1
|
Siwak KC, LeBlanc EV, Scott HM, Kim Y, Pellizzari-Delano I, Ball AM, Temperton NJ, Capicciotti CJ, Colpitts CC. Cellular sialoglycans are differentially required for endosomal and cell-surface entry of SARS-CoV-2 in lung cell lines. PLoS Pathog 2024; 20:e1012365. [PMID: 39625989 PMCID: PMC11642992 DOI: 10.1371/journal.ppat.1012365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/13/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024] Open
Abstract
Cell entry of severe acute respiratory coronavirus-2 (SARS-CoV-2) and other CoVs can occur via two distinct routes. Following receptor binding by the spike glycoprotein, membrane fusion can be triggered by spike cleavage either at the cell surface in a transmembrane serine protease 2 (TMPRSS2)-dependent manner or within endosomes in a cathepsin-dependent manner. Cellular sialoglycans have been proposed to aid in CoV attachment and entry, although their functional contributions to each entry pathway are unknown. In this study, we used genetic and enzymatic approaches to deplete sialic acid from cell surfaces and compared the requirement for sialoglycans during endosomal and cell-surface CoV entry using lentiviral particles pseudotyped with the spike proteins of different sarbecoviruses. We show that entry of SARS-CoV-1, WIV1-CoV and WIV16-CoV, like the SARS-CoV-2 omicron variant, depends on endosomal cathepsins and requires cellular sialoglycans for entry. Ancestral SARS-CoV-2 and the delta variant can use either pathway for entry, but only require sialic acid for endosomal entry in cells lacking TMPRSS2. Binding of SARS-CoV-2 spike protein to cells did not require sialic acid, nor was sialic acid required for SARS-CoV-2 entry in TMRPSS2-expressing cells. These findings suggest that cellular sialoglycans are not strictly required for SARS-CoV-2 attachment, receptor binding or fusion, but rather promote endocytic entry of SARS-CoV-2 and related sarbecoviruses. In contrast, the requirement for sialic acid during entry of MERS-CoV pseudoparticles and authentic HCoV-OC43 was not affected by TMPRSS2 expression, consistent with a described role for sialic acid in merbecovirus and embecovirus cell attachment. Overall, these findings clarify the role of sialoglycans in SARS-CoV-2 entry and suggest that cellular sialoglycans mediate endosomal, but not cell-surface, SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Kimberley C. Siwak
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Emmanuelle V. LeBlanc
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Heidi M. Scott
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Youjin Kim
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | | | - Alice M. Ball
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Nigel J. Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham, United Kingdom
| | - Chantelle J. Capicciotti
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
- Department of Chemistry, Queen’s University, Kingston, Canada
- Department of Surgery, Queen’s University, Kingston, Canada
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| |
Collapse
|
2
|
Buriak I, Kumeiko V. Marine Lectins and Lectin-like Proteins as Promising Molecules Targeting Aberrant Glycosylation Signatures in Human Brain Tumors. Mar Drugs 2024; 22:527. [PMID: 39728102 DOI: 10.3390/md22120527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Glycosylation is a ubiquitous and the most structurally diverse post-translational modification of proteins. High levels of phenotypic heterogeneity in brain tumors affect the biosynthetic pathway of glycosylation machinery, resulting in aberrant glycosylation patterns. Traditionally, unique glycocode readers, carbohydrate-binding proteins, have been used to identify differentially expressed carbohydrate determinants associated with the tumor cell surface. However, identifying novel distinctive glycosylation signatures in brain tumors requires the timely development of molecular tools capable of targeting them. We classified marine-derived lectins and lectin-like molecules according to their ability to cover aberrant glycosylation patterns in brain tumors to encourage exploration of the potential of these molecules for precision diagnostics and personalized therapy.
