1
|
Rozov A, Fedulina A, Krut’ V, Sokolov R, Sulimova A, Jappy D. Influence of early-life stress on hippocampal synaptic and network properties. Front Neural Circuits 2024; 18:1509254. [PMID: 39749113 PMCID: PMC11693662 DOI: 10.3389/fncir.2024.1509254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
According to the World Health Organization, the number of people suffering from depressive disorders worldwide is approaching 350 million. The consequences of depressive disorders include considerable worsening of the quality of life, which frequently leads to social isolation. One of the key factors which may cause depression in adulthood is early life stress, in particular, insufficient maternal care during infancy. Studies performed with children raised in orphanages have shown that long-term complete absence of maternal care (chronic early life stress) leads to vulnerability to emotional disorders, including depression, in adulthood. All of the above dictates the need for a deep understanding of the mechanisms of the pathogenicity of stress in neurogenesis. Therefore, the consequences of stress experienced in the early stages of development are actively studied in animal models. A large body of evidence has accumulated indicating stress-induced changes in gene expression and behavioral disorders in adulthood. However, the connection between the molecular biology of neurons and complex behavior runs through the synaptic connections linking these neurons into complex neural networks. In turn, coordinated activity in neuronal ensembles, achieved by a balance of synaptic excitation and inhibition, is the basis of complex behavior. Unfortunately, the effect of stress on synaptic interactions of neurons remains poorly understood.
Collapse
Affiliation(s)
- Andrei Rozov
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Anastasia Fedulina
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Viktoriya Krut’
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - Rostislav Sokolov
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Arina Sulimova
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
2
|
Wiest A, Maurer JJ, Weber F, Chung S. A hypothalamic circuit mechanism underlying the impact of stress on memory and sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618467. [PMID: 39463948 PMCID: PMC11507874 DOI: 10.1101/2024.10.17.618467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stress profoundly affects sleep and memory processes. Stress impairs memory consolidation, and similarly, disruptions in sleep compromise memory functions. Yet, the neural circuits underlying stress-induced sleep and memory disturbances are still not fully understood. Here, we show that activation of CRHPVN neurons, similar to acute restraint stress, decreases sleep and impairs memory in a spatial object recognition task. Conversely, inhibiting CRHPVN neurons during stress reverses stress-induced memory deficits while slightly increasing the amount of sleep. We found that both stress and stimulation of CRHPVN neurons activate neurons in the lateral hypothalamus (LH), and that their projections to the LH are critical for mediating stress-induced memory deficits and sleep disruptions. Our results suggest a pivotal role for CRHPVN neuronal pathways in regulating the adverse effects of stress on memory and sleep, an important step towards improving sleep and ameliorating the cognitive deficits that occur in stress-related disorders.
