1
|
Hont AB, Cruz CRY. Bridging the antigen-presentation gap for adoptive cell therapies. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200877. [PMID: 39391882 PMCID: PMC11466601 DOI: 10.1016/j.omton.2024.200877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Affiliation(s)
- Amy B. Hont
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC, USA
| | - C. Russell Y. Cruz
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC, USA
| |
Collapse
|
2
|
Weterings DA, Rowan AG, Cook LB. Immunological aspects of HTLV-1 persistence; for the prevention and treatment of Adult T-cell leukaemia-lymphoma (ATL). Leuk Res 2024; 148:107635. [PMID: 39642764 DOI: 10.1016/j.leukres.2024.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Human T-cell leukaemia virus type-1 (HTLV-1) causes the highly aggressive malignancy adult T-cell leukaemia-lymphoma (ATL) in approximately 5 % of chronically infected carriers. HTLV-1 persists in the host by enhancing survival of infected-T-cells despite the presence of a strong immune response. Therefore, asymptomatic HTLV-1 carriers have a lifelong balance between infected cell proliferation and the host antiviral immune response. However, this immunological balance is lost in patients with ATL. Reliable treatment options are lacking and there is urgent need for new treatment strategies to improve the dismal prognosis of ATL. In this review, we present a summary of the current knowledge on the immunological aspects of HTLV-1 persistence and the immune alterations observed in ATL, and discuss how the recent emerging advances in adoptive immunotherapy may offer a prevention and treatment option for ATL.
Collapse
Affiliation(s)
- Devon A Weterings
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, UK
| | - Aileen G Rowan
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, UK
| | - Lucy B Cook
- National Centre for Human Retrovirology and Department of Haematology, Imperial College Healthcare NHS Trust, UK; Department of Immunology & Inflammation, Imperial College London, UK.
| |
Collapse
|
3
|
Toner K, McCann CD, Bollard CM. Applications of cell therapy in the treatment of virus-associated cancers. Nat Rev Clin Oncol 2024; 21:709-724. [PMID: 39160243 DOI: 10.1038/s41571-024-00930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/21/2024]
Abstract
A diverse range of viruses have well-established roles as the primary driver of oncogenesis in various haematological malignancies and solid tumours. Indeed, estimates suggest that approximately 1.5 million patients annually are diagnosed with virus-related cancers. The predominant human oncoviruses include Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis B and C viruses (HBV and HCV), human papillomavirus (HPV), human T-lymphotropic virus type 1 (HTLV1), and Merkel cell polyomavirus (MCPyV). In addition, although not inherently oncogenic, human immunodeficiency virus (HIV) is associated with immunosuppression that contributes to the development of AIDS-defining cancers (specifically, Kaposi sarcoma, aggressive B cell non-Hodgkin lymphoma and cervical cancer). Given that an adaptive T cell-mediated immune response is crucial for the control of viral infections, increasing research is being focused on evaluating virus-specific T cell therapies for the treatment of virus-associated cancers. In this Review, we briefly outline the roles of viruses in the pathogenesis of these malignancies before describing progress to date in the field of virus-specific T cell therapy and evaluating the potential utility of these therapies to treat or possibly even prevent virus-related malignancies.
Collapse
Affiliation(s)
- Keri Toner
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chase D McCann
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
4
|
Yue M, He X, Min X, Yang H, Xu H, Wu W, Zhong J, Mei A, Chen J. The role of islet autoantigen-specific T cells in the onset and treatment of type 1 diabetes mellitus. Front Immunol 2024; 15:1462384. [PMID: 39380988 PMCID: PMC11458421 DOI: 10.3389/fimmu.2024.1462384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM), a complex chronic disease with an intricate etiology and pathogenesis, involves the recognition of self-antigens by pancreatic islet autoantigen-specific T cells and plays crucial roles in both early- and late-stage destruction of beta cells, thus impacting disease progression. Antigen-specific T cells regulate and execute immune responses by recognizing particular antigens, playing broad roles in the treatment of various diseases. Immunotherapy targeting antigen-specific T cells holds promising potential as a targeted treatment approach. This review outlines the pathogenesis of diabetes, emphasizing the pivotal role of pancreatic islet autoantigen-specific T cells in the progression and treatment of T1DM. Exploring this avenue in research holds promise for identifying novel therapeutic targets for effectively managing diabetes.