Collapse
Affiliation(s)
- Ivan Buriak
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
3
|
Liu Y, Guan Q, Liu L, Ma L, Duan X, Che J. Metabolomic differences between exanthematous drug eruption and infectious mononucleosis. Skin Res Technol 2024; 30:e70043. [PMID: 39387831 PMCID: PMC11465872 DOI: 10.1111/srt.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/17/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Exanthematous drug eruption and infectious mononucleosis (IM) are both exanthematous diseases. Current research on exanthematous drug eruption and IM mainly targets identifying these disorders, the resulting differences at the metabolism level have not yet been systematically analyzed. MATERIALS AND METHODS A total of 30 cases of exanthematous drug eruption and IM, 10 patients without exanthema and 10 healthy volunteers were enrolled, 3 mL of fasting venous blood was collected, the serum metabolite content was detected by gas chromatography-mass spectrometry metabolomics. RESULTS A total of 165 metabolites were identified, exhibiting significant differences in plasma metabolic trends between exanthematous drug eruption and IM, and pinpointed 28 potential biomarkers. Notable changes were seen in the metabolic activities of the pentose phosphate pathway (PPP), tricarboxylic acid cycle (TCA-cycle), and galactose metabolism, characterized by increased levels of gluconate, gluconolactone, glucose, galactaric acid, and mannose, along with decreased amounts of pyruvic acid, succinic acid, malic acid, and glycerol, indicating an impairment in the exanthematous drug eruption group's capacity to endure oxidative stress and regulate energy metabolism. In contrast to its medication without rash counterpart, the exanthematous drug eruption group's plasma displayed distinct metabolic routes, predominantly in the processing of arginine and proline, along with the TCA. This resulted in a marked reduction in urea levels and a rise in pyruvate, citrate, and ornithine, indicating hypoxic stress as the primary cause of these rashes. In contrast to the healthy control group, the IM group showed 26 potential biomarkers, marked by increased levels of ketoglutaric acid, malic acid, pyruvic acid, and oxoglutaric acid, and reduced amounts of glutamine, galacturonic acid, arachidonic acid, trimethylphosphonic acid ester, gluconolactone, and indole acetic acid. Mainly, the metabolic pathways included the TCA, breaking down alanine, aspartate and glutamate metabolism, and the processing of D-glutamine and D-glutamate metabolism, underscoring the body's crucial role in generating energy and inflammatory agents through the citric acid cycle. CONCLUSIONS The comparison of serum metabolomic features of exanthematous drug eruptions and IM outlines a unique pattern closely related to the differences in the pathogenesis of these two exanthematous diseases.
Collapse
Affiliation(s)
- Yanqiu Liu
- Department of Dermatology and VenereologyThe Affiliated Hospital of Chengde Medical UniversityChengdeChina
| | - Qizhen Guan
- Department of Dermatology and VenereologyThe Affiliated Hospital of Chengde Medical UniversityChengdeChina
| | - Liyuan Liu
- Department of Dermatology and VenereologyThe Affiliated Hospital of Chengde Medical UniversityChengdeChina
| | - Lina Ma
- Department of Dermatology and VenereologyThe Affiliated Hospital of Chengde Medical UniversityChengdeChina
| | - Xinsuo Duan
- Department of Dermatology and VenereologyThe Affiliated Hospital of Chengde Medical UniversityChengdeChina
| | - Jiaozi Che
- Clinical labChengde central HospitalChengdeChina
| |
Collapse
|
4
|
Almeida P, Fernandes Â, Alves I, Pinho SS. "Glycans in Trained Immunity: Educators of innate immune memory in homeostasis and disease". Carbohydr Res 2024; 544:109245. [PMID: 39208605 DOI: 10.1016/j.carres.2024.109245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Trained Immunity is defined as a biological process normally induced by exogenous or endogenous insults that triggers epigenetic and metabolic reprogramming events associated with long-term adaptation of innate immune cells. This trained phenotype confers enhanced responsiveness to subsequent triggers, resulting in an innate immune "memory" effect. Trained Immunity, in the past decade, has revealed important benefits for host defense and homeostasis, but can also induce potentially harmful outcomes associated with chronic inflammatory disorders or autoimmune diseases. Interestingly, evidence suggest that the "trainers" prompting trained immunity are frequently glycans structures. In fact, the exposure of different types of glycans at the surface of pathogens is a key driver of the training phenotype, leading to the reprogramming of innate immune cells through the recognition of those glycan-triggers by a variety of glycan-binding proteins (GBPs) expressed by the immune cells. β-glucan or mannose-enriched structures in Candida albicans are some of the examples that highlight the potential of glycans in trained immunity, both in homeostasis and in disease. In this review, we will discuss the relevance of glycans exposed by pathogens in establishing key immunological hubs with glycan-recognizing receptors expressed in immune cells, highlighting how this glycan-GBP network can impact trained immunity. Finally, we discuss the power of glycans and GBPs as potential targets in trained immunity, envisioning potential therapeutic applications.
