1
|
Zhang WY, Wen L, Du L, Liu TT, Sun Y, Chen YZ, Lu YX, Cheng XC, Sun HY, Xiao FJ, Wang LS. S-RBD-modified and miR-486-5p-engineered exosomes derived from mesenchymal stem cells suppress ferroptosis and alleviate radiation-induced lung injury and long-term pulmonary fibrosis. J Nanobiotechnology 2024; 22:662. [PMID: 39462403 PMCID: PMC11515248 DOI: 10.1186/s12951-024-02830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/02/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is associated with alveolar epithelial cell death and secondary fibrosis in injured lung. Mesenchymal stem cell (MSC)-derived exosomes have regenerative effect against lung injury and the potential to intervene of RILI. However, their intervention efficacy is limited because they lack lung targeting characters and do not carry sufficient specific effectors. SARS-CoV-2 spike glycoprotein (SARS-CoV-2-S-RBD) binds angiotensin-converting enzyme 2 (ACE2) receptor and mediates interaction with host cells. MiR-486-5p is a multifunctional miRNA with angiogenic and antifibrotic potential and acts as an effector in MSC-derived exosomes. Ferroptosis is a form of cell death associated with radiation injury, its roles and mechanisms in RILI remain unclear. In this study, we developed an engineered MSC-derived exosomes with SARS-CoV-2-S-RBD- and miR-486-5p- modification and investigated their intervention effects on RIPF and action mechanisms via suppression of epithelial cell ferroptosis. RESULTS Adenovirus-mediated gene modification led to miR-486-5p overexpression in human umbilical cord MSC exosomes (p < 0.05), thereby constructing miR-486-5p engineered MSC exosomes (miR-486-MSC-Exo). MiR-486-MSC-Exo promoted the proliferation and migration of irradiated mouse lung epithelial (MLE-12) cells in vitro and inhibited RILI in vivo (all p < 0.05). MiR-486-MSC-Exo suppressed ferroptosis in MLE-12 cells, and an in vitro assay revealed that the expression of fibrosis-related genes is up-regulated following ferroptosis (both p < 0.05). MiR-486-MSC-Exo reversed the up-regulated expression of fibrosis-related genes induced by TGF-β1 in vitro and improved pathological fibrosis in RIPF mice in vivo (all p < 0.05). SARS-CoV-2-S-RBD-modified and miR-486-5p-engineered MSC exosomes (miR-486-RBD-MSC-Exo) were also constructed, and the distribution of DiR dye-labeled miR-486-RBD-MSC-Exo in hACE2CKI/CKI Sftpc-Cre+ mice demonstrated long-term retention in the lung (p < 0.05). MiR-486-RBD-MSC-Exo significantly improved the survival rate and pathological changes in hACE2CKI/CKI Sftpc-Cre+ RIPF mice (all p < 0.05). Furthermore, miR-486-MSC-Exo exerted anti-fibrotic effects via targeted SMAD2 inhibition and Akt phosphorylation activation (p < 0.05). CONCLUSIONS Engineered MSC exosomes with SARS-CoV-2-S-RBD- and miR-486-5p-modification were developed. MiR-486-RBD-MSC-Exo suppressed ferroptosis and fibrosis of MLE-12 cells in vitro, and alleviated RILI and long-term RIPF in ACE2 humanized mice in vivo. MiR-486-MSC-Exo exerted anti-fibrotic effects via SMAD2 inhibition and Akt activation. This study provides a potential approach for RIPF intervention.
Collapse
Affiliation(s)
- Wei-Yuan Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Li Wen
- School of Nursing, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Li Du
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Ting Ting Liu
- Department of Pulmonary and Critical Care Medicine, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Sun
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Yi-Zhu Chen
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Yu-Xin Lu
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Xiao-Chen Cheng
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hui-Yan Sun
- Yanda Medical Research Institute, Hebei Yanda Hospital, Langfang, 065201, China
| | - Feng-Jun Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Li-Sheng Wang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China.
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China.
- School of Nursing, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
2
|
Li J, Yuan Y, Fu Q, Chen M, Liang H, Chen X, Long X, Zhang B, Zhao J, Chen Q. Novel insights into the role of immunomodulatory extracellular vesicles in the pathogenesis of liver fibrosis. Biomark Res 2024; 12:119. [PMID: 39396032 PMCID: PMC11470730 DOI: 10.1186/s40364-024-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
Liver fibrosis, a chronic and long-term disease, can develop into hepatocellular carcinoma (HCC) and ultimately lead to liver failure. Early diagnosis and effective treatment still face significant challenges. Liver inflammation leads to liver fibrosis through continuous activation of hepatic stellate cells (HSCs) and the accumulation of immune cells. Intracellular communication among various immune cells is important for mediating the inflammatory response during fibrogenesis. Extracellular vesicles (EVs), which are lipid bilayer membrane-enclosed particles naturally secreted by cells, make great contributions to cell-cell communication and the transport of bioactive molecules. Nearly all the cells that participate in liver fibrosis release EVs loaded with lipids, proteins, and nucleic acids. EVs from hepatocytes, immune cells and stem cells are involved in mediating the inflammatory microenvironment of liver fibrosis. Recently, an increasing number of extracellular vesicle-based clinical applications have emerged, providing promising cell-free diagnostic and therapeutic tools for liver fibrosis because of their crucial role in immunomodulation during pathogenesis. The advantages of extracellular vesicle-based therapies include stability, biocompatibility, low cytotoxicity, and minimal immunogenicity, which highlight their great potential for drug delivery and specific treatments for liver fibrosis. In this review, we summarize the complex biological functions of EVs in the inflammatory response in the pathogenesis of liver fibrosis and evaluate the potential of EVs in the diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qinggang Fu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xin Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Mizenko RR, Feaver M, Bozkurt BT, Lowe N, Nguyen B, Huang K, Wang A, Carney RP. A critical systematic review of extracellular vesicle clinical trials. J Extracell Vesicles 2024; 13:e12510. [PMID: 39330928 PMCID: PMC11428870 DOI: 10.1002/jev2.12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
This systematic review examines the landscape of extracellular vesicle (EV)-related clinical trials to elucidate the field's trends in clinical applications and EV-related methodologies, with an additional focus on the acknowledgement of EV subpopulations. By analysing data from public reporting repositories, we catalogued 471 EV-related clinical trials to date, with indications for over 200 diseases. Diagnostics and companion diagnostics represented the bulk of EV-related clinical trials with cancer being the most frequent application. EV-related therapeutics trials mainly utilized mesenchymal stromal cell (MSC) EVs and were most frequently used for treatment of respiratory illnesses. Ultracentrifugation and RNA-sequencing were the most common isolation and characterization techniques; however, methodology for each was not frequently reported in study records. Most of the reported characterization relied on bulk characterization of EV isolates, with only 11% utilizing EV subpopulations in their experimental design. While this may be connected to a lack of available techniques suitable for clinical implementation, it also highlights the opportunity for use of EV subpopulations to improve translational efforts. As academic research identifies more chemically distinct subpopulations and technologies for their enrichment, we forecast to more refined EV trials in the near future. This review emphasizes the need for meticulous methodological reporting and consideration of EV subpopulations to enhance the translational success of EV-based interventions, pointing towards a paradigm shift in personalized medicine.
Collapse
Affiliation(s)
- Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Madison Feaver
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Batuhan T. Bozkurt
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Neona Lowe
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Bryan Nguyen
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Kuan‐Wei Huang
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Aijun Wang
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Department of SurgeryUniversity of CaliforniaDavisCaliforniaUSA
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
4
|
Montoya-Buelna M, Ramirez-Lopez IG, San Juan-Garcia CA, Garcia-Regalado JJ, Millan-Sanchez MS, de la Cruz-Mosso U, Haramati J, Pereira-Suarez AL, Macias-Barragan J. Contribution of extracellular vesicles to steatosis-related liver disease and their therapeutic potential. World J Hepatol 2024; 16:1211-1228. [PMID: 39351515 PMCID: PMC11438597 DOI: 10.4254/wjh.v16.i9.1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/23/2024] Open
Abstract
Extracellular vesicles (EVs) are small particles released by many cell types in different tissues, including the liver, and transfer specific cargo molecules from originating cells to receptor cells. This process generally culminates in activation of distant cells and inflammation and progression of certain diseases. The global chronic liver disease (CLD) epidemic is estimated at 1.5 billion patients worldwide. Cirrhosis and liver cancer are the most common risk factors for CLD. However, hepatitis C and B virus infection and obesity are also highly associated with CLD. Nonetheless, the etiology of many CLD pathophysiological, cellular, and molecular events are unclear. Changes in hepatic lipid metabolism can lead to lipotoxicity events that induce EV release. Here, we aimed to present an overview of EV features, from definition to types and biogenesis, with particular focus on the molecules related to steatosis-related liver disease, diagnosis, and therapy.
