1
|
Dunbar H, Hawthorne IJ, Tunstead C, Dunlop M, Volkova E, Weiss DJ, Santos CCD, Armstrong ME, Donnelly SC, English K. The VEGF-Mediated Cytoprotective Ability of MIF-Licensed Mesenchymal Stromal Cells in House Dust Mite-Induced Epithelial Damage. Eur J Immunol 2025; 55:e202451205. [PMID: 39502000 DOI: 10.1002/eji.202451205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 01/06/2025]
Abstract
Enhancing mesenchymal stromal cell (MSC) therapeutic efficacy through licensing with proinflammatory cytokines is now well established. We have previously shown that macrophage migration inhibitory factor (MIF)-licensed MSCs exerted significantly enhanced therapeutic efficacy in reducing inflammation in house dust mite (HDM)-driven allergic asthma. Soluble mediators released into the MSC secretome boast cytoprotective properties equal to those associated with the cell itself. In asthma, epithelial barrier damage caused by the inhalation of allergens like HDM drives goblet cell hyperplasia. Vascular endothelial growth factor (VEGF) plays a pivotal role in the repair and maintenance of airway epithelial integrity. Human bone marrow-derived MSCs expressed the MIF receptors CD74, CXCR2, and CXCR4. Endogenous MIF from high MIF expressing CATT7 bone marrow-derived macrophages increased MSC production of VEGF through the MIF CXCR4 chemokine receptor, where preincubation with CXCR4 inhibitor mitigated this effect. CATT7-MIF licensed MSC conditioned media containing increased levels of VEGF significantly enhanced bronchial epithelial wound healing via migration and proliferation in vitro. Blocking VEGFR2 or the use of mitomycin C abrogated this effect. Furthermore, CATT7-MIF MSC CM significantly decreased goblet cell hyperplasia after the HDM challenge in vivo. This was confirmed to be VEGF-dependent, as the use of anti-human VEGF neutralising antibody abrogated this effect. Overall, this study highlights that MIF-licenced MSCs show enhanced production of VEGF, which has the capacity to repair the lung epithelium.
Collapse
Affiliation(s)
- Hazel Dunbar
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ian J Hawthorne
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Courteney Tunstead
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Molly Dunlop
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Evelina Volkova
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Daniel J Weiss
- Department of Medicine, 226 Health Sciences Research Facility, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Claudia C Dos Santos
- The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Sciences and Interdepartmental Division of Critical Care, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michelle E Armstrong
- Department of Medicine, Trinity College Dublin and Tallaght Hospital, Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Trinity College Dublin and Tallaght Hospital, Dublin, Ireland
| | - Karen English
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
2
|
Jammes M, Tabasi A, Bach T, Ritter T. Healing the Cornea: Exploring the Therapeutic Solutions Offered by MSCs and MSC-derived EVs. Prog Retin Eye Res 2024:101325. [PMID: 39709150 DOI: 10.1016/j.preteyeres.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Affecting a large proportion of the population worldwide, corneal disorders constitute a concerning health hazard associated to compromised eyesight or blindness for most severe cases. In the last decades, mesenchymal stem/stromal cells (MSCs) demonstrated promising abilities in improving symptoms associated to corneal diseases or alleviating these affections, especially through their anti-inflammatory, immunomodulatory and pro-regenerative properties. More recently, MSC therapeutic potential was shown to be mediated by the molecules they release, and particularly by their extracellular vesicles (EVs; MSC-EVs). Consequently, using MSC-EVs emerged as a pioneering strategy to mitigate the risks related to cell therapy while providing MSC therapeutic benefits. Despite the promises given by MSC- and MSC-EV-based approaches, many improvements are considered to optimize the therapeutic significance of these therapies. This review aspires to provide a comprehensive and detailed overview of current knowledge on corneal therapies involving MSCs and MSC-EVs, the strategies currently under evaluation, and the gaps remaining to be addressed for clinical implementation. From encapsulating MSCs or their EVs into biomaterials to enhance the ocular retention time to loading MSC-EVs with therapeutic drugs, a wide range of ground-breaking strategies are currently contemplated to lead to the safest and most effective treatments. Promising research initiatives also include diverse gene therapies and the targeting of specific cell types through the modification of the EV surface, paving the way for future therapeutic innovations. As one of the most important challenges, MSC-EV large-scale production strategies are extensively investigated and offer a wide array of possibilities to meet the needs of clinical applications.
Collapse
Affiliation(s)
- Manon Jammes
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Abbas Tabasi
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Trung Bach
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
3
|
Wang J, Zhou Y, Donohoe E, Canning A, Moosavizadeh S, Ryan AE, Ritter T. Immunomodulatory potential of cytokine-licensed human bone marrow-derived mesenchymal stromal cells correlates with potency marker expression profile. Stem Cells 2024; 42:1040-1054. [PMID: 39208292 PMCID: PMC11630899 DOI: 10.1093/stmcls/sxae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Cytokine(s) pre-activation/licensing is an effective way to enhance the immunomodulatory potency of mesenchymal stromal cells (MSCs). Currently, IFN-γ licensing received the most attention in comparison with other cytokines. After licensing human bone marrow-derived MSCs with pro-/anti-inflammatory cytokines IFN-γ, IL-1β, TNF-α, TGF-β1 alone or in combination, the in vitro immunomodulatory potency of these MSCs was studied by incubating with allogeneic T cells and macrophage-like THP-1 cells. In addition, immunomodulation-related molecules filtered by bioinformatics, complement 1 subcomponent (C1s), and interferon-induced GTP-binding protein Mx2 (MX2), were studied to verify whether to reflect the immunomodulatory potency. Herein, we reported that different cytokines cause different effects on the function of MSC. While TGF-β1 licensing enhances the capacity of MSCs to induce T cells with an immunosuppressive phenotype, IFN-γ-licensing strengthens the inhibitory effect of MSC on T cell proliferation. Both TGF-β1 and IFN-γ licensing can enhance the effect of MSC on reducing the expression of pro-inflammatory cytokines by M1 macrophage-like THP-1 cells. Interestingly, IFN-γ upregulates potential potency markers extracellular C1s and kynurenine (KYN) and intracellular MX2. These 3 molecules have the potential to reflect mesenchymal stromal cell immunomodulatory potency. In addition, we reported that there is a synergistic effect of TGF-β1 and IFN-γ in immunomodulation.
Collapse
Affiliation(s)
- Jiemin Wang
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway H91FD82, Ireland
| | - Yingying Zhou
- Changsha Centre for Disease Control and Prevention, Changsha, Hunan Province 410011, People’s Republic of China
| | - Ellen Donohoe
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway H91FD82, Ireland
| | - Aoife Canning
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway H91FD82, Ireland
| | - Seyedmohammad Moosavizadeh
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway H91FD82, Ireland
- CURAM Centre for Research in Medical Devices, University of Galway, Galway H91FD82, Ireland
| | - Aideen E Ryan
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway H91FD82, Ireland
- CURAM Centre for Research in Medical Devices, University of Galway, Galway H91FD82, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway H91TK33, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway H91FD82, Ireland
- CURAM Centre for Research in Medical Devices, University of Galway, Galway H91FD82, Ireland
| |
Collapse
|
4
|
Santi L, Beretta S, Berti M, Savoia EO, Passerini L, Mancino M, De Ponti G, Alberti G, Quaranta P, Basso-Ricci L, Avanzini MA, Merelli I, Scala S, Ferrari S, Aiuti A, Bernardo ME, Crippa S. Transcriptomic analysis of BM-MSCs identified EGR1 as a transcription factor to fully exploit their therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119818. [PMID: 39168411 PMCID: PMC11480207 DOI: 10.1016/j.bbamcr.2024.119818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Bone marrow-mesenchymal stromal cells (BM-MSCs) are key components of the BM niche, where they regulate hematopoietic stem progenitor cell (HSPC) homeostasis by direct contact and secreting soluble factors. BM-MSCs also protect the BM niche from excessive inflammation by releasing anti-inflammatory factors and modulating immune cell activity. Thanks to these properties, BM-MSCs were successfully employed in pre-clinical HSPC transplantation models, increasing the rate of HSPC engraftment, accelerating the hematological reconstitution, and reducing the risk of graft failure. However, their clinical use requires extensive in vitro expansion, potentially altering their biological and functional properties. In this work, we analyzed the transcriptomic profile of human BM-MSCs sorted as CD45-, CD105+, CD73+, and CD90+ cells from the BM aspirates of heathy-donors and corresponding ex-vivo expanded BM-MSCs. We found the expression of immune and inflammatory genes downregulated upon cell culture and selected the transcription factor EGR1 to restore the MSC properties. We overexpressed EGR1 in BM-MSCs and performed in vitro tests to study the functional properties of EGR1-overexpressing BM-MSCs. We concluded that EGR1 increased the MSC response to inflammatory stimuli and immune cell control and potentiated the MSC hematopoietic supportive activity in co-culture assay, suggesting that the EGR1-based reprogramming may improve the BM-MSC clinical use.
Collapse
Affiliation(s)
- Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Berti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Evelyn Oliva Savoia
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marilena Mancino
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada De Ponti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gaia Alberti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pamela Quaranta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita Salute" San Raffaele University, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita Salute" San Raffaele University, Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita Salute" San Raffaele University, Milan, Italy.
| | - Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
5
|
Zhao Q, Mertová I, Wróblová A, Žabková S, Tlapáková T, Krylov V. Immunomodulatory role of Xenopus tropicalis immature Sertoli cells in tadpole muscle regeneration via macrophage response modulation. Stem Cell Res Ther 2024; 15:421. [PMID: 39533333 PMCID: PMC11558833 DOI: 10.1186/s13287-024-04050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Regenerative medicine and transplantation science continuously seek methods to circumvent immune-mediated rejection and promote tissue regeneration. Sertoli cells, with their inherent immunoprotective properties, emerge as pivotal players in this quest. However, whether Sertoli cells can play immunomodulatory role in tadpole tail regeneration and can thus benefit the regeneration process are needed to be discovered. METHODS Immature Sertoli cells from Xenopus tropicalis (XtiSCs) were transplanted into X. tropicalis tadpoles, followed by the amputation of the final third of their tails. We assessed the migration of XtiSCs, tail regeneration length, muscle degradation and growth, and macrophage counts across various regions including the entire tail, tail trunk, injection site, and regeneration site. The interactions between XtiSCs and macrophages were examined using a confocal microscope. To deplete macrophages, clodronate liposomes were administered prior to the transplantation of XtiSCs, while the administration of control liposomes acted as a negative control. Student's t-test was used to compare the effects of XtiSCs injection to those of a 2/3PBS injection across groups with no liposomes, control liposomes, and clodronate liposomes. RESULTS XtiSCs have excellent viability after transplantation to tadpole tail and remarkable homing capabilities to the regeneration site after tail amputation. XtiSCs injection increased macrophage numbers at 3 days post-amputation and 5 days post-amputation in the tail trunk, specifically at the injection site and at the regenerated tail, in a macrophage depleted environment (clodronate-liposome injection). What's more, XtiSCs injection decreased muscle fibers degradation significantly at 1 day post-amputation and facilitated new muscle growth significantly at 3 days post-amputation. In addition, whole-mount immunostaining showed that some XtiSCs co-localized with macrophages. And we observed potential mitochondria transport from XtiSCs to macrophages using MitoTracker staining in tadpole tail. CONCLUSIONS Our study delineates the novel role of XtiSCs in facilitating muscle regeneration post tadpole tail amputation, underscoring a unique interaction with macrophages that is crucial for regenerative success. This study not only highlights the therapeutic potential of Sertoli cells in regenerative medicine but also opens avenues for clinical translation, offering insights into immunoregulatory strategies that could enhance tissue regeneration and transplant acceptance.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Irem Mertová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Aneta Wróblová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Světlana Žabková
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Tereza Tlapáková
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Vladimir Krylov
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic.
