1
|
Li F, Yao B, Li C, Sun G, Yang F, Zeng H, Li X. Synthesis and Performance Evaluation of Multialkylated Aromatic Amide Oligomeric Surfactants as Corrosion Inhibitor/Drag Reducing Agents for Natural Gas Pipeline. ACS OMEGA 2024; 9:43977-43985. [PMID: 39493994 PMCID: PMC11525528 DOI: 10.1021/acsomega.4c08381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
Drag reducing agents (DRAs) including amphiphiles and polymers can enhance energy efficiency and transmission volume in natural gas pipelines. However, the correlation between DRA molecular structure and drag reduction efficiency remains unclear. In this paper, the multialkylated aromatic amides (MAA) oligomeric surfactants with different numbers of amide group/n-dodecane chain (from 1 to 3) were first synthesized and characterized. Then, the potential efficiency of MAA as the corrosion inhibitors (CIs)/DRAs for natural gas pipelines was investigated by interfacial activity analysis, film-forming property test, electrochemical polarization curve measurement, and in-door loop test. The results showed that the molecular structure is the key factor influencing the performance of MAA. By increasing the number of amide group/n-dodecane chains, the interfacial activity of MAA improves greatly, thus outstandingly affecting the film-forming property of the MAA on the carbon steel sheet. For MAA-1, the formed film is too thin to cover the surface roughness, and then the corrosion inhibiting (78.64%)/drag reducing (0-2%) rates are the lowest. For MAA-3, the formed film is the thickest and smooth, thus imparting the largest corrosion inhibiting (93.88%)/drag reducing (10-14%) rates to MAA-3. For MAA-2, the formed film is thicker but not smooth, and the corrosion inhibiting (89.88%)/drag reducing (4-6%) rates are intermediate. We speculate that the structure of the MAA greatly influences the adsorption and self-assembly of MAA on the inner pipe wall and then generates different performances. This work is helpful for guiding the development of natural gas DRAs with high efficiency.
Collapse
Affiliation(s)
- Feng Li
- CNOOC
Gas & Power Group, Beijing 100028, PR China
| | - Bo Yao
- College
of Pipeline and Civil Engineering, China
University of Petroleum, Qingdao, Shandong 266580, PR China
| | - Chuanxian Li
- College
of Pipeline and Civil Engineering, China
University of Petroleum, Qingdao, Shandong 266580, PR China
| | - Guangyu Sun
- College
of Pipeline and Civil Engineering, China
University of Petroleum, Qingdao, Shandong 266580, PR China
| | - Fei Yang
- College
of Pipeline and Civil Engineering, China
University of Petroleum, Qingdao, Shandong 266580, PR China
| | - Hongbo Zeng
- Department
of Chemical and Materials Engineering, University
of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Xinyuan Li
- Sino
Oil King Shine Chemical Co., Ltd, Langfang, Hebei 065000, PR China
| |
Collapse
|
2
|
Nakahara H, Koga K, Matsuoka K. Distinct Solubilization Mechanisms of Medroxyprogesterone in Gemini Surfactant Micelles: A Comparative Study with Progesterone. Molecules 2024; 29:4945. [PMID: 39459313 PMCID: PMC11510562 DOI: 10.3390/molecules29204945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
The solubilization behavior of medroxyprogesterone (MP) within gemini surfactant micelles (14-6-14,2Br-) was investigated and compared with that of progesterone to uncover distinct solubilization mechanisms. We employed 1H-NMR and 2D ROESY spectroscopy to elucidate the spatial positioning of MP within the micelle, revealing that MP integrates more deeply into the micellar core. This behavior is linked to the unique structural features of MP, particularly its 17β-acetyl group, which promotes enhanced interactions with the hydrophobic regions of the micelle, while the 6α-methyl group interacts with the hydrophilic regions of the micelle. The 2D ROESY correlations specifically highlighted interactions between the hydrophobic chains of the surfactant and two protons of MP, H22 and H19. Complementary machine learning and electron density analyses supported these spectroscopic findings, underscoring the pivotal role of the molecular characteristics of MP in its solubilization behavior. These insights into the solubilization dynamics of MP not only advance our understanding of hydrophobic compound incorporation in gemini surfactant micelles but also indicate the potential of 14-6-14,2Br- micelles for diverse drug delivery applications.