Collapse
Affiliation(s)
- Alyssa Wiest
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John J. Maurer
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Lisco G, Giagulli VA, De Pergola G, Guastamacchia E, Jirillo E, Vitale E, Triggiani V. Chronic Stress as a Risk Factor for Type 2 Diabetes: Endocrine, Metabolic, and Immune Implications. Endocr Metab Immune Disord Drug Targets 2024; 24:321-332. [PMID: 37534489 DOI: 10.2174/1871530323666230803095118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Chronic stress is a condition of pressure on the brain and whole body, which in the long term may lead to a frank disease status, even including type 2 diabetes (T2D). Stress activates the hypothalamus-pituitary-adrenal axis with release of glucocorticoids (GCs) and catecholamines, as well as activation of the inflammatory pathway of the immune system, which alters glucose and lipid metabolism, ultimately leading to beta-cell destruction, insulin resistance and T2D onset. Alteration of the glucose and lipid metabolism accounts for insulin resistance and T2D outcome. Furthermore, stress-related subversion of the intestinal microbiota leads to an imbalance of the gut-brain-immune axis, as evidenced by the stress-related depression often associated with T2D. A condition of generalized inflammation and subversion of the intestinal microbiota represents another facet of stress-induced disease. In fact, chronic stress acts on the gut-brain axis with multiorgan consequences, as evidenced by the association between depression and T2D. Oxidative stress with the production of reactive oxygen species and cytokine-mediated inflammation represents the main hallmarks of chronic stress. ROS production and pro-inflammatory cytokines represent the main hallmarks of stress-related disorders, and therefore, the use of natural antioxidant and anti-inflammatory substances (nutraceuticals) may offer an alternative therapeutic approach to combat stress-related T2D. Single or combined administration of nutraceuticals would be very beneficial in targeting the neuro-endocrine-immune axis, thus, regulating major pathways involved in T2D onset. However, more clinical trials are needed to establish the effectiveness of nutraceutical treatment, dosage, time of administration and the most favorable combinations of compounds. Therefore, in view of their antioxidant and anti-inflammatory properties, the use of natural products or nutraceuticals for the treatment of stress-related diseases, even including T2D, will be discussed. Several evidences suggest that chronic stress represents one of the main factors responsible for the outcome of T2D.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Giovanni De Pergola
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Elsa Vitale
- Department of Mental Health, University of Bari Aldo Moro, Local Health Authority Bari, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| |
Collapse
|
4
|
Leontiadis LJ, Trompoukis G, Tsotsokou G, Miliou A, Felemegkas P, Papatheodoropoulos C. Rescue of sharp wave-ripples and prevention of network hyperexcitability in the ventral but not the dorsal hippocampus of a rat model of fragile X syndrome. Front Cell Neurosci 2023; 17:1296235. [PMID: 38107412 PMCID: PMC10722241 DOI: 10.3389/fncel.2023.1296235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder characterized by intellectual disability and is related to autism. FXS is caused by mutations of the fragile X messenger ribonucleoprotein 1 gene (Fmr1) and is associated with alterations in neuronal network excitability in several brain areas including hippocampus. The loss of fragile X protein affects brain oscillations, however, the effects of FXS on hippocampal sharp wave-ripples (SWRs), an endogenous hippocampal pattern contributing to memory consolidation have not been sufficiently clarified. In addition, it is still not known whether dorsal and ventral hippocampus are similarly affected by FXS. We used a Fmr1 knock-out (KO) rat model of FXS and electrophysiological recordings from the CA1 area of adult rat hippocampal slices to assess spontaneous and evoked neural activity. We find that SWRs and associated multiunit activity are affected in the dorsal but not the ventral KO hippocampus, while complex spike bursts remain normal in both segments of the KO hippocampus. Local network excitability increases in the dorsal KO hippocampus. Furthermore, specifically in the ventral hippocampus of KO rats we found an increased effectiveness of inhibition in suppressing excitation and an upregulation of α1GABAA receptor subtype. These changes in the ventral KO hippocampus are accompanied by a striking reduction in its susceptibility to induced epileptiform activity. We propose that the neuronal network specifically in the ventral segment of the hippocampus is reorganized in adult Fmr1-KO rats by means of balanced changes between excitability and inhibition to ensure normal generation of SWRs and preventing at the same time derailment of the neural activity toward hyperexcitability.
Collapse
|
5
|
Pronier É, Morici JF, Girardeau G. The role of the hippocampus in the consolidation of emotional memories during sleep. Trends Neurosci 2023; 46:912-925. [PMID: 37714808 DOI: 10.1016/j.tins.2023.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 09/17/2023]
Abstract
Episodic memory relies on the hippocampus, a heterogeneous brain region with distinct functions. Spatial representations in the dorsal hippocampus (dHPC) are crucial for contextual memory, while the ventral hippocampus (vHPC) is more involved in emotional processing. Here, we review the literature in rodents highlighting the anatomical and functional properties of the hippocampus along its dorsoventral axis that underlie its role in contextual and emotional memory encoding, consolidation, and retrieval. We propose that the coordination between the dorsal and vHPC through theta oscillations during rapid eye movement (REM) sleep, and through sharp-wave ripples during non-REM (NREM) sleep, might facilitate the transfer of contextual information for integration with valence-related processing in other structures of the network. Further investigation into the physiology of the vHPC and its connections with other brain areas is needed to deepen the current understanding of emotional memory consolidation during sleep.
