1
|
Oh SW, Kim EH, Lee SY, Baek DY, Lee SG, Kang HJ, Chung YS, Park SK, Ryu TH. Compositional equivalence assessment of insect-resistant genetically modified rice using multiple statistical analyses. GM CROPS & FOOD 2021; 12:303-314. [PMID: 33648419 PMCID: PMC7928020 DOI: 10.1080/21645698.2021.1893624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/30/2022]
Abstract
The safety of transgenic Bt rice containing bacteria-derived mCry1Ac gene from Bacillus thuringiensis (Bt) was assessed by conducting field trials at two locations for two consecutive years in South Korea, using the near-isogenic line comparator rice cultivar ('Ilmi', non-Bt rice) and four commercial cultivars as references. Compositional analyses included measurement of proximates, minerals, amino acids, fatty acids, vitamins, and antinutrients. Significant differences between Bt rice and non-Bt rice were detected; however, all differences were within the reference range. The statistical analyses, including analysis of % variability, analysis of similarities (ANOISM), similarity percentage (SIMPER) analysis, and permutational multivariate analysis of variance (PERMANOVA) were performed to study factors contributing to compositional variability. The multivariate analyses revealed that environmental factors more influenced rice components' variability than by genetic factors. This approach was shown to be a powerful method to provide meaningful evaluations between Bt rice and its comparators. In this study, Bt rice was proved to be compositionally equivalent to conventional rice varieties through multiple statistical methods.
Collapse
Affiliation(s)
- Seon-Woo Oh
- R&D Coordination Division, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Eun-Ha Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - So-Young Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Da-Young Baek
- National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Sang-Gu Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Hyeon-Jung Kang
- National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Young-Soo Chung
- Department of Molecular Genetic Engineering, Dong-A University, Busan, Republic of Korea
| | - Soon-Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Tae-Hun Ryu
- National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| |
Collapse
|
2
|
Tang W, Hazebroek J, Zhong C, Harp T, Vlahakis C, Baumhover B, Asiago V. Effect of Genetics, Environment, and Phenotype on the Metabolome of Maize Hybrids Using GC/MS and LC/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5215-5225. [PMID: 28574696 DOI: 10.1021/acs.jafc.7b00456] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We evaluated the variability of metabolites in various maize hybrids due to the effect of environment, genotype, phenotype as well as the interaction of the first two factors. We analyzed 480 forage and the same number of grain samples from 21 genetically diverse non-GM Pioneer brand maize hybrids, including some with drought tolerance and viral resistance phenotypes, grown at eight North American locations. As complementary platforms, both GC/MS and LC/MS were utilized to detect a wide diversity of metabolites. GC/MS revealed 166 and 137 metabolites in forage and grain samples, respectively, while LC/MS captured 1341 and 635 metabolites in forage and grain samples, respectively. Univariate and multivariate analyses were utilized to investigate the response of the maize metabolome to the environment, genotype, phenotype, and their interaction. Based on combined percentages from GC/MS and LC/MS datasets, the environment affected 36% to 84% of forage metabolites, while less than 7% were affected by genotype. The environment affected 12% to 90% of grain metabolites, whereas less than 27% were affected by genotype. Less than 10% and 11% of the metabolites were affected by phenotype in forage and grain, respectively. Unsupervised PCA and HCA analyses revealed similar trends, i.e., environmental effect was much stronger than genotype or phenotype effects. On the basis of comparisons of disease tolerant and disease susceptible hybrids, neither forage nor grain samples originating from different locations showed obvious phenotype effects. Our findings demonstrate that the combination of GC/MS and LC/MS based metabolite profiling followed by broad statistical analysis is an effective approach to identify the relative impact of environmental, genetic and phenotypic effects on the forage and grain composition of maize hybrids.