Collapse
Affiliation(s)
- Margarita Montoya-Buelna
- Laboratorio de Inmunología, Departamento de Fisiología, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Inocencia G Ramirez-Lopez
- Departamento de Ciencias de la Salud, Centro Universitario de los Valles, Universidad de Guadalajara, Ameca 46600, Jalisco, Mexico
| | - Cesar A San Juan-Garcia
- Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jose J Garcia-Regalado
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Mariana S Millan-Sanchez
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ulises de la Cruz-Mosso
- Red de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico
| | - Ana L Pereira-Suarez
- Instituto de Investigación en Ciencias Biomédicas, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jose Macias-Barragan
- Departamento de Ciencias de la Salud, Centro Universitario de los Valles, Universidad de Guadalajara, Ameca 46600, Jalisco, Mexico.
| |
Collapse
|
5
|
He N, Dong M, Sun Y, Yang M, Wang Y, Du L, Ji K, Wang J, Zhang M, Gu Y, Lu X, Liu Y, Wang Q, Li Z, Song H, Xu C, Liu Q. Mesenchymal stem cell-derived extracellular vesicles targeting irradiated intestine exert therapeutic effects. Theranostics 2024; 14:5492-5511. [PMID: 39310097 PMCID: PMC11413785 DOI: 10.7150/thno.97623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Background: Radiation-induced intestinal injuries are common in patients with pelvic or abdominal cancer. However, these injuries are currently not managed effectively. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been extensively used in regenerative medicine. However, the results of MSC-EVs in the repair of radiation-induced intestinal damage have been unsatisfactory. We here investigated the nanotherapeutic functions of MSC-EVs in radiation-induced intestinal injury. Methods: We visualized the biodistribution and trend of MSC-EVs through in vivo imaging. A radiation-induced intestinal injury model was constructed, and the therapeutic effect of MSC-EVs was explored through in vivo and in vitro experiments. Immunofluorescence and qRT-PCR assays were conducted to explore the underlying mechanisms. Results: MSC-EVs exhibited a dose-dependent tendency to target radiation-injured intestines while providing spatiotemporal information for the early diagnosis of the injury by quantifying the amount of MSC-EVs in the injured intestines through molecular imaging. Meanwhile, MSC-EVs displayed superior nanotherapeutic functions by alleviating apoptosis, improving angiogenesis, and ameliorating the intestinal inflammatory environment. Moreover, MSC-EVs-derived miRNA-455-5p negatively regulated SOCS3 expression, and the activated downstream Stat3 signaling pathway was involved in the therapeutic efficacy of MSC-EVs in radiation-induced intestinal injuries. Conclusion: MSC-EVs can dose-dependently target radiation-injured intestinal tissues, allow a spatiotemporal diagnosis in different degrees of damage to help guide personalized therapy, offer data for designing EV-based theranostic strategies for promoting recovery from radiation-induced intestinal injury, and provide cell-free treatment for radiation therapy.
Collapse
Affiliation(s)
- Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Mingxin Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yuxiao Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Mengmeng Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Yan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Kaihua Ji
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Manman Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Yeqing Gu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Xinran Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Qin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, China
| | - Huijuan Song
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
6
|
Zhou X, Xu Y, Wang X, Lu W, Tang X, Jin Y, Ye J. Single and combined strategies for mesenchymal stem cell exosomes alleviate liver fibrosis: a systematic review and meta-analysis of preclinical animal models. Front Pharmacol 2024; 15:1432683. [PMID: 39144628 PMCID: PMC11322148 DOI: 10.3389/fphar.2024.1432683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
Background: The efficacy of mesenchymal stem cells (MSCs) in treating liver fibrosis has been supported by various clinical studies. However, stem cell transplantation is limited in clinical application due to its low survival rate, low liver implantation rate, and possible carcinogenicity. Recently, there has been increasing interest in the use of MSC-exos due to their widespread availability, low immunogenicity, and non-carcinogenic properties. Numerous studies have demonstrated the potential of MSC-exos in treating liver fibrosis and preventing progression to end-stage liver disease. Objective: This study aimed to systematically investigate the efficacy of MSC-exos single administration in the treatment of hepatic fibrosis and the combined advantages of MSC-exos in combination with drug therapy (MSC-exos-drugs). Methods: Data sources included PubMed, Web of Science, Embase, and the Cochrane Library, which were built up to January 2024. The population, intervention, comparison, outcomes, and study design (PICOS) principle was used to screen the literature, and the quality of the literature was evaluated to assess the risk of bias. Finally, the data from each study's outcome indicators were extracted for a combined analysis. Results: After screening, a total of 18 papers (19 studies) were included, of which 12 involved MSC-exos single administration for the treatment of liver fibrosis and 6 involved MSC-exos-drugs for the treatment of liver fibrosis. Pooled analysis revealed that MSC-exos significantly improved liver function, promoted the repair of damaged liver tissue, and slowed the progression of hepatic fibrosis and that MSC-exos-drugs were more efficacious than MSC-exos single administration. Subgroup analyses revealed that the use of AD-MSC-exos resulted in more consistent and significant efficacy when MSC-exos was used to treat hepatic fibrosis. For MSC-exos-drugs, a more stable end result is obtained by kit extraction. Similarly, infusion through the abdominal cavity is more effective. Conclusion: The results suggest that MSC-exos can effectively treat liver fibrosis and that MSC-exos-drugs are more effective than MSC-exos single administration. Although the results of the subgroup analyses provide recommendations for clinical treatment, a large number of high-quality experimental validations are still needed. Systematic Review Registration: CRD42024516199.
Collapse
Affiliation(s)
- Xiaolei Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yan Xu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wenming Lu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xingkun Tang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yu Jin
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, China
- Jiangxi Provincal Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
7
|
Al-Rawaf HA, Gabr SA, Iqbal A, Alghadir AH. Circulating microRNAs as potential biomarkers of physical activity in geriatric patients with HCV. BMC Mol Cell Biol 2024; 25:18. [PMID: 39030480 PMCID: PMC11264506 DOI: 10.1186/s12860-024-00514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Circulating microRNAs have been implicated in a diverse array of biological and pathological phenomena. Their potential utility as noninvasive biomarkers for screening and diagnosing various diseases has been proposed. OBJECTIVE This study aimed to explore the potential role of the miRNAs miR-122 and miR-486 as molecular biomarkers in the pathogenesis of hepatitis C virus (HCV) infection. Thus, miR-122 and miR-486 were detected in the serum of HCV patients and healthy controls. Moreover, the potential correlations of miR-122 and miR-486 with viral complications, such as physical activity, pain, muscle fatigue, and HCV infection, were identified. METHODS A total of 150 subjects aged 30 to 66 years were included in this study. The patients were classified as patients with chronic hepatitis C virus (CHC) (n = 110) or healthy controls (n = 40). Real-time polymerase chain reaction (PCR) analyses were performed to determine miR-122 and miR-486 expression. Physical activity (PA), pain score, HCV genotyping, viral overload, aspartate transaminase (AST), alanine transaminase (ALT), lactic acid dehydrogenase (LDH), creatine kinase (CK), and antioxidant status were also estimated by using prevalidated questionnaires, PCR, and spectrophotometric analyses. RESULTS Compared with those in normal controls, significant increases in the serum levels of miR-122 and miR-486 were reported in patients with CHC. In physically active CHC patients, there was a significant correlation between the expression of miRNAs and increased alanine transaminase (ALT), aspartate transaminase (AST), fibrosis scores, and inflammation activity, but no association was reported for hepatitis C virus (HCV) RNA or viral load. Additionally, significant decreases in LDH, CK, GSSG, and pain scores and increases in TAC, GSH, and the GSH/GSSG ratio were reported. Moreover, the expression of miR-122 and miR-486 was positively correlated with changes in body mass index (BMI) and liver fibrosis stage, as well as negatively correlated with sex, PA, TAC, GSH, GSSG, and the GSH/GSSG ratio. CONCLUSION MiR-122 and miR-486 expression levels were strongly correlated with physical activity, pain perception, and muscle fatigue biomarkers in HCV-infected patients. These miRNA levels were associated with elevated AST, ALT, fibrosis scores, LDH, CK, and antioxidant status, thus suggesting their potential as biomarkers for disease severity and oxidative stress. However, no correlation was observed with viral load or HCV-RNA expression, thus implying that these miRNAs may impact disease progression and symptoms through host factors, rather than directly affecting viral replication. In summary, the results demonstrated that molecular studies of miR-22 and miR-468 and their associations with PA, pain, adiposity, sex differences, and muscle fatigue, as well as routine biomarkers, could be useful as prognostic nanoninvasive biomarkers, thus providing novel therapeutic targets for CHC infection.
Collapse
Affiliation(s)
- Hadeel A Al-Rawaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Sami A Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Amir Iqbal
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia.
| | - Ahmad H Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| |
Collapse
|
8
|
Jiang S, Tian S, Wang P, Liu J, Sun K, Zhou X, Han Y, Shang Y. Native and engineered extracellular vesicles: novel tools for treating liver disease. J Mater Chem B 2024; 12:3840-3856. [PMID: 38532706 DOI: 10.1039/d3tb01921g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Liver diseases are classified as acute liver damage and chronic liver disease, with recurring liver damage causing liver fibrosis and progression to cirrhosis and hepatoma. Liver transplantation is the only effective treatment for end-stage liver diseases; therefore, novel therapies are required. Extracellular vesicles (EVs) are endogenous nanocarriers involved in cell-to-cell communication that play important roles in immune regulation, tissue repair and regeneration. Native EVs can potentially be used for various liver diseases owing to their high biocompatibility, low immunogenicity and tissue permeability and engineered EVs with surface modification or cargo loading could further optimize therapeutic effects. In this review, we firstly introduced the mechanisms and effects of native EVs derived from different cells and tissues to treat liver diseases of different etiologies. Additionally, we summarized the possible methods to facilitate liver targeting and improve cargo-loading efficiency. In the treatment of liver disease, the detailed engineered methods and the latest delivery strategies were also discussed. Finally, we pointed out the limitations and challenges of EVs for future development and applications. We hope that this review could provide a useful reference for the development of EVs and promote the clinical translation.