Collapse
Affiliation(s)
- Éléonore Pronier
- Institut du Fer à Moulin, Inserm U1270, Sorbonne Université, Paris, France
| | | | | |
Collapse
|
6
|
Kim EJ, Kim JJ. Neurocognitive effects of stress: a metaparadigm perspective. Mol Psychiatry 2023; 28:2750-2763. [PMID: 36759545 PMCID: PMC9909677 DOI: 10.1038/s41380-023-01986-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Stressful experiences, both physical and psychological, that are overwhelming (i.e., inescapable and unpredictable), can measurably affect subsequent neuronal properties and cognitive functioning of the hippocampus. At the cellular level, stress has been shown to alter hippocampal synaptic plasticity, spike and local field potential activity, dendritic morphology, neurogenesis, and neurodegeneration. At the behavioral level, stress has been found to impair learning and memory for declarative (or explicit) tasks that are based on cognition, such as verbal recall memory in humans and spatial memory in rodents, while facilitating those that are based on emotion, such as differential fear conditioning in humans and contextual fear conditioning in rodents. These vertically related alterations in the hippocampus, procedurally observed after subjects have undergone stress, are generally believed to be mediated by recurrently elevated circulating hypothalamic-pituitary-adrenal (HPA) axis effector hormones, glucocorticoids, directly acting on hippocampal neurons densely populated with corticosteroid receptors. The main purposes of this review are to (i) provide a synopsis of the neurocognitive effects of stress in a historical context that led to the contemporary HPA axis dogma of basic and translational stress research, (ii) critically reappraise the necessity and sufficiency of the glucocorticoid hypothesis of stress, and (iii) suggest an alternative metaparadigm approach to monitor and manipulate the progression of stress effects at the neural coding level. Real-time analyses can reveal neural activity markers of stress in the hippocampus that can be used to extrapolate neurocognitive effects across a range of stress paradigms (i.e., resolve scaling and dichotomous memory effects issues) and understand individual differences, thereby providing a novel neurophysiological scaffold for advancing future stress research.
Collapse
Affiliation(s)
- Eun Joo Kim
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA
- School of Psychology, Korea University, Seoul, 02841, Republic of Korea
| | - Jeansok J Kim
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
7
|
Xie B, Zhen Z, Guo O, Li H, Guo M, Zhen J. Progress on the hippocampal circuits and functions based on sharp wave ripples. Brain Res Bull 2023:110695. [PMID: 37353037 DOI: 10.1016/j.brainresbull.2023.110695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Sharp wave ripples (SWRs) are high-frequency synchronization events generated by hippocampal neuronal circuits during various forms of learning and reactivated during memory consolidation and recall. There is mounting evidence that SWRs are essential for storing spatial and social memories in rodents and short-term episodic memories in humans. Sharp wave ripples originate mainly from the hippocampal CA3 and subiculum, and can be transmitted to modulate neuronal activity in cortical and subcortical regions for long-term memory consolidation and behavioral guidance. Different hippocampal subregions have distinct functions in learning and memory. For instance, the dorsal CA1 is critical for spatial navigation, episodic memory, and learning, while the ventral CA1 and dorsal CA2 may work cooperatively to store and consolidate social memories. Here, we summarize recent studies demonstrating that SWRs are essential for the consolidation of spatial, episodic, and social memories in various hippocampal-cortical pathways, and review evidence that SWR dysregulation contributes to cognitive impairments in neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Boxu Xie
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhihang Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ouyang Guo
- Department of Biology, Boston University, Boston, MA, United States
| | - Heming Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Moran Guo
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Junli Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Neurological Laboratory of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