Collapse
Affiliation(s)
- Weijuan Tang
- Corporate Center for Analytical Sciences, DuPont Experimental Station , 200 Powder Mill Road, Wilmington, Delaware 19803, United States
| | - Jan Hazebroek
- Analytical & Genomics Technologies, DuPont Pioneer , 8325 NW 62nd Avenue, Johnston, Iowa 50131-7062, United States
| | - Cathy Zhong
- Global Regulatory Science, DuPont Experimental Station , 200 Powder Mill Road, Wilmington, Delaware 19803-0400, United States
| | - Teresa Harp
- Analytical & Genomics Technologies, DuPont Pioneer , 8325 NW 62nd Avenue, Johnston, Iowa 50131-7062, United States
| | - Chris Vlahakis
- Analytical & Genomics Technologies, DuPont Pioneer , 8325 NW 62nd Avenue, Johnston, Iowa 50131-7062, United States
| | - Brian Baumhover
- Global Regulatory Science, DuPont Pioneer , 8325 NW 62nd Avenue, Johnston, Iowa 50131-7060, United States
| | - Vincent Asiago
- Analytical & Genomics Technologies, DuPont Pioneer , 8325 NW 62nd Avenue, Johnston, Iowa 50131-7062, United States
| |
Collapse
|
3
|
Molecular responses of genetically modified maize to abiotic stresses as determined through proteomic and metabolomic analyses. PLoS One 2017; 12:e0173069. [PMID: 28245233 PMCID: PMC5330488 DOI: 10.1371/journal.pone.0173069] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/14/2017] [Indexed: 01/08/2023] Open
Abstract
Some genetically modified (GM) plants have transgenes that confer tolerance to abiotic stressors. Meanwhile, other transgenes may interact with abiotic stressors, causing pleiotropic effects that will affect the plant physiology. Thus, physiological alteration might have an impact on the product safety. However, routine risk assessment (RA) analyses do not evaluate the response of GM plants exposed to different environmental conditions. Therefore, we here present a proteome profile of herbicide-tolerant maize, including the levels of phytohormones and related compounds, compared to its near-isogenic non-GM variety under drought and herbicide stresses. Twenty differentially abundant proteins were detected between GM and non-GM hybrids under different water deficiency conditions and herbicide sprays. Pathway enrichment analysis showed that most of these proteins are assigned to energetic/carbohydrate metabolic processes. Among phytohormones and related compounds, different levels of ABA, CA, JA, MeJA and SA were detected in the maize varieties and stress conditions analysed. In pathway and proteome analyses, environment was found to be the major source of variation followed by the genetic transformation factor. Nonetheless, differences were detected in the levels of JA, MeJA and CA and in the abundance of 11 proteins when comparing the GM plant and its non-GM near-isogenic variety under the same environmental conditions. Thus, these findings do support molecular studies in GM plants Risk Assessment analyses.
Collapse
|
4
|
Valentim-Neto PA, Rossi GB, Anacleto KB, de Mello CS, Balsamo GM, Arisi ACM. Leaf proteome comparison of two GM common bean varieties and their non-GM counterparts by principal component analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:927-932. [PMID: 25760408 DOI: 10.1002/jsfa.7166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/02/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND A genetically modified (GM) common bean event, namely Embrapa 5.1, was approved for commercialization in Brazil. The present work aimed to use principal component analysis (PCA) to compare the proteomic profile of this GM common bean and its non-GM counterpart. RESULTS Seedlings from four Brazilian common bean varieties were grown under controlled environmental conditions. Leaf proteomic profiles were analyzed by two-dimensional gel electrophoresis (2DE). First, a comparison among 12 gels from four common bean varieties was performed by PCA using volume percentage of 198 matched spots, presented in all gels. The first two principal components (PC) accounted for 46.8% of total variation. Two groups were clearly separated by the first component: Pérola and GM Pérola from Pontal and GM Pontal. Secondly, another comparison among six gels from the same variety GM and its non-GM counterpart was performed by PCA; in this case it was possible to distinguish GM and non-GM. CONCLUSION Separation between leaf proteomic profile of GM common bean variety and its counterpart was observed only when they were compared in pairs. These results showed higher similarity between GM variety and its counterpart than between two common bean varieties. PCA is a useful tool to compare proteomes of GM and non-GM plant varieties.