Collapse
Affiliation(s)
- Pedro Almeida
- I3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.
| | - Ângela Fernandes
- I3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.
| | - Inês Alves
- I3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.
| | - Salomé S Pinho
- I3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal; Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
5
|
Wu G, Grassi P, Molina BG, MacIntyre DA, Sykes L, Bennett PR, Dell A, Haslam SM. Glycomics of cervicovaginal fluid from women at risk of preterm birth reveals immuno-regulatory epitopes that are hallmarks of cancer and viral glycosylation. Sci Rep 2024; 14:20813. [PMID: 39242814 PMCID: PMC11379862 DOI: 10.1038/s41598-024-71950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
During pregnancy the immune system needs to maintain immune tolerance of the foetus while also responding to infection, which can cause premature activation of the inflammatory pathways leading to the onset of labour and preterm birth. The vaginal microbiome is an important modifier of preterm birth risk, with Lactobacillus dominance during pregnancy associated with term delivery while high microbial diversity is associated with an increased risk of preterm birth. Glycans on glycoproteins along the lower female reproductive tract are fundamental to microbiota-host interactions and the mediation of inflammatory responses. However, the specific glycan epitopes involved in these processes are not well understood. To address this, we conducted glycomic analyses of cervicovaginal fluid (CVF) from 36 pregnant women at high risk of preterm birth and 4 non-pregnant women. Our analysis of N- and O-glycans revealed a rich CVF glycome. While O-glycans were shown to be the main carriers of ABO blood group epitopes, the main features of N-glycans were the presence of abundant paucimannose and high mannose glycans, and a remarkable diversity of complex bi-, tri-, and tetra-antennary glycans decorated with fucose and sialic acid. We identified immuno-regulatory epitopes, such as Lewis antigens, and found that fucosylation was negatively correlated to pro-inflammatory factors, such as IL-1β, MMP-8, C3a and C5a, while glycans with only sialylated antennae were mainly positively correlated to those. Similarly, paucimannose glycans showed a positive correlation to pro-inflammatory factors. We revealed a high abundance of glycans which have previously been identified as hallmarks of cancer and viral glycosylation, such as Man8 and Man9 high mannose glycans. Although each pregnant woman had a unique glycomic profile, longitudinal studies showed that the main glycosylation features were consistent throughout pregnancy in women who delivered at term, whereas women who experienced extreme preterm birth exhibited sharp changes in the CVF glycome shortly before delivery. These findings shed light on the processes underlying the role of glycosylation in maintaining a healthy vaginal microbiome and associated host immune responses. In addition, these discoveries facilitate our understanding of the lower female reproductive tract which has broad implications for women's health.
Collapse
Affiliation(s)
- Gang Wu
- Department of Life Sciences, Imperial College London, London, UK
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - Paola Grassi
- Department of Life Sciences, Imperial College London, London, UK
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - Belen Gimeno Molina
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
- Institute of Reproductive & Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
- The Parasol Foundation Centre for Women's Health and Cancer Research, St Mary's Hospital, London, W1 2NY, UK
| | - David A MacIntyre
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
- Institute of Reproductive & Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | - Lynne Sykes
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
- Institute of Reproductive & Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
- The Parasol Foundation Centre for Women's Health and Cancer Research, St Mary's Hospital, London, W1 2NY, UK
| | - Phillip R Bennett
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
- Institute of Reproductive & Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK.
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK.
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK.