8
|
Tseilikman VE, Tseilikman OB, Pashkov AA, Ivleva IS, Karpenko MN, Shatilov VA, Zhukov MS, Fedotova JO, Kondashevskaya MV, Downey HF, Manukhina EB. Mechanisms of Susceptibility and Resilience to PTSD: Role of Dopamine Metabolism and BDNF Expression in the Hippocampus. Int J Mol Sci 2022; 23:ijms232314575. [PMID: 36498900 PMCID: PMC9737079 DOI: 10.3390/ijms232314575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Susceptibility and resilience to post-traumatic stress disorder (PTSD) are recognized, but their mechanisms are not understood. Here, the hexobarbital sleep test (HST) was used to elucidate mechanisms of PTSD resilience or susceptibility. A HST was performed in rats 30 days prior to further experimentation. Based on the HST, the rats were divided into groups: (1) fast metabolizers (FM; sleep duration < 15 min); (2) slow metabolizers (SM; sleep duration ≥ 15 min). Then the SM and FM groups were subdivided into stressed (10 days predator scent, 15 days rest) and unstressed subgroups. Among stressed animals, only SMs developed experimental PTSD, and had higher plasma corticosterone (CORT) than stressed FMs. Thus, resilience or susceptibility to PTSD was consistent with changes in glucocorticoid metabolism. Stressed SMs had a pronounced decrease in hippocampal dopamine associated with increased expressions of catecholamine-O-methyl-transferase and DA transporter. In stressed SMs, a decrease in monoaminoxidase (MAO) A was associated with increased expressions of hippocampal MAO-A and MAO-B. BDNF gene expression was increased in stressed FMs and decreased in stressed SMs. These results demonstrate relationships between the microsomal oxidation phenotype, CORT concentration, and anxiety, and they help further the understanding of the role of the liver−brain axis during PTSD.
Collapse
Affiliation(s)
- Vadim E. Tseilikman
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Olga B. Tseilikman
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Department of Basic Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Anton A. Pashkov
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Federal Neurosurgical Center, 630048 Novosibirsk, Russia
| | - Irina S. Ivleva
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Marina N. Karpenko
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | | | - Maxim S. Zhukov
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Julia O. Fedotova
- Laboratory of Neuroendocrinology, Pavlov Institute of Physiology, 199034 Saint Petersburg, Russia
| | - Marina V. Kondashevskaya
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 117418 Moscow, Russia
| | - H. Fred Downey
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence:
| | - Eugenia B. Manukhina
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Laboratory for Regulatory Mechanisms of Stress and Adaptation, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| |
Collapse
|
9
|
Jeanneteau F, Coutellier L. The glucocorticoid footprint on the memory engram. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 25:100378. [PMID: 38486965 PMCID: PMC10938917 DOI: 10.1016/j.coemr.2022.100378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The complexity of the classical inverted U-shaped relationship between cortisol levels and responses transposable to stress reactivity has led to an incomplete understanding of the mechanisms enabling healthy and toxic effects of stress on brain and behavior. A clearer, more detailed, picture of those relationships can be obtained by integrating cortisol effects on large-scale brain networks, in particular, by focusing on neural network configurations from the perspective of inhibition and excitation. A unifying view of Semon and Hebb's theories of cellular memory links the biophysical and metabolic changes in neuronal ensembles to the strengthening of collective synapses. In that sense, the neuronal capacity to record, store, and retrieve information directly relates to the adaptive capacity of its connectivity and metabolic reserves. Here, we use task-activated cell ensembles or simply engram cells as an example to demonstrate that the adaptive behavioral responses to stress result from collective synapse strength within and across networks of interneurons and excitatory ones.
