1
|
Özel HF, Özbek M, Özden MT, Vatansever HS. Cardioprotective effects of H3 receptor activation could be double-sided: insights from isoproterenol-induced cardiac injury. Pflugers Arch 2025; 477:291-301. [PMID: 39480549 DOI: 10.1007/s00424-024-03039-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/25/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Histamine H3 receptors (H3Rs) are known to modulate neurotransmitter release in the nervous system, but their role in cardiac injury remains unclear. The present study aimed to investigate the cardioprotective role of H3Rs in a mouse model of myocardial injury. Forty BALB/c male mice were divided into four groups: Control (SF), Isoproterenol (ISO), Imetit (IMT), and IMT + ISO. The IMT and IMT + ISO groups were pretreated orally with 10 mg/kg imetit-dihydrobromide(imetit) for 7 days. In the last 2 days, the ISO and IMT + ISO groups received a subcutaneous injection of 85 mg/kg isoproterenol to induce myocardial ischemia. Electrocardiogram (ECG) recordings were obtained, and heart tissues were analyzed histopathologically. The results demonstrated that the administration of imetit resulted in the prolongation of the PR interval in the IMT group. QRS and QT intervals were prolonged in the ISO group. The J-wave area in the ISO group was significantly larger than in the other groups. Histopathological analyses revealed the presence of small vacuoles, inflammatory cell infiltration, and collagen aggregates in cardiomyocytes in the ISO group. No significant cellular changes were observed in the IMT group, in contrast. The IMT + ISO group exhibited fewer ischemic findings than the ISO group. Immunohistochemical analyses revealed positive H3R immunoreactivity in all groups. Imetit pretreatment increased the immunoreactivity of H3Rs in both the IMT and IMT + ISO groups. The findings of this study suggest that H3Rs may be present on the postsynaptic side in cardiac myocytes, in addition to adrenergic presynaptic nerve endings. Furthermore, imetit has been found to significantly reduce the effects of myocardial ischemia by activating H3Rs. The better characterization of the postsynaptic role of H3Rs offers potential for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- H Fehmi Özel
- Vocational School of Health Services, Manisa Celal Bayar University, Manisa, Turkey.
| | - Mustafa Özbek
- Department of Physiology, Manisa Celal Bayar University, Manisa, Turkey
| | | | - H Seda Vatansever
- Department of Histology - Embryology, Manisa Celal Bayar University, Manisa, Turkey
- DESAM Research Institute, Near East University, Mersin 10, Turkey
| |
Collapse
|
2
|
Yang J, He J, Yue T, Pei H, Xiong S, Tang Y, Hou J. The clinical prospects and challenges of photothermal nanomaterials in myocardium recovery after myocardial infarction. Front Bioeng Biotechnol 2024; 12:1491581. [PMID: 39539693 PMCID: PMC11558533 DOI: 10.3389/fbioe.2024.1491581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The high morbidity and mortality rates associated with myocardial infarction pose a serious threat to human health. Early diagnosis and appropriate treatment are crucial in saving the lives of patients. In recent years, nanomaterials-based technologies have played a significant role in developing new strategies for cardiac repair, particularly in the use of photothermal nanomaterials, which show great potential in treating myocardial infarction. This review aims to describe the characteristics of photothermal nanomaterials, their effects on cardiomyocyte proliferation and angiogenesis, and the mechanism of cardiac tissue repair. This review serves as a valuable reference for the application of photothermal nanomaterials in the treatment of myocardial infarction, with the ultimate goal of expediting the translation of these treatment strategies into clinical practice.
Collapse
Affiliation(s)
- Jiali Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- Department of Cardiology, Chengdu Cardiovascular Disease Research Institute, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Jian He
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- Department of Cardiology, Chengdu Cardiovascular Disease Research Institute, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- Department of Cardiology, Chengdu Cardiovascular Disease Research Institute, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Haifeng Pei
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Shiqiang Xiong
- Department of Cardiology, Chengdu Cardiovascular Disease Research Institute, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Yue Tang
- Department of Cardiology, Chengdu Cardiovascular Disease Research Institute, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Jun Hou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- Department of Cardiology, Chengdu Cardiovascular Disease Research Institute, The Third People’s Hospital of Chengdu, Chengdu, China
| |
Collapse
|
3
|
Karadeniz B, Beyazcicek O. Investigation of the cardioprotective effects of Momordica charantia in the isoproterenol-induced myocardial infarction model in rats. Biomed Pharmacother 2024; 178:117274. [PMID: 39116781 DOI: 10.1016/j.biopha.2024.117274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Cardiovascular diseases are the most prevalent and primary cause of death globally, and the most deadly and dangerous of these diseases is myocardial infarction (MI), commonly known as heart attack, which develops due to insufficient coronary artery flow and causes irreversible myocardial cell damage. This study aimed to investigate the cardioprotective effects of Momordica charantia (MC), known for its antioxidant and anti-inflammatory properties, in an experimental acute MI model induced by isoprenaline (ISO) in rats. METHODS In the study, forty-nine male Wistar rats were split up into 7 groups as control (CONT), Glycerin (GLCN), isoprenaline (ISO), 500 mg/kg MC (MC500), isoprenaline+100 mg/kg MC (ISO+MC100), isoprenaline+250 mg/kg MC (ISO+MC250), isoprenaline+500 mg/kg MC (ISO+MC500). Substances were administered to the groups for 30 days. Isoprenaline (85 mg/kg) was administered by subcutaneous injection on the last two days of the study (days of the 29 and 30). Electrocardiogram (ECG) recording and collecting blood samples of the animals were performed 24 hours after the last administration of the substances under the anesthesia. Serum IL-6, Nrf2, IL-10, HO-1, TNF-α, CK-MB, cTn-I and CRP levels were determined by the ELISA method. RESULTS Compared to the ISO group, levels of CK-MB, HO-1, TNF-α, CRP, IL-6 and cTn-I were found statistically lower in MC-administered groups (p<0.05). In addition, MC restored ISO-induced abnormal ECG changes to normal levels. CONCLUSION In conclusion, ECG findings, proinflammatory, anti-inflammatory, antioxidative and cardiac biomarkers suggest that MC may have cardioprotective properties.
Collapse
Affiliation(s)
- Burcin Karadeniz
- Duzce University, Faculty of Medicine, Department of Physiology, Duzce, Turkey
| | - Ozge Beyazcicek
- Duzce University, Faculty of Medicine, Department of Physiology, Duzce, Turkey.
| |
Collapse
|
4
|
Parikh M, Pierce GN. Considerations for choosing an optimal animal model of cardiovascular disease. Can J Physiol Pharmacol 2024; 102:75-85. [PMID: 37748198 DOI: 10.1139/cjpp-2023-0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The decision to use the optimal animal model to mimic the various types of cardiovascular disease is a critical one for a basic scientist. Clinical cardiovascular disease can be complex and presents itself as atherosclerosis, hypertension, ischemia/reperfusion injury, myocardial infarcts, and cardiomyopathies, amongst others. This may be further complicated by the simultaneous presence of two or more cardiovascular lesions (for example, atherosclerosis and hypertension) and co-morbidities (i.e., diabetes, infectious disease, obesity, etc). This variety and merging of disease states creates an unusually difficult situation for the researcher who needs to identify the optimal animal model that is available to best represent all of the characteristics of the clinical cardiovascular disease. The present manuscript reviews the characteristics of the various animal models of cardiovascular disease available today, their advantages and disadvantages, with the goal to allow the reader access to the most recent data available for optimal choices prior to the initiation of the study. The animal species that can be chosen, the methods of generating these models of cardiovascular disease, as well as the specific cardiovascular lesions involved in each of these models are reviewed. A particular focus on the JCR:LA-cp rat as a model of cardiovascular disease is discussed.
Collapse
Affiliation(s)
- Mihir Parikh
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB, Canada
| | - Grant N Pierce
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Chen HS, van Roon L, Schoones J, Zeppenfeld K, DeRuiter MC, Jongbloed MRM. Cardiac sympathetic hyperinnervation after myocardial infarction: a systematic review and qualitative analysis. Ann Med 2023; 55:2283195. [PMID: 38065671 PMCID: PMC10836288 DOI: 10.1080/07853890.2023.2283195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cardiac sympathetic hyperinnervation after myocardial infarction (MI) is associated with arrhythmogenesis and sudden cardiac death. The characteristics of cardiac sympathetic hyperinnervation remain underexposed. OBJECTIVE To provide a systematic review on cardiac sympathetic hyperinnervation after MI, taking into account: (1) definition, experimental model and quantification method and (2) location, amount and timing, in order to obtain an overview of current knowledge and to expose gaps in literature. METHODS References on cardiac sympathetic hyperinnervation were screened for inclusion. The included studies received a full-text review and quality appraisal. Relevant data on hyperinnervation were collected and qualitatively analysed. RESULTS Our literature search identified 60 eligible studies performed between 2000 and 2022. Cardiac hyperinnervation is generally defined as an increased sympathetic nerve density or increased number of nerves compared to another control group (100%). Studies were performed in a multitude of experimental models, but most commonly in male rats with permanent left anterior descending (LAD) artery ligation (male: 63%, rat: 68%, permanent ligation: 93%, LAD: 97%). Hyperinnervation seems to occur mainly in the borderzone. Quantification after MI was performed in regions of interest in µm2/mm2 (41%) or in percentage of nerve fibres (46%) and the reported amount showed a great variation ranging from 439 to 126,718 µm2/mm2. Hyperinnervation seems to start from three days onwards to >3 months without an evident peak, although studies on structural evaluation over time and in the chronic phase were scarce. CONCLUSIONS Cardiac sympathetic hyperinnervation after MI occurs mainly in the borderzone from three days onwards and remains present at later timepoints, for at least 3 months. It is most commonly studied in male rats with permanent LAD ligation. The amount of hyperinnervation differs greatly between studies, possibly due to differential quantification methods. Further studies are required that evaluate cardiac sympathetic hyperinnervation over time and in the chronic phase, in transmural sections, in the female sex, and in MI with reperfusion.