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK.
| |
Collapse
|
6
|
Boliukh I, Rombel-Bryzek A, Bułdak RJ. Lectins in oncology and virology: Mechanisms of anticancer activity and SARS-CoV-2 inhibition. Int J Biol Macromol 2024; 275:133664. [PMID: 38969035 DOI: 10.1016/j.ijbiomac.2024.133664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Lectins are proteins or glycoproteins of non-immune origin with carbohydrate-binding properties. They are found both prokaryotic and eukaryotic organisms. The most abundant source of the lectins are plants. Many lectins have anticancer effects by directly exerting cytotoxic effects on malignant cells or indirectly activating the immune system. Lectins also have antiviral activities. These proteins can recognise glycoproteins on the surface of enveloped viruses and bind to them. This creates a physical barrier between them and the corresponding receptors on the surface of the host cell, which prevents the virus from entering the cell and can thus effectively inhibit the replication of the virus. In this review, we focus on the anticancer activities of selected lectins and the underlying mechanisms. We also discuss different types of lectins with antiviral activity. We have paid special attention to lectins with inhibitory activity against SARS-CoV-2. Finally, we outline the challenges of using lectins in therapy and suggest future research directions.
Collapse
Affiliation(s)
- Iryna Boliukh
- Institute of Medical Sciences, University of Opole, Opole, Poland
| | | | - Rafał J Bułdak
- Institute of Medical Sciences, University of Opole, Opole, Poland
| |
Collapse
|
7
|
Santisteban Celis IC, Matoba N. Lectibodies as antivirals. Antiviral Res 2024; 227:105901. [PMID: 38734211 DOI: 10.1016/j.antiviral.2024.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Growing concerns regarding the emergence of highly transmissible viral diseases highlight the urgent need to expand the repertoire of antiviral therapeutics. For this reason, new strategies for neutralizing and inhibiting these viruses are necessary. A promising approach involves targeting the glycans present on the surfaces of enveloped viruses. Lectins, known for their ability to recognize specific carbohydrate molecules, offer the potential for glycan-targeted antiviral strategies. Indeed, numerous studies have reported the antiviral effects of various lectins of both endogenous and exogenous origins. However, many lectins in their natural forms, are not suitable for use as antiviral therapeutics due to toxicity, other unfavorable pharmacological effects, and/or unreliable manufacturing sources. Therefore, improvements are crucial for employing lectins as effective antiviral therapeutics. A novel approach to enhance lectins' suitability as pharmaceuticals could be the generation of recombinant lectin-Fc fusion proteins, termed "lectibodies." In this review, we discuss the scientific rationale behind lectin-based antiviral strategies and explore how lectibodies could facilitate the development of new antiviral therapeutics. We will also share our perspective on the potential of these molecules to transcend their potential use as antiviral agents.
Collapse
Affiliation(s)
- Ian Carlosalberto Santisteban Celis
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, USA
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, USA; UofL Health - Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
8
|
Kopeć M, Beton-Mysur K, Abramczyk H. Biochemical changes in lipid and protein metabolism caused by mannose-Raman spectroscopy studies. Analyst 2024; 149:2942-2955. [PMID: 38597575 DOI: 10.1039/d4an00128a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Biochemical analysis of human normal bronchial cells (BEpiC) and human cancer lung cells (A549) has been performed by using Raman spectroscopy and Raman imaging. Our approach provides a biochemical compositional mapping of the main cell components: nucleus, mitochondria, lipid droplets, endoplasmic reticulum, cytoplasm and cell membrane. We proved that Raman spectroscopy and Raman imaging can distinguish successfully BEpiC and A549 cells. In this study, we have focused on the role of mannose in cancer development. It has been shown that changes in the concentration of mannose can regulate some metabolic processes in cells. Presented results suggest lipids and proteins can be considered as Raman biomarkers during lung cancer progression. Analysis obtained for bands 1444 cm-1, and 2854 cm-1 characteristic for lipids and derivatives proved that the addition of mannose reduced levels of these compounds. Results obtained for protein compounds based on bands 858 cm-1, 1004 cm-1 and 1584 cm-1 proved that the addition of mannose increases the values of protein in BEpiC cells and blocks protein glycolisation in A549 cells. Noticing Raman spectral changes in BEpiC and A549 cells supplemented with mannose can help to understand the mechanism of sugar metabolism during cancer development and could play in the future an important role in clinical treatment.