| |
Collapse
|
6
|
Leonard NA, Corry SM, Reidy E, Egan H, O’Malley G, Thompson K, McDermott E, O’Neill A, Zakaria N, Egan LJ, Ritter T, Loessner D, Redmond K, Sheehan M, Canney A, Hogan AM, Hynes SO, Treacy O, Dunne PD, Ryan AE. Tumor-associated mesenchymal stromal cells modulate macrophage phagocytosis in stromal-rich colorectal cancer via PD-1 signaling. iScience 2024; 27:110701. [PMID: 39310770 PMCID: PMC11416555 DOI: 10.1016/j.isci.2024.110701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/27/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024] Open
Abstract
CMS4 colorectal cancer (CRC), based on the consensus molecular subtype (CMS), stratifies patients with the poorest disease-free survival rates. It is characterized by a strong mesenchymal stromal cell (MSC) signature, wound healing-like inflammation and therapy resistance. We utilized 2D and 3D in vitro, in vivo, and ex vivo models to assess the impact of inflammation and stromal cells on immunosuppression in CMS4 CRC. RNA sequencing data from untreated stage II/III CRC patients showed enriched TNF-α signatures in CMS1 and CMS4 tumors. Secretome from TNF-α treated cancer cells induced an immunomodulatory and chemotactic phenotype in MSC and cancer-associated fibroblasts (CAFs). Macrophages in CRC tumours migrate and preferentially localise in stromal compartment. Inflammatory CRC secretome enhances expression of PD-L1 and CD47 on both human and murine stromal cells. We demonstrate that TNF-α-induced inflammation in CRC suppresses macrophage phagocytosis via stromal cells. We show that stromal cell-mediated suppression of macrophage phagocytosis is mediated in part through PD-1 signaling. These data suggest that re-stratification of CRC by CMS may reveal patient subsets with microsatellite stable tumors, particularly CMS4-like tumors, that may respond to immunotherapies.
Collapse
Affiliation(s)
- Niamh A. Leonard
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Shania M. Corry
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, Northern Ireland
| | - Eileen Reidy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Hannah Egan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Grace O’Malley
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Kerry Thompson
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Emma McDermott
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Aoise O’Neill
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Norashikin Zakaria
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Laurence J. Egan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
- CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Daniela Loessner
- Barts Cancer Institute, Queen Mary University of London, London, UK
- Faculty of Engineering and Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
| | - Keara Redmond
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, Northern Ireland
| | - Margaret Sheehan
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
| | - Aoife Canney
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
| | - Aisling M. Hogan
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Department of Colorectal Surgery, Galway University Hospital, Galway, Ireland
| | - Sean O. Hynes
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
- Discipline of Pathology, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Oliver Treacy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Philip D. Dunne
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, Northern Ireland
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Aideen E. Ryan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
7
|
Poblano-Pérez LI, Monroy-García A, Fragoso-González G, Mora-García MDL, Castell-Rodríguez A, Mayani H, Álvarez-Pérez MA, Pérez-Tapia SM, Macías-Palacios Z, Vallejo-Castillo L, Montesinos JJ. Mesenchymal Stem/Stromal Cells Derived from Dental Tissues Mediate the Immunoregulation of T Cells through the Purinergic Pathway. Int J Mol Sci 2024; 25:9578. [PMID: 39273524 PMCID: PMC11395442 DOI: 10.3390/ijms25179578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Human dental tissue mesenchymal stem cells (DT-MSCs) constitute an attractive alternative to bone marrow-derived mesenchymal stem cells (BM-MSCs) for potential clinical applications because of their accessibility and anti-inflammatory capacity. We previously demonstrated that DT-MSCs from dental pulp (DP-MSCs), periodontal ligaments (PDL-MSCs), and gingival tissue (G-MSCs) show immunosuppressive effects similar to those of BM, but to date, the DT-MSC-mediated immunoregulation of T lymphocytes through the purinergic pathway remains unknown. In the present study, we compared DP-MSCs, PDL-MSCs, and G-MSCs in terms of CD26, CD39, and CD73 expression; their ability to generate adenosine (ADO) from ATP and AMP; and whether the concentrations of ADO that they generate induce an immunomodulatory effect on T lymphocytes. BM-MSCs were included as the gold standard. Our results show that DT-MSCs present similar characteristics among the different sources analyzed in terms of the properties evaluated; however, interestingly, they express more CD39 than BM-MSCs; therefore, they generate more ADO from ATP. In contrast to those produced by BM-MSCs, the concentrations of ADO produced by DT-MSCs from ATP inhibited the proliferation of CD3+ T cells and promoted the generation of CD4+CD25+FoxP3+CD39+CD73+ Tregs and Th17+CD39+ lymphocytes. Our data suggest that DT-MSCs utilize the adenosinergic pathway as an immunomodulatory mechanism and that this mechanism is more efficient than that of BM-MSCs.
Collapse
Affiliation(s)
- Luis Ignacio Poblano-Pérez
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alberto Monroy-García
- Immunology and Cancer Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Gladis Fragoso-González
- Institute of Biomedical Research, Department of Immunology, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - María de Lourdes Mora-García
- Immunobiology Laboratory, Cell Differentiation and Cancer Unit, Facultad de Estudios Superiores-Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico
| | - Andrés Castell-Rodríguez
- Department of Cellular and Tissue Biology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Héctor Mayani
- Hematopoietic Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Marco Antonio Álvarez-Pérez
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sonia Mayra Pérez-Tapia
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Department of Immunology, National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Zaira Macías-Palacios
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Luis Vallejo-Castillo
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Juan José Montesinos
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
8
|
Wong YS, Mançanares AC, Navarrete F, Poblete P, Mendez-Pérez L, Rodriguez-Alvarez L, Castro FO. Short preconditioning with TGFβ of equine adipose tissue-derived mesenchymal stem cells predisposes towards an anti-fibrotic secretory phenotype: A possible tool for treatment of endometrosis in mares. Theriogenology 2024; 225:119-129. [PMID: 38805994 DOI: 10.1016/j.theriogenology.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
Endometrosis in mares is a disease resulting from chronic inflammation characterized by peri glandular fibrosis. There is no effective treatment so far, which opens the door for exploring the use of stem cells as a candidate. Transforming growth factor beta (TGFβ) is crucial for the establishment and progression of fibrosis in mare's endometrosis. We aimed to develop regenerative approaches to treat endometrosis by using mesenchymal stem cells (MSC), for which understanding the effect of TGFβ on exogenous MSC is crucial. We isolated and characterized equine adipose MSC from six donors. Cells were pooled and exposed to 10 ng/ml of TGFβ for 0, 4, and 24 h, after which cells were analyzed for proliferation, migration, mesodermal differentiation, expression of fibrosis-related mRNAs, and prostaglandin E2 secretion. At 24 h of exposition to TGFβ, there was a progressive increase in the contraction of the monolayer, leading to nodular structures, while cell viability did not change. Exposure to TGFβ impaired adipogenic and osteogenic differentiation after 4 h of treatment, which was more marked at 24 h, represented by a decrease in Oil red and Alizarin red staining, as well as a significant drop (p < 0.05) in the expression of key gene regulators of differentiation processes (PPARG for adipose and RUNX2 for osteogenic differentiation). TGFβ increased chondrogenic differentiation as shown by the upsurge in size of the resulting 3D cell pellet and intensity of Alcian Blue staining, as well as the significant up-regulation of SOX9 expression (p < 0.05) at 4 h, which reached a maximum peak at 24 h (p < 0.01), indicative of up-regulation of glycosaminoglycan synthesis. Preconditioning MSC with TGFβ led to a significant increase (p < 0.05) in the expression of myofibroblast gene markers aSMA, COL1A1, and TGFβ at 24 h exposition time. In contrast, the expression of COL3A1 did not change with respect to the control but registered a significant downregulation compared to 4 h (p < 0.05). TGFβ also affected the expression of genes involved in PGE2 synthesis and function; COX2, PTGES, and the PGE2 receptor EP4 were all significantly upregulated early at 4 h (p < 0.05). Cells exposed to TGFβ showed a significant upregulation of PGE2 secretion at 4 h compared to untreated cells (p < 0.05); conversely, at 24 h, the PGE2 values decreased significantly compared to control cells (p < 0.05). Preconditioning MSC for 4 h led to an anti-fibrotic secretory phenotype, while a longer period (24 h) led to a pro-fibrotic one. It is tempting to propose a 4-h preconditioning of exogenous MSC with TGFβ to drive them towards an anti-fibrotic phenotype for cellular and cell-free therapies in fibrotic diseases such as endometrosis of mares.
Collapse
Affiliation(s)
- Yat Sen Wong
- Ph.D Program in Veterinary Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Ana Carolina Mançanares
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Felipe Navarrete
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Pamela Poblete
- Ph.D Program in Veterinary Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Lidice Mendez-Pérez
- Ph.D Program in Veterinary Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | | | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile.
| |
Collapse
|
9
|
Cho WJ, Pulimamidi VK, Mittal SK, Chauhan SK. Mesenchymal stromal cells protect tissues from Th1 immune responses via IL-11 secretion. FASEB J 2024; 38:e23683. [PMID: 38758184 PMCID: PMC11149610 DOI: 10.1096/fj.202400078r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/05/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Mesenchymal stromal cells (MSCs) have been shown to modulate the function of various subsets of T cells such as naïve CD4+ T cells and IFNγ+CD4+ Th1 cells; however, mechanisms underlying this regulation have not been fully deciphered. Our in vitro culture assays demonstrate that MSCs suppress the activation and function of CD4+ T cells by secreting interleukin 11, and neutralization of IL11 abrogates MSC-mediated suppression of CD4+ T cell function. Moreover, delayed-type, exogenous supplementation of IL11 significantly suppressed IFNγ+ expression by Th1 cells. Th1 and CD8+ cells play central roles in T cell-mediated tissue damage. Using a murine model of hypersensitivity response to study T cell-mediated tissue damage, we show that silencing IL11 in MSCs significantly abates the capacity of MSCs to suppress the generation of IFNγ-secreting CD4+ and CD8+ cells, failing to prevent T cell-mediated tissue inflammation and tissue damage.
