1
|
Zhukovskaya A, Zimmerman CA, Willmore L, Pan-Vazquez A, Janarthanan SR, Lynch LA, Falkner AL, Witten IB. Heightened lateral habenula activity during stress produces brainwide and behavioral substrates of susceptibility. Neuron 2024:S0896-6273(24)00657-3. [PMID: 39393349 DOI: 10.1016/j.neuron.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/04/2024] [Accepted: 09/08/2024] [Indexed: 10/13/2024]
Abstract
Some individuals are susceptible to chronic stress, and others are more resilient. While many brain regions implicated in learning are dysregulated after stress, little is known about whether and how neural teaching signals during stress differ between susceptible and resilient individuals. Here, we seek to determine if activity in the lateral habenula (LHb), which encodes a negative teaching signal, differs between susceptible and resilient mice during stress to produce different outcomes. After (but not before) chronic social defeat stress, the LHb is active when susceptible mice are in proximity of the aggressor strain. During stress, activity is higher in susceptible mice during aggressor interactions, and activation biases mice toward susceptibility. This manipulation generates a persistent and widespread increase in the balance of subcortical vs. cortical activity in susceptible mice. Taken together, our results indicate that heightened activity in the LHb during stress produces lasting brainwide and behavioral substrates of susceptibility.
Collapse
Affiliation(s)
- Anna Zhukovskaya
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Lindsay Willmore
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | - Laura A Lynch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Annegret L Falkner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Hendry E, McCallister B, Elman DJ, Freeman R, Borsook D, Elman I. Validity of mental and physical stress models. Neurosci Biobehav Rev 2024; 158:105566. [PMID: 38307304 PMCID: PMC11082879 DOI: 10.1016/j.neubiorev.2024.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Different stress models are employed to enhance our understanding of the underlying mechanisms and explore potential interventions. However, the utility of these models remains a critical concern, as their validities may be limited by the complexity of stress processes. Literature review revealed that both mental and physical stress models possess reasonable construct and criterion validities, respectively reflected in psychometrically assessed stress ratings and in activation of the sympathoadrenal system and the hypothalamic-pituitary-adrenal axis. The findings are less robust, though, in the pharmacological perturbations' domain, including such agents as adenosine or dobutamine. Likewise, stress models' convergent- and discriminant validity vary depending on the stressors' nature. Stress models share similarities, but also have important differences regarding their validities. Specific traits defined by the nature of the stressor stimulus should be taken into consideration when selecting stress models. Doing so can personalize prevention and treatment of stress-related antecedents, its acute processing, and chronic sequelae. Further work is warranted to refine stress models' validity and customize them so they commensurate diverse populations and circumstances.
Collapse
Affiliation(s)
- Erin Hendry
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Brady McCallister
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA
| | - Dan J Elman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Roy Freeman
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Borsook
- Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Department of Anesthesiology, Harvard Medical School, Boston, MA, USA.
| | - Igor Elman
- Department of Psychiatry, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
3
|
Radley JJ, Herman JP. Preclinical Models of Chronic Stress: Adaptation or Pathology? Biol Psychiatry 2023; 94:194-202. [PMID: 36631383 PMCID: PMC10166771 DOI: 10.1016/j.biopsych.2022.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/15/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
The experience of prolonged stress changes how individuals interact with their environment and process interoceptive cues, with the end goal of optimizing survival and well-being in the face of a now-hostile world. The chronic stress response includes numerous changes consistent with limiting further damage to the organism, including development of passive or active behavioral strategies and metabolic adjustments to alter energy mobilization. These changes are consistent with symptoms of pathology in humans, and as a result, chronic stress has been used as a translational model for diseases such as depression. While it is of heuristic value to understand symptoms of pathology, we argue that the chronic stress response represents a defense mechanism that is, at its core, adaptive in nature. Transition to pathology occurs only after the adaptive capacity of an organism is exhausted. We offer this perspective as a means of framing interpretations of chronic stress studies in animal models and how these data relate to adaptation as opposed to pathology.