Collapse
Affiliation(s)
- Monika Kopeć
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Karolina Beton-Mysur
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Halina Abramczyk
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| |
Collapse
|
9
|
Chan SM, Raglow Z, Pal A, Gitlin SD, Legendre M, Thomas D, Mehta RK, Tan M, Nyati MK, Rehemtulla A, Markovitz DM. A molecularly engineered lectin destroys EGFR and inhibits the growth of non-small cell lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585535. [PMID: 38562773 PMCID: PMC10983887 DOI: 10.1101/2024.03.18.585535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Survival rates for non-small cell lung cancer (NSCLC) remain low despite the advent of novel therapeutics. Tyrosine kinase inhibitors (TKIs) targeting mutant epidermal growth factor receptor (EGFR) in NSCLC have significantly improved mortality but are plagued with challenges--they can only be used in the small fraction of patients who have susceptible driver mutations, and resistance inevitably develops. Aberrant glycosylation on the surface of cancer cells is an attractive therapeutic target as these abnormal glycosylation patterns are typically specific to cancer cells and are not present on healthy cells. H84T BanLec (H84T), a lectin previously engineered by our group to separate its antiviral activity from its mitogenicity, exhibits precision binding of high mannose, an abnormal glycan present on the surface of many cancer cells, including NSCLC. Here, we show that H84T binds to and inhibits the growth of diverse NSCLC cell lines by inducing lysosomal degradation of EGFR and leading to cancer cell death through autophagy. This is a mechanism distinct from EGFR TKIs and is independent of EGFR mutation status; H84T inhibited proliferation of both cell lines expressing wild type EGFR and those expressing mutant EGFR that is resistant to all TKIs. Further, H84T binds strongly to multiple and diverse clinical samples of both pulmonary adenocarcinoma and squamous cell carcinoma. H84T is thus a promising potential therapeutic in NSCLC, with the ability to circumvent the challenges currently faced by EGFR TKIs.
Collapse
|
10
|
Jin H, Liu X, Liu HX. Biological function, regulatory mechanism, and clinical application of mannose in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188970. [PMID: 37657682 DOI: 10.1016/j.bbcan.2023.188970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Studies examining the regulatory roles and clinical applications of monosaccharides other than glucose in cancer have been neglected. Mannose, a common type of monosaccharide found in human body fluids and tissues, primarily functions in protein glycosylation rather than carbohydrate metabolism. Recent research has demonstrated direct anticancer effects of mannose in vitro and in vivo. Simply supplementing cell culture medium or drinking water with mannose achieved these effects. Moreover, mannose enhances the effectiveness of current cancer treatments including chemotherapy, radiotherapy, targeted therapy, and immune therapy. Besides the advancements in basic research on the anticancer effects of mannose, recent studies have reported its application as a biomarker for cancer or in the delivery of anticancer drugs using mannose-modified drug delivery systems. This review discusses the progress made in understanding the regulatory roles of mannose in cancer progression, the mechanisms underlying its anticancer effects, and its current application in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Haoyi Jin
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China
| | - Xi Liu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China
| | - Hong-Xu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China; Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China.
| |
Collapse
|
11
|
Gillmann KM, Temme JS, Marglous S, Brown CE, Gildersleeve JC. Anti-glycan monoclonal antibodies: Basic research and clinical applications. Curr Opin Chem Biol 2023; 74:102281. [PMID: 36905763 PMCID: PMC10732169 DOI: 10.1016/j.cbpa.2023.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 03/12/2023]
Abstract
Anti-glycan monoclonal antibodies have important applications in human health and basic research. Therapeutic antibodies that recognize cancer- or pathogen-associated glycans have been investigated in numerous clinical trials, resulting in two FDA-approved biopharmaceuticals. Anti-glycan antibodies are also utilized to diagnose, prognosticate, and monitor disease progression, as well as to study the biological roles and expression of glycans. High-quality anti-glycan mAbs are still in limited supply, highlighting the need for new technologies for anti-glycan antibody discovery. This review discusses anti-glycan monoclonal antibodies with applications to basic research, diagnostics, and therapeutics, focusing on recent advances in mAbs targeting cancer- and infectious disease-associated glycans.