Collapse
Affiliation(s)
- WonKyung J. Cho
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts, 02114, USA
| | - Vinay K. Pulimamidi
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts, 02114, USA
| | - Sharad K. Mittal
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts, 02114, USA
| | - Sunil K. Chauhan
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts, 02114, USA
| |
Collapse
|
10
|
Hu Z, Li D, Wu S, Pei K, Fu Z, Yang Y, Huang Y, Yang J, Liu C, Hu J, Cai C, Liao Y. Unveiling the functional heterogeneity of cytokine-primed human umbilical cord mesenchymal stem cells through single-cell RNA sequencing. Cell Biosci 2024; 14:40. [PMID: 38532459 DOI: 10.1186/s13578-024-01219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) hold immense promise for use in immunomodulation and regenerative medicine. However, their inherent heterogeneity makes it difficult to achieve optimal therapeutic outcomes for a specific clinical disease. Primed MSCs containing a certain cytokine can enhance their particular functions, thereby increasing their therapeutic potential for related diseases. Therefore, understanding the characteristic changes and underlying mechanisms of MSCs primed by various cytokines is highly important. RESULTS In this study, we aimed to reveal the cellular heterogeneity, functional subpopulations, and molecular mechanisms of MSCs primed with IFN-γ, TNF-α, IL-4, IL-6, IL-15, and IL-17 using single-cell RNA sequencing (scRNA-seq). Our results demonstrated that cytokine priming minimized the heterogeneity of the MSC transcriptome, while the expression of MSC surface markers exhibited only slight changes. Notably, compared to IL-6, IL-15, and IL-17; IFN-γ, TNF-α, and IL-4 priming, which stimulated a significantly greater number of differentially expressed genes (DEGs). Functional analysis, which included Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, indicated that IFN-γ, TNF-α, and IL-4-primed hUC-MSCs are involved in interferon-mediated immune-related processes, leukocyte migration, chemotaxis potential, and extracellular matrix and cell adhesion, respectively. Moreover, an investigation of various biological function scores demonstrated that IFN-γ-primed hUC-MSCs exhibit strong immunomodulatory ability, TNF-α-primed hUC-MSCs exhibit high chemotaxis potential, and IL-4-primed hUC-MSCs express elevated amounts of collagen. Finally, we observed that cytokine priming alters the distribution of functional subpopulations of MSCs, and these subpopulations exhibit various potential biological functions. Taken together, our study revealed the distinct regulatory effects of cytokine priming on MSC heterogeneity, biological function, and functional subpopulations at the single-cell level. CONCLUSIONS These findings contribute to a comprehensive understanding of the inflammatory priming of MSCs, paving the way for their precise treatment in clinical applications.
Collapse
Affiliation(s)
- Zhiwei Hu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Duanduan Li
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Shiduo Wu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Ke Pei
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Zeqin Fu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Yulin Yang
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Yinfu Huang
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Jian Yang
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Chuntao Liu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Junyuan Hu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
- Shenzhen Beike Biotechnology Research Institute, Shenzhen, 518054, China
| | - Cheguo Cai
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Yan Liao
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China.
- Shenzhen Beike Biotechnology Research Institute, Shenzhen, 518054, China.
| |
Collapse
|
11
|
Wang X, Yang C, Ma X, Li X, Qi Y, Bai Z, Xu Y, Ma K, Luo Y, Song J, Jia W, He Z, Liu Z. A division-of-labor mode contributes to the cardioprotective potential of mesenchymal stem/stromal cells in heart failure post myocardial infarction. Front Immunol 2024; 15:1363517. [PMID: 38562923 PMCID: PMC10982400 DOI: 10.3389/fimmu.2024.1363517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background Treatment of heart failure post myocardial infarction (post-MI HF) with mesenchymal stem/stromal cells (MSCs) holds great promise. Nevertheless, 2-dimensional (2D) GMP-grade MSCs from different labs and donor sources have different therapeutic efficacy and still in a low yield. Therefore, it is crucial to increase the production and find novel ways to assess the therapeutic efficacy of MSCs. Materials and methods hUC-MSCs were cultured in 3-dimensional (3D) expansion system for obtaining enough cells for clinical use, named as 3D MSCs. A post-MI HF mouse model was employed to conduct in vivo and in vitro experiments. Single-cell and bulk RNA-seq analyses were performed on 3D MSCs. A total of 125 combination algorithms were leveraged to screen for core ligand genes. Shinyapp and shinycell workflows were used for deploying web-server. Result 3D GMP-grade MSCs can significantly and stably reduce the extent of post-MI HF. To understand the stable potential cardioprotective mechanism, scRNA-seq revealed the heterogeneity and division-of-labor mode of 3D MSCs at the cellular level. Specifically, scissor phenotypic analysis identified a reported wound-healing CD142+ MSCs subpopulation that is also associated with cardiac protection ability and CD142- MSCs that is in proliferative state, contributing to the cardioprotective function and self-renewal, respectively. Differential expression analysis was conducted on CD142+ MSCs and CD142- MSCs and the differentially expressed ligand-related model was achieved by employing 125 combination algorithms. The present study developed a machine learning predictive model based on 13 ligands. Further analysis using CellChat demonstrated that CD142+ MSCs have a stronger secretion capacity compared to CD142- MSCs and Flow cytometry sorting of the CD142+ MSCs and qRT-PCR validation confirmed the significant upregulation of these 13 ligand factors in CD142+ MSCs. Conclusion Clinical GMP-grade 3D MSCs could serve as a stable cardioprotective cell product. Using scissor analysis on scRNA-seq data, we have clarified the potential functional and proliferative subpopulation, which cooperatively contributed to self-renewal and functional maintenance for 3D MSCs, named as "division of labor" mode of MSCs. Moreover, a ligand model was robustly developed for predicting the secretory efficacy of MSCs. A user-friendly web-server and a predictive model were constructed and available (https://wangxc.shinyapps.io/3D_MSCs/).
Collapse
Affiliation(s)
- Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Chao Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xiaoxue Ma
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xiuhua Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Yiyao Qi
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhihui Bai
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Ying Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Keming Ma
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Yi Luo
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Jiyang Song
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Wenwen Jia
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| |
Collapse
|
12
|
Poblano-Pérez LI, Castro-Manrreza ME, González-Alva P, Fajardo-Orduña GR, Montesinos JJ. Mesenchymal Stromal Cells Derived from Dental Tissues: Immunomodulatory Properties and Clinical Potential. Int J Mol Sci 2024; 25:1986. [PMID: 38396665 PMCID: PMC10888494 DOI: 10.3390/ijms25041986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells located in different areas of the human body. The oral cavity is considered a potential source of MSCs because they have been identified in several dental tissues (D-MSCs). Clinical trials in which cells from these sources were used have shown that they are effective and safe as treatments for tissue regeneration. Importantly, immunoregulatory capacity has been observed in all of these populations; however, this function may vary among the different types of MSCs. Since this property is of clinical interest for cell therapy protocols, it is relevant to analyze the differences in immunoregulatory capacity, as well as the mechanisms used by each type of MSC. Interestingly, D-MSCs are the most suitable source for regenerating mineralized tissues in the oral region. Furthermore, the clinical potential of D-MSCs is supported due to their adequate capacity for proliferation, migration, and differentiation. There is also evidence for their potential application in protocols against autoimmune diseases and other inflammatory conditions due to their immunosuppressive capacity. Therefore, in this review, the immunoregulatory mechanisms identified at the preclinical level in combination with the different types of MSCs found in dental tissues are described, in addition to a description of the clinical trials in which MSCs from these sources have been applied.
Collapse
Affiliation(s)
- Luis Ignacio Poblano-Pérez
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| | - Marta Elena Castro-Manrreza
- Immunology and Stem Cells Laboratory, FES Zaragoza, National Autonomous University of Mexico (UNAM), Mexico City 09230, Mexico;
| | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| | - Guadalupe R. Fajardo-Orduña
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| | - Juan José Montesinos
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| |
Collapse
|
13
|
dos Santos CC, Lopes-Pacheco M, English K, Rolandsson Enes S, Krasnodembskaya A, Rocco PRM. The MSC-EV-microRNAome: A Perspective on Therapeutic Mechanisms of Action in Sepsis and ARDS. Cells 2024; 13:122. [PMID: 38247814 PMCID: PMC10813908 DOI: 10.3390/cells13020122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs) have emerged as innovative therapeutic agents for the treatment of sepsis and acute respiratory distress syndrome (ARDS). Although their potential remains undisputed in pre-clinical models, this has yet to be translated to the clinic. In this review, we focused on the role of microRNAs contained in MSC-derived EVs, the EV microRNAome, and their potential contribution to therapeutic mechanisms of action. The evidence that miRNA transfer in MSC-derived EVs has a role in the overall therapeutic effects is compelling. However, several questions remain regarding how to reconcile the stochiometric issue of the low copy numbers of the miRNAs present in the EV particles, how different miRNAs delivered simultaneously interact with their targets within recipient cells, and the best miRNA or combination of miRNAs to use as therapy, potency markers, and biomarkers of efficacy in the clinic. Here, we offer a molecular genetics and systems biology perspective on the function of EV microRNAs, their contribution to mechanisms of action, and their therapeutic potential.
Collapse
Affiliation(s)
- Claudia C. dos Santos
- Institute of Medical Sciences and Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Toronto, ON M5B 1T8, Canada
- Keenan Center for Biomedical Research, Unity Health Toronto, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Karen English
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland;
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Sara Rolandsson Enes
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184 Lund, Sweden;
| | - Anna Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT9 7BL, UK;
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-599, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSaúde, Research Support Foundation of the State of Rio de Janeiro, Rio de Janeiro 20020-000, Brazil
| |
Collapse
|
14
|
Mao XF, Zhang XQ, Yao ZY, Mao HJ. Advances in mesenchymal stem cells therapy for tendinopathies. Chin J Traumatol 2024; 27:11-17. [PMID: 38052701 PMCID: PMC10859297 DOI: 10.1016/j.cjtee.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
Tendinopathies are chronic diseases of an unknown etiology and associated with inflammation. Mesenchymal stem cells (MSCs) have emerged as a viable therapeutic option to combat the pathological progression of tendinopathies, not only because of their potential for multidirectional differentiation and self-renewal, but also their excellent immunomodulatory properties. The immunomodulatory effects of MSCs are increasingly being recognized as playing a crucial role in the treatment of tendinopathies, with MSCs being pivotal in regulating the inflammatory microenvironment by modulating the immune response, ultimately contributing to improved tissue repair. This review will discuss the current knowledge regarding the application of MSCs in tendinopathy treatments through the modulation of the immune response.
Collapse
Affiliation(s)
- Xu-Feng Mao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang province, China
| | - Xi-Qian Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang province, China
| | - Zhe-Yu Yao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang province, China
| | - Hai-Jiao Mao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang province, China.
| |
Collapse
|
15
|
Yu S, Lu J. The potential of mesenchymal stem cells to induce immune tolerance to allogeneic transplants. Transpl Immunol 2023; 81:101939. [PMID: 37866668 DOI: 10.1016/j.trim.2023.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Organ allograft transplantation is an effective treatment plan for patients with organ failure. Although the application of continuous immunosuppressants makes successful allograft survival possible, the patients' long-term survival rate and quality of life are not ideal. Therefore, it is necessary to find a new strategy to alleviate transplant rejection by developing therapies for permanent allograft acceptance. One promising approach is the application of tolerogenic mesenchymal stem cells (MSCs). Extensive research on MSCs has revealed that MSCs have potent differentiation potential and immunomodulatory properties. This review describes the molecular markers and functional properties of MSCs as well as the immunomodulatory mechanisms of MSCs in transplantation, focuses on the research progress in clinical trials of MSCs, and expounds on the future development prospects and possible limitations.