Collapse
Affiliation(s)
- Jason J Radley
- Department of Psychological and Brain Sciences, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio; Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio.
| |
Collapse
|
4
|
Ritger A, Stickling CP, Ferrara NC. The impact of social defeat on basomedial amygdala neuronal activity in adult male rats. Behav Brain Res 2023; 446:114418. [PMID: 37004789 DOI: 10.1016/j.bbr.2023.114418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Social stressors negatively impact social function, and this is mediated by the amygdala across species. Social defeat stress is an ethologically relevant social stressor in adult male rats that increases social avoidance, anhedonia, and anxiety-like behaviors. While amygdala manipulations can mitigate the negative effects of social stressors, the impact of social defeat on the basomedial subregion of the amygdala is relatively unclear. Understanding the role of the basomedial amygdala may be especially important, as prior work has demonstrated that it drives physiological responses to stress, including heart-rate related responses to social novelty. In the present study, we quantified the impact of social defeat on social behavior and basomedial amygdala neuronal responses using anesthetized in vivo extracellular electrophysiology. Socially defeated rats displayed increased social avoidance behavior towards novel Sprague Dawley conspecifics and reduced time initiating social interactions relative to controls. This effect was most pronounced in rats that displayed defensive, boxing behavior during social defeat sessions. We next found that socially defeated rats showed lower overall basomedial amygdala firing and altered the distribution of neuronal responses relative to the control condition. We separated neurons into low and high Hz firing groups, and neuronal firing was reduced in both low and high Hz groups but in a slightly different manner. This work demonstrates that basomedial amygdala activity is sensitive to social stress, displaying a distinct pattern of social stress-driven activity relative to other amygdala subregions.
Collapse
|
5
|
Carnevali L, Barbetti M, Statello R, Williams DP, Thayer JF, Sgoifo A. Sex differences in heart rate and heart rate variability in rats: Implications for translational research. Front Physiol 2023; 14:1170320. [PMID: 37035663 PMCID: PMC10080026 DOI: 10.3389/fphys.2023.1170320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Abstract
The present study aimed to investigate sex differences in measures of cardiac chronotropy and heart rate variability (HRV) in 132 young adult wild-type Groningen rats (n = 45 females). Electrocardiographic signals were recorded for 48 h in freely moving rats to quantify heart rate (HR) and inter-beat interval (IBI) as measures of cardiac chronotropy, and time- and frequency-domain HRV parameters as physiological readouts of cardiac vagal modulation. Females showed greater vagally-mediated HRV despite having higher HR and shorter IBI than males during undisturbed conditions. Such differences were evident i) at any given level of HRV, and ii) both during the 12-h light/inactive and 12-h dark/active phase of the daily cycle. These findings replicate the paradoxical cardiac chronotropic control reported by human meta-analytic findings, since one would expect greater vagally-mediated HRV to be associated with lower HR and longer IBI. Lastly, the association between some HRV measures and HR was stronger in female than male rats. Overall, the current study in young adult rats provides data illustrating a sex-dependent association between vagally-mediated HRV and indexes of cardiac chronotropy. The current results i) are in line with human findings, ii) suggest to always consider biological sex in the analysis and interpretation of HRV data in rats, and iii) warrant the use of rats for investigating the neuro-hormonal basis and temporal evolution of the impact of sex on the association between vagally-mediated HRV and cardiac chronotropy, which could inform the human condition.
Collapse
Affiliation(s)
- Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- *Correspondence: Luca Carnevali,
| | - Margherita Barbetti
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rosario Statello
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - DeWayne P. Williams
- Department of Psychological Science, University of California, Irvine, Irvine, United States
| | - Julian F. Thayer
- Department of Psychological Science, University of California, Irvine, Irvine, United States
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
6
|
Helman TJ, Headrick JP, Stapelberg NJC, Braidy N. The sex-dependent response to psychosocial stress and ischaemic heart disease. Front Cardiovasc Med 2023; 10:1072042. [PMID: 37153459 PMCID: PMC10160413 DOI: 10.3389/fcvm.2023.1072042] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Stress is an important risk factor for modern chronic diseases, with distinct influences in males and females. The sex specificity of the mammalian stress response contributes to the sex-dependent development and impacts of coronary artery disease (CAD). Compared to men, women appear to have greater susceptibility to chronic forms of psychosocial stress, extending beyond an increased incidence of mood disorders to include a 2- to 4-fold higher risk of stress-dependent myocardial infarction in women, and up to 10-fold higher risk of Takotsubo syndrome-a stress-dependent coronary-myocardial disorder most prevalent in post-menopausal women. Sex differences arise at all levels of the stress response: from initial perception of stress to behavioural, cognitive, and affective responses and longer-term disease outcomes. These fundamental differences involve interactions between chromosomal and gonadal determinants, (mal)adaptive epigenetic modulation across the lifespan (particularly in early life), and the extrinsic influences of socio-cultural, economic, and environmental factors. Pre-clinical investigations of biological mechanisms support distinct early life programming and a heightened corticolimbic-noradrenaline-neuroinflammatory reactivity in females vs. males, among implicated determinants of the chronic stress response. Unravelling the intrinsic molecular, cellular and systems biological basis of these differences, and their interactions with external lifestyle/socio-cultural determinants, can guide preventative and therapeutic strategies to better target coronary heart disease in a tailored sex-specific manner.