Collapse
Affiliation(s)
- Kara M Gillmann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - J Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Samantha Marglous
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Claire E Brown
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
12
|
Notova S, Imberty A. Tuning specificity and topology of lectins through synthetic biology. Curr Opin Chem Biol 2023; 73:102275. [PMID: 36796139 DOI: 10.1016/j.cbpa.2023.102275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 02/16/2023]
Abstract
Lectins are non-immunoglobulin and non-catalytic glycan binding proteins that are able to decipher the structure and function of complex glycans. They are widely used as biomarkers for following alteration of glycosylation state in many diseases and have application in therapeutics. Controlling and extending lectin specificity and topology is the key for obtaining better tools. Furthermore, lectins and other glycan binding proteins can be combined with additional domains, providing novel functionalities. We provide a view on the current strategy with a focus on synthetic biology approaches yielding to novel specificity, but other novel architectures with novel application in biotechnology or therapy.
Collapse
Affiliation(s)
- Simona Notova
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Anne Imberty
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.
| |
Collapse
|
13
|
Zhou Q, Alvarez MRS, Solakyildirim K, Tena J, Serrano LMN, Lam M, Nguyen C, Tobias F, Hummon AB, Nacario RC, Lebrilla CB. Multi-glycomic analysis of spheroid glycocalyx differentiates 2- and 3-dimensional cell models. Glycobiology 2023; 33:2-16. [PMID: 36345209 PMCID: PMC9829041 DOI: 10.1093/glycob/cwac075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/10/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
A multi-glycomic method for characterizing the glycocalyx was employed to identify the difference between 2-dimensional (2D) and 3-dimensional (3D) culture models with two human colorectal cancer cell lines, HCT116 and HT29. 3D cell cultures are considered more representative of cancer due to their ability to mimic the microenvironment found in tumors. For this reason, they have become an important tool in cancer research. Cell-cell interactions increase in 3D models compared to 2D, indeed significant glycomic changes were observed for each cell line. Analyses included the N-glycome, O-glycome, glycolipidome, glycoproteome, and proteome providing the most extensive characterization of the glycocalyx between 3D and 2D thus far. The different glycoconjugates were affected in different ways. In the N-glycome, the 3D cells increased in high-mannose glycosylation and in core fucosylation. Glycolipids increased in sialylation. Specific glycoproteins were found to increase in the 3D cell, elucidating the pathways that are affected between the two models. The results show large structural and biological changes between the 2 models suggesting that the 2 are indeed very different potentially affecting individual outcomes in the study of diseases.
Collapse
Affiliation(s)
- Qingwen Zhou
- Department of Chemistry, University of California, Davis, CA, United States
| | - Michael Russelle S Alvarez
- Department of Chemistry, University of California, Davis, CA, United States
- Institute of Chemistry, University of the Philippines Los Banos, Los Banos, Laguna, Philippines
| | - Kemal Solakyildirim
- Department of Chemistry, University of California, Davis, CA, United States
- Department of Chemistry, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Jennyfer Tena
- Department of Chemistry, University of California, Davis, CA, United States
| | - Luster Mae N Serrano
- Institute of Chemistry, University of the Philippines Los Banos, Los Banos, Laguna, Philippines
| | - Matthew Lam
- Department of Chemistry, University of California, Davis, CA, United States
| | - Cynthia Nguyen
- Department of Chemistry, University of California, Davis, CA, United States
| | - Fernando Tobias
- Department of Chemistry and Biochemistry, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Ruel C Nacario
- Institute of Chemistry, University of the Philippines Los Banos, Los Banos, Laguna, Philippines
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA, United States
- Department of Chemistry, Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, CA, United States
| |
Collapse
|
14
|
Notova S, Siukstaite L, Rosato F, Vena F, Audfray A, Bovin N, Landemarre L, Römer W, Imberty A. Extending Janus lectins architecture: characterization and application to protocells. Comput Struct Biotechnol J 2022; 20:6108-6119. [DOI: 10.1016/j.csbj.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
|
15
|