Collapse
Affiliation(s)
- H. Sophia Chen
- Department of Cardiology, Center of Congenital Heart Disease Amsterdam Leiden (CAHAL), Leiden University Medical Center, Leiden, The Netherlands
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lieke van Roon
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Schoones
- Dictorate of Research Policy, Leiden University Medical Center, Leiden, The Netherlands
| | - Katja Zeppenfeld
- Department of Cardiology, Center of Congenital Heart Disease Amsterdam Leiden (CAHAL), Leiden University Medical Center, Leiden, The Netherlands
| | - Marco C. DeRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique R. M. Jongbloed
- Department of Cardiology, Center of Congenital Heart Disease Amsterdam Leiden (CAHAL), Leiden University Medical Center, Leiden, The Netherlands
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Zhao X, Li D, Song Y, Xu J, Xiang FL. Drug Discovery for Adult Cardiomyocyte Regeneration: Opportunities and Challenges. Antioxid Redox Signal 2023; 39:1070-1087. [PMID: 37166381 DOI: 10.1089/ars.2023.0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Significance: Cardiovascular disease is a major contributor to human mortality and morbidity. The cardiac tissue undergoes fibrotic healing after injury because of the limited regenerative capacity of adult mammalian cardiomyocyte (CM). Extensive research has been performed to identify therapeutic targets for CM regeneration, as the success of promoting adult human CM regeneration to repair the injured heart is considered the Holy Grail in the field. Recent Advances: To date, more than 30 target genes have been shown to regulate adult mammalian CM proliferation. More than 20 targets have been validated in adult mouse myocardial infarction (MI) model in a therapeutic setting. In this review, the translational efficacy readouts from 17 selected pharmaceutical targets are summarized, among which the Hippo-yes-associated protein (Yap) pathway is the most extensively investigated and fits the criteria for a promising target for pro-CM-regeneration therapy development. Critical Issues and Future Directions: As the pro-CM-regeneration potential of current drug treatment for cardiovascular patients is limited, to help identify and fill the gap between basic research and drug discovery in this specific field, details regarding target identification, validation in mouse MI models, high-throughput screening assay development, and preclinical in vivo efficacy model optimization are discussed. Finally, suggestions and recommendations are also provided to help establish a common guideline for in vivo translational studies for drug discovery focusing on CM regeneration. Antioxid. Redox Signal. 39, 1070-1087.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Anesthesiology and the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Donghua Li
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiyan Song
- Department of Anesthesiology and the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Xu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fu-Li Xiang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
7
|
Soni SS, D'Elia AM, Rodell CB. Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches. Drug Deliv Transl Res 2023; 13:1983-2014. [PMID: 36763330 PMCID: PMC9913034 DOI: 10.1007/s13346-023-01290-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
Ischemic heart failure (IHF) is a leading cause of morbidity and mortality worldwide, for which heart transplantation remains the only definitive treatment. IHF manifests from myocardial infarction (MI) that initiates tissue remodeling processes, mediated by mechanical changes in the tissue (loss of contractility, softening of the myocardium) that are interdependent with cellular mechanisms (cardiomyocyte death, inflammatory response). The early remodeling phase is characterized by robust inflammation that is necessary for tissue debridement and the initiation of repair processes. While later transition toward an immunoregenerative function is desirable, functional reorientation from an inflammatory to reparatory environment is often lacking, trapping the heart in a chronically inflamed state that perpetuates cardiomyocyte death, ventricular dilatation, excess fibrosis, and progressive IHF. Therapies can redirect the immune microenvironment, including biotherapeutic and biomaterial-based approaches. In this review, we outline these existing approaches, with a particular focus on the immunomodulatory effects of therapeutics (small molecule drugs, biomolecules, and cell or cell-derived products). Cardioprotective strategies, often focusing on immunosuppression, have shown promise in pre-clinical and clinical trials. However, immunoregenerative therapies are emerging that often benefit from exacerbating early inflammation. Biomaterials can be used to enhance these therapies as a result of their intrinsic immunomodulatory properties, parallel mechanisms of action (e.g., mechanical restraint), or by enabling cell or tissue-targeted delivery. We further discuss translatability and the continued progress of technologies and procedures that contribute to the bench-to-bedside development of these critically needed treatments.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Elseweidy MM, Ali SI, Shaheen MA, Abdelghafour AM, Hammad SK. Vanillin and pentoxifylline ameliorate isoproterenol-induced myocardial injury in rats via the Akt/HIF-1α/VEGF signaling pathway. Food Funct 2023; 14:3067-3082. [PMID: 36917190 DOI: 10.1039/d2fo03570g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Myocardial infarction (MI) is a major health problem associated with high morbidity and mortality. Recently, angiogenesis has emerged as a novel therapeutic approach against ischemic diseases including MI. Therefore, we aimed to investigate the potential angiogenic effects of vanillin (Van) both alone and in combination with pentoxifylline (PTX), and to examine the molecular mechanisms through which Van and PTX may ameliorate cardiac injury induced in rats including their effects on oxidative stress, inflammation and apoptosis which play a key role in MI pathogenesis. MI was induced in rats using isoproterenol (ISO) (150 mg kg-1, SC, twice at a 24 h interval). Then, rats were treated orally with Van (150 mg kg-1 day-1), PTX (50 mg kg-1 day-1) or Van + PTX combination. ISO-induced cardiac injury was characterized by cardiac hypertrophy, ST-segment elevation and elevated serum levels of troponin-I, creatine kinase-MB and lactate dehydrogenase. Cardiac levels of the antioxidant markers GSH and SOD and the antiapoptotic protein Bcl-2 were decreased. On the other hand, cardiac levels of the oxidative stress marker malonaldehyde, the inflammatory cytokines TNF-α, IL-6 and IL-1β, the proapoptotic protein Bax, and caspase-3 were increased. Moreover, the cardiac levels of p-Akt and HIF-1α and the mRNA expression levels of the angiogenic genes VEGF, FGF-2 and ANGPT-1 were increased. Treatment with either Van or PTX ameliorated ISO-induced changes and further upregulated Akt/HIF-1α/VEGF signaling. Furthermore, Van + PTX combination was more effective than monotherapy. These findings suggest a novel therapeutic potential of Van and PTX in ameliorating MI through enhancing cardiac angiogenesis and modulating oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Sousou I Ali
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed A Shaheen
- Department of Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Asmaa M Abdelghafour
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Sally K Hammad
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
9
|
Petrusca L, Croisille P, Augeul L, Ovize M, Mewton N, Viallon M. Cardioprotective effects of shock wave therapy: A cardiac magnetic resonance imaging study on acute ischemia-reperfusion injury. Front Cardiovasc Med 2023; 10:1134389. [PMID: 37180809 PMCID: PMC10172681 DOI: 10.3389/fcvm.2023.1134389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Cardioprotection strategies remain a new frontier in treating acute myocardial infarction (AMI), aiming at further protect the myocardium from the ischemia-reperfusion damage. Therefore, we aimed at investigating the mechano-transduction effects induced by shock waves (SW) therapy at time of the ischemia reperfusion as a non-invasive cardioprotective innovative approach to trigger healing molecular mechanisms. Methods We evaluated the SW therapy effects in an open-chest pig ischemia-reperfusion (IR) model, with quantitative cardiac Magnetic Resonance (MR) imaging performed along the experiments at multiple time points (baseline (B), during ischemia (I), at early reperfusion (ER) (∼15 min), and late reperfusion (LR) (3 h)). AMI was obtained by a left anterior artery temporary occlusion (50 min) in 18 pigs (32 ± 1.9 kg) randomized into SW therapy and control groups. In the SW therapy group, treatment was started at the end of the ischemia period and extended during early reperfusion (600 + 1,200 shots @0.09 J/mm2, f = 5 Hz). The MR protocol included at all time points LV global function assessment, regional strain quantification, native T1 and T2 parametric mapping. Then, after contrast injection (gadolinium), we obtained late gadolinium imaging and extra-cellular volume (ECV) mapping. Before animal sacrifice, Evans blue dye was administrated after re-occlusion for area-at-risk sizing. Results During ischemia, LVEF decreased in both groups (25 ± 4.8% in controls (p = 0.031), 31.6 ± 3.2% in SW (p = 0.02). After reperfusion, left ventricular ejection fraction (LVEF) remained significantly decreased in controls (39.9 ± 4% at LR vs. 60 ± 5% at baseline (p = 0.02). In the SW group, LVEF increased quickly ER (43.7 ± 11.4% vs. 52.4 ± 8.2%), and further improved at LR (49.4 ± 10.1) (ER vs. LR p = 0.05), close to baseline reference (LR vs. B p = 0.92). Furthermore, there was no significant difference in myocardial relaxation time (i.e. edema) after reperfusion in the intervention group compared to the control group: ΔT1 (MI vs. remote) was increased by 23.2±% for SW vs. +25.2% for the controls, while ΔT2 (MI vs. remote) increased by +24.9% for SW vs. +21.7% for the control group. Discussion In conclusion, we showed in an ischemia-reperfusion open-chest swine model that SW therapy, when applied near the relief of 50' LAD occlusion, led to a nearly immediate cardioprotective effect translating to a reduction in the acute ischemia-reperfusion lesion size and to a significant LV function improvement. These new and promising results related to the multi-targeted effects of SW therapy in IR injury need to be confirmed by further in-vivo studies in close chest models with longitudinal follow-up.
Collapse
Affiliation(s)
- Lorena Petrusca
- Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, Saint-Etienne, France
| | - Pierre Croisille
- Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, Saint-Etienne, France
- Department of Radiology, Centre Hospitalier Universitaire de Saint- Etienne, Université Jean-Monnet, Saint-Etienne, France
| | - Lionel Augeul
- INSERM UMR 1060, CARMEN Laboratory, Université Lyon 1, Faculté de Medecine, Rockfeller, Lyon, France
| | - Michel Ovize
- INSERM UMR 1060, CARMEN Laboratory, Université Lyon 1, Faculté de Medecine, Rockfeller, Lyon, France
- Heart Failure Department, Clinical Investigation Center, Inserm 1407, HCL—Lyon, France
| | - Nathan Mewton
- INSERM UMR 1060, CARMEN Laboratory, Université Lyon 1, Faculté de Medecine, Rockfeller, Lyon, France
- Heart Failure Department, Clinical Investigation Center, Inserm 1407, HCL—Lyon, France
| | - Magalie Viallon
- Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, Saint-Etienne, France
- Department of Radiology, Centre Hospitalier Universitaire de Saint- Etienne, Université Jean-Monnet, Saint-Etienne, France
- Correspondence: Magalie Viallon
| |
Collapse
|
10
|
Zhang L, Zhang Z, Weisbecker H, Yin H, Liu Y, Han T, Guo Z, Berry M, Yang B, Guo X, Adams J, Xie Z, Bai W. 3D morphable systems via deterministic microfolding for vibrational sensing, robotic implants, and reconfigurable telecommunication. SCIENCE ADVANCES 2022; 8:eade0838. [PMID: 36542721 PMCID: PMC9770994 DOI: 10.1126/sciadv.ade0838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
DNA and proteins fold in three dimensions (3D) to enable functions that sustain life. Emulation of such folding schemes for functional materials can unleash enormous potential in advancing a wide range of technologies, especially in robotics, medicine, and telecommunication. Here, we report a microfolding strategy that enables formation of 3D morphable microelectronic systems integrated with various functional materials, including monocrystalline silicon, metallic nanomembranes, and polymers. By predesigning folding hosts and configuring folding pathways, 3D microelectronic systems in freestanding forms can transform across various complex configurations with modulated functionalities. Nearly all transitional states of 3D microelectronic systems achieved via the microfolding assembly can be easily accessed and modulated in situ, offering functional versatility and adaptability. Advanced morphable microelectronic systems including a reconfigurable microantenna for customizable telecommunication, a 3D vibration sensor for hand-tremor monitoring, and a bloomable robot for cardiac mapping demonstrate broad utility of these assembly schemes to realize advanced functionalities.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Zongwen Zhang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, DUT-BSU Joint Institute, Dalian University, Dalian 116024, P.R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P.R. China
| | - Hannah Weisbecker
- Department of Biology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Haifeng Yin
- MCAllister Heart Institute Core, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Yihan Liu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Tianhong Han
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Ziheng Guo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Matt Berry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Binbin Yang
- Department of Electrical and Computer Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Xu Guo
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, DUT-BSU Joint Institute, Dalian University, Dalian 116024, P.R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P.R. China
| | - Jacob Adams
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, DUT-BSU Joint Institute, Dalian University, Dalian 116024, P.R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P.R. China
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27514, USA
| |
Collapse
|
11
|
Ma R, Ma Y. Modulatory Effect of Cassia alata Leaf Extract on Isoproterenol-Induced Myocardial Inflammation and Fibrosis in Male Albino Wistar Rats. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1456.1465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Novel 5,6-diphenyl-1,2,4-triazine-3-thiol derivatives as dual COX-2/5-LOX inhibitors devoid of cardiotoxicity. Bioorg Chem 2022; 129:106147. [PMID: 36126607 DOI: 10.1016/j.bioorg.2022.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
A novel series of 5,6-diphenyl-1,2,4-triazine-3-thiol derivatives were designed, synthesized, and screened for their inhibitory potential against COX-2 and 5-LOX enzymes. The compounds from the series have shown moderate to excellent inhibitory potential against both targets. Compound 6k showed the inhibitions against COX-2 (IC50 = 0.33 ± 0.02 μM) and 5-LOX inhibition (IC50 = 4.90 ± 0.22 μM) which was better than the standard celecoxib (IC50 = 1.81 ± 0.13 μM) for COX-2 and zileuton (IC50 = 15.04 ± 0.18 μM) for 5-LOX respectively. Further investigation on the selected derivative 6k in rat paw edema models revealed significant anti-inflammatory efficacy. Compound 6k has also shown negligible ulcerogenic liability as compared to indomethacin. Moreover, in vivo biochemical analysis also established the compound's antioxidant properties. Compounds 6c and 6k were also observed to be devoid of cardiotoxicity post-myocardial infarction in rats. The molecular docking and dynamics simulation studies of the most active derivative 6k affirmed their consentient binding interactions with COX-2 specific ravine and cleft of 5-LOX.