Collapse
Affiliation(s)
- Mengmeng Yue
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xianzhen He
- Children’s Medical Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Hao Xu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wenwen Wu
- School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
5
|
Sweeney EE, Sekhri P, Muniraj N, Chen J, Feng S, Terao J, Chin SJ, Schmidt DE, Bollard CM, Cruz CRY, Fernandes R. Photothermal Prussian blue nanoparticles generate potent multi-targeted tumor-specific T cells as an adoptive cell therapy. Bioeng Transl Med 2024; 9:e10639. [PMID: 38818122 PMCID: PMC11135148 DOI: 10.1002/btm2.10639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) is an effective tumor treatment capable of eliciting an antitumor immune response. Motivated by the ability of PBNP-PTT to potentiate endogenous immune responses, we recently demonstrated that PBNP-PTT could be used ex vivo to generate tumor-specific T cells against glioblastoma (GBM) cell lines as an adoptive T cell therapy (ATCT). In this study, we further developed this promising T cell development platform. First, we assessed the phenotype and function of T cells generated using PBNP-PTT. We observed that PBNP-PTT facilitated CD8+ T cell expansion from healthy donor PBMCs that secreted IFNγ and TNFα and upregulated CD107a in response to engagement with target U87 cells, suggesting specific antitumor T cell activation and degranulation. Further, CD8+ effector and effector memory T cell populations significantly expanded after co-culture with U87 cells, consistent with tumor-specific effector responses. In orthotopically implanted U87 GBM tumors in vivo, PBNP-PTT-derived T cells effectively reduced U87 tumor growth and generated long-term survival in >80% of tumor-bearing mice by Day 100, compared to 0% of mice treated with PBS, non-specific T cells, or T cells expanded from lysed U87 cells, demonstrating an enhanced antitumor efficacy of this ATCT platform. Finally, we tested the generalizability of our approach by generating T cells targeting medulloblastoma (D556), breast cancer (MDA-MB-231), neuroblastoma (SH-SY5Y), and acute monocytic leukemia (THP-1) cell lines. The resulting T cells secreted IFNγ and exerted increased tumor-specific cytolytic function relative to controls, demonstrating the versatility of PBNP-PTT in generating tumor-specific T cells for ATCT.
Collapse
Affiliation(s)
- Elizabeth E. Sweeney
- Department of Biochemistry & Molecular Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Palak Sekhri
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Nethaji Muniraj
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Jie Chen
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Sally Feng
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- George Washington Cancer Center, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Joshua Terao
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Samantha J. Chin
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- George Washington Cancer Center, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Danielle E. Schmidt
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Catherine M. Bollard
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Conrad Russell Y. Cruz
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Rohan Fernandes
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- George Washington Cancer Center, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
- Department of Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
6
|
Fiuza-Luces C, Valenzuela PL, Gálvez BG, Ramírez M, López-Soto A, Simpson RJ, Lucia A. The effect of physical exercise on anticancer immunity. Nat Rev Immunol 2024; 24:282-293. [PMID: 37794239 DOI: 10.1038/s41577-023-00943-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
Regular physical activity is associated with lower cancer incidence and mortality, as well as with a lower rate of tumour recurrence. The epidemiological evidence is supported by preclinical studies in animal models showing that regular exercise delays the progression of cancer, including highly aggressive malignancies. Although the mechanisms underlying the antitumorigenic effects of exercise remain to be defined, an improvement in cancer immunosurveillance is likely important, with different immune cell subtypes stimulated by exercise to infiltrate tumours. There is also evidence that immune cells from blood collected after an exercise bout could be used as adoptive cell therapy for cancer. In this Perspective, we address the importance of muscular activity for maintaining a healthy immune system and discuss the effects of a single bout of exercise (that is, 'acute' exercise) and those of 'regular' exercise (that is, repeated bouts) on anticancer immunity, including tumour infiltrates. We also address the postulated mechanisms and the clinical implications of this emerging area of research.
Collapse
Affiliation(s)
- Carmen Fiuza-Luces
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain.
| | - Pedro L Valenzuela
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Systems Biology Department, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Beatriz G Gálvez
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Ramírez
- Oncohematology Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- La Princesa Institute of Heah, Madrid, Spain
| | - Alejandro López-Soto
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Asturias, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.
| | - Richard J Simpson
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, USA
- Department of Paediatrics, The University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, The University of Arizona, Tucson, AZ, USA
| | - Alejandro Lucia
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.