Collapse
Affiliation(s)
- Freddy Jeanneteau
- Institut de Génomique Fonctionnelle, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Laurence Coutellier
- Departments of Psychology and Neuroscience, Ohio State University, Columbus, USA
| |
Collapse
|
10
|
Enhancement of Neuroglial Extracellular Matrix Formation and Physiological Activity of Dopaminergic Neural Cocultures by Macromolecular Crowding. Cells 2022; 11:cells11142131. [PMID: 35883574 PMCID: PMC9317039 DOI: 10.3390/cells11142131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
The neuroglial extracellular matrix (ECM) provides critical support and physiological cues for the proper growth, differentiation, and function of neuronal cells in the brain. However, in most in vitro settings that study neural physiology, cells are grown as monolayers on stiff surfaces that maximize adhesion and proliferation, and, therefore, they lack the physiological cues that ECM in native neuronal tissues provides. Macromolecular crowding (MMC) is a biophysical phenomenon based on the principle of excluded volume that can be harnessed to induce native ECM deposition by cells in culture. Here, we show that MMC using two species of Ficoll with vitamin C supplementation significantly boosts deposition of relevant brain ECM by cultured human astrocytes. Dopaminergic neurons cocultured on this astrocyte–ECM bed prepared under MMC treatment showed longer and denser neuronal extensions, a higher number of pre ad post synaptic contacts, and increased physiological activity, as evidenced by higher frequency calcium oscillation, compared to standard coculture conditions. When the pharmacological activity of various compounds was tested on MMC-treated cocultures, their responses were enhanced, and for apomorphine, a D2-receptor agonist, it was inverted in comparison to control cell culture conditions, thus emulating responses observed in in vivo settings. These results indicate that macromolecular crowding can harness the ECM-building potential of human astrocytes in vitro forming an ultra-flat 3D microenvironment that makes neural cultures more physiological and pharmacological relevant.
Collapse
|
11
|
Laham BJ, Gould E. How Stress Influences the Dynamic Plasticity of the Brain’s Extracellular Matrix. Front Cell Neurosci 2022; 15:814287. [PMID: 35145379 PMCID: PMC8821883 DOI: 10.3389/fncel.2021.814287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Diffuse and structured extracellular matrix (ECM) comprise ∼20% of the brain’s volume and play important roles in development and adult plasticity. Perineuronal nets (PNNs), specialized ECM structures that surround certain types of neurons in the brain, emerge during the postnatal period, making their development and maintenance potentially sensitive to experience. Recent studies have shown that stress affects diffuse ECM as well as PNNs, and that such effects are dependent on life stage and brain region. Given that the ECM participates in synaptic plasticity, the generation of neuronal oscillations, and synchronous firing across brain regions, all of which have been linked to cognition and emotional regulation, ECM components may be candidate therapeutic targets for stress-induced neuropsychiatric disease. This review considers the influence of stress over diffuse and structured ECM during postnatal life with a focus on functional outcomes and the potential for translational relevance.
Collapse
|
12
|
Abstract
In order to survive and thrive, organisms must adapt to constantly changing environmental pressures. When there are significant shifts in the environment, the brain and body engage a set of physiological and behavioral countermeasures collectively known as the "stress response". These responses, which include changes at the cellular, systems, and organismal level, are geared toward protecting homeostasis and adapting physiological operating parameters so as to enable the organism to overcome short-term challenges. It is the shift of these well-organized acute responses to dysregulated chronic responses that leads to pathologies. In a sense, the protective measures become destructive, causing the myriad health problems that are associated with chronic stress. To further complicate the situation, these challenges need not be purely physical in nature. Indeed, psychosocial stressors such as ruminating about challenges at work, resource insecurity, and unstable social environments can engage the very same emergency threat systems and eventually lead to the same types of pathologies that sometimes are described as "burnout" in humans. This short review focuses on very recent empirical work exploring the effects of chronic stress on key brain circuits, metabolism and metabolic function, and immune function.