Collapse
Affiliation(s)
- Shuangshuang Jiang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Siyuan Tian
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Punan Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Jingyi Liu
- Department of Radiation Oncology, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Keshuai Sun
- Department of Gastroenterology, The Air Force Hospital From Eastern Theater of PLA, Nanjing, 210002, Jiangsu, China
| | - Xia Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Ying Han
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Yulong Shang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
9
|
Zhang K, Zheng S, Wu J, He J, Ouyang Y, Ao C, Lang R, Jiang Y, Yang Y, Xiao H, Li Y, Li M, Wang H, Li C, Wu D. Human umbilical cord mesenchymal stem cell-derived exosomes ameliorate renal fibrosis in diabetic nephropathy by targeting Hedgehog/SMO signaling. FASEB J 2024; 38:e23599. [PMID: 38572590 DOI: 10.1096/fj.202302324r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Shuo Zheng
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Jiasheng Wu
- The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yu Ouyang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chunchun Ao
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Ruibo Lang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yijia Jiang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yifan Yang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Huan Xiao
- School of Life Science, Hubei University, Wuhan, China
| | - Yu Li
- School of Life Science, Hubei University, Wuhan, China
| | - Mao Li
- School of Life Science, Hubei University, Wuhan, China
| | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
- R&D Center, Guangzhou Hamilton Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
10
|
Zhu D, Sun Z, Wei J, Zhang Y, An W, Lin Y, Li X. BMP7-Loaded Human Umbilical Cord Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Ameliorate Liver Fibrosis by Targeting Activated Hepatic Stellate Cells. Int J Nanomedicine 2024; 19:3475-3495. [PMID: 38623080 PMCID: PMC11018131 DOI: 10.2147/ijn.s450284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/23/2024] [Indexed: 04/17/2024] Open
Abstract
Purpose Human umbilical cord mesenchymal stem cell (hucMSC)-derived small extracellular vesicles (sEVs) are natural nanocarriers with promising potential in treating liver fibrosis and have widespread applications in the fields of nanomedicine and regenerative medicine. However, the therapeutic efficacy of natural hucMSC-sEVs is currently limited owing to their non-specific distribution in vivo and partial removal by mononuclear macrophages following systemic delivery. Thus, the therapeutic efficacy can be improved through the development of engineered hucMSC-sEVs capable to overcome these limitations. Patients and Methods To improve the anti-liver fibrosis efficacy of hucMSC-sEVs, we genetically engineered hucMSC-sEVs to overexpress the anti-fibrotic gene bone morphogenic protein 7 (BMP7) in parental cells. This was achieved using lentiviral transfection, following which BMP7-loaded hucMSC-sEVs were isolated through ultracentrifugation. First, the liver fibrosis was induced in C57BL/6J mice by intraperitoneal injection of 50% carbon tetrachloride (CCL4) twice a week for 8 weeks. These mice were subsequently treated with BMP7+sEVs via tail vein injection, and the anti-liver fibrosis effect of BMP7+sEVs was validated using small animal in vivo imaging, immunohistochemistry (IHC), tissue immunofluorescence, and enzyme-linked immunosorbent assay (ELISA). Finally, cell function studies were performed to confirm the in vivo results. Results Liver imaging and liver histopathology confirmed that the engineered hucMSC-sEVs could reach the liver of mice and aggregate around activated hepatic stellate cells (aHSCs) with a significantly stronger anti-liver fibrosis effect of BMP7-loaded hucMSC-sEVs compared to those of blank or negative control-transfected hucMSC-sEVs. In vitro, BMP7-loaded hucMSC-sEVs promoted the phenotypic reversal of aHSCs and inhibited their proliferation to enhance the anti-fibrotic effects. Conclusion These engineered BMP7-loaded hucMSC-sEVs offer a novel and promising strategy for the clinical treatment of liver fibrosis.
Collapse
Affiliation(s)
- Dan Zhu
- First Clinical Medical College, Lanzhou University, Lanzhou, People’s Republic of China
| | - Zongbin Sun
- First Clinical Medical College, Lanzhou University, Lanzhou, People’s Republic of China
| | - Jiayun Wei
- Gansu Province Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou University, Lanzhou, People’s Republic of China
| | - Yulin Zhang
- Gansu Province Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou University, Lanzhou, People’s Republic of China
| | - Wenjing An
- Gansu Province Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou University, Lanzhou, People’s Republic of China
| | - Yan Lin
- First Clinical Medical College, Lanzhou University, Lanzhou, People’s Republic of China
| | - Xun Li
- First Clinical Medical College, Lanzhou University, Lanzhou, People’s Republic of China
- Gansu Province Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou University, Lanzhou, People’s Republic of China
- General Surgery Department, First Hospital of Lanzhou University, Lanzhou University, Lanzhou, People’s Republic of China
| |
Collapse
|
11
|
Padinharayil H, Varghese J, Wilson C, George A. Mesenchymal stem cell-derived exosomes: Characteristics and applications in disease pathology and management. Life Sci 2024; 342:122542. [PMID: 38428567 DOI: 10.1016/j.lfs.2024.122542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Mesenchymal stem cells (MSCs) possess a role in tissue regeneration and homeostasis because of inherent immunomodulatory capacity and the production of factors that encourage healing. There is substantial evidence that MSCs' therapeutic efficacy is primarily determined by their paracrine function including in cancers. Extracellular vesicles (EVs) are basic paracrine effectors of MSCs that reside in numerous bodily fluids and cell homogenates and play an important role in bidirectional communication. MSC-derived EVs (MSC-EVs) offer a wide range of potential therapeutic uses that exceed cell treatment, while maintaining protocell function and having less immunogenicity. We describe characteristics and isolation methods of MSC-EVs, and focus on their therapeutic potential describing its roles in tissue repair, anti-fibrosis, and cancer with an emphasis on the molecular mechanism and immune modulation and clinical trials. We also explain current understanding and challenges in the clinical applications of MSC-EVs as a cell free therapy.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India; PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Jinsu Varghese
- PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Cornelia Wilson
- Canterbury Christ Church University, Natural Applied Sciences, Life Science Industry Liaison Lab, Discovery Park, Sandwich CT139FF, United Kingdom.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India.
| |
Collapse
|
12
|
Zhu L, Wang Q, Guo M, Fang H, Li T, Zhu Y, Jiang H, Xiao P, Hu M. Mesenchymal Stem Cell-Derived Exosomes in Various Chronic Liver Diseases: Hype or Hope? J Inflamm Res 2024; 17:171-189. [PMID: 38223423 PMCID: PMC10788055 DOI: 10.2147/jir.s439974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024] Open
Abstract
Chronic liver conditions are associated with high mortality rates and have a large adverse effect on human well-being as well as a significant financial burden. Currently, the only effective treatment available for the effects of liver failure and cirrhosis resulting from the progression of several chronic liver diseases is liver transplantation carried out at the original location. This implies that developing novel and effective treatments is imperative. Regenerative medicine has long been associated with stem cell therapy. Mesenchymal stem cells (MSCs), a type of cell with great differentiation potential, have become the preferred source for stem cell therapy. According to recent studies, MSCs' paracrine products-rather than their capacity for differentiation-play a significant therapeutic effect. MSC exosomes, a type of extracellular vesicle (MSC-EV), came into view as the paracrine substances of MSCs. According to research, MSC exosomes can maintain tissue homeostasis, which is necessary for healthy tissue function. All tissues contain them, and they take part in a variety of biological activities that support cellular activity and tissue regeneration in order to preserve tissue homeostasis. The outcomes support the use of MSCs and the exosomes they produce as a therapeutic option for a range of diseases. This review provides a brief overview of the source of MSC-EVs and outlines their physiological roles and biochemical capabilities. The elucidation of the role of MSC-EVs in the recovery and repair of hepatic tissues, as well as their contribution to maintaining tissue homeostasis, is discussed in relation to different chronic liver diseases. This review aims to provide new insights into the unique roles that MSC-EVs play in the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Qin Wang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Maodong Guo
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Hao Fang
- Department of Traumatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Ting Li
- Department of Emergency Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yin Zhu
- Department of Infectious Diseases, Taizhou Enze Medical Center (Group), Enze Hospital, Taizhou, People’s Republic of China
| | - Huimian Jiang
- Department of Infectious Diseases, the First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Peiguang Xiao
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Minli Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| |
Collapse
|
13
|
Zheng L, Gong H, Zhang J, Guo L, Zhai Z, Xia S, Hu Z, Chang J, Jiang Y, Huang X, Ge J, Zhang B, Yan M. Strategies to improve the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicle (MSC-EV): a promising cell-free therapy for liver disease. Front Bioeng Biotechnol 2023; 11:1322514. [PMID: 38155924 PMCID: PMC10753838 DOI: 10.3389/fbioe.2023.1322514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Liver disease has emerged as a significant worldwide health challenge due to its diverse causative factors and therapeutic complexities. The majority of liver diseases ultimately progress to end-stage liver disease and liver transplantation remains the only effective therapy with the limitations of donor organ shortage, lifelong immunosuppressants and expensive treatment costs. Numerous pre-clinical studies have revealed that extracellular vesicles released by mesenchymal stem cells (MSC-EV) exhibited considerable potential in treating liver diseases. Although natural MSC-EV has many potential advantages, some characteristics of MSC-EV, such as heterogeneity, uneven therapeutic effect, and rapid clearance in vivo constrain its clinical translation. In recent years, researchers have explored plenty of ways to improve the therapeutic efficacy and rotation rate of MSC-EV in the treatment of liver disease. In this review, we summarized current strategies to enhance the therapeutic potency of MSC-EV, mainly including optimization culture conditions in MSC or modifications of MSC-EV, aiming to facilitate the development and clinical application of MSC-EV in treating liver disease.