- Faculty of Sport Sciences, Universidad Europea, Madrid, Spain.
| |
Collapse
|
7
|
Tandel N, Patel D, Thakkar M, Shah J, Tyagi RK, Dalai SK. Poly(I:C) and R848 ligands show better adjuvanticity to induce B and T cell responses against the antigen(s). Heliyon 2024; 10:e26887. [PMID: 38455541 PMCID: PMC10918150 DOI: 10.1016/j.heliyon.2024.e26887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Poly(I:C) and R848, synthetic ligands that activate Toll-like receptor 3 (TLR3) and TLR7/8 respectively, have been well-established for their ability to stimulate the immune system and induce antigen-specific immune responses. These ligands are capable of inducing the production of cytokines and chemokines, and hence support the activation and differentiation of B and T cells. We saw the long-lasting and perdurable immune responses by these adjuvants essentially required for an efficacious subunit vaccine. In this study, we investigated the potential of poly(I:C) and R848 to elicit B and T cell responses to the OVA antigen. We assessed the stimulatory effects of these ligands on the immune system, their impact on B and T cell activation, and their ability to enhanced generation of B and T cells. Collectively, our findings contribute to the understanding how poly(I:C) and R848 can be utilized as an adjuvant system to enhance immune responses to protein-based subunit vaccines. In the end, this work provides insights for the development of novel vaccination strategies and improving the vaccine efficacy. Present work shall help formulate newer strategies for subunit vaccines to address the infectious diseases.
Collapse
Affiliation(s)
- Nikunj Tandel
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Digna Patel
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Mansi Thakkar
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Jagrut Shah
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Rajeev K. Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sarat K. Dalai
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| |
Collapse
|
8
|
Pateraki P, Latsoudis H, Papadopoulou A, Gontika I, Fragiadaki I, Mavroudi I, Bizymi N, Batsali A, Klontzas ME, Xagorari A, Michalopoulos E, Sotiropoulos D, Yannaki E, Stavropoulos-Giokas C, Papadaki HA. Perspectives for the Use of Umbilical Cord Blood in Transplantation and Beyond: Initiatives for an Advanced and Sustainable Public Banking Program in Greece. J Clin Med 2024; 13:1152. [PMID: 38398465 PMCID: PMC10889829 DOI: 10.3390/jcm13041152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The umbilical cord blood (UCB) donated in public UCB banks is a source of hematopoietic stem cells (HSC) alternative to bone marrow for allogeneic HSC transplantation (HSCT). However, the high rejection rate of the donated units due to the strict acceptance criteria and the wide application of the haploidentical HSCT have resulted in significant limitation of the use of UCB and difficulties in the economic sustainability of the public UCB banks. There is an ongoing effort within the UCB community to optimize the use of UCB in the field of HSCT and a parallel interest in exploring the use of UCB for applications beyond HSCT i.e., in the fields of cell therapy, regenerative medicine and specialized transfusion medicine. In this report, we describe the mode of operation of the three public UCB banks in Greece as an example of an orchestrated effort to develop a viable UCB banking system by (a) prioritizing the enrichment of the national inventory by high-quality UCB units from populations with rare human leukocyte antigens (HLA), and (b) deploying novel sustainable applications of UCB beyond HSCT, through national and international collaborations. The Greek paradigm of the public UCB network may become an example for countries, particularly with high HLA heterogeneity, with public UCB banks facing sustainability difficulties and adds value to the international efforts aiming to sustainably expand the public UCB banking system.
Collapse
Affiliation(s)
- Patra Pateraki
- Law Directorate of the Health Region of Crete, Ministry of Health, Heraklion, 71500 Heraklion, Greece;
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
| | - Helen Latsoudis
- Institute of Computer Sciences, Foundation for Research and Technology–Hellas (FORTH), 70013 Heraklion, Greece;
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Department of Hematology-HCT Unit, George Papanikolaou Hospital, 57010 Thessaloniki, Greece;
| | - Ioanna Gontika
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Irene Fragiadaki
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Irene Mavroudi
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Nikoleta Bizymi
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Aristea Batsali
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Michail E. Klontzas
- Department of Radiology, School of Medicine, University of Crete, 71500 Heraklion, Greece;
- Department of Medical Imaging, University Hospital of Heraklion, 71500 Heraklion, Greece
| | - Angeliki Xagorari
- Public Cord Blood Bank, Department of Hematology, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (A.X.); (D.S.)