Collapse
Affiliation(s)
- Hiromichi Nakahara
- Department of Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Kazutaka Koga
- Department of Kampo Pharmacy, Faculty of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan;
| | - Keisuke Matsuoka
- Laboratory of Chemistry, Faculty of Education, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan;
| |
Collapse
|
3
|
Akiyama Y, Yamashina M, Toyota S. Azaylide-based gemini amphiphiles displaying unique self-assembling behavior via an even-odd effect of alkyl linker chain length. SOFT MATTER 2024; 20:6539-6543. [PMID: 39108245 DOI: 10.1039/d4sm00789a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Herein, we report a straightforward synthesis of azaylide-based gemini amphiphiles using bis(diphenylphosphino)alkanes via the Staudinger reaction. The prepared gemini amphiphiles exhibited an even-odd effect in their self-assembly behavior depending on the length of the alkyl linkers. Furthermore, the assembled micelles had high host capability toward hydrophobic guests in water.
Collapse
Affiliation(s)
- Yoshimori Akiyama
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro-ku, 2-12-1 Ookayama, Tokyo 152-8551, Japan.
| | - Masahiro Yamashina
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro-ku, 2-12-1 Ookayama, Tokyo 152-8551, Japan.
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro-ku, 2-12-1 Ookayama, Tokyo 152-8551, Japan.
| |
Collapse
|
4
|
Oliveira IS, Silva SG, Gomes AC, Real Oliveira MECD, Vale MLCD, Marques EF. Cationic Serine-Based Gemini Surfactant:Monoolein Aggregates as Viable and Efficacious Agents for DNA Complexation and Compaction: A Cytotoxicity and Physicochemical Assessment. J Funct Biomater 2024; 15:224. [PMID: 39194661 DOI: 10.3390/jfb15080224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Cationic gemini surfactants have emerged as potential gene delivery agents as they can co-assemble with DNA due to a strong electrostatic association. Commonly, DNA complexation is enhanced by the inclusion of a helper lipid (HL), which also plays a key role in transfection efficiency. The formation of lipoplexes, used as non-viral vectors for transfection, through electrostatic and hydrophobic interactions is affected by various physicochemical parameters, such as cationic surfactant:HL molar ratio, (+/-) charge ratio, and the morphological structure of the lipoplexes. Herein, we investigated the DNA complexation ability of mixtures of serine-based gemini surfactants, (nSer)2N5, and monoolein (MO) as a helper lipid. The micelle-forming serine surfactants contain long lipophilic chains (12 to 18 C atoms) and a five CH2 spacer, both linked to the nitrogen atoms of the serine residues by amine linkages. The (nSer)2N5:MO aggregates are non-cytotoxic up to 35-90 µM, depending on surfactant and surfactant/MO mixing ratio, and in general, higher MO content and longer surfactant chain length tend to promote higher cell viability. All systems efficaciously complex DNA, but the (18Ser)2N5:MO one clearly stands as the best-performing one. Incorporating MO into the serine surfactant system affects the morphology and size distribution of the formed mixed aggregates. In the low concentration regime, gemini-MO systems aggregate in the form of vesicles, while at high concentrations the formation of a lamellar liquid crystalline phase is observed. This suggests that lipoplexes might share a similar bilayer-based structure.