Collapse
Affiliation(s)
- Lijuan Zheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Jing Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Linna Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Zhuofan Zhai
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Zhiyu Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Jing Chang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yizhu Jiang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinran Huang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jingyi Ge
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| |
Collapse
|
14
|
Didamoony MA, Soubh AA, Atwa AM, Ahmed LA. Innovative preconditioning strategies for improving the therapeutic efficacy of extracellular vesicles derived from mesenchymal stem cells in gastrointestinal diseases. Inflammopharmacology 2023; 31:2973-2993. [PMID: 37874430 PMCID: PMC10692273 DOI: 10.1007/s10787-023-01350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023]
Abstract
Gastrointestinal (GI) diseases have become a global health issue and an economic burden due to their wide distribution, late prognosis, and the inefficacy of recent available medications. Therefore, it is crucial to search for new strategies for their management. In the recent decades, mesenchymal stem cells (MSCs) therapy has attracted attention as a viable option for treating a myriad of GI disorders such as hepatic fibrosis (HF), ulcerative colitis (UC), acute liver injury (ALI), and non-alcoholic fatty liver disease (NAFLD) due to their regenerative and paracrine properties. Importantly, recent studies have shown that MSC-derived extracellular vesicles (MSC-EVs) are responsible for most of the therapeutic effects of MSCs. In addition, EVs have revealed several benefits over their parent MSCs, such as being less immunogenic, having a lower risk of tumour formation, being able to cross biological barriers, and being easier to store. MSC-EVs exhibited regenerative, anti-oxidant, anti-inflammatory, anti-apoptotic, and anti-fibrotic effects in different experimental models of GI diseases. However, a key issue with their clinical application is the maintenance of their stability and efficacy following in vivo transplantation. Preconditioning of MSC-EVs or their parent cells is one of the novel methods used to improve their effectiveness and stability. Herein, we discuss the application of MSC-EVs in several GI disorders taking into account their mechanism of action. We also summarise the challenges and restrictions that need to be overcome to promote their clinical application in the treatment of various GI diseases as well as the recent developments to improve their effectiveness. A representation of the innovative preconditioning techniques that have been suggested for improving the therapeutic efficacy of MSC-EVs in GI diseases. The pathological conditions in various GI disorders (ALI, UC, HF and NAFLD) create a harsh environment for EVs and their parents, increasing the risk of apoptosis and senescence of MSCs and thereby diminishing MSC-EVs yield and restricting their large-scale applications. Preconditioning with pharmacological agents or biological mediators can improve the therapeutic efficacy of MSC-EVs through their adaption to the lethal environment to which they are subjected. This can result in establishment of a more conducive environment and activation of numerous vital trajectories that act to improve the immunomodulatory, reparative and regenerative activities of the derived EVs, as a part of MSCs paracrine system. ALI, acute liver injury; GI diseases, gastrointestinal diseases; HF, hepatic fibrosis; HSP, heat shock protein; miRNA, microRNA; mRNA, messenger RNA; MSC-EVs, mesenchymal stem cell-derived extracellular vesicles; NAFLD, non-alcoholic fatty liver disease; UC, ulcerative colitis.
Collapse
Affiliation(s)
- Manar A Didamoony
- Faculty of Pharmacy, Pharmacology and Toxicology Department, Egyptian Russian University, Cairo, 11829, Egypt.
| | - Ayman A Soubh
- Faculty of Pharmacy, Pharmacology and Toxicology Department, Ahram Canadian University, 4th Industrial Zone, Banks Complex, 6th of October City, Giza, 12451, Egypt
| | - Ahmed M Atwa
- Faculty of Pharmacy, Pharmacology and Toxicology Department, Egyptian Russian University, Cairo, 11829, Egypt
| | - Lamiaa A Ahmed
- Faculty of Pharmacy, Pharmacology and Toxicology Department, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
15
|
Yao Y, Chen D, Yue Z. The regulatory role and mechanism of exosomes in hepatic fibrosis. Front Pharmacol 2023; 14:1284742. [PMID: 38108065 PMCID: PMC10722150 DOI: 10.3389/fphar.2023.1284742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
Globally, the prevalence and fatality rates of liver disorders are on the rise. Among chronic liver conditions, hepatic fibrosis stands out as a central pathological process. Despite this, approved treatments for hepatic fibrosis are currently lacking. Exosomes, small extracellular vesicles secreted by various cell types, play a significant role in intercellular communication and have emerged as essential mediators in liver fibrosis. In this regard, this review compiles the mechanisms through which exosomes regulate hepatic fibrosis, encompassing diverse targets and signaling pathways. Furthermore, it delves into the regulatory impact of exosomes modulated by natural plant-derived, endogenous, and synthetic compounds as potential therapeutic strategies for addressing hepatic fibrosis.
Collapse
Affiliation(s)
- Youli Yao
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Da Chen
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Zengchang Yue
- Department of Neurology, Mindong Hospital Affiliated to Fujian Medical University, Ningde, China
| |
Collapse
|
16
|
Choi SW, Seo S, Hong HK, Yoon SJ, Kim M, Moon S, Lee JY, Lim J, Lee JB, Woo SJ. Therapeutic Extracellular Vesicles from Tonsil-Derived Mesenchymal Stem Cells for the Treatment of Retinal Degenerative Disease. Tissue Eng Regen Med 2023; 20:951-964. [PMID: 37440108 PMCID: PMC10519919 DOI: 10.1007/s13770-023-00555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Retinal degenerative disease (RDD), one of the most common causes of blindness, is predominantly caused by the gradual death of retinal pigment epithelial cells (RPEs) and photoreceptors due to various causes. Cell-based therapies, such as stem cell implantation, have been developed for the treatment of RDD, but potential risks, including teratogenicity and immune reactions, have hampered their clinical application. Stem cell-derived extracellular vesicles (EVs) have recently emerged as a cell-free alternative therapeutic strategy; however, additional invasiveness and low yield of the stem cell extraction process is problematic. METHODS To overcome these limitations, we developed therapeutic EVs for the treatment of RDD which were extracted from tonsil-derived mesenchymal stem cells obtained from human tonsil tissue discarded as medical waste following tonsillectomy (T-MSC EVs). To verify the biocompatibility and cytoprotective effect of T-MSC EVs, we measured cell viability by co-culture with human RPE without or with toxic all-trans-retinal. To elucidate the cytoprotective mechanism of T-MSC EVs, we performed transcriptome sequencing using RNA extracted from RPEs. The in vivo protective effect of T-MSC EVs was evaluated using Pde6b gene knockout rats as an animal model of retinitis pigmentosa. RESULTS T-MSC EVs showed high biocompatibility and the human pigment epithelial cells were significantly protected in the presence of T-MSC EVs from the toxic effect of all-trans-retinal. In addition, T-MSC EVs showed a dose-dependent cell death-delaying effect in real-time quantification of cell death. Transcriptome sequencing analysis revealed that the efficient ability of T-MSC EVs to regulate intracellular oxidative stress may be one of the reasons explaining their excellent cytoprotective effect. Additionally, intravitreally injected T-MSC EVs had an inhibitory effect on the destruction of the outer nuclear layer in the Pde6b gene knockout rat. CONCLUSIONS Together, the results of this study indicate the preventive and therapeutic effects of T-MSC EVs during the initiation and development of retinal degeneration, which may be a beneficial alternative for the treatment of RDD.