Collapse
|
13
|
Basara G, Bahcecioglu G, Ozcebe SG, Ellis BW, Ronan G, Zorlutuna P. Myocardial infarction from a tissue engineering and regenerative medicine point of view: A comprehensive review on models and treatments. BIOPHYSICS REVIEWS 2022; 3:031305. [PMID: 36091931 PMCID: PMC9447372 DOI: 10.1063/5.0093399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 05/12/2023]
Abstract
In the modern world, myocardial infarction is one of the most common cardiovascular diseases, which are responsible for around 18 million deaths every year or almost 32% of all deaths. Due to the detrimental effects of COVID-19 on the cardiovascular system, this rate is expected to increase in the coming years. Although there has been some progress in myocardial infarction treatment, translating pre-clinical findings to the clinic remains a major challenge. One reason for this is the lack of reliable and human representative healthy and fibrotic cardiac tissue models that can be used to understand the fundamentals of ischemic/reperfusion injury caused by myocardial infarction and to test new drugs and therapeutic strategies. In this review, we first present an overview of the anatomy of the heart and the pathophysiology of myocardial infarction, and then discuss the recent developments on pre-clinical infarct models, focusing mainly on the engineered three-dimensional cardiac ischemic/reperfusion injury and fibrosis models developed using different engineering methods such as organoids, microfluidic devices, and bioprinted constructs. We also present the benefits and limitations of emerging and promising regenerative therapy treatments for myocardial infarction such as cell therapies, extracellular vesicles, and cardiac patches. This review aims to overview recent advances in three-dimensional engineered infarct models and current regenerative therapeutic options, which can be used as a guide for developing new models and treatment strategies.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S. Gulberk Ozcebe
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Pinar Zorlutuna
- Present address: 143 Multidisciplinary Research Building, University of Notre Dame, Notre Dame, IN 46556. Author to whom correspondence should be addressed:. Tel.: +1 574 631 8543. Fax: +1 574 631 8341
| |
Collapse
|
14
|
Qiao P, Wang Y, Zhu K, Zheng D, Song Y, Jiang D, Qin C, Lan X. Noninvasive Monitoring of Reparative Fibrosis after Myocardial Infarction in Rats Using 68Ga-FAPI-04 PET/CT. Mol Pharm 2022; 19:4171-4178. [PMID: 35969029 DOI: 10.1021/acs.molpharmaceut.2c00551] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Noninvasively monitoring activated fibroblasts is of great value for understanding the dynamic process of myocardial fibrosis after myocardial infarction (MI). This study aimed to evaluate the feasibility of 68Ga-labeled fibroblast activation protein inhibitor 04 (68Ga-FAPI-04) for monitoring reparative fibrosis and reactive fibrosis after MI. MI models were prepared by ligation of the left anterior descending (LAD) coronary artery and validated by electrocardiogram and 18F-FDG PET/CT 1 day after MI and hematoxylin and eosin (HE) staining. 68Ga-FAPI-04 PET/CT scans (1, 3, 6, 9, 12, 15, 18, 21, 28, and 35 days after MI) were carried out in MI rats and sham-operated rats without ligation of LAD. Blocking experiments were carried out on MI rats on day 7 after MI with 68Ga-FAPI-04 and excessive FAPI-04. Autoradiography, HE staining, Masson's trichrome staining, and immunofluorescence staining were carried out for ex vivo validation. The infarcted area with decreased or defective myocardial metabolic activity in 18F-FDG PET/CT correspondingly showed high 68Ga-FAPI-04 uptake in the MI rats. The myocardial tracer uptake was significantly different between MI and sham-operated rats from day 1 to 28 after MI and reached peak value 6 days after MI (0.806 ± 0.257%ID/cc vs 0.199 ± 0.012%ID/cc, P < 0.05). Tracer uptake at the infarcted myocardium and normal tissues in MI rats decreased significantly after blocking. Obvious tracer uptake was confirmed by autoradiography, and immunofluorescence staining showed FAP+ cells in the infarcted myocardium and border zone. Masson's trichrome staining of the heart sections of MI rats at different times suggested the presence of myocardial fibrosis. 68Ga-FAPI-04 uptake was not observed in the distal uninjured myocardium throughout the observation period. In conclusion, 68Ga-FAPI-04 PET could noninvasively monitor the activated fibroblasts in the early stage post acute MI and may be helpful for evaluating the degree of reparative fibrosis, while reactive fibrosis monitoring still needs further study.
Collapse
Affiliation(s)
- Pengxin Qiao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, China
| | - Yutong Wang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ke Zhu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, China
| | - Danzha Zheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, China
| | - Yangmeihui Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, China.,Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan 430022, China
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, China.,Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, China.,Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan 430022, China
| |
Collapse
|
15
|
Poomani MS, Mariappan I, Perumal R, Regurajan R, Muthan K, Subramanian V. Mesenchymal Stem Cell (MSCs) Therapy for Ischemic Heart Disease: A Promising Frontier. Glob Heart 2022; 17:19. [PMID: 35342702 PMCID: PMC8916054 DOI: 10.5334/gh.1098] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/26/2022] [Indexed: 01/07/2023] Open
Abstract
Although tremendous progress has been made in conventional treatment for ischemic heart disease, it still remains a major cause of death and disability. Cell-based therapeutics holds an exciting frontier of research for complete cardiac recuperation. The capacity of diverse stem and progenitor cells to stimulate cardiac renewal has been analysed, with promising results in both pre-clinical and clinical trials. Mesenchymal stem cells have been ascertained to have regenerative ability via a variety of mechanisms, including differentiation from the mesoderm lineage, immunomodulatory properties, and paracrine effects. Also, their availability, maintenance, and ability to replenish endogenous stem cell niches have rendered them suitable for front-line research. This review schemes to outline the use of mesenchymal stem cell therapeutics for ischemic heart disease, their characteristics, the potent mechanisms of mesenchymal stem cell-based heart regeneration, and highlight preclinical data. Additionally, we discuss the results of the clinical trials to date as well as ongoing clinical trials on ischemic heart disease.
Collapse
Affiliation(s)
- Merlin Sobia Poomani
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India
| | - Iyyadurai Mariappan
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India
| | | | - Rathika Regurajan
- Center for Marine Science and Technology, Manonmaniam Sundaranar University, Tirunelveli 627012 Tamil Nadu, India
| | - Krishnaveni Muthan
- Center for Marine Science and Technology, Manonmaniam Sundaranar University, Tirunelveli 627012 Tamil Nadu, India
| | - Venkatesh Subramanian
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India
| |
Collapse
|
16
|
Chu S, Wang W, Zhang N, Liu T, Li J, Chu X, Zuo S, Ma Z, Ma D, Chu L. Protective effects of 18β-Glycyrrhetinic acid against myocardial infarction: Involvement of PI3K/Akt pathway activation and inhibiting Ca 2+ influx via L-type Ca 2+ channels. Food Sci Nutr 2021; 9:6831-6843. [PMID: 34925811 PMCID: PMC8645779 DOI: 10.1002/fsn3.2639] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/15/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022] Open
Abstract
18β-Glycyrrhetinic acid (18β-GA) is a component extracted from licorice. This study aimed to evaluate the effects of 18β-GA on isoproterenol (ISO)-induced acute myocardial infarction in rats and mice. Two consecutive days of subcutaneous injection of ISO (85 mg/kg/day) resulted in acute myocardial infarction. We examined the pathological changes, oxidative stress, inflammatory response, and expression of apoptosis in mouse hearts. The expressions of phosphoinositol-3-kinase (PI3K), protein kinase B (Akt), and the phosphorylation levels of PI3K (p-PI3K) and Akt (p-Akt) were determined by western blotting. The whole-cell patch-clamp technique was applied to observe the L-type Ca2+ currents, and the Ion Optix detection system was used for cell contraction and Ca2+ transient in isolated rat cardiac ventricular myocytes. In ISO-induced myocardial infarction, the J-point, heart rate, creatine kinase, lactate dehydrogenase, superoxide dismutase, catalase, malondialdehyde, glutathion, and reactive oxygen species decreased in mice after 18β-GA treatment. 18β-GA improved ISO-induced morphologic pathology, inhibited the inflammatory pathway response and cardiomyocyte apoptosis, and inhibited PI3K/Akt signaling. 18β-GA could significantly inhibit ICa-L, myocardial contraction, and Ca2+ transient. This study demonstrates that 18β-GA has cardioprotective effects on acute myocardial infarction, which may be related to inhibiting oxidative stress, inflammation, apoptosis via the PI3K/Akt pathway, and reducing cell contractility and Ca2+ concentration via L-type Ca2+ channels.