Collapse
Affiliation(s)
- Isabel S Oliveira
- CIQUP (Centro de Investigação em Química da Universidade do Porto), IMS (Institute of Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Sandra G Silva
- LAQV-REQUIMTE (Laboratório Associado para a Química Verde-Rede Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Andreia C Gomes
- CBMA (Centro de Biologia Molecular e Ambiental), Departamento de Biologia, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal
| | - M Elisabete C D Real Oliveira
- CFUM (Center of Physics), Departamento de Física, Universidade do Minho, Campos de Gualtar, 4710-057 Braga, Portugal
| | - M Luísa C do Vale
- LAQV-REQUIMTE (Laboratório Associado para a Química Verde-Rede Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Eduardo F Marques
- CIQUP (Centro de Investigação em Química da Universidade do Porto), IMS (Institute of Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Shaheen A, Dhanagar A. Gemini Surfactant-Induced Cysteine-Capped Copper Nanoclusters Self-Assembly with Enhanced Peroxidase-Like Activity and Colorimetric Glutathione Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16909-16920. [PMID: 39087886 DOI: 10.1021/acs.langmuir.4c01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We have prepared a novel assembly with copper nanoclusters (CuNCs) and imidazolium-based gemini surfactants (different chain lengths). These novel mimic enzymes formed through the assembly of nanocluster-gemini surfactants have been utilized in creating colorimetric sensors to detect biomolecules. Yet, understanding the method for detecting glutathione (GSH) and its sensing mechanism using this specific assembly-based colorimetric sensor poses a significant challenge. Because of the role of surface ligands, the complexes of cysteine-capped CuNCs (Cys-CuNCs) and gemini surfactants exhibit strong amphiphilicity, enabling them to self-assemble like a molecular amphiphile. We have investigated the kinetics and catalytic capabilities of this Cys-CuNCs@gemini surfactant assembly through peroxidase-like activity. Additionally, a sensitive and simple-to-use colorimetric sensing approach for glutathione (GSH) is also disclosed here, demonstrating a low limit of detection, by using this peroxidase-like activity of Cys-CuNCs@gemini surfactant assemblies. Thus, the remarkable advantages of the Cys-CuNCs@gemini surfactant nanozyme make it suitable for the precise colorimetric detection of GSH, demonstrating excellent sensitivity and reliable selectivity. Additionally, it performs well in detecting GSH in various soft drinks.
Collapse
Affiliation(s)
- Arifa Shaheen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Arun Dhanagar
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
6
|
Liu X, Liu Y, Luo C, Wu N, Jiang J, Luo J, Ye C. Study on Dynamic Liquid-Carrying Process of Foaming Agent and Establishment of Mathematical Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39091131 DOI: 10.1021/acs.langmuir.4c01954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The efficiency of foam drainage gas recovery is predominantly dictated by the performance of the foaming agent. To better understand their behavior, a novel testing apparatus was developed to simulate the foam drainage gas recovery process within the wellbore. Through the dynamic liquid-carrying performance tests of four foaming agents under uniform conditions, it was discerned that there existed significant disparities in the liquid-carrying performance and action duration. Further interface performance analysis disclosed that the liquid-carrying capacity and the duration were correlated with their adsorption capacity and interface activity at the gas-liquid interface. Notably, foaming agents with lower adsorption capacity and higher interfacial activity demonstrated superior liquid-carrying performance and longer action duration. By analyzing the consumption of foaming agents during the liquid-carrying process, five dynamic liquid-carrying equations were derived based on first-order reaction kinetics, the Malthusian population model, and the logistic function. The outcomes demonstrated that all these five equations could precisely delineate the dynamic liquid-carrying process of the foaming agent. During the research, we found that the consumption of the foaming agent in the foam drainage gas recovery process is related to its adsorption behavior at the gas-liquid interface, and revealed that the dynamic liquid-carrying process of foaming agent is the increasing process of liquid-carrying capacity under the continuous consumption of limited foaming agent resources. This laid a foundation for the further exploration of the functional mechanism of the foaming agent in the foam drainage gas recovery process.
Collapse
Affiliation(s)
- Xiaoliang Liu
- State Key Laboratory of Oil&Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Yonghui Liu
- State Key Laboratory of Oil&Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
- School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Chengcheng Luo
- State Key Laboratory of Oil&Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
- School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Ning Wu
- State Key Laboratory of Oil&Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
- School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Jinhong Jiang
- State Key Laboratory of Oil&Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
- School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Jie Luo
- State Key Laboratory of Oil&Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
- School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Changqing Ye
- Engineering Technology Research Institute, PetroChina Southwest Oil&Gas Field Company, Chengdu 610017, China
| |
Collapse
|
7
|
Rubčić M, Herak M, Zagorec L, Domazet Jurašin D. Transition Metal-Based Dimeric Metallosurfactants: From Organic-Inorganic Hybrid Structures and Low-Dimensional Magnets to Metallomicelles. Inorg Chem 2024; 63:12218-12230. [PMID: 38885971 PMCID: PMC11220752 DOI: 10.1021/acs.inorgchem.4c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
The dimeric (gemini) as well as metallosurfactants exhibit enhanced physicochemical properties compared with conventional surfactants. By uniting the benefits of both, a series of novel dimeric metallosurfactants of the type (12-2-12)[MBr4] (M = Co, Ni, Cu and Zn) was successfully prepared by the reaction of the dimeric surfactant bis(N,N-dimethyl-N-dodecyl)ethylene-1,2-diammonium dibromide, 12-2-12, and the MBr2 salt. Structures and magnetic properties of the materials were studied comprehensively in the solid state, while their micellization was explored in solution. The obtained results unveil that the incorporation and the choice of transition metal more significantly influence surfactants' structures ((12-2-12)2+ cations adopt V-, U-, or trans-conformations) and the magnetic features (metal ions form 1D or 2D magnetic lattice) than their solution properties. However, all synthesized metallosurfactants display improved self-assembly properties compared with the metal-free precursor. The investigated systems represent a fruitful platform for the development of multifunctional materials as they are simple to produce, can be obtained in high yields, and show advanced properties both in solution and in the solid state. Notably, this work unveils a simple approach to the design and synthesis of novel low-dimensional magnetic systems of great potential for future spintronic and optoelectronic devices.