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (E.M.); (C.S.-G.)
| | - Damianos Sotiropoulos
- Public Cord Blood Bank, Department of Hematology, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (A.X.); (D.S.)
| | - Evangelia Yannaki
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (E.M.); (C.S.-G.)
| | - Helen A. Papadaki
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| |
Collapse
|
9
|
Fonseca JA, King AC, Chahroudi A. More than the Infinite Monkey Theorem: NHP Models in the Development of a Pediatric HIV Cure. Curr HIV/AIDS Rep 2024; 21:11-29. [PMID: 38227162 PMCID: PMC10859349 DOI: 10.1007/s11904-023-00686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE OF REVIEW An HIV cure that eliminates the viral reservoir or provides viral control without antiretroviral therapy (ART) is an urgent need in children as they face unique challenges, including lifelong ART adherence and the deleterious effects of chronic immune activation. This review highlights the importance of nonhuman primate (NHP) models in developing an HIV cure for children as these models recapitulate the viral pathogenesis and persistence. RECENT FINDINGS Several cure approaches have been explored in infant NHPs, although knowledge gaps remain. Broadly neutralizing antibodies (bNAbs) show promise for controlling viremia and delaying viral rebound after ART interruption but face administration challenges. Adeno-associated virus (AAV) vectors hold the potential for sustained bNAb expression. Therapeutic vaccination induces immune responses against simian retroviruses but has yet to impact the viral reservoir. Combining immunotherapies with latency reversal agents (LRAs) that enhance viral antigen expression should be explored. Current and future cure approaches will require adaptation for the pediatric immune system and unique features of virus persistence, for which NHP models are fundamental to assess their efficacy.
Collapse
Affiliation(s)
- Jairo A Fonseca
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexis C King
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Emory+Children's Center for Childhood Infections and Vaccines, Atlanta, GA, USA.
| |
Collapse
|
10
|
Ishina IA, Kurbatskaia IN, Mamedov AE, Shramova EI, Deyev SM, Nurbaeva KS, Rubtsov YP, Belogurov AA, Gabibov AG, Zakharova MY. Genetically engineered CD80-pMHC-harboring extracellular vesicles for antigen-specific CD4 + T-cell engagement. Front Bioeng Biotechnol 2024; 11:1341685. [PMID: 38304104 PMCID: PMC10833362 DOI: 10.3389/fbioe.2023.1341685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
The identification of low-frequency antigen-specific CD4+ T cells is crucial for effective immunomonitoring across various diseases. However, this task still encounters experimental challenges necessitating the implementation of enrichment procedures. While existing antigen-specific expansion technologies predominantly concentrate on the enrichment of CD8+ T cells, advancements in methods targeting CD4+ T cells have been limited. In this study, we report a technique that harnesses antigen-presenting extracellular vesicles (EVs) for stimulation and expansion of antigen-specific CD4+ T cells. EVs are derived from a genetically modified HeLa cell line designed to emulate professional antigen-presenting cells (APCs) by expressing key costimulatory molecules CD80 and specific peptide-MHC-II complexes (pMHCs). Our results demonstrate the beneficial potent stimulatory capacity of EVs in activating both immortalized and isolated human CD4+ T cells from peripheral blood mononuclear cells (PBMCs). Our technique successfully expands low-frequency influenza-specific CD4+ T cells from healthy individuals. In summary, the elaborated methodology represents a streamlined and efficient approach for the detection and expansion of antigen-specific CD4+ T cells, presenting a valuable alternative to existing antigen-specific T-cell expansion protocols.