Collapse
Affiliation(s)
- Pedro A Valentim-Neto
- Food Science and Technology Department, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil
| | - Gabriela B Rossi
- Food Science and Technology Department, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil
| | - Kelly B Anacleto
- Food Science and Technology Department, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil
| | - Carla S de Mello
- Food Science and Technology Department, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil
| | - Geisi M Balsamo
- Food Science and Technology Department, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil
| | - Ana Carolina M Arisi
- Food Science and Technology Department, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil
| |
Collapse
|
5
|
Fluorescence-based bioassays for the detection and evaluation of food materials. SENSORS 2015; 15:25831-67. [PMID: 26473869 PMCID: PMC4634490 DOI: 10.3390/s151025831] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022]
Abstract
We summarize here the recent progress in fluorescence-based bioassays for the detection and evaluation of food materials by focusing on fluorescent dyes used in bioassays and applications of these assays for food safety, quality and efficacy. Fluorescent dyes have been used in various bioassays, such as biosensing, cell assay, energy transfer-based assay, probing, protein/immunological assay and microarray/biochip assay. Among the arrays used in microarray/biochip assay, fluorescence-based microarrays/biochips, such as antibody/protein microarrays, bead/suspension arrays, capillary/sensor arrays, DNA microarrays/polymerase chain reaction (PCR)-based arrays, glycan/lectin arrays, immunoassay/enzyme-linked immunosorbent assay (ELISA)-based arrays, microfluidic chips and tissue arrays, have been developed and used for the assessment of allergy/poisoning/toxicity, contamination and efficacy/mechanism, and quality control/safety. DNA microarray assays have been used widely for food safety and quality as well as searches for active components. DNA microarray-based gene expression profiling may be useful for such purposes due to its advantages in the evaluation of pathway-based intracellular signaling in response to food materials.
Collapse
|
6
|
Ladics GS, Bartholomaeus A, Bregitzer P, Doerrer NG, Gray A, Holzhauser T, Jordan M, Keese P, Kok E, Macdonald P, Parrott W, Privalle L, Raybould A, Rhee SY, Rice E, Romeis J, Vaughn J, Wal JM, Glenn K. Genetic basis and detection of unintended effects in genetically modified crop plants. Transgenic Res 2015; 24:587-603. [PMID: 25716164 PMCID: PMC4504983 DOI: 10.1007/s11248-015-9867-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/14/2015] [Indexed: 11/26/2022]
Abstract
In January 2014, an international meeting sponsored by the International Life Sciences Institute/Health and Environmental Sciences Institute and the Canadian Food Inspection Agency titled “Genetic Basis of Unintended Effects in Modified Plants” was held in Ottawa, Canada, bringing together over 75 scientists from academia, government, and the agro-biotech industry. The objectives of the meeting were to explore current knowledge and identify areas requiring further study on unintended effects in plants and to discuss how this information can inform and improve genetically modified (GM) crop risk assessments. The meeting featured presentations on the molecular basis of plant genome variability in general, unintended changes at the molecular and phenotypic levels, and the development and use of hypothesis-driven evaluations of unintended effects in assessing conventional and GM crops. The development and role of emerging “omics” technologies in the assessment of unintended effects was also discussed. Several themes recurred in a number of talks; for example, a common observation was that no system for genetic modification, including conventional methods of plant breeding, is without unintended effects. Another common observation was that “unintended” does not necessarily mean “harmful”. This paper summarizes key points from the information presented at the meeting to provide readers with current viewpoints on these topics.