Collapse
Affiliation(s)
- Tessa J. Helman
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
- Correspondence: Tessa J. Helman
| | - John P. Headrick
- Schoolof Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | | | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
| |
Collapse
|
7
|
McMurray KMJ, Sah R. Neuroimmune mechanisms in fear and panic pathophysiology. Front Psychiatry 2022; 13:1015349. [PMID: 36523875 PMCID: PMC9745203 DOI: 10.3389/fpsyt.2022.1015349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 12/02/2022] Open
Abstract
Panic disorder (PD) is unique among anxiety disorders in that the emotional symptoms (e.g., fear and anxiety) associated with panic are strongly linked to body sensations indicative of threats to physiological homeostasis. For example, panic attacks often present with feelings of suffocation that evoke hyperventilation, breathlessness, or air hunger. Due to the somatic underpinnings of PD, a major focus has been placed on interoceptive signaling and it is recognized that dysfunctional body-to-brain communication pathways promote the initiation and maintenance of PD symptomatology. While body-to-brain signaling can occur via several pathways, immune and humoral pathways play an important role in communicating bodily physiological state to the brain. Accumulating evidence suggests that neuroimmune mediators play a role in fear and panic-associated disorders, although this has not been systematically investigated. Currently, our understanding of the role of immune mechanisms in the etiology and maintenance of PD remains limited. In the current review, we attempt to summarize findings that support a role of immune dysregulation in PD symptomology. We compile evidence from human studies and panic-relevant rodent paradigms that indicate a role of systemic and brain immune signaling in the regulation of fear and panic-relevant behavior and physiology. Specifically, we discuss how immune signaling can contribute to maladaptive body-to-brain communication and conditioned fear that are relevant to spontaneous and conditioned symptoms of PD and identify putative avenues warranting future investigation.
Collapse
Affiliation(s)
- Katherine M. J. McMurray
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
- Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Renu Sah
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
- Veterans Affairs Medical Center, Cincinnati, OH, United States
| |
Collapse
|
8
|
Bangsumruaj J, Kijtawornrat A, Kalandakanond-Thongsong S. Effects of Chronic Mild Stress on Cardiac Autonomic Activity, Cardiac Structure and Renin-Angiotensin-Aldosterone System in Male Rats. Vet Sci 2022; 9:539. [PMID: 36288152 PMCID: PMC9611573 DOI: 10.3390/vetsci9100539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 01/29/2024] Open
Abstract
Stress is associated with cardiovascular disease. One accepted mechanism is autonomic imbalance. In this study, we investigated the effects of chronic mild stress (CMS) on cardiac autonomic control, cardiac structure and renin-angiotensin-aldosterone system (RAAS) activity in adult male Sprague Dawley rats. The CMS model provides a more realistic simulation of daily stress. The animals were divided into control and CMS, and were exposed to 4-week mild stressors. The electrocardiogram recording, sucrose intake and parameters related to stress, cardiac alterations and RAAS were determined. The results showed that CMS had lower body weight and higher sucrose intake. The heart rate variability (HRV) revealed that CMS increased autonomic activity without affecting its balance. The increased RAAS activity with upregulated angiotensin type 1 receptor mRNA expression was shown in CMS. The increased sympathetic activity or RAAS was correlated with stress. Moreover, the altered cardiac structure (i.e., heart weight and cardiomyocyte cross-sectional area) were correlated with stress-, sympathetic- and RAAS-related parameters. These indicated that CMS-induced cardiac hypertrophy was the result of both sympathetic and RAAS activation. Therefore, it could be concluded that 4-week CMS in male rats induced negative emotion as shown by increased sucrose intake, and increased cardiac autonomic and RAAS activities, which may be responsible for mild cardiac hypertrophy. The cardiac hypertrophy herein was possibly in an adaptive, not pathological, stage, and the cardiac autonomic function was preserved as the autonomic activities were in balance.