Collapse
Affiliation(s)
- Sijie Chu
- School of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Weijie Wang
- Department of SurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ning Zhang
- School of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Tong Liu
- School of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Jing Li
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Xi Chu
- Department of PharmacyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Saijie Zuo
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Zhihong Ma
- School of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
- Department of Immunology and PathobiologyHebei University of Chinese MedicineShijiazhuangChina
| | - Donglai Ma
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Li Chu
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
- Hebei Key Laboratory of Integrative Medicine on Liver‐Kidney PatternsHebei University of Chinese MedicineShijiazhuangChina
| |
Collapse
|
17
|
Duan T, Zhang J, Kong R, Song R, Huang W, Xiang D. The effectiveness of alprostadil in treating coronary microcirculation dysfunction following ST-segment elevation myocardial infarction in a pig model. Exp Ther Med 2021; 22:1449. [PMID: 34721691 PMCID: PMC8549090 DOI: 10.3892/etm.2021.10884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/19/2020] [Indexed: 11/25/2022] Open
Abstract
Though alprostadil has been reported to improve the impaired microcirculation of patients with pulmonary arterial hypertension, its effectiveness as a treatment for coronary microvasculature dysfunction (CMD) following ST-segment elevation myocardial infarction (STEMI) is unknown. A total of 18 miniature pigs with CMD following STEMI were randomized into three groups that received an intracoronary injection of 5 ml of normal saline, 2 mg of nicorandil or 10 µg of alprostadil immediately after measurement of the index of microcirculatory resistance (IMR) and then an intravenous drip containing 5 ml of normal saline, 2 mg of nicorandil or 10 µg of alprostadil once a day for 6 days. The IMR, cardiac function using ultrasound, infarct areas and heparanase levels in infarct areas were measured and compared between the three groups. The IMR decreased markedly 10 min after alprostadil or nicorandil intracoronary injection (both P<0.05) but not following saline injection (P>0.05). After 7 days, the IMR was substantially lower in the alprostadil and nicorandil groups compared with the saline group (both P<0.05) and the ejection fraction was considerably higher in the alprostadil and nicorandil groups compared with the saline group (both P<0.05). Differences in infarct areas and the relative heparanase expression levels among the 3 groups were similar to the differences in the ejection fraction. No significant differences in the above assessment indexes were identified in the alprostadil and nicorandil groups. Alprostadil infusion improved coronary microcirculation function, reduced the infarct area and limited left ventricular dilatation in a pig coronary microvasculature dysfunction model following STEMI.
Collapse
Affiliation(s)
- Tianbing Duan
- Department of Cardiology, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, P.R. China
| | - Jinxia Zhang
- Department of Cardiology, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, P.R. China
| | - Ranran Kong
- Department of Cardiology, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, P.R. China
| | - Rui Song
- Department of Cardiology, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, P.R. China
| | - Weilong Huang
- Department of Ultrasonography, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, P.R. China
| | - Dingcheng Xiang
- Department of Cardiology, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
18
|
Zhang XJ, Liu X, Hu M, Zhao GJ, Sun D, Cheng X, Xiang H, Huang YP, Tian RF, Shen LJ, Ma JP, Wang HP, Tian S, Gan S, Xu H, Liao R, Zou T, Ji YX, Zhang P, Cai J, Wang ZV, Meng G, Xu Q, Wang Y, Ma XL, Liu PP, Huang Z, Zhu L, She ZG, Zhang X, Bai L, Yang H, Lu Z, Li H. Pharmacological inhibition of arachidonate 12-lipoxygenase ameliorates myocardial ischemia-reperfusion injury in multiple species. Cell Metab 2021; 33:2059-2075.e10. [PMID: 34536344 DOI: 10.1016/j.cmet.2021.08.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/01/2020] [Accepted: 08/25/2021] [Indexed: 12/18/2022]
Abstract
Myocardial ischemia-reperfusion (MIR) injury is a major cause of adverse outcomes of revascularization after myocardial infarction. To identify the fundamental regulator of reperfusion injury, we performed metabolomics profiling in plasma of individuals before and after revascularization and identified a marked accumulation of arachidonate 12-lipoxygenase (ALOX12)-dependent 12-HETE following revascularization. The potent induction of 12-HETE proceeded by reperfusion was conserved in post-MIR in mice, pigs, and monkeys. While genetic inhibition of Alox12 protected mouse hearts from reperfusion injury and remodeling, Alox12 overexpression exacerbated MIR injury. Remarkably, pharmacological inhibition of ALOX12 significantly reduced cardiac injury in mice, pigs, and monkeys. Unexpectedly, ALOX12 promotes cardiomyocyte injury beyond its enzymatic activity and production of 12-HETE but also by its suppression of AMPK activity via a direct interaction with its upstream kinase TAK1. Taken together, our study demonstrates that ALOX12 is a novel AMPK upstream regulator in the post-MIR heart and that it represents a conserved therapeutic target for the treatment of myocardial reperfusion injury.
Collapse
Affiliation(s)
- Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xiaolan Liu
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Manli Hu
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guo-Jun Zhao
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Dating Sun
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Hui Xiang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Yong-Ping Huang
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Rui-Feng Tian
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Li-Jun Shen
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Jun-Peng Ma
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Hai-Ping Wang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Shanyu Gan
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Rufang Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Toujun Zou
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Yan-Xiao Ji
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Peng Zhang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Jingjing Cai
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guannan Meng
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China
| | - Qingbo Xu
- Centre for Clinic Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Yibin Wang
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19004, USA
| | - Peter P Liu
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Zan Huang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lihua Zhu
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xin Zhang
- Gannan Institute of Translational Medicine, Ganzhou 341000, China
| | - Lan Bai
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China.
| | - Hailong Yang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China.
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430060, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
19
|
Mitochondrial Oxidation of the Cytoplasmic Reducing Equivalents at the Onset of Oxidant Stress in the Isoproterenol-Induced Rat Myocardial Infarction. Antioxidants (Basel) 2021; 10:antiox10091444. [PMID: 34573076 PMCID: PMC8469278 DOI: 10.3390/antiox10091444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
We have developed and characterized a model of isoproterenol (ISO)-induced myocardial necrosis, identifying three stages of cardiac damage: a pre-infarction (0-12 h), infarction (24 h), and post-infarction period (48-96 h). Using this model, we have previously found alterations in calcium homeostasis and their relationship with oxidant stress in mitochondria, which showed deficient oxygen consumption and coupled ATP synthesis. Therefore, the present study was aimed at assessing the mitochondrial ability to transport and oxidize cytoplasmic reducing equivalents (NADH), correlating the kinetic parameters of the malate-aspartate shuttle, oxidant stress, and mitochondrial functionality. Our results showed only discreet effects during the cardiotoxic ISO action on the endogenous malate-aspartate shuttle activity, suggesting that endogenous mitochondrial NADH oxidation capacity (Nohl dehydrogenase) was not affected by the cellular stress. On the contrary, the reconstituted system showed significant enhancement in maximal capacity of the malate-aspartate shuttle activity only at later times (post-infarction period), probably as a compensatory part of cardiomyocytes' response to the metabolic and functional consequences of the infarcted tissue. Therefore, these findings support the notion that heart damage associated with myocardial infarction suffers a set of sequential biochemical and metabolic modifications within cardiomyocytes, where mitochondrial activity, controlling the redox state, could play a relevant role.
Collapse
|
20
|
Parikh M, Kura B, Garg B, Austria JA, Yu L, Maddaford TG, Proctor SD, Netticadan T, Pierce GN. Dietary flaxseed reduces Myocardial Ischemic Lesions, improves cardiac function and lowers cholesterol levels despite the presence of severe obesity in JCR:LA-cp Rats. J Nutr Biochem 2021; 98:108829. [PMID: 34358644 DOI: 10.1016/j.jnutbio.2021.108829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/09/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
Previous work has shown that dietary flaxseed can significantly reduce cardiac damage from a coronary artery ligation-induced myocardial infarction. However, this model uses healthy animals and the ligation creates the infarct in an artificial manner. The purpose of this study was to determine if dietary flaxseed can protect the hearts of JCR:LA-cp rats, a model of genetic obesity and metabolic syndrome, from naturally occurring myocardial ischemic lesions. Male and female obese rats were randomized into four groups (n = 8 each) to receive, for 12 weeks, either a) control diet (Con), b) control diet supplemented with 10% ground flaxseed (CFlax), c) a high-fat, high sucrose (HFHS) diet, or d) HFHS supplemented with 10% ground flaxseed (HFlax). Male and female JCR:LA-cp lean rats served as genetic controls and received similar dietary interventions. In male obese rats, serum total cholesterol and LDL-C were significantly lower in CFlax compared to Con. Obese rats on HFHS exhibited increased myocardial ischemic lesions and diastolic dysfunction regardless of sex. HFlax significantly lowered the frequency of cardiac lesions and improved diastolic function in male and female obese rats compared to HFHS. Blood pressures were similar in obese and lean rats. No aortic atherosclerotic lesions were detectable in any group. Collectively, this study shows that a HFHS diet increased myocardial ischemic lesion frequency and abolished the protective effect of female sex on cardiac function. More importantly, the data demonstrates dietary flaxseed protected against the development of small spontaneous cardiac infarcts despite the ingestion of a HFHS diet and the presence of morbid obesity.
Collapse
Affiliation(s)
- Mihir Parikh
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba's, Canada; Canadian Centre for Agri-food Research in Health and Medicine (CCARM), 351 Taché Avenue, Winnipeg, Manitoba's, Canada; The Institute of Cardiovascular Sciences, 351 Taché Avenue, Winnipeg, Manitoba's, Canada
| | - Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Bhavana Garg
- Canadian Centre for Agri-food Research in Health and Medicine (CCARM), 351 Taché Avenue, Winnipeg, Manitoba's, Canada; The Institute of Cardiovascular Sciences, 351 Taché Avenue, Winnipeg, Manitoba's, Canada
| | - J Alejandro Austria
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba's, Canada; Canadian Centre for Agri-food Research in Health and Medicine (CCARM), 351 Taché Avenue, Winnipeg, Manitoba's, Canada; The Institute of Cardiovascular Sciences, 351 Taché Avenue, Winnipeg, Manitoba's, Canada
| | - Liping Yu
- Canadian Centre for Agri-food Research in Health and Medicine (CCARM), 351 Taché Avenue, Winnipeg, Manitoba's, Canada
| | - Thane G Maddaford
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba's, Canada; Canadian Centre for Agri-food Research in Health and Medicine (CCARM), 351 Taché Avenue, Winnipeg, Manitoba's, Canada; The Institute of Cardiovascular Sciences, 351 Taché Avenue, Winnipeg, Manitoba's, Canada
| | - Spencer D Proctor
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas Netticadan
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba's, Canada; Canadian Centre for Agri-food Research in Health and Medicine (CCARM), 351 Taché Avenue, Winnipeg, Manitoba's, Canada; Agriculture and Agri-Food Canada, St. Boniface Hospital Albrechtsen Research Centre, 351 Taché Avenue, Winnipeg, Manitoba's, Canada
| | - Grant N Pierce
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba's, Canada; Canadian Centre for Agri-food Research in Health and Medicine (CCARM), 351 Taché Avenue, Winnipeg, Manitoba's, Canada; The Institute of Cardiovascular Sciences, 351 Taché Avenue, Winnipeg, Manitoba's, Canada.
| |
Collapse
|
21
|
Martin TP, MacDonald EA, Elbassioni AAM, O'Toole D, Zaeri AAI, Nicklin SA, Gray GA, Loughrey CM. Preclinical models of myocardial infarction: from mechanism to translation. Br J Pharmacol 2021; 179:770-791. [PMID: 34131903 DOI: 10.1111/bph.15595] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/28/2022] Open
Abstract
Approximately 7 million people are affected by acute myocardial infarction (MI) each year, and despite significant therapeutic and diagnostic advancements, MI remains a leading cause of mortality worldwide. Preclinical animal models have significantly advanced our understanding of MI and have enabled the development of therapeutic strategies to combat this debilitating disease. Notably, some drugs currently used to treat MI and heart failure (HF) in patients had initially been studied in preclinical animal models. Despite this, preclinical models are limited in their ability to fully reproduce the complexity of MI in humans. The preclinical model must be carefully selected to maximise the translational potential of experimental findings. This review describes current experimental models of MI and considers how they have been used to understand drug mechanisms of action and support translational medicine development.