Collapse
Affiliation(s)
- Brandon L Roberts
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ilia N Karatsoreos
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
13
|
Tomar A, McHugh TJ. The impact of stress on the hippocampal spatial code. Trends Neurosci 2021; 45:120-132. [PMID: 34916083 DOI: 10.1016/j.tins.2021.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Hippocampal function is severely compromised by prolonged, uncontrollable stress. However, how stress alters neural representations of our surroundings and events that occur within them remains less clear. We review hippocampal place cell studies that examine how spatial coding is affected by acute and chronic stress, as well as by stress accompanying fear conditioning. Emerging data suggest that chronic stress disrupts the acuity and specificity of CA1 spatial coding, both in familiar and novel contexts, and alters hippocampal oscillations. By contrast, acute stress may have a facilitatory impact on spatial representations. These findings encourage a fresh look at the documented stress-induced changes in hippocampal anatomy and in vitro excitability, and offer a new perspective on the links between stress and memory.
Collapse
Affiliation(s)
- Anupratap Tomar
- Center for Synaptic Plasticity, School of Physiology, Pharmacology, and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, Japan.
| |
Collapse
|
14
|
Chakraborty P, Chattarji S, Jeanneteau F. A salience hypothesis of stress in PTSD. Eur J Neurosci 2021; 54:8029-8051. [PMID: 34766390 DOI: 10.1111/ejn.15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/13/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022]
Abstract
Attention to key features of contexts and things is a necessary tool for all organisms. Detecting these salient features of cues, or simply, salience, can also be affected by exposure to traumatic stress, as has been widely reported in individuals suffering from post-traumatic stress disorder (PTSD). Interestingly, similar observations have been robustly replicated across many animal models of stress as well. By using evidence from such rodent stress paradigms, in the present review, we explore PTSD through the lens of salience processing. In this context, we propose that interaction between the neurotrophin brain-derived neurotrophic factor (BDNF) and glucocorticoids determines the long lasting cellular and behavioural consequences of stress salience. We also describe the dual effect of glucocorticoid therapy in the amelioration of PTSD symptoms. Finally, by integrating in vivo observations at multiple scales of plasticity, we propose a unifying hypothesis that pivots on a crucial role of glucocorticoid signalling in dynamically orchestrating stress salience.
Collapse
Affiliation(s)
- Prabahan Chakraborty
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France.,Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India
| | - Sumantra Chattarji
- Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Freddy Jeanneteau
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France
| |
Collapse
|
15
|
Tomar A, Polygalov D, McHugh TJ. Differential Impact of Acute and Chronic Stress on CA1 Spatial Coding and Gamma Oscillations. Front Behav Neurosci 2021; 15:710725. [PMID: 34354574 PMCID: PMC8329706 DOI: 10.3389/fnbeh.2021.710725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic and acute stress differentially affect behavior as well as the structural integrity of the hippocampus, a key brain region involved in cognition and memory. However, it remains unclear if and how the facilitatory effects of acute stress on hippocampal information coding are disrupted as the stress becomes chronic. To examine this, we compared the impact of acute and chronic stress on neural activity in the CA1 subregion of male mice subjected to a chronic immobilization stress (CIS) paradigm. We observed that following first exposure to stress (acute stress), the spatial information encoded in the hippocampus sharpened, and the neurons became increasingly tuned to the underlying theta oscillations in the local field potential (LFP). However, following repeated exposure to the same stress (chronic stress), spatial tuning was poorer and the power of both the slow-gamma (30–50 Hz) and fast-gamma (55–90 Hz) oscillations, which correlate with excitatory inputs into the region, decreased. These results support the idea that acute and chronic stress differentially affect neural computations carried out by hippocampal circuits and suggest that acute stress may improve cognitive processing.
Collapse
Affiliation(s)
- Anupratap Tomar
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Denis Polygalov
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|