Collapse
Affiliation(s)
- Janpen Bangsumruaj
- Interdisciplinary Program in Physiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anusak Kijtawornrat
- Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
9
|
Helman TJ, Headrick JP, Peart JN, Stapelberg NJC. Central and cardiac stress resiliences consistently linked to integrated immuno-neuroendocrine responses across stress models in male mice. Eur J Neurosci 2022; 56:4333-4362. [PMID: 35763309 DOI: 10.1111/ejn.15747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022]
Abstract
Stress resilience, and behavioural and cardiovascular impacts of chronic stress, are theorised to involve integrated neuro-endocrine/inflammatory/transmitter/trophin signalling. We tested for this integration, and whether behaviour/emotionality, together with myocardial ischaemic tolerance, are consistently linked to these pathways across diverse conditions in male C57Bl/6 mice. This included: Restraint Stress (RS), 1 hr restraint/day for 14 days; Chronic Unpredictable Mild Stress (CUMS), 7 stressors randomised over 21 days; Social Stress (SS), 35 days social isolation with brief social encounters in final 13 days; and Control conditions (CTRL; un-stressed mice). Behaviour was assessed via open field (OFT) and sucrose preference (SPT) tests, and neurobiology from frontal cortex (FC) and hippocampal transcripts. Endocrine factors, and function and ischaemic tolerance in isolated hearts, were also measured. Model characteristics ranged from no behavioural or myocardial changes with homotypic RS, to increased emotionality and cardiac ischaemic injury (with apparently distinct endocrine/neurobiological profiles) in CUMS and SS models. Highly integrated expression of HPA axis, neuro-inflammatory, BDNF, monoamine, GABA, cannabinoid and opioid signalling genes was confirmed across conditions, and consistent/potentially causal correlations identified for: i) Locomotor activity (noradrenaline, ghrelin; FC Crhr1, Tnfrsf1b, Il33, Nfkb1, Maoa, Gabra1; hippocampal Il33); ii) Thigmotaxis (adrenaline, leptin); iii) Anxiety-like behaviour (adrenaline, leptin; FC Tnfrsf1a; hippocampal Il33); iv) Depressive-like behaviour (ghrelin; FC/hippocampal s100a8); and v) Cardiac stress-resistance (noradrenaline, leptin; FC Il33, Tnfrsf1b, Htr1a, Gabra1, Gabrg2; hippocampal Il33, Tnfrsf1a, Maoa, Drd2). Data support highly integrated pathway responses to stress, and consistent adipokine, sympatho-adrenergic, inflammatory and monoamine involvement in mood and myocardial disturbances across diverse conditions.
Collapse
Affiliation(s)
- Tessa J Helman
- School of Pharmacy and Medical Science, Griffith University, Southport, Australia
| | - John P Headrick
- School of Pharmacy and Medical Science, Griffith University, Southport, Australia
| | - Jason N Peart
- School of Pharmacy and Medical Science, Griffith University, Southport, Australia
| | - Nicolas J C Stapelberg
- Faculty of Health Sciences and Medicine, Bond University, Robina, Australia.,Gold Coast Hospital and Health Service, Southport, Australia
| |
Collapse
|
10
|
Morais-Silva G, Gomes-de-Souza L, Costa-Ferreira W, Pavan JC, Crestani CC, Marin MT. Cardiovascular Reactivity to a Novel Stressor: Differences on Susceptible and Resilient Rats to Social Defeat Stress. Front Physiol 2022; 12:781447. [PMID: 35250603 PMCID: PMC8889071 DOI: 10.3389/fphys.2021.781447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Prolonged and heightened responses to stress are known factors that influence the development of mood disorders and cardiovascular diseases. Moreover, the coping strategies related to the experience of adverse events, i.e., resilience or the susceptibility to stress, are determinants for the individual risk of developing such diseases. Susceptible rats to the social defeat stress (SDS), identified by the social interaction test (SIT), show behavioral and cardiovascular alterations after SDS exposure that are not found in resilient rats. However, it is not elucidated yet how the cardiovascular system of susceptible and resilient phenotypes responds to a new stressor after SDS exposure. Thus, using the SDS exposure followed by the SIT, we evaluated heart rate, blood pressure (BP), tail skin temperature, and circulating corticosterone responses to an acute session of restraint stress in susceptible and resilient rats to SDS. Susceptible rats showed resting tachycardia and exaggerated BP response to restraint stress, while resilient rats did not present such alterations. In contrast, both phenotypes showed increased plasma corticosterone and a drop in tail skin temperature to restraint stress, which was similar to that observed in control animals. Our results revealed an increased cardiovascular reactivity in response to a new stressful stimulus in susceptible rats, which might be related to a greater risk for the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Gessynger Morais-Silva