Collapse
Affiliation(s)
- Seung Woo Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Sooin Seo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Hye Kyoung Hong
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - So Jung Yoon
- Bundang CHA Biobank, CHA University College of Medicine, CHA University Bundang Medical Center, Seongnam, 13496, Korea
| | - Minah Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, 163 Seoul Siripdaero, Dongdaemun-Gu, Seoul, 02504, Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Jaeseung Lim
- Cellatoz Therapeutics Lnc, Seongnam, 13487, Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoul Siripdaero, Dongdaemun-Gu, Seoul, 02504, Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea.
| |
Collapse
|
17
|
Ma L, Wu Q, Tam PKH. The Current Proceedings of PSC-Based Liver Fibrosis Therapy. Stem Cell Rev Rep 2023; 19:2155-2165. [PMID: 37490204 DOI: 10.1007/s12015-023-10592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Liver fibrosis was initially considered to be an irreversible process which will eventually lead to the occurrence of liver cancer. So far there has been no effective therapeutic approach to treat liver fibrosis although scientists have put tremendous efforts into the underlying mechanisms of this disease. Therefore, in-depth research on novel and safe treatments of liver fibrosis is of great significance to human health. Pluripotent stem cells (PSCs) play important roles in the study of liver fibrosis due to their unique features in self-renewal ability, pluripotency, and paracrine function. This article mainly reviews the applications of PSCs in the study of liver fibrosis in recent years. We discuss the role of PSC-derived liver organoids in the study of liver fibrosis, and the latest research advances on the differentiation of PSCs into hepatocytes or macrophages. We also highlight the importance of exosomes of PSCs for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Li Ma
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China.
| | - Paul Kwong-Hang Tam
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China.
| |
Collapse
|
18
|
Huai Q, Zhu C, Zhang X, Dai H, Li X, Wang H. Mesenchymal stromal/stem cells and their extracellular vesicles in liver diseases: insights on their immunomodulatory roles and clinical applications. Cell Biosci 2023; 13:162. [PMID: 37670393 PMCID: PMC10478279 DOI: 10.1186/s13578-023-01122-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
Liver disease is a leading cause of mortality and morbidity that is rising globally. Liver dysfunctions are classified into acute and chronic diseases. Various insults, including viral infections, alcohol or drug abuse, and metabolic overload, may cause chronic inflammation and fibrosis, leading to irreversible liver dysfunction. Up to now, liver transplantation could be the last resort for patients with end-stage liver disease. However, liver transplantation still faces unavoidable difficulties. Mesenchymal stromal/stem cells (MSCs) with their broad ranging anti-inflammatory and immunomodulatory properties can be effectively used for treating liver diseases but without the limitation that are associated with liver transplantation. In this review, we summarize and discuss recent advances in the characteristics of MSCs and the potential action mechanisms of MSCs-based cell therapies for liver diseases. We also draw attention to strategies to potentiate the therapeutic properties of MSCs through pre-treatments or gene modifications. Finally, we discuss progress toward clinical application of MSCs or their extracellular vesicles in liver diseases.
Collapse
Affiliation(s)
- Qian Huai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Cheng Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xu Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hanren Dai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaolei Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
19
|
Wang Z, Kim SY, Tu W, Kim J, Xu A, Yang YM, Matsuda M, Reolizo L, Tsuchiya T, Billet S, Gangi A, Noureddin M, Falk BA, Kim S, Fan W, Tighiouart M, You S, Lewis MS, Pandol SJ, Di Vizio D, Merchant A, Posadas EM, Bhowmick NA, Lu SC, Seki E. Extracellular vesicles in fatty liver promote a metastatic tumor microenvironment. Cell Metab 2023; 35:1209-1226.e13. [PMID: 37172577 PMCID: PMC10524732 DOI: 10.1016/j.cmet.2023.04.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/20/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Liver metastasis is a major cause of death in patients with colorectal cancer (CRC). Fatty liver promotes liver metastasis, but the underlying mechanism remains unclear. We demonstrated that hepatocyte-derived extracellular vesicles (EVs) in fatty liver enhanced the progression of CRC liver metastasis by promoting oncogenic Yes-associated protein (YAP) signaling and an immunosuppressive microenvironment. Fatty liver upregulated Rab27a expression, which facilitated EV production from hepatocytes. In the liver, these EVs transferred YAP signaling-regulating microRNAs to cancer cells to augment YAP activity by suppressing LATS2. Increased YAP activity in CRC liver metastasis with fatty liver promoted cancer cell growth and an immunosuppressive microenvironment by M2 macrophage infiltration through CYR61 production. Patients with CRC liver metastasis and fatty liver had elevated nuclear YAP expression, CYR61 expression, and M2 macrophage infiltration. Our data indicate that fatty liver-induced EV-microRNAs, YAP signaling, and an immunosuppressive microenvironment promote the growth of CRC liver metastasis.
Collapse
Affiliation(s)
- Zhijun Wang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - So Yeon Kim
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wei Tu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 China
| | - Jieun Kim
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alexander Xu
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yoon Mee Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea
| | - Michitaka Matsuda
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lien Reolizo
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Takashi Tsuchiya
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sandrine Billet
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alexandra Gangi
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mazen Noureddin
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Houston Methodist Hospital, Houston Research Institute, Houston, TX 77030, USA
| | - Ben A Falk
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sungjin Kim
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mourad Tighiouart
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael S Lewis
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pathology, Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
| | - Stephen J Pandol
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dolores Di Vizio
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Akil Merchant
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Edwin M Posadas
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Neil A Bhowmick
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
20
|
Kushch AA, Ivanov AV. [Exosomes in the life cycle of viruses and the pathogenesis of viral infections]. Vopr Virusol 2023; 68:181-197. [PMID: 37436410 DOI: 10.36233/0507-4088-173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 07/13/2023]
Abstract
Exosomes are extracellular vesicles of endosomal origin, with a bilayer membrane, 30160 nm in diameter. Exosomes are released from cells of different origins and are detected in various body fluids. They contain nucleic acids, proteins, lipids, metabolites and can transfer the contents to recipient cells. Exosome biogenesis involves cellular proteins of the Rab GTPase family and the ESCRT system, which regulate budding, vesicle transport, molecule sorting, membrane fusion, formation of multivesicular bodies and exosome secretion. Exosomes are released from cells infected with viruses and may contain viral DNA and RNA, as well as mRNA, microRNA, other types of RNA, proteins and virions. Exosomes are capable of transferring viral components into uninfected cells of various organs and tissues. This review analyzes the impact of exosomes on the life cycle of widespread viruses that cause serious human diseases: human immunodeficiency virus (HIV-1), hepatitis B virus, hepatitis C virus, SARS-CoV-2. Viruses are able to enter cells by endocytosis, use molecular and cellular pathways involving Rab and ESCRT proteins to release exosomes and spread viral infections. It has been shown that exosomes can have multidirectional effects on the pathogenesis of viral infections, suppressing or enhancing the course of diseases. Exosomes can potentially be used in noninvasive diagnostics as biomarkers of the stage of infection, and exosomes loaded with biomolecules and drugs - as therapeutic agents. Genetically modified exosomes are promising candidates for new antiviral vaccines.
Collapse
Affiliation(s)
- A A Kushch
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - A V Ivanov
- Institute of Molecular Biology named after V.A. Engelhardt of Russian Academy of Sciences
| |
Collapse
|
21
|
Sitbon A, Delmotte PR, Goumard C, Turco C, Gautheron J, Conti F, Aoudjehane L, Scatton O, Monsel A. Therapeutic potentials of mesenchymal stromal cells-derived extracellular vesicles in liver failure and marginal liver graft rehabilitation: a scoping review. Minerva Anestesiol 2023; 89:690-706. [PMID: 37079286 DOI: 10.23736/s0375-9393.23.17265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Liver failure includes distinct subgroups of diseases: Acute liver failure (ALF) without preexisting cirrhosis, acute-on-chronic liver failure (ACLF) (severe form of cirrhosis associated with organ failures and excess mortality), and liver fibrosis (LF). Inflammation plays a key role in ALF, LF, and more specifically in ACLF for which we have currently no treatment other than liver transplantation (LT). The increasing incidence of marginal liver grafts and the shortage of liver grafts require us to consider strategies to increase the quantity and quality of available liver grafts. Mesenchymal stromal cells (MSCs) have shown beneficial pleiotropic properties with limited translational potential due to the pitfalls associated with their cellular nature. MSC-derived extracellular vesicles (MSC-EVs) are innovative cell-free therapeutics for immunomodulation and regenerative purposes. MSC-EVs encompass further advantages: pleiotropic effects, low immunogenicity, storage stability, good safety profile, and possibility of bioengineering. Currently, no human studies explored the impact of MSC-EVs on liver disease, but several preclinical studies highlighted their beneficial effects. In ALF and ACLF, data showed that MSC-EVs attenuate hepatic stellate cells activation, exert antioxidant, anti-inflammatory, anti-apoptosis, anti-ferroptosis properties, and promote regeneration of the liver, autophagy, and improve metabolism through mitochondrial function recovery. In LF, MSC-EVs demonstrated anti-fibrotic properties associated with liver tissue regeneration. Normothermic-machine perfusion (NMP) combined with MSC-EVs represents an attractive therapy to improve liver regeneration before LT. Our review suggests a growing interest in MSC-EVs in liver failure and gives an appealing insight into their development to rehabilitate marginal liver grafts through NMP.