Collapse
Affiliation(s)
- Mirta Rubčić
- Faculty
of Science, Department of Chemistry, University
of Zagreb, Horvatovac 102a ,Zagreb HR-10000, Croatia
| | - Mirta Herak
- Department
for Research of Materials Under Extreme Conditions, Institute of Physics, Bijenička cesta 46 ,Zagreb HR-10000, Croatia
| | - Leona Zagorec
- Faculty
of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19 ,Zagreb HR-10000, Croatia
| | - Darija Domazet Jurašin
- Division
of Physical Chemistry, Ruđer Bošković
Institute, Bijenička
54 ,Zagreb HR-10000, Croatia
| |
Collapse
|
8
|
Mazurkiewicz E, Lamch Ł, Wilk KA, Obłąk E. Anti-adhesive, anti-biofilm and fungicidal action of newly synthesized gemini quaternary ammonium salts. Sci Rep 2024; 14:14110. [PMID: 38898117 PMCID: PMC11187217 DOI: 10.1038/s41598-024-64859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
Newly synthesized gemini quaternary ammonium salts (QAS) with different counterions (bromide, hydrogen chloride, methylcarbonate, acetate, lactate), chain lengths (C12, C14, C16) and methylene linker (3xCH2) were tested. Dihydrochlorides and dibromides with 12 carbon atoms in hydrophobic chains were characterized by the highest biological activity against planktonic forms of yeast and yeast-like fungi. The tested gemini surfactants also inhibited the production of filaments by C. albicans. Moreover, they reduced the adhesion of C. albicans cells to the surfaces of stainless steel, silicone and glass, and slightly to polystyrene. In particular, the gemini compounds with 16-carbon alkyl chains were most effective against biofilms. It was also found that the tested surfactants were not cytotoxic to yeast cells. Moreover, dimethylcarbonate (2xC12MeCO3G3) did not cause hemolysis of sheep erythrocytes. Dihydrochlorides, dilactate and diacetate showed no mutagenic potential.
Collapse
Affiliation(s)
- Edyta Mazurkiewicz
- Department of Physico-Chemistry of Microorganisms, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Łukasz Lamch
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Ewa Obłąk
- Department of Physico-Chemistry of Microorganisms, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| |
Collapse
|
9
|
Eftaiha AF, Qaroush AK, Foudeh DM, Abo-Shunnar AS, Hammad SB, Assaf KI, Paige MF. The effect of structural changes on the self-assembly of novel green pyridinium-carboxylate gemini surfactants in Langmuir and Langmuir-Blodgett films. SOFT MATTER 2024; 20:3742-3754. [PMID: 38619818 DOI: 10.1039/d3sm01671d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Engineered molecules with tailored molecular structures have the potential to advance various disciplines by enhancing the properties of biological membranes. In this study, we investigated the fundamental interfacial behavior of newly synthesized, water insoluble, cationic pyridinium-carboxylate based gemini surfactants (GSs) using picolinic acid (PA), nicotinic acid (NA), and isonicotinic acid (INA) and their interactions with dipalmitoylphosphatidylcholine (DPPC) in Langmuir and Langmuir-Blodgett (LB) films. Two synthetic methodologies were employed: (a) connecting two alkyl pyridinecarboxylates through the nitrogen atoms with a xylenyl spacer, namely, PAGS, NAGS1, and INAGS; and (b) dimerizing two nicotinic acid molecules through ester linkages with 1,4-benzenedimethanol, and then quaternizing the pyridine nitrogens with hexadecyl chains to yield NAGS2. A combination of Brewster angle microscopy (BAM) and atomic force microscopy (AFM) imaging techniques yielded valuable insights into the morphology of the GS films and their mixtures with DPPC. Density functional theory (DFT) calculations were used to gain further information on the GSs structures and understand their assembly. The results indicate that the film of INAGS is the most hydrophobic film, and its monolayer is the least compressible. When the nitrogen atom and a carboxylate group of the headgroup are positioned closer to each other, the GS molecules tend to form aggregates instead of a continuous film which is observed for the INAGS surfactant. This observation is consistent with the DFT energy values of pair interactions, indicating that both PAGS and NAGS1 have closely packed conformations with high stabilization energy.