Dent M, Mayer KL, Verjan Garcia N, Guo H, Kajiura H, Fujiyama K, Matoba N. Impact of glycoengineering and antidrug antibodies on the anticancer activity of a plant-made lectin-Fc fusion protein. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2217-2230. [PMID: 35900183 PMCID: PMC9616523 DOI: 10.1111/pbi.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Plants are an efficient production platform for manufacturing glycoengineered monoclonal antibodies and antibody-like molecules. Avaren-Fc (AvFc) is a lectin-Fc fusion protein or lectibody produced in Nicotiana benthamiana, which selectively recognizes cancer-associated high-mannose glycans. In this study, we report the generation of a glycovariant of AvFc that is devoid of plant glycans, including the core α1,3-fucose and β1,2-xylose residues. The successful removal of these glycans was confirmed by glycan analysis using HPLC. This variant, AvFcΔXF , has significantly higher affinity for Fc gamma receptors and induces higher levels of luciferase expression in an antibody-dependent cell-mediated cytotoxicity (ADCC) reporter assay against B16F10 murine melanoma cells without inducing apoptosis or inhibiting proliferation. In the B16F10 flank tumour mouse model, we found that systemic administration of AvFcΔXF , but not an aglycosylated AvFc variant lacking affinity for Fc receptors, significantly delayed the growth of tumours, suggesting that Fc-mediated effector functions were integral. AvFcΔXF treatment also significantly reduced lung metastasis of B16F10 upon intravenous challenge whereas a sugar-binding-deficient mutant failed to show efficacy. Lastly, we determined the impact of antidrug antibodies (ADAs) on drug activity in vivo by pretreating animals with AvFcΔXF before implanting tumours. Despite a significant ADA response induced by the pretreatment, we found that the activity of AvFcΔXF was unaffected by the presence of these antibodies. These results demonstrate that glycoengineering is a powerful strategy to enhance AvFc's antitumor activity.
Collapse
Affiliation(s)
- Matthew Dent
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Katarina L. Mayer
- UofL Health – Brown Cancer CenterUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Noel Verjan Garcia
- UofL Health – Brown Cancer CenterUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Haixun Guo
- Department of RadiologyUniversity of Louisville School of MedicineLouisvilleKYUSA
- Center for Predictive MedicineUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Hiroyuki Kajiura
- International Center for BiotechnologyOsaka UniversityOsakaJapan
| | | | - Nobuyuki Matoba
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
- UofL Health – Brown Cancer CenterUniversity of Louisville School of MedicineLouisvilleKYUSA
- Center for Predictive MedicineUniversity of Louisville School of MedicineLouisvilleKYUSA
| |
Collapse
|
16
|
Kurhade SE, Ross P, Gao FP, Farrell MP. Lectin Drug Conjugates Targeting High Mannose N-Glycans. Chembiochem 2022; 23:e202200266. [PMID: 35816406 PMCID: PMC9738879 DOI: 10.1002/cbic.202200266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/05/2022] [Indexed: 12/14/2022]
Abstract
Cancer-associated alterations to glycosylation have been shown to aid cancer development and progression. An increased abundance of high mannose N-glycans has been observed in several cancers. Here, we describe the preparation of lectin drug conjugates (LDCs) that permit toxin delivery to cancer cells presenting high mannose N-glycans. Additionally, we demonstrate that cancer cells presenting low levels of high mannose N-glycans can be rendered sensitive to the LDCs by co-treatment with a type I mannosidase inhibitor. Our findings establish that an increased abundance of high mannose N-glycans in the glycocalyx of cancer cells can be leveraged to enable toxin delivery.
Collapse
Affiliation(s)
- Suresh E Kurhade
- Department of Medicinal Chemistry, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Patrick Ross
- Department of Medicinal Chemistry, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Fei Philip Gao
- Protein Production Group, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Mark P Farrell
- Department of Medicinal Chemistry, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| |
Collapse
|
17
|
Oh S, Payne AS. Engineering Cell Therapies for Autoimmune Diseases: From Preclinical to Clinical Proof of Concept. Immune Netw 2022; 22:e37. [PMID: 36381961 PMCID: PMC9634148 DOI: 10.4110/in.2022.22.e37] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 11/05/2022] Open
Abstract
Autoimmune diseases are caused by a dysfunction of the acquired immune system. In a subset of autoimmune diseases, B cells escaping immune tolerance present autoantigen and produce cytokines and/or autoantibodies, resulting in systemic or organ-specific autoimmunity. Therefore, B cell depletion with monoclonal Abs targeting B cell lineage markers is standard care therapy for several B cell-mediated autoimmune disorders. In the last 5 years, genetically-engineered cellular immunotherapies targeting B cells have shown superior efficacy and long-term remission of B cell malignancies compared to historical clinical outcomes using B cell depletion with monoclonal Ab therapies. This has raised interest in understanding whether similar durable remission could be achieved with use of genetically-engineered cell therapies for autoimmunity. This review will focus on current human clinical trials using engineered cell therapies for B cell-associated autoimmune diseases.