Collapse
Affiliation(s)
- Irina A. Ishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Inna N. Kurbatskaia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Azad E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Elena I. Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | | | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation (NN Blokhin NMRCO), Moscow, Russia
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Department of Life Sciences, Higher School of Economics, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
11
|
Pernold CPS, Lagumdzic E, Stadler M, Dolezal M, Jäckel S, Schmitt MW, Mair KH, Saalmüller A. Species comparison: human and minipig PBMC reactivity under the influence of immunomodulating compounds in vitro. Front Immunol 2024; 14:1327776. [PMID: 38264655 PMCID: PMC10803596 DOI: 10.3389/fimmu.2023.1327776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Considering the similarities between swine and humans, it is a logical consequence to use swine as a translational model in research and drug development, including non-clinical safety. Here, we compared the reactivity of peripheral blood mononuclear cells (PBMCs) from humans and minipigs under the influence of different compounds in vitro. We conducted a flow cytometry-based proliferation assay that focused on the T-cell response to three different stimuli: concanavalin A (ConA), phytohemagglutinin-L (PHA-L), and staphylococcal Enterotoxin B (SEB). Furthermore, four approved immunosuppressive drugs-abatacept, belatacept, rapamycin, and tofacitinib-which are used for the treatment of rheumatoid arthritis or rejection in transplant recipients, were combined with the different stimuli. This allowed us to study the effect of suppressive drugs in comparison with the different stimuli in both species. We examined proliferating T cells (CD3+) and investigated the presence of TCR-αβ+ and TCR-γδ+ T cells. Differences in the response of T cells of the two species under these various conditions were evident. CD4+ T cells were more activated within humans, whereas CD8+ T cells were generally more abundant in swine. The effectiveness of the used humanized antibodies is most likely related to the conserved structure of CTLA-4 as abatacept induced a much stronger reduction in swine compared with belatacept. The reduction of proliferation of rapamycin and tofacitinib was highly dependent on the used stimuli. We further investigated the effect of the immunosuppressive compounds on antigen-specific restimulation of pigs immunized against porcine circovirus 2 (PCV2). Treatment with all four compounds resulted in a clear reduction of the proliferative response, with rapamycin showing the strongest effect. In conclusion, our findings indicate that the effectiveness of suppressive compounds is highly dependent on the stimuli used and must be carefully selected to ensure accurate results. The results highlight the importance of considering the response of T cells in different species when evaluating the potential of an immunomodulatory drug.
Collapse
Affiliation(s)
- Clara P. S. Pernold
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Emil Lagumdzic
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Marlies Dolezal
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Sven Jäckel
- Chemical and Preclinical Safety, Merck KGaA, Darmstadt, Germany
| | | | - Kerstin H. Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
12
|
Qiu K, Duan X, Mao M, Song Y, Rao Y, Cheng D, Feng L, Shao X, Jiang C, Huang H, Wang Y, Li H, Chen X, Wu S, Luo D, Chen F, Peng X, Zheng Y, Wang H, Liu J, Zhao Y, Song X, Ren J. mRNA-LNP vaccination-based immunotherapy augments CD8 + T cell responses against HPV-positive oropharyngeal cancer. NPJ Vaccines 2023; 8:144. [PMID: 37773254 PMCID: PMC10542330 DOI: 10.1038/s41541-023-00733-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023] Open
Abstract
Although mRNA vaccines are known as potent activators of antigen-specific immune responses against infectious diseases, limited understanding of how they drive the functional commitment of CD8+ T cells in tumor microenvironment (TME) and secondary lymphoid organs hinders their broader application in cancer immunotherapy. Here, we systematically evaluated the immunological effects of a lipid nanoparticle (LNP)-encapsulated mRNA vaccine that encodes human papillomavirus E7 protein (HPV mRNA-LNP), a tumor-specific antigen of HPV-positive oropharyngeal squamous cell carcinoma (OPSCC). HPV mRNA-LNP vaccination activated overall and HPV-specific CD8+ T cells, as well as differentially drove the functional commitment of CD8+ T cells through distinct IFN-response and exhaustion trajectories in the spleen and TME, respectively. Combination therapies of HPV mRNA-LNP vaccination with immune checkpoint blockades boosted HPV-specific CD8+ T cells while maintaining their anti-tumor function, thus further promoting tumor regression. Our results showed that the HPV mRNA-LNP vaccination combined with immune checkpoint blockade is a promising approach for immunotherapy of HPV-positive OPSCC.
Collapse
Affiliation(s)
- Ke Qiu
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Duan
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Minzi Mao
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yao Song
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yufang Rao
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Danni Cheng
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lan Feng
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiuli Shao
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanhuan Jiang
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai Huang
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Li
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuemei Chen
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sisi Wu
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Luo
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Chen
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongbo Zheng
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Wang
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun Liu
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhao
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xiangrong Song
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jianjun Ren
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Lu Q, Liu T, Han Z, Zhao J, Fan X, Wang H, Song J, Ye H, Sun J. Revolutionizing cancer treatment: The power of cell-based drug delivery systems. J Control Release 2023; 361:604-620. [PMID: 37579974 DOI: 10.1016/j.jconrel.2023.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Intravenous administration of drugs is a widely used cancer therapy approach. However, the efficacy of these drugs is often hindered by various biological barriers, including circulation, accumulation, and penetration, resulting in poor delivery to solid tumors. Recently, cell-based drug delivery platforms have emerged as promising solutions to overcome these limitations. These platforms offer several advantages, including prolonged circulation time, active targeting, controlled release, and excellent biocompatibility. Cell-based delivery systems encompass cell membrane coating, intracellular loading, and extracellular backpacking. These innovative platforms hold the potential to revolutionize cancer diagnosis, monitoring, and treatment, presenting a plethora of opportunities for the advancement and integration of pharmaceuticals, medicine, and materials science. Nevertheless, several technological, ethical, and financial barriers must be addressed to facilitate the translation of these platforms into clinical practice. In this review, we explore the emerging strategies to overcome these challenges, focusing specifically on the functions and advantages of cell-mediated drug delivery in cancer treatment.