Collapse
Affiliation(s)
- Alexandre Sitbon
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France -
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France -
| | - Pierre-Romain Delmotte
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Claire Goumard
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Célia Turco
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Liver Transplantation Unit, Department of Digestive and Oncologic Surgery, University Hospital of Besançon, Besançon, France
| | - Jérémie Gautheron
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
| | - Filomena Conti
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
- IHU-Innovation of Cardiometabolism and Nutrition (ICAN), INSERM, Sorbonne University, Paris, France
| | - Lynda Aoudjehane
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- IHU-Innovation of Cardiometabolism and Nutrition (ICAN), INSERM, Sorbonne University, Paris, France
| | - Olivier Scatton
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Antoine Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
- INSERM UMRS-959 Immunology-Immunopathology-Immunotherapy (I3), Sorbonne University, Paris, France
| |
Collapse
|
22
|
Cao Q, Shan H, Zhao J, Deng J, Xu M, Kang H, Li T, Zhao Y, Liu H, Jiang J. Liver fibrosis in fish research: From an immunological perspective. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108885. [PMID: 37290612 DOI: 10.1016/j.fsi.2023.108885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Liver fibrosis is a pathological process whereby the liver is subjected to various acute and chronic injuries, resulting in the activation of hepatic stellate cells (HSCs), an imbalance of extracellular matrix generation and degradation, and deposition in the liver. This review article summarizes the current understanding of liver fibrosis in fish research. Liver fibrosis is a common pathological condition that occurs in fish raised in aquaculture. It is often associated with poor water quality, stressful conditions, and the presence of pathogens. The review describes the pathophysiology of liver fibrosis in fish, including the roles of various cells and molecules involved in the development and progression of the disease. The review also covers the various methods used to diagnose and assess the severity of liver fibrosis in fish, including histological analysis, biochemical markers, and imaging techniques. In addition, the article discusses the current treatment options for liver fibrosis in fish, including dietary interventions, pharmaceuticals, and probiotics. This review highlights the need for more in-depth research in this area to better understand the mechanisms by which liver fibrosis in fish occurs and to develop effective prevention and treatment strategies. Finally, improved management practices and the development of new treatments will be critical to the sustainability of aquaculture and the health of farmed fish.
Collapse
Affiliation(s)
- Quanquan Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongying Shan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ju Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinhe Deng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Man Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haifeng Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
23
|
Yang X, Li Q, Liu W, Zong C, Wei L, Shi Y, Han Z. Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: from pathogenesis to treatment. Cell Mol Immunol 2023; 20:583-599. [PMID: 36823236 PMCID: PMC10229624 DOI: 10.1038/s41423-023-00983-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/29/2023] [Indexed: 02/25/2023] Open
Abstract
Hepatic fibrosis/cirrhosis is a significant health burden worldwide, resulting in liver failure or hepatocellular carcinoma (HCC) and accounting for many deaths each year. The pathogenesis of hepatic fibrosis/cirrhosis is very complex, which makes treatment challenging. Endogenous mesenchymal stromal cells (MSCs) have been shown to play pivotal roles in the pathogenesis of hepatic fibrosis. Paradoxically, exogenous MSCs have also been used in clinical trials for liver cirrhosis, and their effectiveness has been observed in most completed clinical trials. There are still many issues to be resolved to promote the use of MSCs in the clinic in the future. In this review, we will examine the controversial role of MSCs in the pathogenesis and treatment of hepatic fibrosis/cirrhosis. We also investigated the clinical trials involving MSCs in liver cirrhosis, summarized the parameters that need to be standardized, and discussed how to promote the use of MSCs from a clinical perspective.
Collapse
Affiliation(s)
- Xue Yang
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, 215000, China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenting Liu
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Chen Zong
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, 215000, China.
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Zhipeng Han
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China.
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China.
| |
Collapse
|
24
|
Li QY, Gong T, Huang YK, Kang L, Warner CA, Xie H, Chen LM, Duan XQ. Role of noncoding RNAs in liver fibrosis. World J Gastroenterol 2023; 29:1446-1459. [PMID: 36998425 PMCID: PMC10044853 DOI: 10.3748/wjg.v29.i9.1446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Liver fibrosis is a wound-healing response following chronic liver injury caused by hepatitis virus infection, obesity, or excessive alcohol. It is a dynamic and reversible process characterized by the activation of hepatic stellate cells and excess accumulation of extracellular matrix. Advanced fibrosis could lead to cirrhosis and even liver cancer, which has become a significant health burden worldwide. Many studies have revealed that noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs and circular RNAs, are involved in the pathogenesis and development of liver fibrosis by regulating signaling pathways including transforming growth factor-β pathway, phosphatidylinositol 3-kinase/protein kinase B pathway, and Wnt/β-catenin pathway. NcRNAs in serum or exosomes have been reported to tentatively applied in the diagnosis and staging of liver fibrosis and combined with elastography to improve the accuracy of diagnosis. NcRNAs mimics, ncRNAs in mesenchymal stem cell-derived exosomes, and lipid nanoparticles-encapsulated ncRNAs have become promising therapeutic approaches for the treatment of liver fibrosis. In this review, we update the latest knowledge on ncRNAs in the pathogenesis and progression of liver fibrosis, and discuss the potentials and challenges to use these ncRNAs for diagnosis, staging and treatment of liver fibrosis. All these will help us to develop a comprehensive understanding of the role of ncRNAs in liver fibrosis.
Collapse
Affiliation(s)
- Qing-Yuan Li
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Tao Gong
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yi-Ke Huang
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
| | - Lan Kang
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
| | - Charlotte A Warner
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - He Xie
- Department of Clinical Laboratory, The Hospital of Xidian Group, Xi’an 710077, Shaanxi Province, China
| | - Li-Min Chen
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
- Department of Clinical Laboratory, The Hospital of Xidian Group, Xi’an 710077, Shaanxi Province, China
| | - Xiao-Qiong Duan
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
| |
Collapse
|
25
|
Fang X, Gao F, Yao Q, Xu H, Yu J, Cao H, Li S. Pooled Analysis of Mesenchymal Stromal Cell-Derived Extracellular Vesicle Therapy for Liver Disease in Preclinical Models. J Pers Med 2023; 13:jpm13030441. [PMID: 36983624 PMCID: PMC10056150 DOI: 10.3390/jpm13030441] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Background: Although increasing preclinical studies have emphasized the benefits of exosome-related therapies, the efficacy of mesenchymal stromal cell (MSC)-derived extracellular vesicles (EV) for liver injury is unclear. In this work, a pooled analysis was conducted to explore the overall effect of MSC-EV in animal models. Methods: A systematic search of the PubMed, EMBASE, Web of Science, and Cochrane Library databases was performed, from initiation to February 2022, for preclinical studies with liver disease models. The treatment outcomes were evaluated based on liver function, histological analysis, and inflammatory cytokines. Results: After screening, 39 studies were included. Pooled analyses demonstrated that MSC-EV therapy significantly improved liver functions (ALB, ALT, AST, ALP, and γ-GT), promoted the repair of injured liver tissue (damaged area, Ishak’s score), reduced inflammatory factors (TNF-α, IL-1β, IL-6, and IFN-γ), and increased an anti-inflammatory cytokine (IL-10) compared to the placebo control group. Subgroup analyses indicated that MSC-EV had therapeutic effects on liver fibrosis (n = 16), acute liver injury (n = 11), non-alcoholic fatty liver disease (n = 3), autoimmune hepatitis (n = 4), and hepatic ischemia-reperfusion injury (n = 6). Additionally, the therapeutic effect of EV was comparable to that of MSCs. Conclusion: MSC-EV have therapeutic potential for acute and chronic liver diseases.
Collapse
Affiliation(s)
- Xinru Fang
- Department of Infectious Disease, Zhoushan Hospital, Zhejiang University School of Medicine, Zhoushan 316021, China
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Laboratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 310003, China
| | - Feiqiong Gao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haoying Xu
- Department of Infectious Disease, Zhoushan Hospital, Zhejiang University School of Medicine, Zhoushan 316021, China
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Laboratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 310003, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, 79 Qingchun Rd, Hangzhou 310003, China
- Correspondence: (H.C.); (S.L.); Fax: +86-571-87236459 (H.C.)
| | - Shibo Li
- Department of Infectious Disease, Zhoushan Hospital, Zhejiang University School of Medicine, Zhoushan 316021, China
- Correspondence: (H.C.); (S.L.); Fax: +86-571-87236459 (H.C.)
| |
Collapse
|
26
|
Hu X, Ge Q, Zhang Y, Li B, Cheng E, Wang Y, Huang Y. A review of the effect of exosomes from different cells on liver fibrosis. Biomed Pharmacother 2023; 161:114415. [PMID: 36812711 DOI: 10.1016/j.biopha.2023.114415] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatic fibrosis (HF) is a common pathological process caused by various acute and chronic liver injury factors, which is mainly characterized by inflammation and excessive accumulation of extracellular matrix (ECM) in the liver. A better understanding of the mechanisms leading to liver fibrosis helps develop better treatments. The exosome is a crucial vesicle secreted by almost all cells, containing nucleic acids, proteins, lipids, cytokines, and other bioactive components, which play an important role in the transmission of intercellular material and information. Recent studies have shown the relevance of exosomes in the pathogenesis of hepatic fibrosis, and exosomes dominate an essential role in hepatic fibrosis. In this review, we systematically analyze and summarize exosomes from diverse cell sources as potential promoters, inhibitors, and even treatments for hepatic fibrosis to provide a clinical reference for exosomes as the diagnostic target or therapeutic means of hepatic fibrosis.
