitochondrial morphology inside the tissues of both the central and peripheral nervous systems was normalized, and the neurodegeneration, chronic neuroinflammation and loss of Purkinje cell dendrites observed within the mutant mice were alleviated. Overall, our study shows that AAV-PHP.B's neurotrophic properties are plausible for treating conditions where the central nervous system is affected, such as many mitochondrial diseases, and that AAV-Slc25a46 could be a novel approach for treating SLC25A46-related mitochondrial disorders.
Collapse
Affiliation(s)
- Li Yang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jesse Slone
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zhuo Li
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Xiaoting Lou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Luis F Queme
- Division of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael P Jankowski
- Division of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
50
|
Galvan A, Petkau TL, Hill AM, Korecki AJ, Lu G, Choi D, Rahman K, Simpson EM, Leavitt BR, Smith Y. Intracerebroventricular Administration of AAV9-PHP.B SYN1-EmGFP Induces Widespread Transgene Expression in the Mouse and Monkey Central Nervous System. Hum Gene Ther 2021; 32:599-615. [PMID: 33860682 PMCID: PMC8236560 DOI: 10.1089/hum.2020.301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Viral vectors made from adeno-associated virus (AAV) have emerged as preferred tools in basic and translational neuroscience research to introduce or modify genetic material in cells of interest. The use of viral vectors is particularly attractive in nontransgenic species, such as nonhuman primates. Injection of AAV solutions into the cerebrospinal fluid is an effective method to achieve a broad distribution of a transgene in the central nervous system. In this study, we conducted injections of AAV9-PHP.B, a recently described AAV capsid mutant, in the lateral ventricle of mice and rhesus macaques. To enhance the expression of the transgene (the tag protein emerald green fluorescent protein [EmGFP]), we used a gene promoter that confers high neuron-specific expression of the transgene, the human synapsin 1 (SYN1) promoter. The efficacy of the viral vector was first tested in mice. Our results show that intracerebroventricular injections of AAV9-PHP.B SYN1-EmGFP-woodchuck hepatitis virus posttranscriptional regulatory element resulted in neuronal EmGFP expression throughout the mice and monkey brains. We have provided a thorough characterization of the brain regions expressing EmGFP in both species. EmGFP was observed in neuronal cell bodies over the whole cerebral cortex and in the cerebellum, as well as in some subcortical regions, including the striatum and hippocampus. We also observed densely labeled neuropil in areas known to receive projections from these regions. Double fluorescence studies demonstrated that EmGFP was expressed by several types of neurons throughout the mouse and monkey brain. Our results demonstrate that a single injection in the lateral ventricle is an efficient method to obtain transgene expression in many cortical and subcortical regions, obviating the need of multiple intraparenchymal injections to cover large brain areas. The use of intraventricular injections of AAV9-PHP.B SYN1-EmGFP could provide a powerful approach to transduce widespread areas of the brain and may contribute to further development of methods to genetically target-specific populations of neurons.
Collapse
Affiliation(s)
- Adriana Galvan
- Department of Neurology, Yerkes National Primate Research Center, Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia, USA
| | - Terri L. Petkau
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Austin M. Hill
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea J. Korecki
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ge Lu
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Diane Choi
- Department of Neurology, Yerkes National Primate Research Center, Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia, USA
- Molecular Systems and Pharmacology Graduate Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Kazi Rahman
- Department of Neurology, Yerkes National Primate Research Center, Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia, USA
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Blair R. Leavitt
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
- Division of Neurology, Department of Medicine, University of British Columbia Hospital, Vancouver, British Columbia, Canada
- Center for Brain Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yoland Smith
- Department of Neurology, Yerkes National Primate Research Center, Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia, USA
| |
Collapse
|