Collapse
Affiliation(s)
- Tamara P Martin
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Eilidh A MacDonald
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Ali Ali Mohamed Elbassioni
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK.,Suez Canal University, Arab Republic of Egypt
| | - Dylan O'Toole
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Ali Abdullah I Zaeri
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Stuart A Nicklin
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Gillian A Gray
- Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Christopher M Loughrey
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
22
|
Youssef ME, El-Mas MM, Abdelrazek HM, El-Azab MF. α7-nAChRs-mediated therapeutic angiogenesis accounts for the advantageous effect of low nicotine doses against myocardial infarction in rats. Eur J Pharmacol 2021; 898:173996. [PMID: 33684450 DOI: 10.1016/j.ejphar.2021.173996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/20/2022]
Abstract
Angiogenesis accelerates tissue regeneration in a variety of ischemic conditions including myocardial infarction (MI). Here we tested the hypothesis that angiogenesis induced by α7-nicotinic acetylcholine receptors (α7-nAChRs) mitigates histopathological, electrocardiographic, and molecular consequences of MI in rats. These profiles were evaluated in the isoprenaline (85 mg/kg/day i. p. For 2 days) MI rat model treated with or without nicotine or PHA-543613 (PHA, selective α7-nAChR agonist). Isoprenaline-insulted rats showed (i) ECG signs of MI such as significant ST-segment elevations and prolonged QT-intervals, (ii) deteriorated left ventricular histopathological scoring and elevated inflammatory cell infiltration, (iii) reduced immunohistochemical expression of cardiac CD34, a surrogate marker of capillary density, (iv) decreased cardiac expression of iNOS and α7-nAChRs, and (v) adaptive increases in cardiac HO-1 expression and plasma angiogenic markers such as vascular endothelial growth factor (VEGF) and nitric oxide (NO). These effects of isoprenaline, except cardiac iNOS and α7-nAChRs downregulation, were ameliorated in rats treated with a low dose (20 μg/kg/day s. c. For 16 days) of nicotine or PHA. We also show that concurrent α7-nAChR blockade by methyllycaconitine (MLA, 40 μg/kg/day, for 16 days) reversed the ECG, histopathological, and capillary density effects of nicotine, thereby reinforcing the advantageous cardioprotective and anti-ischemic roles of α7-nAChRs in this setting. The observed results showed promising effects on isoprenaline induced myocardial damage. In conclusion, the activation of α7-nAChRs by doses of nicotine or PHA in the microgram scale promotes neovascularization and offers a promising therapeutic strategy for MI. CATEGORY: Cardiovascular Pharmacology.
Collapse
Affiliation(s)
- Mahmoud E Youssef
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait
| | - Heba M Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mona F El-Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
23
|
Szabo D, Sarszegi Z, Polgar B, Saghy E, Nemeth A, Reglodi D, Makkos A, Gorbe A, Helyes Z, Ferdinandy P, Herczeg R, Gyenesei A, Cziraki A, Tamas A. PACAP-38 in Acute ST-Segment Elevation Myocardial Infarction in Humans and Pigs: A Translational Study. Int J Mol Sci 2021; 22:2883. [PMID: 33809145 PMCID: PMC8002092 DOI: 10.3390/ijms22062883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Acute myocardial infarction (MI) is one of the most common causes of death worldwide. Pituitary adenylate cyclase activating polypeptide (PACAP) is a cardioprotective neuropeptide expressing its receptors in the cardiovascular system. The aim of our study was to examine tissue PACAP-38 in a translational porcine MI model and plasma PACAP-38 levels in patients with ST-segment elevation myocardial infarction (STEMI). Significantly lower PACAP-38 levels were detected in the non-ischemic region of the left ventricle (LV) in MI heart compared to the ischemic region of MI-LV and also to the Sham-operated LV in porcine MI model. In STEMI patients, plasma PACAP-38 level was significantly higher before percutaneous coronary intervention (PCI) compared to controls, and decreased after PCI. Significant negative correlation was found between plasma PACAP-38 and troponin levels. Furthermore, a significant effect was revealed between plasma PACAP-38, hypertension and HbA1c levels. This was the first study showing significant changes in cardiac tissue PACAP levels in a porcine MI model and plasma PACAP levels in STEMI patients. These results suggest that PACAP, due to its cardioprotective effects, may play a regulatory role in MI and could be a potential biomarker or drug target in MI.
Collapse
Affiliation(s)
- Dora Szabo
- Heart Institute, Medical School, University of Pecs, 7624 Pecs, Hungary; (D.S.); (Z.S.); (A.N.); (A.C.)
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Zsolt Sarszegi
- Heart Institute, Medical School, University of Pecs, 7624 Pecs, Hungary; (D.S.); (Z.S.); (A.N.); (A.C.)
| | - Beata Polgar
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Eva Saghy
- MTA-SE System Pharmacology Research Group and Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (E.S.); (A.M.); (A.G.); (P.F.)
| | - Adam Nemeth
- Heart Institute, Medical School, University of Pecs, 7624 Pecs, Hungary; (D.S.); (Z.S.); (A.N.); (A.C.)
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Andras Makkos
- MTA-SE System Pharmacology Research Group and Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (E.S.); (A.M.); (A.G.); (P.F.)
| | - Aniko Gorbe
- MTA-SE System Pharmacology Research Group and Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (E.S.); (A.M.); (A.G.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, 7624 Pecs, Hungary;
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (R.H.); (A.G.)
- PharmInVivo Ltd., 7629 Pecs, Hungary
| | - Peter Ferdinandy
- MTA-SE System Pharmacology Research Group and Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (E.S.); (A.M.); (A.G.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Robert Herczeg
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (R.H.); (A.G.)
| | - Attila Gyenesei
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (R.H.); (A.G.)
| | - Attila Cziraki
- Heart Institute, Medical School, University of Pecs, 7624 Pecs, Hungary; (D.S.); (Z.S.); (A.N.); (A.C.)
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624 Pecs, Hungary;
| |
Collapse
|
24
|
Wang D, Tian L, Lv H, Pang Z, Li D, Yao Z, Wang S. Chlorogenic acid prevents acute myocardial infarction in rats by reducing inflammatory damage and oxidative stress. Biomed Pharmacother 2020; 132:110773. [PMID: 33022535 DOI: 10.1016/j.biopha.2020.110773] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Recent studies have suggested that the prevention of myocardial infarction (MI) through diet is very important and that the intake of polyphenol-rich foods can improve cardiovascular health. In this study, adult male SD rats were randomly divided into 2 groups. The chlorogenic acid (CGA) group (n = 18) was administered 100 mg/kg/day CGA by gavage, and the control (CON) group (n = 18) was given the equivalent volume of water for 4 weeks. A model of MI was established by ligating the left anterior descending (LAD) coronary artery, which was monitored by an electrocardiogram (ECG). Blood samples were analyzed by enzyme-linked immunosorbent assays and biochemical experiments 24 h after the operation. In addition, histopathological analysis was performed to assess the size and severity of the infarct area. The administration of CGA before MI minimized weight gain and was associated with decreased postoperative mortality. CGA moderated the coronary artery ligation-induced changes observed by ECG and decreased the plasma levels of the myocardial markers. In the histopathological analysis, CGA notably reduced infarct size and decreased myocardial injury and fibrosis. Furthermore, CGA significantly reduced the levels of pro-inflammatory factors, and this reduction was accompanied by an upregulation of anti-inflammatory cytokines and an increase in antioxidant enzyme activities. This study indicated that CGA improved the survival rate after MI and demonstrated that CGA had a protective effect on MI by reducing the inflammatory response and exerting antioxidant activity.
Collapse
Affiliation(s)
- Di Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Liuyang Tian
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, 300121, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhihua Pang
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, 300121, China
| | - Dong Li
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, 300121, China
| | - Zhuhua Yao
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, 300121, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
25
|
Rusiecka OM, Montgomery J, Morel S, Batista-Almeida D, Van Campenhout R, Vinken M, Girao H, Kwak BR. Canonical and Non-Canonical Roles of Connexin43 in Cardioprotection. Biomolecules 2020; 10:biom10091225. [PMID: 32842488 PMCID: PMC7563275 DOI: 10.3390/biom10091225] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
Since the mid-20th century, ischemic heart disease has been the world’s leading cause of death. Developing effective clinical cardioprotection strategies would make a significant impact in improving both quality of life and longevity in the worldwide population. Both ex vivo and in vivo animal models of cardiac ischemia/reperfusion (I/R) injury are robustly used in research. Connexin43 (Cx43), the predominant gap junction channel-forming protein in cardiomyocytes, has emerged as a cardioprotective target. Cx43 posttranslational modifications as well as cellular distribution are altered during cardiac reperfusion injury, inducing phosphorylation states and localization detrimental to maintaining intercellular communication and cardiac conduction. Pre- (before ischemia) and post- (after ischemia but before reperfusion) conditioning can abrogate this injury process, preserving Cx43 and reducing cell death. Pre-/post-conditioning has been shown to largely rely on the presence of Cx43, including mitochondrial Cx43, which is implicated to play a major role in pre-conditioning. Posttranslational modifications of Cx43 after injury alter the protein interactome, inducing negative protein cascades and altering protein trafficking, which then causes further damage post-I/R injury. Recently, several peptides based on the Cx43 sequence have been found to successfully diminish cardiac injury in pre-clinical studies.