Collapse
Affiliation(s)
- Gregory S. Ladics
- DuPont Pioneer Agricultural Biotechnology, DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE 19803 USA
| | - Andrew Bartholomaeus
- Therapeutics Research Centre, School of Medicine, Queensland University, Brisbane, QLD 4072 Australia
- Faculty of Health, School of Pharmacy, University of Canberra, Locked Bag 1, Canberra, ACT 2601 Australia
| | - Phil Bregitzer
- National Small Grains Germplasm Research Facility, US Department of Agriculture – Agricultural Research Service, 1691 S. 2700 W., Aberdeen, ID 83210 USA
| | - Nancy G. Doerrer
- ILSI Health and Environmental Sciences Institute, 1156 15th St., NW, Suite 200, Washington, DC 20005 USA
| | - Alan Gray
- Centre for Ecology and Hydrology, CEH Wallingford, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB UK
| | - Thomas Holzhauser
- Division of Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | - Mark Jordan
- Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5 Canada
| | - Paul Keese
- Office of the Gene Technology Regulator, Australian Government, MDP54, GPO Box 9848, Canberra, ACT 2601 Australia
| | - Esther Kok
- RIKILT Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Phil Macdonald
- Canadian Food Inspection Agency, 1400 Merivale Rd, Ottawa, ON K1A 0Y9 Canada
| | - Wayne Parrott
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA 30602 USA
| | - Laura Privalle
- Bayer CropScience, 407 Davis Drive, Morrisville, NC 27560 USA
| | - Alan Raybould
- Syngenta Ltd, Jealott’s Hill International Research Centre, Bracknell, RG42 6EY UK
- Present Address: Syngenta Crop Protection AG, Schwarzwaldallee 215, 4058 Basel, Switzerland
| | - Seung Yon Rhee
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama St., Stanford, CA 94305 USA
| | - Elena Rice
- Monsanto Company, 700 Chesterfield Pkwy W., CC5A, Chesterfield, MO 63017 USA
| | - Jörg Romeis
- Agroscope, Institute for Sustainability Sciences ISS, Reckenholzstr. 191, 8046 Zurich, Switzerland
| | - Justin Vaughn
- University of Georgia, 111 Riverbend Road, Athens, GA 30602 USA
| | - Jean-Michel Wal
- Dept. SVS, AgroParisTech, 16 rue Claude Bernard, 75231 Paris, France
| | - Kevin Glenn
- Monsanto Company, 800 N. Lindbergh Blvd, U4NA, St. Louis, MO 63167 USA
| |
Collapse
|
7
|
Barański M, Średnicka-Tober D, Volakakis N, Seal C, Sanderson R, Stewart GB, Benbrook C, Biavati B, Markellou E, Giotis C, Gromadzka-Ostrowska J, Rembiałkowska E, Skwarło-Sońta K, Tahvonen R, Janovská D, Niggli U, Nicot P, Leifert C. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br J Nutr 2014; 112:794-811. [PMID: 24968103 PMCID: PMC4141693 DOI: 10.1017/s0007114514001366] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 11/05/2022]
Abstract
Demand for organic foods is partially driven by consumers' perceptions that they are more nutritious. However, scientific opinion is divided on whether there are significant nutritional differences between organic and non-organic foods, and two recent reviews have concluded that there are no differences. In the present study, we carried out meta-analyses based on 343 peer-reviewed publications that indicate statistically significant and meaningful differences in composition between organic and non-organic crops/crop-based foods. Most importantly, the concentrations of a range of antioxidants such as polyphenolics were found to be substantially higher in organic crops/crop-based foods, with those of phenolic acids, flavanones, stilbenes, flavones, flavonols and anthocyanins being an estimated 19 (95 % CI 5, 33) %, 69 (95 % CI 13, 125) %, 28 (95 % CI 12, 44) %, 26 (95 % CI 3, 48) %, 50 (95 % CI 28, 72) % and 51 (95 % CI 17, 86) % higher, respectively. Many of these compounds have previously been linked to a reduced risk of chronic diseases, including CVD and neurodegenerative diseases and certain cancers, in dietary intervention and epidemiological studies. Additionally, the frequency of occurrence of pesticide residues was found to be four times higher in conventional crops, which also contained significantly higher concentrations of the toxic metal Cd. Significant differences were also detected for some other (e.g. minerals and vitamins) compounds. There is evidence that higher antioxidant concentrations and lower Cd concentrations are linked to specific agronomic practices (e.g. non-use of mineral N and P fertilisers, respectively) prescribed in organic farming systems. In conclusion, organic crops, on average, have higher concentrations of antioxidants, lower concentrations of Cd and a lower incidence of pesticide residues than the non-organic comparators across regions and production seasons.