Collapse
Affiliation(s)
- Qi Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Tian Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zeyu Han
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jian Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xiaoyuan Fan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Helin Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jiaxuan Song
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Hao Ye
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China; Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, Zurich 8092, Switzerland.
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
14
|
Vasileiou S, Hill L, Kuvalekar M, Workineh AG, Watanabe A, Velazquez Y, Lulla S, Mooney K, Lapteva N, Grilley BJ, Heslop HE, Rooney CM, Brenner MK, Eagar TN, Carrum G, Grimes KA, Leen AM, Lulla P. Allogeneic, off-the-shelf, SARS-CoV-2-specific T cells (ALVR109) for the treatment of COVID-19 in high-risk patients. Haematologica 2023; 108:1840-1850. [PMID: 36373249 PMCID: PMC10316279 DOI: 10.3324/haematol.2022.281946] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/31/2022] [Indexed: 07/22/2023] Open
Abstract
Defects in T-cell immunity to SARS-CoV-2 have been linked to an increased risk of severe COVID-19 (even after vaccination), persistent viral shedding and the emergence of more virulent viral variants. To address this T-cell deficit, we sought to prepare and cryopreserve banks of virus-specific T cells, which would be available as a partially HLA-matched, off-the-shelf product for immediate therapeutic use. By interrogating the peripheral blood of healthy convalescent donors, we identified immunodominant and protective T-cell target antigens, and generated and characterized polyclonal virus-specific T-cell lines with activity against multiple clinically important SARS-CoV-2 variants (including 'delta' and 'omicron'). The feasibility of making and safely utilizing such virus-specific T cells clinically was assessed by administering partially HLA-matched, third-party, cryopreserved SARS-CoV-2-specific T cells (ALVR109) in combination with other antiviral agents to four individuals who were hospitalized with COVID-19. This study establishes the feasibility of preparing and delivering off-the-shelf, SARS-CoV-2-directed, virus-specific T cells to patients with COVID-19 and supports the clinical use of these products outside of the profoundly immune compromised setting (ClinicalTrials.gov number, NCT04401410).
Collapse
Affiliation(s)
- Spyridoula Vasileiou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX.
| | - LaQuisa Hill
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Manik Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Aster G Workineh
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ayumi Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Yovana Velazquez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Suhasini Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Kimberly Mooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Natalia Lapteva
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Bambi J Grilley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Todd N Eagar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - George Carrum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Kevin A Grimes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Premal Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| |
Collapse
|
15
|
Essawi K, Hakami W, Naeem Khan MB, Martin R, Zeng J, Chu R, Uchida N, Bonifacino AC, Krouse AE, Linde NS, Donahue RE, Blobel GA, Gerdemann U, Kean LS, Maitland SA, Wolfe SA, Metais JY, Gottschalk S, Bauer DE, Tisdale JF, Demirci S. Pre-existing immunity does not impair the engraftment of CRISPR-Cas9-edited cells in rhesus macaques conditioned with busulfan or radiation. Mol Ther Methods Clin Dev 2023; 29:483-493. [PMID: 37273902 PMCID: PMC10236215 DOI: 10.1016/j.omtm.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/17/2023] [Indexed: 06/06/2023]
Abstract
CRISPR-Cas9-based therapeutic genome editing approaches hold promise to cure a variety of human diseases. Recent findings demonstrate pre-existing immunity for the commonly used Cas orthologs from Streptococcus pyogenes (SpCas9) and Staphylococcus aureus (SaCas9) in humans, which threatens the success of this powerful tool in clinical use. Thus, a comprehensive investigation and potential risk assessment are required to exploit the full potential of the system. Here, we investigated existence of immunity to SpCas9 and SaCas9 in control rhesus macaques (Macaca mulatta) alongside monkeys transplanted with either lentiviral transduced or CRISPR-SpCas9 ribonucleoprotein (RNP)-edited cells. We observed significant levels of Cas9 antibodies in the peripheral blood of all transplanted and non-transplanted control animals. Transplantation of ex vivo transduced or SpCas9-mediated BCL11A enhancer-edited cells did not alter the levels of Cas9 antibodies in rhesus monkeys. Following stimulation of peripheral blood cells with SpCas9 or SaCas9, neither Cas9-specific T cells nor cytokine induction were detected. Robust and durable editing frequencies and expression of high levels of fetal hemoglobin in BCL11A enhancer-edited rhesus monkeys with no evidence of an immune response (>3 years) provide an optimistic outlook for the use of ex vivo CRISPR-SpCas9 (RNP)-edited cells.