Collapse
Affiliation(s)
- Olga M. Rusiecka
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Jade Montgomery
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Sandrine Morel
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Daniela Batista-Almeida
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.B.-A.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Henrique Girao
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.B.-A.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Brenda R. Kwak
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
- Correspondence:
| |
Collapse
|
26
|
Smagul S, Kim Y, Smagulova A, Raziyeva K, Nurkesh A, Saparov A. Biomaterials Loaded with Growth Factors/Cytokines and Stem Cells for Cardiac Tissue Regeneration. Int J Mol Sci 2020; 21:E5952. [PMID: 32824966 PMCID: PMC7504169 DOI: 10.3390/ijms21175952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Myocardial infarction causes cardiac tissue damage and the release of damage-associated molecular patterns leads to activation of the immune system, production of inflammatory mediators, and migration of various cells to the site of infarction. This complex response further aggravates tissue damage by generating oxidative stress, but it eventually heals the infarction site with the formation of fibrotic tissue and left ventricle remodeling. However, the limited self-renewal capability of cardiomyocytes cannot support sufficient cardiac tissue regeneration after extensive myocardial injury, thus, leading to an irreversible decline in heart function. Approaches to improve cardiac tissue regeneration include transplantation of stem cells and delivery of inflammation modulatory and wound healing factors. Nevertheless, the harsh environment at the site of infarction, which consists of, but is not limited to, oxidative stress, hypoxia, and deficiency of nutrients, is detrimental to stem cell survival and the bioactivity of the delivered factors. The use of biomaterials represents a unique and innovative approach for protecting the loaded factors from degradation, decreasing side effects by reducing the used dosage, and increasing the retention and survival rate of the loaded cells. Biomaterials with loaded stem cells and immunomodulating and tissue-regenerating factors can be used to ameliorate inflammation, improve angiogenesis, reduce fibrosis, and generate functional cardiac tissue. In this review, we discuss recent findings in the utilization of biomaterials to enhance cytokine/growth factor and stem cell therapy for cardiac tissue regeneration in small animals with myocardial infarction.
Collapse
Affiliation(s)
| | | | | | | | | | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (S.S.); (Y.K.); (A.S.); (K.R.); (A.N.)
| |
Collapse
|
27
|
Dragasevic N, Jakovljevic V, Zivkovic V, Draginic N, Andjic M, Bolevich S, Jovic S. The role of aldosterone inhibitors in cardiac ischemia-reperfusion injury. Can J Physiol Pharmacol 2020; 99:18-29. [PMID: 32799671 DOI: 10.1139/cjpp-2020-0276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Myocardial ischaemia-reperfusion (I/R) injury is a well-known term for exacerbation of cellular destruction and dysfunction after the restoration of blood flow to a previously ischaemic heart. A vast number of studies that have demonstrated that the role of mineralocorticoids in cardiovascular diseases is based on the use of pharmacological mineralocorticoid receptor (MR) antagonists. This review paper aimed to summarize current knowledge on the effects of MR antagonists on myocardial I/R injury as well as postinfarction remodeling. Animal models, predominantly the Langendorff technique and left anterior descending coronary artery occlusion, have confirmed the potency of MR antagonists as preconditioning and postconditioning agents in limiting infarct size and postinfarction remodeling. Several preclinical studies in rodents have established and proved possible mechanisms of cardioprotection by MR antagonists, such as reduction of oxidative stress, reduction of inflammation, and apoptosis, therefore limiting the infarct zone. However, the results of some clinical trials are inconsistent, since they reported no benefit of MR antagonists in acute myocardial infarction. Due to this, further studies and the results of ongoing clinical trials regarding MR antagonist administration in patients with acute myocardial infarction are being awaited with great interest.
Collapse
Affiliation(s)
- Nevena Dragasevic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Vladimir Jakovljevic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34 000 Kragujevac, Serbia.,1st Moscow State Medical University IM Sechenov, Department of Human Pathology, Trubetskaya street 8, 119991 Moscow, Russia
| | - Vladimir Zivkovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Nevena Draginic
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Marijana Andjic
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Sergey Bolevich
- 1 Moscow State Medical University IM Sechenov, Department of Human Pathology, Trubetskaya street 8, 119991 Moscow, Russia
| | - Slavoljub Jovic
- University of Belgrade, Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, Bul. Oslobodjenja 18, Belgrade, Serbia
| |
Collapse
|
28
|
Williams AL, Khadka VS, Anagaran MCT, Lee K, Avelar A, Deng Y, Shohet RV. miR-125 family regulates XIRP1 and FIH in response to myocardial infarction. Physiol Genomics 2020; 52:358-368. [PMID: 32716698 DOI: 10.1152/physiolgenomics.00041.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are powerful regulators of protein expression. Many play important roles in cardiac development and disease. While several miRNAs and targets have been well characterized, the abundance of miRNAs and the numerous potential targets for each suggest that the vast majority of these interactions have yet to be described. The goal of this study was to characterize miRNA expression in the mouse heart after coronary artery ligation (LIG) and identify novel mRNA targets altered during the initial response to ischemic stress. We performed small RNA sequencing (RNA-Seq) of ischemic heart tissue 1 day and 3 days after ligation and identified 182 differentially expressed miRNAs. We then selected relevant mRNA targets from all potential targets by correlating miRNA and mRNA expression from a corresponding RNA-Seq data set. From this analysis we chose to focus, as proof of principle, on two miRNAs from the miR-125 family, miR-125a and miR-351, and two of their potential mRNA targets, Xin actin-binding repeat-containing protein 1 (XIRP1) and factor inhibiting hypoxia-inducible factor (FIH). We found miR-125a to be less abundant and XIRP1 more abundant after ligation. In contrast, the related murine miRNA miR-351 was substantially upregulated in response to ischemic injury, and FIH expression correspondingly decreased. Luciferase reporter assays confirmed direct interactions between these miRNAs and targets. In summary, we utilized a correlative analysis strategy combining miRNA and mRNA expression data to identify functional miRNA-mRNA relationships in the heart after ligation. These findings provide insight into the response to ischemic injury and suggest future therapeutic targets.
Collapse
Affiliation(s)
- Allison Lesher Williams
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Vedbar S Khadka
- Bioinformatics Core, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Ma C T Anagaran
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Katie Lee
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Abigail Avelar
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Youping Deng
- Bioinformatics Core, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Ralph V Shohet
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| |
Collapse
|
29
|
Li F, Li J, Li S, Guo S, Li P. Modulatory Effects of Chinese Herbal Medicines on Energy Metabolism in Ischemic Heart Diseases. Front Pharmacol 2020; 11:995. [PMID: 32719602 PMCID: PMC7348053 DOI: 10.3389/fphar.2020.00995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
Ischemic heart disease (IHD), a major global public health problem, is associated with high morbidity and mortality. Although the very best of modern approaches have proven effective in reducing morbidity and mortality, the poor prognosis of patients with IHD remains a major clinical concern. Cardiac energy metabolism is increasingly recognized as having a role in the pathogenesis of IHD, inducing metabolic substrate alterations, mitochondrial dysfunction, impaired function of the mitochondrial electron transport chain, and deprivation of cardiac energy. Factors involved in cardiac energy metabolism provide potential therapeutic targets for the treatment of IHD. Chinese herbal medicines (CHMs) have a long history of use in the prevention and treatment of cardiovascular diseases with multi-component, multi-target, and multi-signaling. Increasing evidence suggests that Chinese herbal medicines may improve myocardial ischemia through modulating cardiac energy metabolism. Here, we describe the possible targets and pathways of cardiac energy metabolism for CHMs, and appraise the modulatory effects of CHMs on energy metabolism in IHD. Especially, this review focuses on summarizing the metabolic effects and the underlying mechanisms of Chinese herbal medicines (including herbs, major bioactive components, and formulas) in IHD. In addition, we also discuss the current limitations and the major challenges for research investigating the use of CHMs in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Fanghe Li
- The 3rd Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinmao Li
- The 3rd Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Saisai Li
- The 3rd Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shuwen Guo
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Li
- The 3rd Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Svystonyuk DA, Mewhort HEM, Hassanabad AF, Heydari B, Mikami Y, Turnbull JD, Teng G, Belke DD, Wagner KT, Tarraf SA, DiMartino ES, White JA, Flewitt JA, Cheung M, Guzzardi DG, Kang S, Fedak PWM. Acellular bioscaffolds redirect cardiac fibroblasts and promote functional tissue repair in rodents and humans with myocardial injury. Sci Rep 2020; 10:9459. [PMID: 32528051 PMCID: PMC7289874 DOI: 10.1038/s41598-020-66327-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/19/2020] [Indexed: 01/31/2023] Open
Abstract
Coronary heart disease is a leading cause of death. Tissue remodeling and fibrosis results in cardiac pump dysfunction and ischemic heart failure. Cardiac fibroblasts may rebuild damaged tissues when prompted by suitable environmental cues. Here, we use acellular biologic extracellular matrix scaffolds (bioscaffolds) to stimulate pathways of muscle repair and restore tissue function. We show that acellular bioscaffolds with bioinductive properties can redirect cardiac fibroblasts to rebuild microvascular networks and avoid tissue fibrosis. Specifically, when human cardiac fibroblasts are combined with bioactive scaffolds, gene expression is upregulated and paracrine mediators are released that promote vasculogenesis and prevent scarring. We assess these properties in rodents with myocardial infarction and observe bioscaffolds to redirect fibroblasts, reduce tissue fibrosis and prevent maladaptive structural remodeling. Our preclinical data confirms that acellular bioscaffold therapy provides an appropriate microenvironment to stimulate pathways of functional repair. We translate our observations to patients with coronary heart disease by conducting a first-in-human observational cohort study. We show that bioscaffold therapy is associated with improved perfusion of infarcted myocardium, reduced myocardial scar burden, and reverse structural remodeling. We establish that clinical use of acellular bioscaffolds is feasible and offers a new frontier to enhance surgical revascularization of ischemic heart muscle.
Collapse
Affiliation(s)
- Daniyil A Svystonyuk
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Holly E M Mewhort
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Bobak Heydari
- Department of Radiology, Cumming School of Medicine, Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yoko Mikami
- Department of Radiology, Cumming School of Medicine, Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jeannine D Turnbull
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Guoqi Teng
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Darrell D Belke
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Karl T Wagner
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Samar A Tarraf
- Department of Civil Engineering, Libin Cardiovascular Institute and Centre for Bioengineering Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Elena S DiMartino
- Department of Civil Engineering, Libin Cardiovascular Institute and Centre for Bioengineering Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - James A White
- Department of Radiology, Cumming School of Medicine, Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jacqueline A Flewitt
- Department of Radiology, Cumming School of Medicine, Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Cheung
- Department of Radiology, Cumming School of Medicine, Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - David G Guzzardi
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sean Kang
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
31
|
Investigating the potential effects of selective histone deacetylase 6 inhibitor ACY1215 on infarct size in rats with cardiac ischemia-reperfusion injury. BMC Pharmacol Toxicol 2020; 21:21. [PMID: 32178737 PMCID: PMC7077123 DOI: 10.1186/s40360-020-0400-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/28/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Despite the fact that histone deacetylase (HDAC) inhibitors have been tested to treat various cardiovascular diseases, the effects of selective HDAC6 inhibitor ACY1215 on infarct size during cardiac ischemia-reperfusion (IR) injury still remain unknown. In the present study we aimed to investigate the effects of ACY1215 on infarct size in rats with cardiac IR injury, as well as to examine the association between HDAC6 inhibitors and the gene expression of hypoxia inducible factor-1α (HIF-1α), a key regulator of cellular responses to hypoxia. METHODS By using computational analysis of high-throughput expression profiling dataset, the association between HDAC inhibitors (pan-HDAC inhibitors panobinostat and vorinostat, and HDAC6 inhibitor ISOX) and their effects on HIF-1α gene-expression were evaluated. The male Wistar rats treated with ligation of left coronary artery followed by reperfusion were used as a cardiac IR model. ACY1215 (50 mg/kg), pan-HDAC inhibitor MPT0E028 (25 mg/kg), and vehicle were intraperitoneally injected within 5 min before reperfusion. The infarct size in rat myocardium was determined by 2,3,5-triphenyltetrazolium chloride staining. The serum levels of transforming growth factor-β (TGF-β) and C-reactive protein (CRP) were also determined. RESULTS The high-throughput gene expression assay showed that treatment of ISOX was associated with a more decreased gene expression of HIF-1α than that of panobinostat and vorinostat. Compared to control rats, ACY1215-treated rats had a smaller infarct size (49.75 ± 9.36% vs. 19.22 ± 1.70%, p < 0.05), while MPT0E028-treated rats had a similar infarct size to control rats. ACY-1215- and MPT0E028-treated rats had a trend in decreased serum TGF-β levels, but not statistically significant. ACY1215-treated rats also had higher serum CRP levels compared to control rats (641.6 μg/mL vs. 961.37 ± 64.94 μg/mL, p < 0.05). CONCLUSIONS Our research indicated that HDAC6 inhibition by ACY1215 might reduce infarct size in rats with cardiac IR injury possibly through modulating HIF-1α expression. TGF-β and CRP should be useful biomarkers to monitor the use of ACY1215 in cardiac IR injury.