Collapse
Affiliation(s)
- Marcin Barański
- School of Agriculture, Food and Rural Development, Newcastle
University, Nafferton Farm, Stocksfield,
Northumberland, NE43 7XD, UK
| | - Dominika Średnicka-Tober
- School of Agriculture, Food and Rural Development, Newcastle
University, Nafferton Farm, Stocksfield,
Northumberland, NE43 7XD, UK
| | - Nikolaos Volakakis
- School of Agriculture, Food and Rural Development, Newcastle
University, Nafferton Farm, Stocksfield,
Northumberland, NE43 7XD, UK
| | - Chris Seal
- Human Nutrition Research Centre, School of Agriculture, Food and Rural Development,
Newcastle University, Agriculture Building, Kings Road,
Newcastle upon TyneNE1 7RU, UK
| | - Roy Sanderson
- School of Biology, Newcastle University, Ridley
Building, Newcastle upon TyneNE1 7RU, UK
| | - Gavin B. Stewart
- School of Agriculture, Food and Rural Development, Newcastle
University, Nafferton Farm, Stocksfield,
Northumberland, NE43 7XD, UK
| | - Charles Benbrook
- Center for Sustaining Agriculture and Natural Resources, Washington State
University, Pullman, WA,
USA
| | - Bruno Biavati
- Department of Agricultural Sciences, School of Agriculture
and Veterinary Medicine, University of Bologna, Viale Fanin
42, 40127Bologna, Italy
| | - Emilia Markellou
- Department of Pesticide Control and Phytopharmacy, Benaki
Phytopathological Institute, GR 14561 Kifissia,
Athens, Greece
| | - Charilaos Giotis
- Department of Organic Farming and Food Technology,
Technological Educational Institute of Ionian Islands,
Iosif Momferatou & Ilia Miniati PC28100, Argostoli, Cephalonia,
Greece
| | - Joanna Gromadzka-Ostrowska
- Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life
Sciences, Nowoursynowska 159c, 02-776Warsaw, Poland
| | - Ewa Rembiałkowska
- Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life
Sciences, Nowoursynowska 159c, 02-776Warsaw, Poland
| | - Krystyna Skwarło-Sońta
- Department of Animal Physiology, Faculty of Biology,
University of Warsaw, Miecznikowa 1, 02-096Warsaw, Poland
| | - Raija Tahvonen
- Biotechnology and Food Research, MTT Agrifood Research Finland,
FI-31600Jokioinen, Finland
| | - Dagmar Janovská
- Department of Gene Bank, Crop Research Institute
(CRI), Drnovská 507/73, 161 06 Praha 6 –Ruzyně, Czech Republic
| | - Urs Niggli
- Research Institute of Organic Agriculture (FiBL),
Ackerstrasse 113, CH-5070Frick, Switzerland
| | - Philippe Nicot
- INRA, UR407 Pathologie végétale, 67 allée des
chênes, F-84143Montfavet Cedex, France
| | - Carlo Leifert
- School of Agriculture, Food and Rural Development, Newcastle
University, Nafferton Farm, Stocksfield,
Northumberland, NE43 7XD, UK
| |
Collapse
|
8
|
La Paz JL, Pla M, Centeno E, Vicient CM, Puigdomènech P. The use of massive sequencing to detect differences between immature embryos of MON810 and a comparable non-GM maize variety. PLoS One 2014; 9:e100895. [PMID: 24967839 PMCID: PMC4072715 DOI: 10.1371/journal.pone.0100895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 06/01/2014] [Indexed: 02/05/2023] Open
Abstract
The insect resistant maize YieldGard MON810 was studied to assess the extent to which introduction of a transgene may putatively alter the expression of endogenous genes by comparison of various GM lines vs. their non-transgenic counterparts. To assess the extent to which introduction of a transgene may putatively alter the expression of endogenous genes, GM lines of the insect resistant maize YieldGard MON810 were compared with non-transgenic counterparts. For a more in-depth study, high-throughput deep sequencing together with microarrays were used to compare the transcriptomes of immature embryos of the MON810 variety DKC6575, with a cryIA(b) transgene, and its near-isogenic variety Tietar, grown under controlled environmental conditions. This technique also allows characterisation of the transgenic mRNAs produced. 