Collapse
Affiliation(s)
- Shaochen Yu
- Department of Emergency and Critical Care Medicine, Guangdong Second Provincial General Hospital, No. 466, Xingang Middle Road, Haizhu District, Guangzhou, Guangdong 510317, China.
| | - Jian Lu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui 230022, China.
| |
Collapse
|
16
|
Wang J, Donohoe E, Canning A, Moosavizadeh S, Buckley F, Brennan MÁ, Ryan AE, Ritter T. Immunomodulatory function of licensed human bone marrow mesenchymal stromal cell-derived apoptotic bodies. Int Immunopharmacol 2023; 125:111096. [PMID: 37871378 DOI: 10.1016/j.intimp.2023.111096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) show great potential for immunomodulatory and anti-inflammatory treatments. Clinical trials have been performed for the treatment of Type 1 diabetes, graft-versus-host disease and organ transplantation, which offer a promise of MSCs as an immunomodulatory therapy. Nevertheless, their unstable efficacy and immunogenicity concerns present challenges to clinical translation. It has emerged that the MSC-derived secretome, which includes secreted proteins, exosomes, apoptotic bodies (ABs) and other macromolecules, may have similar therapeutic effects to parent MSCs. Among all of the components of the MSC-derived secretome, most interest thus far has been garnered by exosomes for their therapeutic potential. However, since MSCs were reported to undergo apoptosis after in vivo transplantation and release ABs, we speculated as to whether ABs have immunomodulatory effects. In this study, cytokine licensing was used to enhance the immunomodulatory potency of MSCs and ABs derived from licensed MSCs in vitro were isolated to explore their immunomodulatory effects as an effective non-viable cell therapy. RESULTS IFN-γ and IFN-γ/TGF-β1 licensing enhanced the immunomodulatory effect of MSCs on T cell proliferation. Further, TGF-β1 and IFN-γ licensing strengthened the immunomodulatory effect of MSC on reducing the TNF-α and IL-1β expression by M1 macrophage-like THP-1 cells. Additionally, we discovered the immunomodulatory effect mediated by MSC-derived apoptotic bodies. Licensing impacted the uptake of ABs by recipient immune cells and importantly altered their phenotypes. CONCLUSION ABs derived from IFN-γ/TGF-β1-licensed apoptotic MSCs significantly inhibited T cell proliferation, induced more regulatory T cells, and maintained immunomodulatory T cells but reduced pro-inflammatory T cells.
Collapse
Affiliation(s)
- Jiemin Wang
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Ellen Donohoe
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Aoife Canning
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Seyedmohammad Moosavizadeh
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Fiona Buckley
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Meadhbh Á Brennan
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Aideen E Ryan
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland; Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
17
|
Kang H, Feng J, Peng Y, Liu Y, Yang Y, Wu Y, Huang J, Jie Y, Chen B, He Y. Human mesenchymal stem cells derived from adipose tissue showed a more robust effect than those from the umbilical cord in promoting corneal graft survival by suppressing lymphangiogenesis. Stem Cell Res Ther 2023; 14:328. [PMID: 37957770 PMCID: PMC10644560 DOI: 10.1186/s13287-023-03559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have shown promising potential in allograft survival. However, few reports have focused on comparing the immunosuppressive capacity of MSCs from different sources and administered via different routes in inhibiting transplant rejection. Moreover, virtually nothing is known about the role of MSCs in the regulation of graft neovascularization and lymphangiogenesis. In this study, we compared the efficacy of human adipose MSCs (hAD-MSCs) and human umbilical cord MSCs (hUC-MSCs) in vitro and in corneal transplantation models to explore the underlying molecular mechanisms and provide a powerful strategy for future clinical applications. METHODS hAD-MSCs and hUC-MSCs were generated, and their self-renewal and multi-differentiation abilities were evaluated. The inhibitory effect of human MSCs (hMSCs) was examined by T-cell proliferation assays with or without transwell in vitro. Two MSCs from different sources were separately adoptively transferred in mice corneal transplantation (5 × 105 or 1 × 106/mouse) via topical subconjunctival or intravenous (IV) routes. Allograft survival was evaluated every other day, and angiogenesis and lymphomagenesis were quantitatively analyzed by immunofluorescence staining. The RNA expression profiles of hMSCs were revealed by RNA sequencing (RNA-seq) and verified by quantitative real-time PCR (qRT‒PCR), western blotting or ELISA. The function of the differentially expressed gene FAS was verified by a T-cell apoptosis assay. RESULTS hAD-MSCs induced stronger immunosuppression in vitro than hUC-MSCs. The inhibitory effect of hUC-MSCs but not hAD-MSCs was mediated by cell-cell contact-dependent mechanisms. Systemic administration of a lower dose of hAD-MSCs showed better performance in prolonging corneal allograft survival than hUC-MSCs, while subconjunctival administration of hMSCs was safer and further prolonged corneal allograft survival. Both types of hMSCs could inhibit corneal neovascularization, while hAD-MSCs showed greater superiority in suppressing graft lymphangiogenesis. RNA-seq analysis and confirmation experiments revealed the superior performance of hAD-MSCs in allografts based on the lower expression of vascular endothelial growth factor C (VEGF-C) and higher expression of FAS. CONCLUSIONS The remarkable inhibitory effects on angiogenesis/lymphangiogenesis and immunological transplantation effects support the development of hAD-MSCs as a cell therapy against corneal transplant rejection. Topical administration of hMSCs was a safer and more effective route for application than systemic administration.
Collapse
Affiliation(s)
- Huanmin Kang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Jianing Feng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
- Shanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, China
| | - Yingqian Peng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Yingyi Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Yalei Yang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Ying Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Jian Huang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Ying Jie
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Yan He
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
18
|
Cortés-Morales VA, Vázquez-González WG, Montesinos JJ, Moreno-Ruíz L, Salgado-Pastor S, Salinas-Arreola PM, Díaz-Duarte K, Chávez-Rueda AK, Chávez-Sánchez L. Human Bone Marrow Mesenchymal Stem Cells Promote the M2 Phenotype in Macrophages Derived from STEMI Patients. Int J Mol Sci 2023; 24:16257. [PMID: 38003447 PMCID: PMC10671615 DOI: 10.3390/ijms242216257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Acute ST-elevation myocardial infarction (STEMI) leads to myocardial injury or necrosis, and M1 macrophages play an important role in the inflammatory response. Bone marrow mesenchymal stem/stromal cells (BM-MSCs) are capable of modulating macrophage plasticity, principally due to their immunoregulatory capacity. In the present study, we analyzed the capacity of MSCs to modulate macrophages derived from monocytes from patients with STEMI. We analyzed the circulating levels of cytokines associated with M1 and M2 macrophages in patients with STEMI, and the levels of cytokines associated with M1 macrophages were significantly higher in patients with STEMI than in controls. BM-MSCs facilitate the generation of M1 and M2 macrophages. M1 macrophages cocultured with MSCs did not have decreased M1 marker expression, but these macrophages had an increased expression of markers of the M2 macrophage phenotype (CD14, CD163 and CD206) and IL-10 and IL-1Ra signaling-induced regulatory T cells (Tregs). M2 macrophages from patients with STEMI had an increased expression of M2 phenotypic markers in coculture with BM-MSCs, as well as an increased secretion of anti-inflammatory cytokines and an increased generation of Tregs. The findings in this study indicate that BM-MSCs have the ability to modulate the M1 macrophage response, which could improve cardiac tissue damage in patients with STEMI.
Collapse
Affiliation(s)
- Víctor Adrián Cortés-Morales
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Wendy Guadalupe Vázquez-González
- Unidad de Investigación Médica en Enfermedades Metabólicas del Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Juan José Montesinos
- Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Luis Moreno-Ruíz
- División de Cardiología del Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Selene Salgado-Pastor
- División de Cardiología del Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Pamela Michelle Salinas-Arreola
- Unidad de Investigación Médica en Enfermedades Metabólicas del Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Karla Díaz-Duarte
- Unidad de Investigación Médica en Enfermedades Metabólicas del Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Adriana Karina Chávez-Rueda
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Luis Chávez-Sánchez
- Unidad de Investigación Médica en Enfermedades Metabólicas del Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
19
|
Lee RH, Boregowda SV, Shigemoto-Kuroda T, Bae E, Haga CL, Abbery CA, Bayless KJ, Haskell A, Gregory CA, Ortiz LA, Phinney DG. TWIST1 and TSG6 are coordinately regulated and function as potency biomarkers in human MSCs. SCIENCE ADVANCES 2023; 9:eadi2387. [PMID: 37948519 PMCID: PMC10637745 DOI: 10.1126/sciadv.adi2387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) have been evaluated in >1500 clinical trials, but outcomes remain suboptimal because of knowledge gaps in quality attributes that confer potency. We show that TWIST1 directly represses TSG6 expression that TWIST1 and TSG6 are inversely correlated across bone marrow-derived MSC (BM-MSC) donor cohorts and predict interdonor differences in their proangiogenic, anti-inflammatory, and immune suppressive activity in vitro and in sterile inflammation and autoimmune type 1 diabetes preclinical models. Transcript profiling of TWIST1HiTSG6Low versus TWISTLowTSG6Hi BM-MSCs revealed previously unidentified roles for TWIST1/TSG6 in regulating cellular oxidative stress and TGF-β2 in modulating TSG6 expression and anti-inflammatory activity. TWIST1 and TSG6 levels also correlate to donor stature and predict differences in iPSC-derived MSC quality attributes. These results validate TWIST1 and TSG6 as biomarkers that predict interdonor differences in potency across laboratories and assay platforms, thereby providing a means to manufacture MSC products tailored to specific diseases.