Collapse
Affiliation(s)
- Khaled Essawi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Waleed Hakami
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Muhammad Behroz Naeem Khan
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Reid Martin
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jing Zeng
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| | - Rebecca Chu
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | - Allen E. Krouse
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD, USA
| | | | - Robert E. Donahue
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Gerd A. Blobel
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ulrike Gerdemann
- Boston Children’s Hospital, Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Leslie S. Kean
- Boston Children’s Hospital, Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Stacy A. Maitland
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Scot A. Wolfe
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jean-Yves Metais
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Daniel E. Bauer
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
16
|
Affiliation(s)
- Richard J O'Reilly
- Memorial Sloan Kettering Cancer Center, 1275 York Ave. New York, NY 10065
| |
Collapse
|
17
|
Cole K, Al-Kadhimi Z, Talmadge JE. Highlights into historical and current immune interventions for cancer. Int Immunopharmacol 2023; 117:109882. [PMID: 36848790 PMCID: PMC10355273 DOI: 10.1016/j.intimp.2023.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Immunotherapy is an additional pillar when combined with traditional standards of care such as chemotherapy, radiotherapy, and surgery for cancer patients. It has revolutionized cancer treatment and rejuvenated the field of tumor immunology. Several types of immunotherapies, including adoptive cellular therapy (ACT) and checkpoint inhibitors (CPIs), can induce durable clinical responses. However, their efficacies vary, and only subsets of cancer patients benefit from their use. In this review, we address three goals: to provide insight into the history of these approaches, broaden our understanding of immune interventions, and discuss current and future approaches. We highlight how cancer immunotherapy has evolved and discuss how personalization of immune intervention may address present limitations. Cancer immunotherapy is considered a recent medical achievement and in 2013 was selected as the "Breakthrough of the Year" by Science. While the breadth of immunotherapeutics has been rapidly expanding, to include the use of chimeric antigen receptor (CAR) T-cell therapy and immune checkpoint inhibitor (ICI) therapy, immunotherapy dates back over 3000 years. The expansive history of immunotherapy, and related observations, have resulted in several approved immune therapeutics beyond the recent emphasis on CAR-T and ICI therapies. In addition to other classical forms of immune intervention, including human papillomavirus (HPV), hepatitis B, and the Mycobacterium bovis Bacillus Calmette-Guérin (BCG) tuberculosis vaccines, immunotherapies have had a broad and durable impact on cancer therapy and prevention. One classic example of immunotherapy was identified in 1976 with the use of intravesical administration of BCG in patients with bladder cancer; resulting in a 70 % eradication rate and is now standard of care. However, a greater impact from the use of immunotherapy is documented by the prevention of HPV infections that are responsible for 98 % of cervical cancer cases. In 2020, the World Health Organization (WHO) estimated that 341,831 women died from cervical cancer [1]. However, administration of a single dose of a bivalent HPV vaccine was shown to be 97.5 % effective in preventing HPV infections. These vaccines not only prevent cervical squamous cell carcinoma and adenocarcinoma, but also oropharyngeal, anal, vulvar, vaginal, and penile squamous cell carcinomas. The breadth, response and durability of these vaccines can be contrasted with CAR-T-cell therapies, which have significant barriers to their widespread use including logistics, manufacturing limitations, toxicity concerns, financial burden and lasting remissions observed in only 30 to 40 % of responding patients. Another, recent immunotherapy focus are ICIs. ICIs are a class of antibodies that can increase the immune responses against cancer cells in patients. However, ICIs are only effective against tumors with a high mutational burden and are associated with a broad spectrum of toxicities requiring interruption of administration and/or administration corticosteroids; both of which limit immune therapy. In summary, immune therapeutics have a broad impact worldwide, utilizing numerous mechanisms of action and when considered in their totality are more effective against a broader range of tumors than initially considered. These new cancer interventions have tremendous potential notability when multiple mechanisms of immune intervention are combined as well as with standard of care modalities.