3'UTR-anchored mRNA-seq produced 1,802,571 sequences from DKC6575 and 1,170,973 from Tietar, which mapped to 14,712 and 14,854 unigenes, respectively. Up to 32 reads from the transgenic embryos matched to the synthetic cry1A(b) sequence, similar to medium-abundant mRNAs. Gene expression analysis, using the R-bioconductor packages EdgeR and DEseq, revealed 140 differentially expressed genes mainly involved in carbohydrate metabolism, protein metabolism and chromatin organisation. Comparison of the expression of 30 selected genes in two additional MON810 and near-isogenic variety pairs showed that most of them were differentially expressed in the three pairs of varieties analysed. Analysis of functional annotation and the precise moment of expression of the differentially expressed genes and physiological data obtained suggest a slight but significant delay in seed and plant maturation of MON810 plants. However, these transcriptomic changes were not associated to undesirable changes in the global phenotype or plant behaviour. Moreover, while most expression changes in MON810 immature embryos were maintained in other transgenic varieties, some gene expression was found to be modulated by the genetic background in which the transgene was introduced through conventional breeding programs.
Collapse
Affiliation(s)
- Jose Luis La Paz
- Department of Molecular Genetics, Center for Research in Agrigenomics, Consejo Superior de Investigaciones Científicas, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Maria Pla
- Department of Molecular Genetics, Center for Research in Agrigenomics, Consejo Superior de Investigaciones Científicas, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institute for Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi, EPS-I, Girona, Spain
| | - Emilio Centeno
- Department of Molecular Genetics, Center for Research in Agrigenomics, Consejo Superior de Investigaciones Científicas, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Carlos M. Vicient
- Department of Molecular Genetics, Center for Research in Agrigenomics, Consejo Superior de Investigaciones Científicas, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Pere Puigdomènech
- Department of Molecular Genetics, Center for Research in Agrigenomics, Consejo Superior de Investigaciones Científicas, CSIC-IRTA-UAB-UB, Barcelona, Spain
| |
Collapse
|
9
|
Kiyama R, Zhu Y. DNA microarray-based gene expression profiling of estrogenic chemicals. Cell Mol Life Sci 2014; 71:2065-82. [PMID: 24399289 PMCID: PMC11113397 DOI: 10.1007/s00018-013-1544-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/06/2013] [Accepted: 12/16/2013] [Indexed: 12/31/2022]
Abstract
We summarize updated information about DNA microarray-based gene expression profiling by focusing on its application to estrogenic chemicals. First, estrogenic chemicals, including natural/industrial estrogens and phytoestrogens, and the methods for detection and evaluation of estrogenic chemicals were overviewed along with a comprehensive list of estrogenic chemicals of natural or industrial origin. Second, gene expression profiling of chemicals using a focused microarray containing estrogen-responsive genes is summarized. Third, silent estrogens, a new type of estrogenic chemicals characterized by their estrogenic gene expression profiles without growth stimulative or inhibitory effects, have been identified so far exclusively by DNA microarray assay. Lastly, the prospect of a microarray assay is discussed, including issues such as commercialization, future directions of applications and quality control methods.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Signaling Molecules Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan,