Collapse
Affiliation(s)
- Ryang Hwa Lee
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Siddaraju V. Boregowda
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Taeko Shigemoto-Kuroda
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - EunHye Bae
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Christopher L. Haga
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Colette A. Abbery
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Kayla J. Bayless
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Andrew Haskell
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Carl A. Gregory
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Luis A. Ortiz
- Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Donald G. Phinney
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| |
Collapse
|
20
|
Zhang Q, Zhou SN, Fu JM, Chen LJ, Fang YX, Xu ZY, Xu HK, Yuan Y, Huang YQ, Zhang N, Li YF, Xiang C. Interferon-γ priming enhances the therapeutic effects of menstrual blood-derived stromal cells in a mouse liver ischemia-reperfusion model. World J Stem Cells 2023; 15:876-896. [PMID: 37900937 PMCID: PMC10600742 DOI: 10.4252/wjsc.v15.i9.876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/21/2023] [Accepted: 07/18/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been used in liver transplantation and have certain effects in alleviating liver ischemia-reperfusion injury (IRI) and regulating immune rejection. However, some studies have indicated that the effects of MSCs are not very significant. Therefore, approaches that enable MSCs to exert significant and stable therapeutic effects are worth further study. AIM To enhance the therapeutic potential of human menstrual blood-derived stromal cells (MenSCs) in the mouse liver ischemia-reperfusion (I/R) model via interferon-γ (IFN-γ) priming. METHODS Apoptosis was analyzed by flow cytometry to evaluate the safety of IFN-γ priming, and indoleamine 2,3-dioxygenase (IDO) levels were measured by quantitative real-time reverse transcription polymerase chain reaction, western blotting, and ELISA to evaluate the efficacy of IFN-γ priming. In vivo, the liver I/R model was established in male C57/BL mice, hematoxylin and eosin and TUNEL staining was performed and serum liver enzyme levels were measured to assess the degree of liver injury, and regulatory T cell (Treg) numbers in spleens were determined by flow cytometry to assess immune tolerance potential. Metabolomics analysis was conducted to elucidate the potential mechanism underlying the regulatory effects of primed MenSCs. In vitro, we established a hypoxia/reoxygenation (H/R) model and analyzed apoptosis by flow cytometry to investigate the mechanism through which primed MenSCs inhibit apoptosis. Transmission electron microscopy, western blotting, and immunofluorescence were used to analyze autophagy levels. RESULTS IFN-γ-primed MenSCs secreted higher levels of IDO, attenuated liver injury, and increased Treg numbers in the mouse spleens to greater degrees than untreated MenSCs. Metabolomics and autophagy analyses proved that primed MenSCs more strongly induced autophagy in the mouse livers. In the H/R model, autophagy inhibitors increased the level of H/R-induced apoptosis, indicating that autophagy exerted protective effects. In addition, primed MenSCs decreased the level of H/R-induced apoptosis via IDO and autophagy. Further rescue experiments proved that IDO enhanced the protective autophagy by inhibiting the mammalian target of rapamycin (mTOR) pathway and activating the AMPK pathway. CONCLUSION IFN-γ-primed MenSCs exerted better therapeutic effects in the liver I/R model by secreting higher IDO levels. MenSCs and IDO activated the AMPK-mTOR-autophagy axis to reduce IRI, and IDO increased Treg numbers in the spleen and enhanced the MenSC-mediated induction of immune tolerance. Our study suggests that IFN-γ-primed MenSCs may be a novel and superior MSC product for liver transplantation in the future.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Si-Ning Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Jia-Min Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Li-Jun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Yang-Xin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Zhen-Yu Xu
- Innovative Precision Medicine Group, Shulan Hospital, Hangzhou 311215, Zhejiang Province, China
| | - Hui-Kang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Yu-Qi Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Yi-Fei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Charlie Xiang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|
21
|
Luo X, Liu Z, Xu R. Adult tissue-specific stem cell interaction: novel technologies and research advances. Front Cell Dev Biol 2023; 11:1220694. [PMID: 37808078 PMCID: PMC10551553 DOI: 10.3389/fcell.2023.1220694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Adult tissue-specific stem cells play a dominant role in tissue homeostasis and regeneration. Various in vivo markers of adult tissue-specific stem cells have been increasingly reported by lineage tracing in genetic mouse models, indicating that marked cells differentiation is crucial during homeostasis and regeneration. How adult tissue-specific stem cells with indicated markers contact the adjacent lineage with indicated markers is of significance to be studied. Novel methods bring future findings. Recent advances in lineage tracing, synthetic receptor systems, proximity labeling, and transcriptomics have enabled easier and more accurate cell behavior visualization and qualitative and quantitative analysis of cell-cell interactions than ever before. These technological innovations have prompted researchers to re-evaluate previous experimental results, providing increasingly compelling experimental results for understanding the mechanisms of cell-cell interactions. This review aimed to describe the recent methodological advances of dual enzyme lineage tracing system, the synthetic receptor system, proximity labeling, single-cell RNA sequencing and spatial transcriptomics in the study of adult tissue-specific stem cells interactions. An enhanced understanding of the mechanisms of adult tissue-specific stem cells interaction is important for tissue regeneration and maintenance of homeostasis in organisms.
Collapse
Affiliation(s)
| | | | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Woo K, Park SY, Padalhin A, Ryu HS, Abueva CD. Photobiomodulation enhances M2 macrophage polarization properties of tonsil-derived mesenchymal stem cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 246:112770. [PMID: 37579650 DOI: 10.1016/j.jphotobiol.2023.112770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
In this study, the effect of photobiomodulation (PBM) treatment using 630 nm light emitting diode (LED) array (continuous wave type, 10 mW power) on tonsil-derived mesenchymal stem cells (TMSCs) and its interaction with RAW 264.7 macrophage cells via co-culture in vitro were investigated. PBM treatment was used as a priming method for TMSCs to improve therapeutic efficacy. TMSCs were subjected to multi-dose PBM treatments before co-culture with M1 activated (1 μg/mL lipopolysaccharide, LPS) macrophage cells with total energy doses of 0, 15, 30, and 60 J. Irradiation set at 15 J (1500 s treatment time) was performed once, twice for 30 J, and four times for 60 J in an incubator kept at 37 °C and 5% CO2. No significant anti-inflammatory response was observed for TMSCs co-cultured with macrophage cells without PBM. But PBM treatment of TMSCs with 630 nm LED array at 30 J reduced expression of inducible nitric oxide synthase, iNOS (M1) and increased expression of Arginase-1, Arg-1 (M2) phenotype macrophage markers. Anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1RA) gene expression also increased significantly. Based on the results, PBM priming of TMSCs supports M2 macrophage polarization. PBM can be used to improve the therapeutic efficacy of TMSCs for potential applications in oral mucositis and wound healing.
Collapse
Affiliation(s)
- Ken Woo
- Gyeongnam International Foreign School, Sacheon, Republic of Korea
| | - So Young Park
- Beckman Laser Institute-Korea, Cheonan, Republic of Korea
| | | | - Hyun Seok Ryu
- Beckman Laser Institute-Korea, Cheonan, Republic of Korea
| | | |
Collapse
|
23
|
Egan H, Treacy O, Lynch K, Leonard NA, O'Malley G, Reidy E, O'Neill A, Corry SM, De Veirman K, Vanderkerken K, Egan LJ, Ritter T, Hogan AM, Redmond K, Peng L, Che J, Gatlin W, Jayaraman P, Sheehan M, Canney A, Hynes SO, Kerr EM, Dunne PD, O'Dwyer ME, Ryan AE. Targeting stromal cell sialylation reverses T cell-mediated immunosuppression in the tumor microenvironment. Cell Rep 2023; 42:112475. [PMID: 37167967 DOI: 10.1016/j.celrep.2023.112475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/03/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Immunosuppressive tumor microenvironments (TMEs) reduce the effectiveness of immune responses in cancer. Mesenchymal stromal cells (MSCs), precursors to cancer-associated fibroblasts (CAFs), promote tumor progression by enhancing immune cell suppression in colorectal cancer (CRC). Hyper-sialylation of glycans promotes immune evasion in cancer through binding of sialic acids to their receptors, Siglecs, expressed on immune cells, which results in inhibition of effector functions. The role of sialylation in shaping MSC/CAF immunosuppression in the TME is not well characterized. In this study, we show that tumor-conditioned stromal cells have increased sialyltransferase expression, α2,3/6-linked sialic acid, and Siglec ligands. Tumor-conditioned stromal cells and CAFs induce exhausted immunomodulatory CD8+ PD1+ and CD8+ Siglec-7+/Siglec-9+ T cell phenotypes. In vivo, targeting stromal cell sialylation reverses stromal cell-mediated immunosuppression, as shown by infiltration of CD25 and granzyme B-expressing CD8+ T cells in the tumor and draining lymph node. Targeting stromal cell sialylation may overcome immunosuppression in the CRC TME.
Collapse
Affiliation(s)
- Hannah Egan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Oliver Treacy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Kevin Lynch
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Niamh A Leonard
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Grace O'Malley
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Eileen Reidy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Aoise O'Neill
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Shania M Corry
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Kim De Veirman
- Laboratory for Haematology and Immunology (HEIM), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Laboratory for Haematology and Immunology (HEIM), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurence J Egan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Aisling M Hogan
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Department of Colorectal Surgery, Galway University Hospital, Galway, Ireland
| | - Keara Redmond
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Li Peng
- Palleon Pharmaceuticals, Waltham, MA 02451, USA
| | - Jenny Che
- Palleon Pharmaceuticals, Waltham, MA 02451, USA
| | | | | | - Margaret Sheehan
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
| | - Aoife Canney
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
| | - Sean O Hynes
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland; Discipline of Pathology, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Emma M Kerr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Philip D Dunne
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK; Cancer Research UK Beatson Institute, Glasgow, UK
| | - Michael E O'Dwyer
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Blood Cancer Network of Ireland (BCNI), Galway, Ireland; Department of Hematology, Galway University Hospital, Galway, Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
24
|
Luan X, Chen P, Li Y, Yuan X, Miao L, Zhang P, Cao Q, Song X, Di G. TNF-α/IL-1β-licensed hADSCs alleviate cholestatic liver injury and fibrosis in mice via COX-2/PGE2 pathway. Stem Cell Res Ther 2023; 14:100. [PMID: 37095581 PMCID: PMC10127380 DOI: 10.1186/s13287-023-03342-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/14/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Adipose tissue-derived stem cell (ADSC) transplantation has been shown to be effective for the management of severe liver disorders. Preactivation of ADSCs enhanced their therapeutic efficacy. However, these effects have not yet been examined in relation to cholestatic liver injury. METHODS In the present study, a cholestatic liver injury model was established by bile duct ligation (BDL) in male C57BL/6 mice. Human ADSCs (hADSCs) with or without tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) pretreatment were administrated into the mice via tail vein injections. The efficacy of hADSCs on BDL-induced liver injury was assessed by histological staining, real-time quantitative PCR (RT-qPCR), Western blot, and enzyme-linked immune sorbent assay (ELISA). In vitro, the effects of hADSC conditioned medium on the activation of hepatic stellate cells (HSCs) were investigated. Small interfering RNA (siRNA) was used to knock down cyclooxygenase-2 (COX-2) in hADSCs. RESULTS TNF-α/IL-1β preconditioning could downregulate immunogenic gene expression and enhance the engraftment efficiency of hADSCs. Compared to control hADSCs (C-hADSCs), TNF-α/IL-1β-pretreated hADSCs (P-hADSCs) significantly alleviated BDL-induced liver injury, as demonstrated by reduced hepatic cell death, attenuated infiltration of Ly6G + neutrophils, and decreased expression of pro-inflammatory cytokines TNF-α, IL-1β, C-X-C motif chemokine ligand 1 (CXCL1), and C-X-C motif chemokine ligand 2 (CXCL2). Moreover, P-hADSCs significantly delayed the development of BDL-induced liver fibrosis. In vitro, conditioned medium from P-hADSCs significantly inhibited HSC activation compared to that from C-hADSCs. Mechanistically, TNF-α/IL-1β upregulated COX-2 expression and increased prostaglandin E2 (PGE2) secretion. The blockage of COX-2 by siRNA transfection reversed the benefits of P-hADSCs for PGE2 production, HSC activation, and liver fibrosis progression. CONCLUSION In conclusion, our results suggest that TNF-α/IL-1β pretreatment enhances the efficacy of hADSCs in mice with cholestatic liver injury, partially through the COX-2/PGE2 pathway.
Collapse
Affiliation(s)
- Xiaoyu Luan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yaxin Li
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xinying Yuan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Longyu Miao
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Pengyu Zhang
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Xiaomin Song
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Guohu Di
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
25
|
Cho WJ, Mittal SK, Chauhan SK. Mesenchymal Stromal Cells Suppress T-Cell-Mediated Delayed-Type Hypersensitivity via ALCAM-CD6 Interaction. Stem Cells Transl Med 2023; 12:221-233. [PMID: 36972356 PMCID: PMC10108723 DOI: 10.1093/stcltm/szad012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
Mounting evidence suggests mesenchymal stromal cells (MSCs) suppress CD4+ T-cell activation, but whether MSCs directly regulate activation and expansion of allogeneic T cells has not been fully deciphered. Here, we identified that both human and murine MSCs constitutively express ALCAM, a cognate ligand for CD6 receptors on T cells, and investigated its immunomodulatory function using in vivo and in vitro experiments. Our controlled coculture assays demonstrated that ALCAM-CD6 pathway is critical for MSCs to exert its suppressive function on early CD4+CD25- T-cell activation. Moreover, neutralizing ALCAM or CD6 results in the abrogation of MSC-mediated suppression of T-cell expansion. Using a murine model of delayed-type hypersensitivity response to alloantigen, we show that ALCAM-silenced MSCs lose the capacity to suppress the generation of alloreactive IFNγ-secreting T cells. Consequently, MSCs, following ALCAM knockdown, failed to prevent allosensitization and alloreactive T-cell-mediated tissue damage.