Collapse
Affiliation(s)
- Xiaojie Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui, China
| | - Qinglin Ge
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yunting Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui, China
| | - Bowen Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui, China
| | - Erli Cheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yinghong Wang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
27
|
Mesenchymal Stem Cells and Their Exocytotic Vesicles. Int J Mol Sci 2023; 24:ijms24032085. [PMID: 36768406 PMCID: PMC9916886 DOI: 10.3390/ijms24032085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as a kind of pluripotent stem cells, have attracted much attention in orthopedic diseases, geriatric diseases, metabolic diseases, and sports functions due to their osteogenic potential, chondrogenic differentiation ability, and adipocyte differentiation. Anti-inflammation, anti-fibrosis, angiogenesis promotion, neurogenesis, immune regulation, and secreted growth factors, proteases, hormones, cytokines, and chemokines of MSCs have been widely studied in liver and kidney diseases, cardiovascular and cerebrovascular diseases. In recent years, many studies have shown that the extracellular vesicles of MSCs have similar functions to MSCs transplantation in all the above aspects. Here we review the research progress of MSCs and their exocrine vesicles in recent years.
Collapse
|
28
|
Mesenchymal stem cell-derived exosomes and non-coding RNAs: Regulatory and therapeutic role in liver diseases. Biomed Pharmacother 2023; 157:114040. [PMID: 36423545 DOI: 10.1016/j.biopha.2022.114040] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
Abstract
Liver disease has become a major health problem worldwide due to its high morbidity and mortality. In recent years, a large body of literature has shown that mesenchymal stem cell-derived exosomes (MSC-Exo) are able to play similar physiological roles as mesenchymal stem cells (MSCs). More importantly, there is no immune rejection caused by transplanted cells and the risk of tumor formation, which has become a new strategy for the treatment of various liver diseases. Moreover, accumulating evidence suggests that non-coding RNAs (ncRNAs) are the main effectors by which they exert hepatoprotective effects. Therefore, by searching the databases of Web of Science, PubMed, ScienceDirect, Google Scholar and CNKI, this review comprehensively reviewed the therapeutic effects of MSC-Exo and ncRNAs in liver diseases, including liver injury, liver fibrosis, and hepatocellular carcinoma. According to the data, the therapeutic effects of MSC-Exo and ncRNAs on liver diseases are closely related to a variety of molecular mechanisms, including inhibition of inflammatory response, alleviation of liver oxidative stress, inhibition of apoptosis of hepatocytes and endothelial cells, promotion of angiogenesis, blocking the cell cycle of hepatocellular carcinoma, and inhibition of activation and proliferation of hepatic stellate cells. These important findings will provide a direction and basis for us to explore the potential of MSC-Exo and ncRNAs in the clinical treatment of liver diseases in the future.
Collapse
|
29
|
Lv K, Wang Y, Lou P, Liu S, Zhou P, Yang L, Lu Y, Cheng J, Liu J. Extracellular vesicles as advanced therapeutics for the resolution of organ fibrosis: Current progress and future perspectives. Front Immunol 2022; 13:1042983. [PMCID: PMC9630482 DOI: 10.3389/fimmu.2022.1042983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Organ fibrosis is a serious health challenge worldwide, and its global incidence and medical burden are increasing dramatically each year. Fibrosis can occur in nearly all major organs and ultimately lead to organ dysfunction. However, current clinical treatments cannot slow or reverse the progression of fibrosis to end-stage organ failure, and thus advanced anti-fibrotic therapeutics are urgently needed. As a type of naturally derived nanovesicle, native extracellular vesicles (EVs) from multiple cell types (e.g., stem cells, immune cells, and tissue cells) have been shown to alleviate organ fibrosis in many preclinical models through multiple effective mechanisms, such as anti-inflammation, pro-angiogenesis, inactivation of myofibroblasts, and fibrinolysis of ECM components. Moreover, the therapeutic potency of native EVs can be further enhanced by multiple engineering strategies, such as genetic modifications, preconditionings, therapeutic reagent-loadings, and combination with functional biomaterials. In this review, we briefly introduce the pathology and current clinical treatments of organ fibrosis, discuss EV biology and production strategies, and particularly focus on important studies using native or engineered EVs as interventions to attenuate tissue fibrosis. This review provides insights into the development and translation of EV-based nanotherapies into clinical applications in the future.
Collapse
Affiliation(s)
- Ke Lv
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yizhuo Wang
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lou
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyun Liu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Pingya Zhou
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Jingping Liu,
| |
Collapse
|
30
|
Lee Y, Kim JH. The emerging roles of extracellular vesicles as intercellular messengers in liver physiology and pathology. Clin Mol Hepatol 2022; 28:706-724. [PMID: 35232008 PMCID: PMC9597227 DOI: 10.3350/cmh.2021.0390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/25/2022] [Indexed: 01/05/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles released from almost all cell types. EVs mediate intercellular communication by delivering their surface and luminal cargoes, including nucleic acids, proteins, and lipids, which reflect the pathophysiological conditions of their cellular origins. Hepatocytes and hepatic non-parenchymal cells utilize EVs to regulate a wide spectrum of biological events inside the liver and transfer them to distant organs through systemic circulation. The liver also receives EVs from multiple organs and integrates these extrahepatic signals that participate in pathophysiological processes. EVs have recently attracted growing attention for their crucial roles in maintaining and regulating hepatic homeostasis. This review summarizes the roles of EVs in intrahepatic and interorgan communications under different pathophysiological conditions of the liver, with a focus on chronic liver diseases including nonalcoholic steatohepatitis, alcoholic hepatitis, viral hepatitis, liver fibrosis, and hepatocellular carcinoma. This review also discusses recent progress for potential therapeutic applications of EVs by targeting or enhancing EV-mediated cellular communication for the treatment of liver diseases.
Collapse
Affiliation(s)
- Youngseok Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea,Corresponding author : Jong-Hoon Kim Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea Tel: +82-2-3290-3007, Fax: +82-2-3290-3040, E-mail:
| |
Collapse
|
31
|
Huc-MSC-derived exosomes modified with the targeting peptide of aHSCs for liver fibrosis therapy. J Nanobiotechnology 2022; 20:432. [PMID: 36183106 PMCID: PMC9526331 DOI: 10.1186/s12951-022-01636-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
Background Effective therapeutics to stop or reverse liver fibrosis have not emerged, because these potential agents cannot specifically target activated hepatic stellate cells (aHSCs) or are frequently toxic to parenchymal cells. Human umbilical cord mesenchymal stem cell (Huc-MSC)-derived exosomes show promise in nanomedicine for the treatment of liver fibrosis. However, systemic injection showed that unmodified exosomes were mainly taken up by the mononuclear phagocyte system. The discovery of ligands that selectively bind to a specific target plays a crucial role in clinically relevant diagnostics and therapeutics. Herein, we aimed to identify the targeting peptide of aHSCs by screening a phage-displayed peptide library, and modify Huc-MSC-derived exosomes with the targeting peptide. Results In this study, we screened a phage-displayed peptide library by biopanning for peptides preferentially bound to HSC-T6 cells. The identified peptide, HSTP1, also exhibited better targeting ability to aHSCs in pathological sections of fibrotic liver tissues. Then, HSTP1 was fused with exosomal enriched membrane protein (Lamp2b) and was displayed on the surface of exosomes through genetic engineering technology. The engineered exosomes (HSTP1-Exos) could be more efficiently internalized by HSC-T6 cells and outperformed both unmodified exosomes (Blank-Exos) and Lamp2b protein overexpressed exosomes (Lamp2b + Exos) in enhancing the ability of exosomes to promote HSC-T6 reversion to a quiescent phenotype. In vivo results showed HSTP1-Exos could specifically target to the aHSC region after intravenous administration, as demonstrated by coimmunofluorescence with the typical aHSCs marker α-SMA, and enhance the therapeutic effect on liver fibrosis. Conclusion These results suggest that HSTP1 is a reliable targeting peptide that can specifically bind to aHSCs and that HSTP1-modified exosomes realize the precise treatment for aHSCs in complex liver tissue. We provide a novel strategy for clinical liver fibrosis therapy. Graphical Abstract ![]()
Collapse
|
32
|
Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool? Cell Death Dis 2022; 13:580. [PMID: 35787632 PMCID: PMC9252569 DOI: 10.1038/s41419-022-05034-x] [Citation(s) in RCA: 168] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) can be widely isolated from various tissues including bone marrow, umbilical cord, and adipose tissue, with the potential for self-renewal and multipotent differentiation. There is compelling evidence that the therapeutic effect of MSCs mainly depends on their paracrine action. Extracellular vesicles (EVs) are fundamental paracrine effectors of MSCs and play a crucial role in intercellular communication, existing in various body fluids and cell supernatants. Since MSC-derived EVs retain the function of protocells and have lower immunogenicity, they have a wide range of prospective therapeutic applications with advantages over cell therapy. We describe some characteristics of MSC-EVs, and discuss their role in immune regulation and regeneration, with emphasis on the molecular mechanism and application of MSC-EVs in the treatment of fibrosis and support tissue repair. We also highlight current challenges in the clinical application of MSC-EVs and potential ways to overcome the problem of quality heterogeneity.