Collapse
Affiliation(s)
- Kathryn Cole
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zaid Al-Kadhimi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James E Talmadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
18
|
Jeong KY. Challenges to addressing the unmet medical needs for immunotherapy targeting cold colorectal cancer. World J Gastrointest Oncol 2023; 15:215-224. [PMID: 36908316 PMCID: PMC9994045 DOI: 10.4251/wjgo.v15.i2.215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 02/14/2023] Open
Abstract
With the establishment of the immune surveillance mechanism since the 1950s, attempts have been made to activate the immune system for cancer treatment through the discovery of various cytokines or the development of antibodies up to now. The fruits of these efforts have contributed to the recognition of the 3rd generation of anticancer immunotherapy as the mainstream of cancer treatment. However, the limitations of cancer immunotherapy are also being recognized through the conceptual establishment of cold tumors recently, and colorectal cancer (CRC) has become a major issue from this therapeutic point of view. Here, it is emphasized that non-clinical strategies to overcome the immunosuppressive environment and clinical trials based on these basic investigations are being made on the journey to achieve better treatment outcomes for the treatment of cold CRC.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Research and Development Center, PearlsinMires, Seoul 03690, South Korea
| |
Collapse
|
19
|
Parsonidis P, Beis G, Iliopoulos AC, Papasotiriou I. Adoptive transfer of activated immune cells against solid tumors: A preliminary study. Cell Immunol 2022; 382:104616. [PMID: 36219944 DOI: 10.1016/j.cellimm.2022.104616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND This study presents preliminary results concerning the effectiveness of a novel immunotherapy in cancer. The proposed adoptive cellular therapy product contains a mixture of effector immune cells, specifically macrophages, NK cells, dendritic cells, cytotoxic T lymphocytes and monoclonal antibody producing plasma cells. METHODS The results were based on both descriptive and inferential statistical analysis of data concerning 17 cancer patients. Particularly, performance scales such as clinical condition, Karnofsky-Index, ECOG index and symptom's scale were evaluated post therapy administration (4 months). Furthermore, circulating tumor cells (CTCs) and a specific tumor marker (EpCAM) were measured pre- and post-cellular therapy. RESULTS The results revealed a positive evaluation for clinical condition (70.59 %), Karnofsky-Index (88.23 %), ECOG index (94.12 %), and symptoms' scale (64.70 %). In addition, statistically significant reductions were found for both CTCs (p = 0.0016) and EpCAM positive cells (p = 0.0005), post-therapy, which were related to large size effects, namely 0.77 and 0.85, respectively. No cytokine storm, anaphylaxis or severe adverse events were observed with 4 months follow up evaluation. CONCLUSIONS These preliminary results indicate that the proposed cellular therapy can be considered for further studies in clinical trials.
Collapse
Affiliation(s)
| | - Georgios Beis
- Research Genetic Cancer Centre S.A., Florina, Greece
| | | | | |
Collapse
|
20
|
Motta CM, Keller MD, Bollard CM. Applications of Virus specific T cell Therapies Post BMT. Semin Hematol 2022; 60:10-19. [PMID: 37080705 DOI: 10.1053/j.seminhematol.2022.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) has been used as a curative standard of care for moderate to severe primary immunodeficiency disorders as well as relapsed hematologic malignancies for over 50 years [1,2]. However, chronic and refractory viral infections remain a leading cause of morbidity and mortality in the immune deficient period following HSCT, where use of available antiviral pharmacotherapies is limited by toxicity and emerging resistance [3]. Adoptive immunotherapy using virus-specific T cells (VSTs) has been explored for over 2 decades [4,5] in patients post-HSCT and has been shown prior phase I-II studies to be safe and effective for treatment or preventions of viral infections including cytomegalovirus, Epstein-Barr virus, BK virus, and adenovirus with minimal toxicity and low risk of graft vs host disease [6-9]. This review summarizes methodologies to generate VSTs the clinical results utilizing VST therapeutics and the challenges and future directions for the field.
Collapse
|