Collapse
|
32
|
Ahsan F, Mahmood T, Usmani S, Bagga P, Shamim A, Tiwari R, Verma N, Siddiqui MH. A conglomeration of preclinical models related to myocardial infarction. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000418365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Neeraj Verma
- Hygia Institute of Pharmaceutical Education and Research, India
| | | |
Collapse
|
33
|
Lin CF, Su CJ, Liu JH, Chen ST, Huang HL, Pan SL. Potential Effects of CXCL9 and CCL20 on Cardiac Fibrosis in Patients with Myocardial Infarction and Isoproterenol-Treated Rats. J Clin Med 2019; 8:jcm8050659. [PMID: 31083544 PMCID: PMC6572441 DOI: 10.3390/jcm8050659] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/02/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
The chemokines CXCL9 and CCL20 have been reported to be associated with ventricular dysfunction. This study was aimed to investigate the effects of CXCL9/CCL20 on cardiac fibrosis following myocardial infarction (MI). Blood samples of patients with MI were obtained to determine the serum CXCL9, CCL20, tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β). The expression of CXCL9 and CCL20 in hypoxia-incubated H9c2 cells and TNF-α/TGF-β-activated peripheral blood mononuclear cells (PBMCs) were examined. The experimental MI of rats was produced by the intraperitoneal injection of isoproterenol (ISO) (85 mg/kg/day) for two consecutive days. The growth and migration of CXCL9/CCL20-incubated cardiac fibroblasts in vitro were evaluated. TNF-α/TGF-β-activated PBMCs showed an enhanced expression of CXCL9 and CCL20, while hypoxic H9c2 cells did not. Patients with MI had significantly enhanced levels of serum TGF-β and CXCL9 compared to healthy subjects. ISO-treated rats had increased serum CXCL9 levels and marked cardiac fibrosis compared to control rats. The trend of increased serum CCL20 in patients with MI and ISO-treated rats was not significant. CXCL9-incubated cardiac fibroblasts showed enhanced proliferation and migration. The findings of this study suggest that an enhanced expression of CXCL9 following MI might play a role in post-MI cardiac fibrosis by activating cardiac fibroblasts.
Collapse
Affiliation(s)
- Chao-Feng Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan.
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan.
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104, Taiwan.
| | - Chih-Jou Su
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan.
| | - Jia-Hong Liu
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Shui-Tien Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Han-Li Huang
- TMU Biomedical Commercialization Center, Taipei Medical University, Taipei 110, Taiwan.
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- TMU Biomedical Commercialization Center, Taipei Medical University, Taipei 110, Taiwan.
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
34
|
Veldhuizen J, Migrino RQ, Nikkhah M. Three-dimensional microengineered models of human cardiac diseases. J Biol Eng 2019; 13:29. [PMID: 30988697 PMCID: PMC6448321 DOI: 10.1186/s13036-019-0155-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/13/2019] [Indexed: 01/17/2023] Open
Abstract
In vitro three-dimensional (3D) microengineered tissue models have been the recent focus of pathophysiological studies, particularly in the field of cardiovascular research. These models, as classified by 3D biomimetic tissues within micrometer-scale platforms, enable precise environmental control on the molecular- and cellular-levels to elucidate biological mechanisms of disease progression and enhance efficacy of therapeutic research. Microengineered models also incorporate directed stem cell differentiation and genome modification techniques that warrant derivation of patient-specific and genetically-edited human cardiac cells for precise recapitulation of diseased tissues. Additionally, integration of added functionalities and/or structures into these models serves to enhance the capability to further extract disease-specific phenotypic, genotypic, and electrophysiological information. This review highlights the recent progress in the development of in vitro 3D microengineered models for study of cardiac-related diseases (denoted as CDs). We will primarily provide a brief overview on currently available 2D assays and animal models for studying of CDs. We will further expand our discussion towards currently available 3D microengineered cardiac tissue models and their implementation for study of specific disease conditions.
Collapse
Affiliation(s)
- Jaimeson Veldhuizen
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, 501 E Tyler Mall Building ECG, Suite 334, Tempe, AZ 85287-9709 USA
| | | | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, 501 E Tyler Mall Building ECG, Suite 334, Tempe, AZ 85287-9709 USA
| |
Collapse
|
35
|
Stanley JRL, Keating JH, San Souci KJ. An Overview on the Considerations for the Planning of Nonclinical Necropsies for Medical Device Studies. Toxicol Pathol 2019; 47:213-220. [PMID: 30727861 DOI: 10.1177/0192623319825821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The terminal collection and histological processing of medical devices is an expensive, labor-, and material-intensive endeavor, which requires adequate experience, innovation, and preparation for success. It is also an exciting endeavor that continually challenges, intellectually engages, and improves the skills and knowledge of the pathologist. Awareness of the importance of the medical device pathologist's involvement, communication, and oversight throughout the development, implementation, and execution of a nonclinical assessment of a medical device is in the best interest of the test facility, the histopathology laboratory, the pathologist, the sponsor, and, ultimately, the patients. This article serves to present as a primer of key considerations for the approach and conduct of "nontoxicological" studies, defined as studies involving animal models of deployment or implantation of medical devices as well as surgical animal models.
Collapse
|
36
|
Blackwood EA, Azizi K, Thuerauf DJ, Paxman RJ, Plate L, Kelly JW, Wiseman RL, Glembotski CC. Pharmacologic ATF6 activation confers global protection in widespread disease models by reprograming cellular proteostasis. Nat Commun 2019; 10:187. [PMID: 30643122 PMCID: PMC6331617 DOI: 10.1038/s41467-018-08129-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 12/11/2018] [Indexed: 01/05/2023] Open
Abstract
Pharmacologic activation of stress-responsive signaling pathways provides a promising approach for ameliorating imbalances in proteostasis associated with diverse diseases. However, this approach has not been employed in vivo. Here we show, using a mouse model of myocardial ischemia/reperfusion, that selective pharmacologic activation of the ATF6 arm of the unfolded protein response (UPR) during reperfusion, a typical clinical intervention point after myocardial infarction, transcriptionally reprograms proteostasis, ameliorates damage and preserves heart function. These effects were lost upon cardiac myocyte-specific Atf6 deletion in the heart, demonstrating the critical role played by ATF6 in mediating pharmacologically activated proteostasis-based protection of the heart. Pharmacological activation of ATF6 is also protective in renal and cerebral ischemia/reperfusion models, demonstrating its widespread utility. Thus, pharmacologic activation of ATF6 represents a proteostasis-based therapeutic strategy for ameliorating ischemia/reperfusion damage, underscoring its unique translational potential for treating a wide range of pathologies caused by imbalanced proteostasis.
Collapse
Affiliation(s)
- Erik A Blackwood
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Khalid Azizi
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Donna J Thuerauf
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Ryan J Paxman
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Lars Plate
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - R Luke Wiseman
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Christopher C Glembotski
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
37
|
Mizuno M, Ito Y, Sugidachi A. A novel porcine model of thrombotic myocardial infarction with cardiac dysfunction sensitive to dual antiplatelet therapy. Eur J Pharmacol 2018; 834:103-108. [PMID: 30016661 DOI: 10.1016/j.ejphar.2018.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
Abstract
Few effective porcine models of myocardial infarction (MI) related to platelet thrombus formation are available. In this study, we established a novel porcine MI model and examined the effect of dual antiplatelet therapy (DAPT) with aspirin and prasugrel, a P2Y12 antagonist, using this MI model. Thrombotic MI was photochemically induced using rose bengal. Male miniature pigs were divided into 3 treatment groups: Sham, MI, and DAPT. In the DAPT group, aspirin (10 mg/kg, p.o.) and prasugrel (1 mg/kg, p.o.) were administered 4 h before photo-irradiation. Platelet aggregation, MI volume, and cardiac function were evaluated 24 h after photo-irradiation. Inhibition of ADP-induced platelet aggregation in the DAPT group was about 45%, similar to the effects of DAPT in a clinical setting. No MI was observed in the Sham group, and MI volume was 12.9 ± 2.9% in the left ventricle (P = 0.0016) in the MI group. Additionally, an increase in end-systolic volume (P = 0.0006), and a decrease in stroke volume (P = 0.0001) and ejection fraction (P < 0.0001) were observed in the MI group compared to the Sham group without any changes in end-diastolic volume. DAPT significantly decreased MI volume (P = 0.0006) and ameliorated cardiac dysfunction compared to the MI group. In conclusion, a novel porcine model of thrombotic MI with cardiac dysfunction was established. In this model, DAPT decreased MI volume and ameliorated of cardiac dysfunction, suggesting that this porcine MI model could be useful for future research on MI and antithrombotic agents.
Collapse
Affiliation(s)
- Makoto Mizuno
- Rare Disease and LCM Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yusuke Ito
- Rare Disease and LCM Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Atsuhiro Sugidachi
- Rare Disease and LCM Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan.
| |
Collapse
|
38
|
Tsifaki M, Kelaini S, Caines R, Yang C, Margariti A. Regenerating the Cardiovascular System Through Cell Reprogramming; Current Approaches and a Look Into the Future. Front Cardiovasc Med 2018; 5:109. [PMID: 30177971 PMCID: PMC6109758 DOI: 10.3389/fcvm.2018.00109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease (CVD), despite the advances of the medical field, remains one of the leading causes of mortality worldwide. Discovering novel treatments based on cell therapy or drugs is critical, and induced pluripotent stem cells (iPS Cells) technology has made it possible to design extensive disease-specific in vitro models. Elucidating the differentiation process challenged our previous knowledge of cell plasticity and capabilities and allows the concept of cell reprogramming technology to be established, which has inspired the creation of both in vitro and in vivo techniques. Patient-specific cell lines provide the opportunity of studying their pathophysiology in vitro, which can lead to novel drug development. At the same time, in vivo models have been designed where in situ transdifferentiation of cell populations into cardiomyocytes or endothelial cells (ECs) give hope toward effective cell therapies. Unfortunately, the efficiency as well as the concerns about the safety of all these methods make it exceedingly difficult to pass to the clinical trial phase. It is our opinion that creating an ex vivo model out of patient-specific cells will be one of the most important goals in the future to help surpass all these hindrances. Thus, in this review we aim to present the current state of research in reprogramming toward the cardiovascular system's regeneration, and showcase how the development and study of a multicellular 3D ex vivo model will improve our fighting chances.