Collapse
Affiliation(s)
- Sangwook Oh
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aimee S. Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Raglow Z, McKenna MK, Bonifant CL, Wang W, Pasca di Magliano M, Stadlmann J, Penninger JM, Cummings RD, Brenner MK, Markovitz DM. Targeting glycans for CAR therapy: The advent of sweet CARs. Mol Ther 2022; 30:2881-2890. [PMID: 35821636 PMCID: PMC9481985 DOI: 10.1016/j.ymthe.2022.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/23/2022] [Accepted: 07/09/2022] [Indexed: 01/18/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has created a paradigm shift in the treatment of hematologic malignancies but has not been as effective toward solid tumors. For such tumors, the primary obstacles facing CAR T cells are scarcity of tumor-specific antigens and the hostile and complex tumor microenvironment. Glycosylation, the process by which sugars are post-translationally added to proteins or lipids, is profoundly dysregulated in cancer. Abnormally glycosylated glycoproteins expressed on cancer cells offer unique targets for CAR T therapy as they are specific to tumor cells. Tumor stromal cells also express abnormal glycoproteins and thus also have the potential to be targeted by glycan-binding CAR T cells. This review will discuss the state of CAR T cells in the therapy of solid tumors, the cancer glycoproteome and its potential for use as a therapeutic target, and the landscape and future of glycan-binding CAR T cell therapy.
Collapse
Affiliation(s)
- Zoe Raglow
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mary Kathryn McKenna
- Center for Cell and Gene Therapy, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Challice L Bonifant
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Surgery, Department of Cell and Developmental Biology, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Johannes Stadlmann
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Josef M Penninger
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Department of Medicine, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX 77030, USA.
| | - David M Markovitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Programs in Cancer Biology, Cellular and Molecular Biology, and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
The Insulin-like Growth Factor System and Colorectal Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081274. [PMID: 36013453 PMCID: PMC9410426 DOI: 10.3390/life12081274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Insulin-like growth factors (IGFs) are peptides which exert mitogenic, endocrine and cytokine activities. Together with their receptors, binding proteins and associated molecules, they participate in numerous pathophysiological processes, including cancer development. Colorectal cancer (CRC) is a disease with high incidence and mortality rates worldwide, whose etiology usually represents a combination of the environmental and genetic factors. IGFs are most often increased in CRC, enabling excessive autocrine/paracrine stimulation of the cell growth. Overexpression or increased activation/accessibility of IGF receptors is a coinciding step which transmits IGF-related signals. A number of molecules and biochemical mechanisms exert modulatory effects shaping the final outcome of the IGF-stimulated processes, frequently leading to neoplastic transformation in the case of irreparable disbalance. The IGF system and related molecules and pathways which participate in the development of CRC are the focus of this review.
Collapse
|
20
|
Mannose modified co-loaded zoledronic liposomes deplete M2-tumor-associated macrophages to enhance anti-tumor effect of doxorubicin on TNBC. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Tobola F, Wiltschi B. One, two, many: Strategies to alter the number of carbohydrate binding sites of lectins. Biotechnol Adv 2022; 60:108020. [PMID: 35868512 DOI: 10.1016/j.biotechadv.2022.108020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022]
Abstract
Carbohydrates are more than an energy-storage. They are ubiquitously found on cells and most proteins, where they encode biological information. Lectins bind these carbohydrates and are essential for translating the encoded information into biological functions and processes. Hundreds of lectins are known, and they are found in all domains of life. For half a century, researchers have been preparing variants of lectins in which the binding sites are varied. In this way, the traits of the lectins such as the affinity, avidity and specificity towards their ligands as well as their biological efficacy were changed. These efforts helped to unravel the biological importance of lectins and resulted in improved variants for biotechnological exploitation and potential medical applications. This review gives an overview on the methods for the preparation of artificial lectins and complexes thereof and how reducing or increasing the number of binding sites affects their function.
Collapse
Affiliation(s)
- Felix Tobola
- acib - Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria.
| | - Birgit Wiltschi
- acib - Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|