Collapse
|
33
|
Tang Y, Wu P, Li L, Xu W, Jiang J. Mesenchymal Stem Cells and Their Small Extracellular Vesicles as Crucial Immunological Efficacy for Hepatic Diseases. Front Immunol 2022; 13:880523. [PMID: 35603168 PMCID: PMC9121380 DOI: 10.3389/fimmu.2022.880523] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cell small extracellular vesicles (MSC-sEVs) are a priority for researchers because of their role in tissue regeneration. sEVs act as paracrine factors and carry various cargos, revealing the state of the parent cells and contributing to cell–cell communication during both physiological and pathological circumstances. Hepatic diseases are mainly characterized by inflammatory cell infiltration and hepatocyte necrosis and fibrosis, bringing the focus onto immune regulation and other regulatory mechanisms of MSCs/MSC-sEVs. Increasing evidence suggests that MSCs and their sEVs protect against acute and chronic liver injury by inducing macrophages (MΦ) to transform into the M2 subtype, accelerating regulatory T/B (Treg/Breg) cell activation and promoting immunosuppression. MSCs/MSC-sEVs also prevent the proliferation and differentiation of T cells, B cells, dendritic cells (DCs), and natural killer (NK) cells. This review summarizes the potential roles for MSCs/MSC-sEVs, including immunomodulation and tissue regeneration, in various liver diseases. There is also a specific focus on the use of MSC-sEVs for targeted drug delivery to treat hepatitis.
Collapse
Affiliation(s)
- Yuting Tang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Peipei Wu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Linli Li
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Wenrong Xu, ; Jiajia Jiang,
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Wenrong Xu, ; Jiajia Jiang,
| |
Collapse
|
34
|
Kim JM, Kim JH, Kim K, Shin SC, Cheon YI, Kim HS, Lee JC, Sung ES, Lee M, Park GC, Lee BJ. Tonsil mesenchymal stem cells-derived extracellular vesicles prevent submandibular gland dysfunction in ovariectomized rats. Aging (Albany NY) 2022; 14:2194-2209. [PMID: 35279651 PMCID: PMC8954965 DOI: 10.18632/aging.203947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
Dry mouth that occurs after menopause significantly reduces the quality of life of the elderly. The extracellular vesicles derived from mesenchymal stem cells are being studied for application in various pathological conditions in the field of tissue regenerative medicine. This study is to investigate the therapeutic effect on salivary gland dysfunction occurring after ovariectomy using tonsil mesenchymal stem cells (T-MSCs)-derived extracellular vesicles. The rats were divided into the following groups: sham-operated rats (SHAM), rats that underwent ovariectomy (OVX), and rats that underwent OVX surgery and were simultaneously injected with T-MSC-derived extracellular vesicles (OVX+EV). The rats were sacrificed 6 weeks after ovariectomy. Estradiol levels decreased in the OVX group compared with those in the SHAM group. Extracellular vesicles had no effect on estradiol levels or estrogen receptor β expression. The evaluation of pro-inflammatory cytokines, TNF-α and IL-6, increased in the OVX group and decreased in the OVX+EV group. The expressions of collagen I and TGFβI increased in the OVX group but decreased in the OVX+EV group. Moreover, to examine submandibular gland function, AQP5 and α-amylase expressions were downregulated in the OVX group, but improved upon exosome injection. In conclusion, T-MSC-derived extracellular vesicles are useful for the prevented submandibular gland dysfunction that occurs after menopause.
Collapse
Affiliation(s)
- Ji Min Kim
- Pusan National University Medical Research Institute, Pusan National University School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Jeong Hun Kim
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Keunyoung Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Sung-Chan Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Yong-Il Cheon
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Hyung Sik Kim
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.,Institute for Translational Dental Science, Pusan National University, Yangsan, Republic of Korea
| | - Jin-Choon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam, Republic of Korea
| | - Eui-Suk Sung
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam, Republic of Korea
| | - Minhyung Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam, Republic of Korea
| | - Gi-Cheol Park
- Department of Otolaryngology-Head and Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Byung-Joo Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
35
|
Wu R, Fan X, Wang Y, Shen M, Zheng Y, Zhao S, Yang L. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Liver Immunity and Therapy. Front Immunol 2022; 13:833878. [PMID: 35309311 PMCID: PMC8930843 DOI: 10.3389/fimmu.2022.833878] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs), as the most common cell source for stem cell therapy, play an important role in the modulation of innate and adaptive immune responses and have been widely used in clinical trials to treat autoimmune and inflammatory diseases. Recent experimental and clinical studies have shown that MSC-derived extracellular vesicles (MSC-EVs) can inhibit the activation and proliferation of a variety of proinflammatory cells, such as Th1, Th17 and M1 macrophages, reducing the secretion of proinflammatory cytokines, while promoting the proliferation of anti-inflammatory cells, such as M2 macrophages and Tregs, and increasing the secretion of anti-inflammatory cytokines, thus playing a role in immune regulation and exhibiting immunomodulatory functions. Besides MSC-EVs are more convenient and less immunogenic than MSCs. There is growing interest in the role of MSC-EVs in liver diseases owing to the intrinsic liver tropism of MSC-EVs. In this review, we focus on the immunomodulatory effects of MSC-EVs and summarize the pivotal roles of MSC-EVs as a cell-free therapy in liver diseases, including NAFLD, AIH, acute liver failure, liver fibrosis and hepatic ischemia–reperfusion injury. Moreover, we provide a concise overview of the potential use and limits of MSC-EVs in clinical application.
Collapse
|
36
|
Mesenchymal Stem Cells: Therapeutic Mechanisms for Stroke. Int J Mol Sci 2022; 23:ijms23052550. [PMID: 35269692 PMCID: PMC8910569 DOI: 10.3390/ijms23052550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Due to aging of the world’s population, stroke has become increasingly prevalent, leading to a rise in socioeconomic burden. In the recent past, stroke research and treatment have become key scientific issues that need urgent solutions, with a sharp focus on stem cell transplantation, which is known to treat neurodegenerative diseases related to traumatic brain injuries, such as stroke. Indeed, stem cell therapy has brought hope to many stroke patients, both in animal and clinical trials. Mesenchymal stem cells (MSCs) are most commonly utilized in biological medical research, due to their pluripotency and universality. MSCs are often obtained from adipose tissue and bone marrow, and transplanted via intravenous injection. Therefore, this review will discuss the therapeutic mechanisms of MSCs and extracellular vehicles (EVs) secreted by MSCs for stroke, such as in attenuating inflammation through immunomodulation, releasing trophic factors to promote therapeutic effects, inducing angiogenesis, promoting neurogenesis, reducing the infarct volume, and replacing damaged cells.
Collapse
|
37
|
Mesenchymal Stem Cells Influence Activation of Hepatic Stellate Cells, and Constitute a Promising Therapy for Liver Fibrosis. Biomedicines 2021; 9:biomedicines9111598. [PMID: 34829827 PMCID: PMC8615475 DOI: 10.3390/biomedicines9111598] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a common feature of chronic liver disease. Activated hepatic stellate cells (HSCs) are the main drivers of extracellular matrix accumulation in liver fibrosis. Hence, a strategy for regulating HSC activation is crucial in treating liver fibrosis. Mesenchymal stem cells (MSCs) are multipotent stem cells derived from various post-natal organs. Therapeutic approaches involving MSCs have been studied extensively in various diseases, including liver disease. MSCs modulate hepatic inflammation and fibrosis and/or differentiate into hepatocytes by interacting directly with immune cells, HSCs, and hepatocytes and secreting modulators, thereby contributing to reduced liver fibrosis. Cell-free therapy including MSC-released secretomes and extracellular vesicles has elicited extensive attention because they could overcome MSC transplantation limitations. Herein, we provide basic information on hepatic fibrogenesis and the therapeutic potential of MSCs. We also review findings presenting the effects of MSC itself and MSC-based cell-free treatments in liver fibrosis, focusing on HSC activation. Growing evidence supports the anti-fibrotic function of either MSC itself or MSC modulators, although the mechanism underpinning their effects on liver fibrosis has not been established. Further studies are required to investigate the detailed mechanism explaining their functions to expand MSC therapies using the cell itself and cell-free treatments for liver fibrosis.
Collapse
|
38
|
Extracellular Vesicles in Organ Fibrosis: Mechanisms, Therapies, and Diagnostics. Cells 2021; 10:cells10071596. [PMID: 34202136 PMCID: PMC8305303 DOI: 10.3390/cells10071596] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is the unrelenting deposition of excessively large amounts of insoluble interstitial collagen due to profound matrigenic activities of wound-associated myofibroblasts during chronic injury in diverse tissues and organs. It is a highly debilitating pathology that affects millions of people globally and leads to decreased function of vital organs and increased risk of cancer and end-stage organ disease. Extracellular vesicles (EVs) produced within the chronic wound environment have emerged as important vehicles for conveying pro-fibrotic signals between many of the cell types involved in driving the fibrotic response. On the other hand, EVs from sources such as stem cells, uninjured parenchymal cells, and circulation have in vitro and in vivo anti-fibrotic activities that have provided novel and much-needed therapeutic options. Finally, EVs in body fluids of fibrotic individuals contain cargo components that may have utility as fibrosis biomarkers, which could circumvent current obstacles to fibrosis measurement in the clinic, allowing fibrosis stage, progression, or regression to be determined in a manner that is accurate, safe, minimally-invasive, and conducive to repetitive testing. This review highlights the rapid and recent progress in our understanding of EV-mediated fibrotic pathogenesis, anti-fibrotic therapy, and fibrosis staging in the lung, kidney, heart, liver, pancreas, and skin.
Collapse
|