Collapse
Affiliation(s)
- Marianna Tsifaki
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Sophia Kelaini
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Rachel Caines
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Chunbo Yang
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Andriana Margariti
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
39
|
Yu Y, Jin L, Zhuang Y, Hu Y, Cang J, Guo K. Cardioprotective effect of rosuvastatin against isoproterenol-induced myocardial infarction injury in rats. Int J Mol Med 2018; 41:3509-3516. [PMID: 29568858 DOI: 10.3892/ijmm.2018.3572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/25/2018] [Indexed: 11/05/2022] Open
Abstract
Rosuvastatin, a member of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, exerts various pharmacological activities. This study evaluated the cardioprotective effect of rosuvastatin on isoproterenol-induced myocardial infarction injury in rats. A rat model of myocardial infarction injury was induced by isoproterenol (ISO) for 2 consecutive days, rosuvastatin was administered for 8 weeks. The levels of myocardial infarct size, aspartate transaminase (AST), alanine transaminase (ALT), creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH) activities, as well as malondialdehyde (MDA) levels, superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) activities and reduced glutathione (GSH) concentrations were determined. Hematoxylin and eosin staining was used to observe cardiac histological changes. Interleukin-1β (IL-1β) and IL-18 levels in heart tissues were detected with ELISA kits. The mRNA and protein levels of NOD-like receptor superfamily, pyrin domain containing 3 (NLRP3) inflammasome were measured by qRT-PCR and western blot analysis, respectively. Our results showed that treatment with rosuvastatin reduced myocardial infract area, ameliorated histopathological alterations in myocardium, and decreased activities of myocardial injury marker enzymes in ISO-induced rats. In addition, rosuvastatin remarkably restored ISO-induced elevation of lipid peroxidation and decrease of antioxidants, significantly reduced myocardial pro-inflammatory cytokines concentrations in this animal model. Furthermore, rosuvastatin significantly inhibited the activation of NLRP3 inflammasome in this animal model. This study demonstrates that rosuvastatin significantly alleviates ISO-induced myocardial infarction injury. The mechanism is associated with attenuation of oxidative stress and inflammation, via the inhibition of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Lin Jin
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yamin Zhuang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yan Hu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jing Cang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
40
|
Chen M, Wang LL, Chung JJ, Kim YH, Atluri P, Burdick JA. Methods To Assess Shear-Thinning Hydrogels for Application As Injectable Biomaterials. ACS Biomater Sci Eng 2017; 3:3146-3160. [PMID: 29250593 PMCID: PMC5727472 DOI: 10.1021/acsbiomaterials.7b00734] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
Injectable hydrogels have gained popularity as a vehicle for the delivery of cells, growth factors, and other molecules to localize and improve their retention at the injection site, as well as for the mechanical bulking of tissues. However, there are many factors, such as viscosity, storage and loss moduli, and injection force, to consider when evaluating hydrogels for such applications. There are now numerous tools that can be used to quantitatively assess these factors, including for shear-thinning hydrogels because their properties change under mechanical load. Here, we describe relevant rheological tests and ways to measure injection force using a force sensor or a mechanical testing machine toward the evaluation of injectable hydrogels. Injectable, shear-thinning hydrogels can be used in a variety of clinical applications, and as an example we focus on methods for injection into the heart, where an understanding of injection properties and mechanical forces is imperative for consistent hydrogel delivery and retention. We discuss methods for delivery of hydrogels to mouse, rat, and pig hearts in models of myocardial infarction, and compare methods of tissue postprocessing for hydrogel preservation. Our intent is that the methods described herein can be helpful in the design and assessment of shear-thinning hydrogels for widespread biomedical applications.
Collapse
Affiliation(s)
- Minna
H. Chen
- Department
of Bioengineering and Division
of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Leo L. Wang
- Department
of Bioengineering and Division
of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jennifer J. Chung
- Department
of Bioengineering and Division
of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Young-Hun Kim
- Department
of Bioengineering and Division
of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Pavan Atluri
- Department
of Bioengineering and Division
of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jason A. Burdick
- Department
of Bioengineering and Division
of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
41
|
Kumar M, Nayak PK. Psychological sequelae of myocardial infarction. Biomed Pharmacother 2017; 95:487-496. [PMID: 28866415 DOI: 10.1016/j.biopha.2017.08.109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 01/10/2023] Open
Abstract
Patient with myocardial infarction (MI) are often affected by psychological disorders such as depression, anxiety, and post-traumatic stress disorder. Psychological disorders are disabling and have a negative influence on recovery, reduce the quality of life and causes high mortality rate in MI patients. Despite tremendous advancement in technologies, screening scales, and treatment strategies, psychological sequelae of MI are currently understudied, underestimated, underdiagnosed, and undertreated. Depression is highly prevalent in MI patients followed by anxiety and post-traumatic stress disorder. Pathophysiological factors involved in psychopathologies observed in patients with MI are sympathetic over-activity, hypothalamic-pituitary-adrenal axis dysfunction, and inflammation. Numerous preclinical and clinical studies evidenced a positive association between MI and psychopathologies with a common molecular pathophysiology. This review provides an update on diagnostic feature, prevalence, pathophysiology, clinical outcomes, and management strategies of psychopathologies associated with MI. Moreover, preclinical research findings on molecular mechanisms involved in post-MI psychopathologies and future therapeutic strategies have been outlined in the review.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.
| | - Prasanta Kumar Nayak
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
42
|
Lähteenvuo J, Ylä-Herttuala S. Advances and Challenges in Cardiovascular Gene Therapy. Hum Gene Ther 2017; 28:1024-1032. [PMID: 28810808 DOI: 10.1089/hum.2017.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many promising cardiovascular gene therapy approaches have failed to fulfill expectations in clinical trials. However, 20 years of research and method development has laid a solid groundwork for future therapies, and the need for new treatment options still exists. The safety of gene therapy has been established with various viral vectors, transgenes and delivery methods. Improving success in clinical settings requires careful consideration of the translational process. This requires both improving animal models and preclinical end points, and new approach in patient recruitment and selection of clinical end points. This review focuses on bidirectional translationality from bench to bedside and back and proposes ways to improve the process. Developing a highly complex new therapy has taken an enormous amount of work and resources, but perhaps now after the hard lessons cardiovascular gene therapy is ready become a clinical reality.
Collapse
Affiliation(s)
- Johanna Lähteenvuo
- 1 A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- 1 A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland .,2 Heart Center and Gene Therapy Unit, Kuopio University Hospital , Kuopio, Finland
| |
Collapse
|
43
|
Myocardial Infarction and Exercise Training: Evidence from Basic Science. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:139-153. [DOI: 10.1007/978-981-10-4307-9_9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Banerjee AG, Das N, Shengule SA, Sharma PA, Srivastava RS, Shrivastava SK. Design, synthesis, evaluation and molecular modelling studies of some novel 5,6-diphenyl-1,2,4-triazin-3(2H)-ones bearing five-member heterocyclic moieties as potential COX-2 inhibitors: A hybrid pharmacophore approach. Bioorg Chem 2016; 69:102-120. [PMID: 27750057 DOI: 10.1016/j.bioorg.2016.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 01/14/2023]
Abstract
A series of novel hybrids comprising of 1,3,4-oxadiazole/thiadiazole and 1,2,4-triazole tethered to 5,6-diphenyl-1,2,4-triazin-3(2H)-one were designed, synthesised and evaluated as COX-2 inhibitors for the treatment of inflammation. The synthesised hybrids were characterised using FT-IR, 1H NMR, 13C NMR, elemental (C,H,N) analyses and assessed for their anti-inflammatory potential by in vitro albumin denaturation assay. Compounds exhibiting activity comparable to indomethacin and celecoxib were further evaluated for in vivo anti-inflammatory activity. Oral administration of promising compounds 3c-3e and 4c-4e did not evoke significant gastric, hepatic and renal toxicity in rats. These potential compounds exhibited reduced malondialdehyde (MDA) content on the gastric mucosa suggesting their protective effects by inhibition of lipid peroxidation. Based on the outcome of in vitro COX assay, compounds 3c-3e and 4c-4e (IC50 0.60-1.11μM) elicited an interesting profile as competitive selective COX-2 inhibitors. Further, selected compounds 3e and 4c were found devoid of cardiotoxicity post evaluation on myocardial infarcted rats. The in silico binding mode of the potential compounds into the COX-2 active site through docking and molecular dynamics exemplified their consensual interaction and subsequent COX-2 inhibition with significant implications for structure-based drug design.
Collapse
Affiliation(s)
- Anupam G Banerjee
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| | - Nirupam Das
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India; Department of Pharmaceutical Sciences, Assam University, Silchar 788 011, India
| | - Sushant A Shengule
- National Toxicology Centre, Vadgaon Khurd, Sinhagad Road, Pune 411 041, India
| | - Piyoosh A Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| | - Radhey Shyam Srivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| | - Sushant Kumar Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India.
| |
Collapse
|
45
|
Kumar M, Kasala ER, Bodduluru LN, Kumar V, Lahkar M. Molecular and biochemical evidence on the protective effects of quercetin in isoproterenol-induced acute myocardial injury in rats. J Biochem Mol Toxicol 2016; 31:1-8. [DOI: 10.1002/jbt.21832] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Mukesh Kumar
- Department of Pharmacology & Toxicology; National Institute of Pharmaceutical Education and Research; Guwahati 781 032 Assam India
| | - Eshvendar Reddy Kasala
- Department of Pharmacology & Toxicology; National Institute of Pharmaceutical Education and Research; Guwahati 781 032 Assam India
| | - Lakshmi Narendra Bodduluru
- Department of Pharmacology & Toxicology; National Institute of Pharmaceutical Education and Research; Guwahati 781 032 Assam India
| | - Vikas Kumar
- Neuropharmacology Research Laboratory, Department of Pharmaceutics; Indian Institute of Technology (Banaras Hindu University); Varanasi 221 005 Uttar Pradesh India
| | - Mangala Lahkar
- Department of Pharmacology & Toxicology; National Institute of Pharmaceutical Education and Research; Guwahati 781 032 Assam India
- Department of Pharmacology; Gauhati Medical College; Guwahati 781 032 India
| |
Collapse
|
46
|
Kumar M, Kasala ER, Bodduluru LN, Dahiya V, Lahkar M. Baicalein protects isoproterenol induced myocardial ischemic injury in male Wistar rats by mitigating oxidative stress and inflammation. Inflamm Res 2016; 65:613-22. [DOI: 10.1007/s00011-016-0944-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/19/2016] [Accepted: 03/30/2016] [Indexed: 12/21/2022] Open
|