| | | |
Collapse
|
10
|
Zeng W, Hazebroek J, Beatty M, Hayes K, Ponte C, Maxwell C, Zhong CX. Analytical method evaluation and discovery of variation within maize varieties in the context of food safety: transcript profiling and metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2997-3009. [PMID: 24564827 DOI: 10.1021/jf405652j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Profiling techniques such as microarrays, proteomics, and metabolomics are used widely to assess the overall effects of genetic background, environmental stimuli, growth stage, or transgene expression in plants. To assess the potential regulatory use of these techniques in agricultural biotechnology, we carried out microarray and metabolomic studies of 3 different tissues from 11 conventional maize varieties. We measured technical variations for both microarrays and metabolomics, compared results from individual plants and corresponding pooled samples, and documented variations detected among different varieties with individual plants or pooled samples. Both microarray and metabolomic technologies are reproducible and can be used to detect plant-to-plant and variety-to-variety differences. A pooling strategy lowered sample variations for both microarray and metabolomics while capturing variety-to-variety variation. However, unknown genomic sequences differing between maize varieties might hinder the application of microarrays. High-throughput metabolomics could be useful as a tool for the characterization of transgenic crops. However, researchers will have to take into consideration the impact on the detection and quantitation of a wide range of metabolites on experimental design as well as validation and interpretation of results.
Collapse
Affiliation(s)
- Weiqing Zeng
- DuPont Pioneer, Regulatory Sciences, Wilmington, Delaware 19880, United States
| | | | | | | | | | | | | |
Collapse
|
11
|
Agapito-Tenfen SZ, Guerra MP, Wikmark OG, Nodari RO. Comparative proteomic analysis of genetically modified maize grown under different agroecosystems conditions in Brazil. Proteome Sci 2013; 11:46. [PMID: 24304660 PMCID: PMC4176129 DOI: 10.1186/1477-5956-11-46] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Profiling technologies allow the simultaneous measurement and comparison of thousands of cell components without prior knowledge of their identity. In the present study, we used two-dimensional gel electrophoresis combined with mass spectrometry to evaluate protein expression of Brazilian genetically modified maize hybrid grown under different agroecosystems conditions. To this effect, leaf samples were subjected to comparative analysis using the near-isogenic non-GM hybrid as the comparator. RESULTS In the first stage of the analysis, the main sources of variation in the dataset were identified by using Principal Components Analysis which correlated most of the variation to the different agroecosystems conditions. Comparative analysis within each field revealed a total of thirty two differentially expressed proteins between GM and non-GM samples that were identified and their molecular functions were mainly assigned to carbohydrate and energy metabolism, genetic information processing and stress response. CONCLUSIONS To the best of our knowledge this study represents the first evidence of protein identities with differentially expressed isoforms in Brazilian MON810 genetic background hybrid grown under field conditions. As global databases on outputs from "omics" analysis become available, these could provide a highly desirable benchmark for safety assessments.