Collapse
Affiliation(s)
- WonKyung J Cho
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sharad K Mittal
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Joshi JM, Muttigi MS, Upadhya R, Seetharam RN. An overview of the current advances in the treatment of inflammatory diseases using mesenchymal stromal cell secretome. Immunopharmacol Immunotoxicol 2023:1-11. [PMID: 36786742 DOI: 10.1080/08923973.2023.2180388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The growing interest in mesenchymal stromal cell (MSC) therapy has been leading to the utilization of its therapeutic properties in a variety of inflammatory diseases. The clinical translation of the related research from bench to bedside is cumbersome due to some obvious limitations of cell therapy. It is evident from the literature that the MSC secretome components mediate their wide range of functions. Cell-free therapy using MSC secretome is being considered as an emerging and promising area of biotherapeutics. The secretome mainly consists of bioactive factors, free nucleic acids, and extracellular vesicles. Constituents of the secretome are greatly influenced by the cell's microenvironment. The broad array of immunomodulatory properties of MSCs are now being employed to target inflammatory diseases. This review focuses on the emerging MSC secretome therapies for various inflammatory diseases. The mechanism of action of the various anti-inflammatory factors is discussed. The potential of MSC secretome as a viable anti-inflammatory therapy is deliberated.
Collapse
Affiliation(s)
- Jahnavy Madhukar Joshi
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manjunatha S Muttigi
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghavendra Upadhya
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raviraja N Seetharam
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
27
|
Liao Y, Fu Z, Huang Y, Wu S, Wang Z, Ye S, Zeng W, Zeng G, Li D, Yang Y, Pei K, Yang J, Hu Z, Liang X, Hu J, Liu M, Jin J, Cai C. Interleukin-18-primed human umbilical cord-mesenchymal stem cells achieve superior therapeutic efficacy for severe viral pneumonia via enhancing T-cell immunosuppression. Cell Death Dis 2023; 14:66. [PMID: 36707501 PMCID: PMC9883134 DOI: 10.1038/s41419-023-05597-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/29/2023]
Abstract
Coronavirus disease 2019 (COVID-19) treatments are still urgently needed for critically and severely ill patients. Human umbilical cord-mesenchymal stem cells (hUC-MSCs) infusion has therapeutic benefits in COVID-19 patients; however, uncertain therapeutic efficacy has been reported in severe patients. In this study, we selected an appropriate cytokine, IL-18, based on the special cytokine expression profile in severe pneumonia of mice induced by H1N1virus to prime hUC-MSCs in vitro and improve the therapeutic effect of hUC-MSCs in vivo. In vitro, we demonstrated that IL-18-primed hUC-MSCs (IL18-hUCMSC) have higher proliferative ability than non-primed hUC-MSCs (hUCMSCcon). In addition, VCAM-1, MMP-1, TGF-β1, and some chemokines (CCL2 and CXCL12 cytokines) are more highly expressed in IL18-hUCMSCs. We found that IL18-hUCMSC significantly enhanced the immunosuppressive effect on CD3+ T-cells. In vivo, we demonstrated that IL18-hUCMSC infusion could reduce the body weight loss caused by a viral infection and significantly improve the survival rate. Of note, IL18-hUCMSC can also significantly attenuate certain clinical symptoms, including reduced activity, ruffled fur, hunched backs, and lung injuries. Pathologically, IL18-hUCMSC transplantation significantly enhanced the inhibition of inflammation, viral load, fibrosis, and cell apoptosis in acute lung injuries. Notably, IL18-hUCMSC treatment has a superior inhibitory effect on T-cell exudation and proinflammatory cytokine secretion in bronchoalveolar lavage fluid (BALF). Altogether, IL-18 is a promising cytokine that can prime hUC-MSCs to improve the efficacy of precision therapy against viral-induced pneumonia, such as COVID-19.
Collapse
Affiliation(s)
- Yan Liao
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Zeqin Fu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Yinfu Huang
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Shiduo Wu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Zhen Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shaotang Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weijie Zeng
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Guifang Zeng
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Duanduan Li
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Yulin Yang
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Ke Pei
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Jian Yang
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Zhiwei Hu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Xiao Liang
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Junyuan Hu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China.
| | - Muyun Liu
- National-Local Associated Engineering Laboratory for Personalized Cell Therapy, Shenzhen, 518054, China.
| | - Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310000, China.
| | - Cheguo Cai
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
28
|
Intraarticular Injections of Mesenchymal Stem Cells in Knee Osteoarthritis: A Review of Their Current Molecular Mechanisms of Action and Their Efficacy. Int J Mol Sci 2022; 23:ijms232314953. [PMID: 36499280 PMCID: PMC9740663 DOI: 10.3390/ijms232314953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
More than 10% of the world's population suffers from osteoarthritis (OA) of the knee, with a lifetime risk of 45%. Current treatments for knee OA pain are as follows: weight control; oral pharmacological treatment (non-steroidal anti-inflammatory drugs, paracetamol, opioids); mechanical aids (crutches, walkers, braces, orthotics); therapeutic physical exercise; and intraarticular injections of corticosteroids, hyaluronic acid, and platelet-rich plasma (PRP). The problem is that such treatments usually relieve joint pain for only a short period of time. With respect to intraarticular injections, corticosteroids relieve pain for several weeks, while hyaluronic acid and PRP relieve pain for several months. When the above treatments fail to control knee pain, total knee arthroplasty (TKA) is usually indicated; however, although a very effective surgical technique, it can be associated with medical and postoperative (surgery-related) complications. Therefore, it seems essential to look for safe and effective alternative treatments to TKA. Recently, there has been much research on intraarticular injections of mesenchymal stem cells (MSCs) for the management of OA of the knee joint. This article reviews the latest information on the molecular mechanisms of action of MSCs and their potential therapeutic benefit in clinical practice in patients with painful knee OA. Although most recent publications claim that intraarticular injections of MSCs relieve joint pain in the short term, their efficacy remains controversial given that the existing scientific information on MSCs is indecisive. Before recommending intraarticular MSCs injections routinely in patients with painful knee OA, more studies comparing MSCs with placebo are needed. Furthermore, a standard protocol for intraarticular injections of MSCs in knee OA is needed.
Collapse
|
29
|
Trends in using mesenchymal stromal/stem cells (MSCs) in treating corneal diseases. Ocul Surf 2022; 26:255-267. [DOI: 10.1016/j.jtos.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022]
|
30
|
Salehipour Bavarsad S, Jalali MT, Bijan Nejad D, Alypoor B, Babaahmadi Rezaei H, Mohammadtaghvaei N. TGFβ1-Pretreated Exosomes of Wharton Jelly Mesenchymal Stem Cell as a Therapeutic Strategy for Improving Liver Fibrosis. HEPATITIS MONTHLY 2022; 22. [DOI: 10.5812/hepatmon-123416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/14/2022] [Accepted: 05/26/2022] [Indexed: 01/03/2025]
Abstract
Background: Mesenchymal stem cells (MSCs) are the most promising tools for cell treatment and human tissue regeneration, e.g., in liver fibrosis. Mesenchymal stem cells repair tissue damage through paracrine mediators such as exosomes. Types and concentrations of inflammatory mediators, including transforming growth factor-beta (TGFβ1), in MSCs microenvironment can affect MSCs’ function and therapeutic potency. Objectives: This experimental study aimed to explore the effects of Wharton jelly MSCs (WJ-MSCs) exosomes on fibrotic gene expression and Smad2/3 phosphorylation (phospho-Smad2/3 (p-Smad2/3)). Moreover, we further investigated whether WJ-MSCs pretreatment with different concentrations of TGFβ1 changes the anti-fibrotic properties of their exosomes. Methods: After isolation from the umbilical cord, WJ-MSCs were characterized by observing differentiation and measuring surface biomarkers using flowcytometry. The WJ-MSC-derived exosomes were extracted and identified using transmission electron microscopy (TEM), dynamic light scattering (DLS), and western blotting. Real-time PCR and western blot for extracellular matrix (ECM) and p-Smad2/3 expression detection were used to investigate the effect of exosomes from untreated and TGFβ1-pretreated WJ-MSCs on activated hepatic stellate cells (HSCs). Results: Phospho-Smad2/3, α-smooth muscle actin (α-SMA), and collagen1α1 levels were enhanced following treatment with TGFβ1, whereas E-cadherin was decreased. However, the outcomes were reversed after treatment with WJ-MSC-derived exosomes. Exosomes from TGFβ1-pretreated WJ-MSCs induced a significant decrease in p-Smad2/3 levels in activated HSCs, accompanied by the upregulation of E-cadherin gene expression and downregulation of α-SMA and collagen1α1 when compared to untreated WJ-MSC-derived exosomes. The p-Smad2/3 proteins were significantly decreased (fold change: 0.23, P-value < 0.0001) after exposure to low-dose TGFβ1-pretreated WJ-MSC-derived exosomes (0.1 ng/mL), showing the best effect on activated HSCs. Conclusions: Exosomes derived from untreated WJ-MSCs could regress TGFβ-Smad2/3 signaling and the expression of fibrotic markers in activated LX-2 cells. However, these effects were significantly profound with applying exosomes derived from 0.1 ng/mL TGFβ-pretreated WJ-MSCs. We also observed the dose-response effects of TGFβ on WJ-MSCs-derived exosomes. Therefore, exosomes derived from TGFβ-pretreated WJ-MSCs may be critical in improving fibrosis and benefit liver fibrosis patients.