- Laboratory of Pharmacology, School of Pharmaceutical Sciences of Araraquara, São Paulo State University, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, Araraquara, Brazil
| | - Lucas Gomes-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences of Araraquara, São Paulo State University, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, Araraquara, Brazil
| | - Willian Costa-Ferreira
- Laboratory of Pharmacology, School of Pharmaceutical Sciences of Araraquara, São Paulo State University, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, Araraquara, Brazil
| | - Jacqueline C. Pavan
- Laboratory of Pharmacology, School of Pharmaceutical Sciences of Araraquara, São Paulo State University, Araraquara, Brazil
| | - Carlos C. Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences of Araraquara, São Paulo State University, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, Araraquara, Brazil
| | - Marcelo T. Marin
- Laboratory of Pharmacology, School of Pharmaceutical Sciences of Araraquara, São Paulo State University, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, Araraquara, Brazil
- *Correspondence: Marcelo T. Marin,
| |
Collapse
|
11
|
Watanabe N, Takeda M. Neurophysiological dynamics for psychological resilience: A view from the temporal axis. Neurosci Res 2021; 175:53-61. [PMID: 34801599 DOI: 10.1016/j.neures.2021.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
When an individual is faced with adversity, the brain and body work cooperatively to adapt to it. This adaptive process is termed psychological resilience, and recent studies have identified several neurophysiological factors ("neurophysiological resilience"), such as monoamines, oscillatory brain activity, hemodynamics, autonomic activity, stress hormones, and immune systems. Each factor is activated in an interactive manner during specific time windows after exposure to stress. Thus, the differences in psychological resilience levels among individuals can be characterized by differences in the temporal dynamics of neurophysiological resilience. In this review, after briefly introducing the frequently used approaches in this research field and the well-known factors of neurophysiological resilience, we summarize the temporal dynamics of neurophysiological resilience. This viewpoint clarifies an important time window, the more-than-one-hour scale, but the neurophysiological dynamics during this window remain elusive. To address this issue, we propose exploring brain-wide oscillatory activities using concurrent functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) techniques.
Collapse
Affiliation(s)
- Noriya Watanabe
- Research Center for Brain Communication, Research Institute, Kochi University of Technology, Kochi, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan.
| | - Masaki Takeda
- Research Center for Brain Communication, Research Institute, Kochi University of Technology, Kochi, Japan
| |
Collapse
|
12
|
Ethanolic and Aqueous Extracts of Avocado (Persea americana) Seeds Attenuates Doxorubicin-Induced Cardiotoxicity in Male Albino Rats. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-04994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Psychosocial Stress Hastens Disease Progression and Sudden Death in Mice with Arrhythmogenic Cardiomyopathy. J Clin Med 2020; 9:jcm9123804. [PMID: 33255451 PMCID: PMC7761318 DOI: 10.3390/jcm9123804] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Physiological stressors, such as exercise, can precipitate sudden cardiac death or heart failure progression in patients with arrhythmogenic cardiomyopathy (ACM). Yet, whether and to what extent a highly prevalent and more elusive environmental factor, such as psychosocial stress (PSS), can also increase ACM disease progression is unexplored. Here, we first quantified perceived stress levels in patients with ACM and found these levels correlated with the extent of arrhythmias and cardiac dysfunction. To determine whether the observed correlation is due to causation, we inflicted PSS-via the resident-intruder (RI) paradigm—upon Desmoglein-2 mutant mice, a vigorously used mammalian model of ACM. We found that ACM mice succumbed to abnormally high in-trial, PSS mortality. Conversely, no sudden deaths occurred in wildtype (WT) counterparts. Desmoglein-2 mice that survived RI challenge manifested markedly worse cardiac dysfunction and remodeling, namely apoptosis and fibrosis. Furthermore, WT and ACM mice displayed similar behavior at baseline, but Desmoglein-2 mice exhibited heightened anxiety following RI-induced PSS. This outcome correlated with the worsening of cardiac phenotypes. Our mouse model demonstrates that in ACM-like subjects, PSS is incisive enough to deteriorate cardiac structure and function per se, i.e., in the absence of any pre-existing anxious behavior. Hence, PSS may represent a previously underappreciated risk factor in ACM disease penetrance.