Collapse
Affiliation(s)
- Sarah Zanon Agapito-Tenfen
- CropScience Department, Federal University of Santa Catarina, Road Admar Gonzaga 1346, Florianópolis 88034-000 Brazil
- Genøk, Center for Biosafety, The Science Park, P.O. Box 6418 Tromsø 9294, Norway
| | - Miguel Pedro Guerra
- CropScience Department, Federal University of Santa Catarina, Road Admar Gonzaga 1346, Florianópolis 88034-000 Brazil
| | - Odd-Gunnar Wikmark
- Genøk, Center for Biosafety, The Science Park, P.O. Box 6418 Tromsø 9294, Norway
| | - Rubens Onofre Nodari
- CropScience Department, Federal University of Santa Catarina, Road Admar Gonzaga 1346, Florianópolis 88034-000 Brazil
| |
Collapse
|
12
|
Valdés A, Simó C, Ibáñez C, García-Cañas V. Foodomics strategies for the analysis of transgenic foods. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.05.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Lei B, Zhao XH, Zhang K, Zhang J, Ren W, Ren Z, Chen Y, Zhao HN, Pan WJ, Chen W, Li HX, Deng WY, Ding FZ, Lu K. Comparative transcriptome analysis of tobacco (Nicotiana tabacum) leaves to identify aroma compound-related genes expressed in different cultivated regions. Mol Biol Rep 2013; 40:345-57. [PMID: 23079704 DOI: 10.1007/s11033-012-2067-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 10/03/2012] [Indexed: 12/13/2022]
Abstract
To identify genes that are differentially expressed in tobacco in response to environmental changes and to decipher the mechanisms by which aromatic carotenoids are formed in tobacco, an Agilent Tobacco Gene Expression microarray was adapted for transcriptome comparison of tobacco leaves derived from three cultivated regions of China, Kaiyang (KY), Weining (WN) and Tianzhu (TZ). A total of 1,005 genes were differentially expressed between leaves derived from KY and TZ, 733 between KY and WN, and 517 between TZ and WN. Genes that were upregulated in leaves from WN and TZ tended to be involved in secondary metabolism pathways, and included several carotenoid pathway genes, e.g., NtPYS, NtPDS, and NtLCYE, whereas those that were down-regulated tended to be involved in the response to temperature and light. The expression of 10 differentially expressed genes (DEGs) was evaluated by real-time quantitative polymerase chain reaction (qRT-PCR) and found to be consistent with the microarray data. Gene Ontology and MapMan analyses indicate that the genes that were differentially expressed among the three cultivated regions were associated with the light reaction of photosystem II, response to stimuli, and secondary metabolism. High-performance liquid chromatography (HPLC) analysis showed that leaves derived from KY had the lowest levels of lutein, β-carotene, and neoxanthin, whereas the total carotenoid content in leaves from TZ was greatest, a finding that could well be explained by the expression patterns of DEGs in the carotenoid pathway. These results may help elucidate the molecular mechanisms underlying environmental adaptation and accumulation of aroma compounds in tobacco.
Collapse
Affiliation(s)
- Bo Lei
- Guizhou Tobacco Research Institute, North Yuntan Road, Jinyang New District, Guiyang 550081, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Balsamo GM, Cangahuala-Inocente GC, Bertoldo JB, Terenzi H, Arisi ACM. Proteomic analysis of four Brazilian MON810 maize varieties and their four non-genetically-modified isogenic varieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11553-9. [PMID: 21958074 DOI: 10.1021/jf202635r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Profiling techniques have been suggested as a nontargeted approach to detect unintended effects in genetically modified (GM) plants. Seedlings from eight Brazilian maize varieties, four MON810 GM varieties and four non-GM isogenic varieties, were grown under controlled environmental conditions. Physiological parameters (aerial part weight, main leaf length, and chlorophyll and total protein contents) were compared, and some differences were observed. Nevertheless, these differences were not constant among all GM and non-GM counterparts. Leaf proteomic profiles were analyzed using two-dimensional gel electrophoresis (2DE) coupled to mass spectrometry, using six 2DE gels per variety. The comparison between MON810 and its counterpart was limited to qualitative differences of fully reproducible protein spot patterns. Twelve exclusive proteins were observed in two of four maize variety pairs; all of these leaf proteins were variety specific. In this study, MON810 leaf proteomes of four varieties were similar to non-GM counterpart leaf proteomes.
Collapse
Affiliation(s)
- Geisi M Balsamo
- Departamento de Ciência e Tecnologia de Alimentos, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga 1346, 88034-001 Florianópolis-SC, Brazil
| | | | | | | | | |
Collapse
|