Collapse
|
31
|
Jiang Z, Fu M, Zhu D, Wang X, Li N, Ren L, He J, Yang G. Genetically modified immunomodulatory cell-based biomaterials in tissue regeneration and engineering. Cytokine Growth Factor Rev 2022; 66:53-73. [PMID: 35690567 DOI: 10.1016/j.cytogfr.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
To date, the wide application of cell-based biomaterials in tissue engineering and regeneration is remarkably hampered by immune rejection. Reducing the immunogenicity of cell-based biomaterials has become the latest direction in biomaterial research. Recently, genetically modified cell-based biomaterials with immunomodulatory genes have become a feasible solution to the immunogenicity problem. In this review, recent advances and future challenges of genetically modified immunomodulatory cell-based biomaterials are elaborated, including fabrication approaches, mechanisms of common immunomodulatory genes, application and, more importantly, current preclinical and clinical advances. The fabrication approaches can be categorized into commonly used (e.g., virus transfection) and newly developed approaches. The immunomodulatory mechanisms of representative genes involve complicated cell signaling pathways and metabolic activities. Wide application in curing multiple end-term diseases and replacing lifelong immunosuppressive therapy in multiple cell and organ transplantation models is demonstrated. Most significantly, practices of genetically modified organ transplantation have been conducted on brain-dead human decedent and even on living patients after a series of experiments on nonhuman primates. Nevertheless, uncertain biosecurity, nonspecific effects and overlooked personalization of current genetically modified immunomodulatory cell-based biomaterials are shortcomings that remain to be overcome.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
32
|
Leonard NA, Reidy E, Thompson K, McDermott E, Peerani E, Tomas Bort E, Balkwill FR, Loessner D, Ryan AE. Stromal Cells Promote Matrix Deposition, Remodelling and an Immunosuppressive Tumour Microenvironment in a 3D Model of Colon Cancer. Cancers (Basel) 2021; 13:cancers13235998. [PMID: 34885111 PMCID: PMC8656544 DOI: 10.3390/cancers13235998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer is the third most common type of cancer in the world. Immune cells and normal supporting cells (MSCs) within a tumour affect patient survival and change how well treatments work. This research aimed to develop a more relevant 3D cancer model that combines MSCs and immune cells with cancer cells to test the effects of multiple cell types on tumour growth. We successfully developed a 3D model that shows that MSCs and immune cells can change the cancer-supporting environment around the tumour cells. We show that combining MSCs and immune cells with cancer cells can increase the level of immune-suppressing molecules they release and change immunotherapeutic drug targets on the cancer cells, similar to changes seen in human tumours. Using this 3D model for research may be better for testing new drugs than traditional 2D methods and could enable the identification of new drug targets. Abstract Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. CRC develops in a complex tumour microenvironment (TME) with both mesenchymal stromal cells (MSCs) and immune infiltrate, shown to alter disease progression and treatment response. We hypothesised that an accessible, affordable model of CRC that combines multiple cell types will improve research translation to the clinic and enable the identification of novel therapeutic targets. A viable gelatine-methacrloyl-based hydrogel culture system that incorporates CRC cells with MSCs and a monocyte cell line was developed. Gels were analysed on day 10 by PCR, cytokine array, microscopy and flow cytometry. The addition of stromal cells increased transcription of matrix remodelling proteins FN1 and MMP9, induced release of tumour-promoting immune molecules MIF, Serpin E1, CXCL1, IL-8 and CXCL12 and altered cancer cell expression of immunotherapeutic targets EGFR, CD47 and PD-L1. Treatment with PD153035, an EGFR inhibitor, revealed altered CRC expression of PD-L1 but only in gels lacking MSCs. We established a viable 3D model of CRC that combined cancer cells, MSCs and monocytic cells that can be used to research the role the stroma plays in the TME, identify novel therapeutic targets and improve the transitional efficacy of therapies.
Collapse
Affiliation(s)
- Niamh A. Leonard
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland;
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Correspondence: (N.A.L.); (A.E.R.)
| | - Eileen Reidy
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland;
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
| | - Kerry Thompson
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, National University of Ireland Galway, H91 W2TY Galway, Ireland; (K.T.); (E.M.)
| | - Emma McDermott
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, National University of Ireland Galway, H91 W2TY Galway, Ireland; (K.T.); (E.M.)
| | - Eleonora Peerani
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.P.); (E.T.B.); (F.R.B.); (D.L.)
| | - Elena Tomas Bort
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.P.); (E.T.B.); (F.R.B.); (D.L.)
| | - Frances R. Balkwill
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.P.); (E.T.B.); (F.R.B.); (D.L.)
| | - Daniela Loessner
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.P.); (E.T.B.); (F.R.B.); (D.L.)
- Faculty of Engineering and Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Aideen E. Ryan
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland;
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Correspondence: (N.A.L.); (A.E.R.)
| |
Collapse
|
33
|
Dunbar H, Weiss DJ, Rolandsson Enes S, Laffey JG, English K. The Inflammatory Lung Microenvironment; a Key Mediator in MSC Licensing. Cells 2021; 10:cells10112982. [PMID: 34831203 PMCID: PMC8616504 DOI: 10.3390/cells10112982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Recent clinical trials of mesenchymal stromal cell (MSC) therapy for various inflammatory conditions have highlighted the significant benefit to patients who respond to MSC administration. Thus, there is strong interest in investigating MSC therapy in acute inflammatory lung conditions, such as acute respiratory distress syndrome (ARDS). Unfortunately, not all patients respond, and evidence now suggests that the differential disease microenvironment present across patients and sub-phenotypes of disease or across disease severities influences MSC licensing, function and therapeutic efficacy. Here, we discuss the importance of licensing MSCs and the need to better understand how the disease microenvironment influences MSC activation and therapeutic actions, in addition to the need for a patient-stratification approach.
Collapse
Affiliation(s)
- Hazel Dunbar
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Daniel J Weiss
- Department of Medicine, 226 Health Science Research Facility, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Sara Rolandsson Enes
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden;
| | - John G Laffey
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, H91 W2TY Galway, Ireland;
- Department of Anaesthesia, Galway University Hospitals, SAOLTA University Health Group, H91 YR71 Galway, Ireland
| | - Karen English
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
- Correspondence: ; Tel.: +353-1-7086290
| |
Collapse
|
34
|
Preconditioned Mesenchymal Stromal Cells to Improve Allotransplantation Outcome. Cells 2021; 10:cells10092325. [PMID: 34571974 PMCID: PMC8469056 DOI: 10.3390/cells10092325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are tissue-derived progenitor cells with immunomodulatory as well as multilineage differentiation capacities, and have been widely applied as cellular therapeutics in different disease systems in both preclinical models and clinical studies. Although many studies have applied MSCs in different types of allotransplantation, the efficacy varies. It has been demonstrated that preconditioning MSCs prior to in vivo administration may enhance their efficacy. In the field of organ/tissue allotransplantation, many recent studies have shown that preconditioning of MSCs with (1) pretreatment with bioactive factors or reagents such as cytokines, or (2) specific gene transfection, could prolong allotransplant survival and improve allotransplant function. Herein, we review these preconditioning strategies and discuss potential directions for further improvement.
Collapse
|
35
|
Wen J, Moloney EB, Canning A, Donohoe E, Ritter T, Wang J, Xiang D, Wu J, Li Y. Synthesized nanoparticles, biomimetic nanoparticles and extracellular vesicles for treatment of autoimmune disease: Comparison and prospect. Pharmacol Res 2021; 172:105833. [PMID: 34418563 DOI: 10.1016/j.phrs.2021.105833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022]
Abstract
An emerging strategy is needed to treat autoimmune diseases, many of which are chronic with no definitive cure. Current treatments only alleviate symptoms and have many side effects affecting patient quality of life. Recently, nanoparticle drug delivery systems, an emerging method in medicine, has been used to target cells or organs, without damaging normal tissue. This approach has led to fewer side effects, along with a strong immunosuppressive capacity. Therefore, a nanotechnology approach may help to improve the treatment of autoimmune diseases. In this review, we separated nanoparticles into three categories: synthesized nanoparticles, biomimetic nanoparticles, and extracellular vesicles. This review firstly compares the typical mechanism of action of these three nanoparticle categories respectively in terms of active targeting, camouflage effect, and similarity to parent cells. Then their immunomodulation properties are discussed. Finally, the challenges faced by all these nanoparticles are described.
Collapse
Affiliation(s)
- Jing Wen
- Department of Pharmacy, the Third Hospital of Changsha, Changsha, China
| | - Elizabeth B Moloney
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aoife Canning
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Ellen Donohoe
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Jiemin Wang
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland.
| | - Daxiong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongjiang Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
36
|
Brennan LC, O’Sullivan A, MacLoughlin R. Cellular Therapy for the Treatment of Paediatric Respiratory Disease. Int J Mol Sci 2021; 22:ijms22168906. [PMID: 34445609 PMCID: PMC8396271 DOI: 10.3390/ijms22168906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Respiratory disease is the leading cause of death in children under the age of 5 years old. Currently available treatments for paediatric respiratory diseases including bronchopulmonary dysplasia, asthma, cystic fibrosis and interstitial lung disease may ameliorate symptoms but do not offer a cure. Cellular therapy may offer a potential cure for these diseases, preventing disease progression into adulthood. Induced pluripotent stem cells, mesenchymal stromal cells and their secretome have shown great potential in preclinical models of lung disease, targeting the major pathological features of the disease. Current research and clinical trials are focused on the adult population. For cellular therapies to progress from preclinical studies to use in the clinic, optimal cell type dosage and delivery methods need to be established and confirmed. Direct delivery of these therapies to the lung as aerosols would allow for lower doses with a higher target efficiency whilst avoiding potential effect of systemic delivery. There is a clear need for research to progress into the clinic for the treatment of paediatric respiratory disease. Whilst research in the adult population forms a basis for the paediatric population, varying disease pathology and anatomical differences in paediatric patients means a paediatric-centric approach must be taken.
Collapse
Affiliation(s)
- Laura C. Brennan
- College of Medicine, Nursing & Health Sciences, National University of Ireland, H91 TK33 Galway, Ireland;
| | - Andrew O’Sullivan
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland;
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland;
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Correspondence:
| |
Collapse
|
37
|
Lu D, Xu Y, Liu Q, Zhang Q. Mesenchymal Stem Cell-Macrophage Crosstalk and Maintenance of Inflammatory Microenvironment Homeostasis. Front Cell Dev Biol 2021; 9:681171. [PMID: 34249933 PMCID: PMC8267370 DOI: 10.3389/fcell.2021.681171] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages are involved in almost every aspect of biological systems and include development, homeostasis and repair. Mesenchymal stem cells (MSCs) have good clinical application prospects due to their ability to regulate adaptive and innate immune cells, particularly macrophages, and they have been used successfully for many immune disorders, including inflammatory bowel disease (IBD), acute lung injury, and wound healing, which have been reported as macrophage-mediated disorders. In the present review, we focus on the interaction between MSCs and macrophages and summarize their methods of interaction and communication, such as cell-to-cell contact, soluble factor secretion, and organelle transfer. In addition, we discuss the roles of MSC-macrophage crosstalk in the development of disease and maintenance of homeostasis of inflammatory microenvironments. Finally, we provide optimal strategies for applications in immune-related disease treatments.
Collapse
Affiliation(s)
- Di Lu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Xu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Wogonin Strengthens the Therapeutic Effects of Mesenchymal Stem Cells in DSS-Induced Colitis via Promoting IL-10 Production. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5527935. [PMID: 34239686 PMCID: PMC8241494 DOI: 10.1155/2021/5527935] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel diseases (IBD) are prevalent and debilitating diseases; their clinical remedy is desperately unmet. Mesenchymal stem cells (MSCs) are pluripotent stem cells with multiple immunomodulatory effects, which are attributed to their efficacy in the IBD rodent model. Optimization of MSC regimes in IBD is a crucial step for their further clinical application. Wogonin is a flavonoid-like compound, which showed extensive immunomodulatory and adjuvant effects. This research is aimed at investigating whether and how Wogonin boosted the therapeutic efficiency of MSCs on DSS-induced colitis. Our results showed that the MSC treatment with Wogonin significantly alleviated the intestinal inflammation in IBD mice by increased IL-10 expression. In vitro experiments, Wogonin obviously raised the IL-10 production and ROS levels of MSCs in a dose-dependent manner. Meanwhile, western blot data suggested Wogonin improves the IL-10 production by inducing transcript factor HIF-1α expression via AKT/GSK3β signal pathway. Finally, the favorable effects of Wogonin on MSCs were confirmed by IL-10 blockade experiment in vivo. Together, our results suggested that Wogonin significantly increased the IL-10 production and enhanced the therapeutic effects of MSCs in DSS-induced colitis. This work suggested Wogonin as a novel optimal strategy for MSC clinical application.