Collapse
|
14
|
Brouillard C, Carrive P, Sévoz-Couche C. Social defeat: Vagal reduction and vulnerability to ventricular arrhythmias. Neurobiol Stress 2020; 13:100245. [PMID: 33344701 PMCID: PMC7739042 DOI: 10.1016/j.ynstr.2020.100245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Previously, a sub-population of defeated anesthetized rats (Dlow) was characterized by persistent low blood levels of brain-derived neurotrophic factor (BDNF) at day 29 and autonomic alteration at day 30 after social challenge, while the other population (Dhigh) was similar to non-defeated (ND) animals. The aims of this study were to determine the time-course of autonomic dysfunction in awake animals, and whether Dhigh and/or Dlow were vulnerable to cardiac events. Defeated animals were exposed to four daily episodes of social defeats from day 1 to day 4. At day 30, anesthetized Dlow displayed decreased experimental and spontaneous reflex responses reflecting lower parasympathetic efficiency. In addition, Dlow but not Dhigh were characterized by left ventricular hypertrophy at day 30. Telemetric recordings revealed that Dlow had increased low frequency-to-high frequency ratio (LF/HF) and diastolic (DBP) and systolic (SBP) blood pressure, associated with decreased HF and spontaneous baroreflex responses (BRS) from day 3 to day 29. LF/HF, DBP and SBP recovered at day 5, and HF and BRS recovered at day 15 in Dhigh. Ventricular premature beats (VPBs) occurred in Dlow and Dhigh animals from day 5. Time course of VBP fluctuations in Dhigh mirrored that of HF and BRS, but not that of LF/HF, DBP and SBP. These results suggest that a psychosocial stress associated to low serum BDNF levels can lead to vulnerability to persistent autonomic dysfunction, cardiac hypertrophy and ventricular ectopic beats. The parasympathetic recovery seen in Dhigh may provide protection against cardiac events in this population.
Collapse
Affiliation(s)
- Charly Brouillard
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France
| | - Pascal Carrive
- Blood Pressure, Brain and Behavior Laboratory, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Caroline Sévoz-Couche
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France
| |
Collapse
|
15
|
Pope BS, Wood SK. Advances in understanding mechanisms and therapeutic targets to treat comorbid depression and cardiovascular disease. Neurosci Biobehav Rev 2020; 116:337-349. [PMID: 32598982 DOI: 10.1016/j.neubiorev.2020.06.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
Chronic or repeated social stress exposure often precipitates the onset of depression and cardiovascular disease (CVD). Despite a clear clinical association between CVD and depression, the pathophysiology underlying these comorbid conditions is unclear. Chronic exposure to social stress can lead to immune system dysregulation, mitochondrial dysfunction, and vagal withdrawal. Further, regular physical exercise is well-known to exert cardioprotective effects, and accumulating evidence demonstrates the antidepressant effect of exercise. This review explores the contribution of inflammation, mitochondrial dysfunction, and vagal withdrawal to stress-induced depression and CVD. Evidence for therapeutic benefits of exercise, anti-inflammatory therapies, and vagus nerve stimulation are also reviewed. Benefits of targeted therapeutics of mitochondrial agents, anti-inflammatory therapies, and vagus nerve stimulation are discussed. Importantly, the ability of exercise to impact each of these factors is also reviewed. The current findings described here implicate a new direction for research, targeting the shared mechanisms underlying comorbid depression-CVD. This will guide the development of novel therapeutic strategies for the prevention and treatment of these stress-related pathologies, particularly within treatment-resistant populations.
Collapse
Affiliation(s)
- Brittany S Pope
- Department of Exercise Science, University of South Carolina Arnold School of Public Health, Columbia, SC, 20208, United States
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29209, United States; William Jennings Bryan Dorn Veterans Administration Medical Center, Columbia, SC, 29209, United States.
| |
Collapse
|