Collapse
|
39
|
Treacy O, Lynch K, Murphy N, Chen X, Donohoe E, Canning A, Lohan P, Shaw G, Fahy G, Ryan AE, Ritter T. Subconjunctival administration of low-dose murine allogeneic mesenchymal stromal cells promotes corneal allograft survival in mice. Stem Cell Res Ther 2021; 12:227. [PMID: 33823917 PMCID: PMC8025388 DOI: 10.1186/s13287-021-02293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022] Open
Abstract
Background Systemic administration of mesenchymal stromal cells (MSCs) has been efficacious in many inflammatory disease settings; however, little data are available on the potential immunomodulatory effects following local MSC administration in the context of corneal transplantation. The purpose of this study was to assess the potential of subconjunctival injection of MSCs to promote corneal allograft survival. Methods MSCs were isolated from female C57BL/6 (H-2k) or Balb/c (H-2d) mice and extensively characterized. An allogeneic mouse corneal transplant model was used with Balb/c mice as recipients of C57BL/6 grafts. A dose-finding study starting with 5 × 105 MSCs injected subconjunctivally at day − 7 was tested first followed by a more clinically translatable low-dose single or dual injection strategy on day − 1 and day + 1 before/after transplantation. Graft transparency served as the primary indicator of transplant rejection while neovascularization was also recorded. Lymphocytes (from draining lymph nodes) and splenocytes were isolated from treatment groups on day 2 post-transplantation and characterized by flow cytometry and qRT-PCR. Results Both high- and low-dose injection of allogeneic MSCs on day − 7 led to 100% graft survival over the observation period. Moreover, low-dose dual subconjunctival injection of 5 × 104 allogeneic MSCs on day − 1 or day + 1 led to 100% allograft survival in transplant recipients (n = 7). We also demonstrate that single administration of allogeneic MSCs on either day − 1 or day + 1 promotes rejection-free graft survival in 100% (n = 8) and 86% (n = 7) of transplanted mice, respectively. Early time point ex vivo analysis suggests modulation of innate immune responses towards anti-inflammatory, pro-repair responses by local MSC administration. Conclusion This work demonstrates that low-dose subconjunctival injection of allogeneic MSCs successfully promotes corneal allograft survival and may contribute to refining future MSC immunotherapies for prevention of corneal allograft rejection.
Collapse
Affiliation(s)
- Oliver Treacy
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Kevin Lynch
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Nick Murphy
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Xizhe Chen
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Ellen Donohoe
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Aoife Canning
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Paul Lohan
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Georgina Shaw
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Gerry Fahy
- Department of Ophthalmology, University Hospital Galway, National University of Ireland Galway, Galway, Ireland
| | - Aideen E Ryan
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland.,CURAM Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Thomas Ritter
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland. .,CURAM Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
40
|
Mesenchymal stromal cells for corneal transplantation: Literature review and suggestions for successful clinical trials. Ocul Surf 2021; 20:185-194. [PMID: 33607323 PMCID: PMC9878990 DOI: 10.1016/j.jtos.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/28/2023]
Abstract
Corneal transplantation is a routine procedure for patients with corneal blindness. Despite the streamlining of surgical techniques and deeper understanding of the cellular and molecular pathways mediating rejection, corticosteroids are still the main immunosuppressive regimen in corneal transplantation, and the 15-year survival of corneal transplants remains as low as 50%, which is poorer than that for most solid organ transplants. Recently, mesenchymal stromal cells (MSCs) with unique regenerative and immune-modulating properties have emerged as a promising cell therapy to promote transplant tolerance, minimize the use of immunosuppressants, and prevent chronic rejection. Here, we review the literature on preclinical studies of MSCs for corneal transplantation and summarize the key findings from clinical trials with MSCs in solid organ transplantation. Finally, we highlight current issues and challenges regarding MSC therapies and suggest strategies for safe and effective MSC-based therapies in clinical transplantation.
Collapse
|
41
|
Galgaro BC, Beckenkamp LR, van den M Nunnenkamp M, Korb VG, Naasani LIS, Roszek K, Wink MR. The adenosinergic pathway in mesenchymal stem cell fate and functions. Med Res Rev 2021; 41:2316-2349. [PMID: 33645857 DOI: 10.1002/med.21796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) play an important role in tissue homeostasis and damage repair through their ability to differentiate into cells of different tissues, trophic support, and immunomodulation. These properties made them attractive for clinical applications in regenerative medicine, immune disorders, and cell transplantation. However, despite multiple preclinical and clinical studies demonstrating beneficial effects of MSCs, their native identity and mechanisms of action remain inconclusive. Since its discovery, the CD73/ecto-5'-nucleotidase is known as a classic marker for MSCs, but its role goes far beyond a phenotypic characterization antigen. CD73 contributes to adenosine production, therefore, is an essential component of purinergic signaling, a pathway composed of different nucleotides and nucleosides, which concentrations are finely regulated by the ectoenzymes and receptors. Thus, purinergic signaling controls pathophysiological functions such as proliferation, migration, cell fate, and immune responses. Despite the remarkable progress already achieved in considering adenosinergic pathway as a therapeutic target in different pathologies, its role is not fully explored in the context of the therapeutic functions of MSCs. Therefore, in this review, we provide an overview of the role of CD73 and adenosine-mediated signaling in the functions ascribed to MSCs, such as homing and proliferation, cell differentiation, and immunomodulation. Additionally, we will discuss the pathophysiological role of MSCs, via CD73 and adenosine, in different diseases, as well as in tumor development and progression. A better understanding of the adenosinergic pathway in the regulation of MSCs functions will help to provide improved therapeutic strategies applicable in regenerative medicine.
Collapse
Affiliation(s)
- Bruna C Galgaro
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liziane R Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Martha van den M Nunnenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vitória G Korb
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liliana I S Naasani
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Márcia R Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
42
|
Naicker SD, Feerick CL, Lynch K, Swan D, McEllistrim C, Henderson R, Leonard NA, Treacy O, Natoni A, Rigalou A, Cabral J, Chiu C, Sasser K, Ritter T, O'Dwyer M, Ryan AE. Cyclophosphamide alters the tumor cell secretome to potentiate the anti-myeloma activity of daratumumab through augmentation of macrophage-mediated antibody dependent cellular phagocytosis. Oncoimmunology 2021; 10:1859263. [PMID: 33552684 PMCID: PMC7849715 DOI: 10.1080/2162402x.2020.1859263] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple Myeloma (MM) is a malignant disorder of plasma cells which, despite significant advances in treatment, remains incurable. Daratumumab, the first CD38 directed monoclonal antibody, has shown promising activity alone and in combination with other agents for MM treatment. Daratumumab is thought to have pleiotropic mechanisms of activity including natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC). With the knowledge that CD38-expressing NK cells are depleted by daratumumab, we sought to investigate a potential mechanism of enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP) by combining daratumumab with cyclophosphamide (CTX). Cyclophosphamide’s immunomodulatory function was investigated by conditioning macrophages with tumor cell secretome collected from cyclophosphamide treated MM cell lines (CTX-TCS). Flow cytometry analysis revealed that CTX-TCS conditioning augmented the migratory capacity of macrophages and increased CD32 and CD64 Fcγ receptor expression on their cell surface. Daratumumab-specific tumor clearance was increased by conditioning macrophages with CTX-TCS in a dose-dependent manner. This effect was impeded by pre-incubating macrophages with Cytochalasin D (CytoD), an inhibitor of actin polymerization, indicating macrophage-mediated ADCP as the mechanism of clearance. CD64 expression on macrophages directly correlated with MM cell clearance and was essential to the observed synergy between cyclophosphamide and daratumumab, as tumor clearance was attenuated in the presence of a FcγRI/CD64 blocking agent. Cyclophosphamide independently enhances daratumumab-mediated killing of MM cells by altering the tumor microenvironment to promote macrophage recruitment, polarization to a pro-inflammatory phenotype, and directing ADCP. These findings support the addition of cyclophosphamide to existing or novel monoclonal antibody-containing MM regimens.
Collapse
Affiliation(s)
- Serika D Naicker
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Claire L Feerick
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Kevin Lynch
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Dawn Swan
- School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Department of Hematology, Galway University Hospital, Galway, Ireland.,Blood Cancer Network Ireland, Galway, Ireland
| | - Cian McEllistrim
- Department of Hematology, Galway University Hospital, Galway, Ireland
| | - Robert Henderson
- Department of Hematology, Galway University Hospital, Galway, Ireland
| | - Niamh A Leonard
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Oliver Treacy
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Alessandro Natoni
- School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Athina Rigalou
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Joana Cabral
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | | | - Kate Sasser
- Janssen Research and Development, Pennsylvania, USA
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, Galway, Ireland
| | - Michael O'Dwyer
- School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Department of Hematology, Galway University Hospital, Galway, Ireland.,Blood Cancer Network Ireland, Galway, Ireland.,CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, Galway, Ireland
| | - Aideen E Ryan
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Blood Cancer Network Ireland, Galway, Ireland.,CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, Galway, Ireland
| |
Collapse
|
43
|
Xue VW, Chung JYF, Córdoba CAG, Cheung AHK, Kang W, Lam EWF, Leung KT, To KF, Lan HY, Tang PMK. Transforming Growth Factor-β: A Multifunctional Regulator of Cancer Immunity. Cancers (Basel) 2020. [PMID: 33114183 DOI: 10.3390/cancers12113099.pmid:33114183;pmcid:pmc7690808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Transforming growth factor-β (TGF-β) was originally identified as an anti-tumour cytokine. However, there is increasing evidence that it has important roles in the tumour microenvironment (TME) in facilitating cancer progression. TGF-β actively shapes the TME via modulating the host immunity. These actions are highly cell-type specific and complicated, involving both canonical and non-canonical pathways. In this review, we systemically update how TGF-β signalling acts as a checkpoint regulator for cancer immunomodulation. A better appreciation of the underlying pathogenic mechanisms at the molecular level can lead to the discovery of novel and more effective therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Vivian Weiwen Xue
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Cristina Alexandra García Córdoba
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
44
|
Transforming Growth Factor-β: A Multifunctional Regulator of Cancer Immunity. Cancers (Basel) 2020; 12:cancers12113099. [PMID: 33114183 PMCID: PMC7690808 DOI: 10.3390/cancers12113099] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Transforming growth factor beta (TGF-β) is a multifunctional cytokine that can restrict cancer onset but also promote cancer progression at late stages of cancer. The ability of TGF-β in producing diverse and sometimes opposing effects relies on its potential to control different cellular signalling and gene expression in distinct cell types, and environmental settings. The tumour promoting role of TGF-β is primarily mediated through its effects on the local tumour microenvironment (TME) of the cancer cells. In this review, we discuss the most recent research on the role and regulation of TGF-β, with a specific focus on its functions on promoting cancer progression through targeting different immune cells in the TME as well as its therapeutic perspectives. Abstract Transforming growth factor-β (TGF-β) was originally identified as an anti-tumour cytokine. However, there is increasing evidence that it has important roles in the tumour microenvironment (TME) in facilitating cancer progression. TGF-β actively shapes the TME via modulating the host immunity. These actions are highly cell-type specific and complicated, involving both canonical and non-canonical pathways. In this review, we systemically update how TGF-β signalling acts as a checkpoint regulator for cancer immunomodulation. A better appreciation of the underlying pathogenic mechanisms at the molecular level can lead to the discovery of novel and more effective therapeutic strategies for cancer.
Collapse
|