Collapse
Affiliation(s)
- Ala'a F Eftaiha
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan.
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Abdussalam K Qaroush
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan.
| | - Dina M Foudeh
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan.
| | - Ahmad S Abo-Shunnar
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan.
| | - Suhad B Hammad
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan.
| | - Khaleel I Assaf
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Matthew F Paige
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
10
|
Man Z, Wu W. Study on the Synthesis, Surface Activity, and Self-Assembly Behavior of Anionic Non-Ionic Gemini Surfactants. Molecules 2024; 29:1725. [PMID: 38675545 PMCID: PMC11052042 DOI: 10.3390/molecules29081725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
The use of surfactants in oil recovery can effectively improve crude oil recovery rate. Due to the enhanced salt and temperature resistance of surfactant molecules by non-ionic chain segments, anionic groups have good emulsifying stability. Currently, there are many studies on anionic non-ionic surfactants for oil recovery in China, but there is relatively little systematic research on introducing EOs into hydrophobic alkyl chains, especially on their self-assembly behavior. This article proposes a simple and effective synthesis method, using 3-aminopropane sulfonic acid, fatty alcohol polyoxyethylene ether, and epichlorohydrin as raw materials, to insert EO into hydrophobic alkyl chains and synthesize a series of new anionic non-ionic Gemini surfactants (CnEO-5, n = 8, 12, 16). The surface activity, thermodynamic properties, and self-assembly behavior of these surfactants were systematically studied through surface tension, conductivity, steady-state fluorescence probes, transmission electron microscopy, and molecular dynamics simulations. The surface tension test results show that CnEO-5 has high surface activity and is higher than traditional single chain surfactants and structurally similar anionic non-ionic Gemini surfactants. Additionally, thermodynamic parameters (e.g., ΔG°mic ΔH°mic ΔS°mic et al. indicate that CnEO-5 molecules are exothermic and spontaneous during the micellization process. DLS, p-values, and TEM results indicate that anionic non-ionic Gemini surfactants with shorter hydrophobic chains (such as C8EO-5) tend to form larger vesicles in aqueous solutions, which are formed in a tail to tail and staggered manner; Negative non-ionic Gemini surfactants with longer hydrophobic chains (such as C12EO-5, C16EO-5) tend to form small micelles. The test results indicate that CnEO-5 anionic non-ionic Gemini surfactants have certain application prospects in improving crude oil recovery.
Collapse
Affiliation(s)
- Zhiqiang Man
- Key Laboratory of Enhanced Oil Recovery, Northeast Petroleum University, Ministry of Education, Daqing 163318, China
- No. 1 Oil Production Plant, PetroChina Daqing Oilfield Company, Daqing 163001, China
| | - Wenxiang Wu
- Key Laboratory of Enhanced Oil Recovery, Northeast Petroleum University, Ministry of Education, Daqing 163318, China
| |
Collapse
|
11
|
Mozrzymas A. Designing the structure of cationic star-shaped trimeric surfactants most active in micelle formation using molecular connectivity indices. Sci Rep 2024; 14:8323. [PMID: 38594372 PMCID: PMC11385977 DOI: 10.1038/s41598-024-58854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
A model expressing the relationship between the logarithm of critical micelle concentration of cationic star-shaped trimeric surfactants and topological indices was obtained using only molecular connectivity indices. Based on the obtained model, the exemplary compound most active in micelle formation was designed. The analysis of the influence of various structural factors on the value of the critical micelle concentration was supported by atomic charge studies. The obtained model will be used to design new star-shaped trimeric surfactants that are more active in formation of micelle as well as to predict their critical micelle concentration.
Collapse
Affiliation(s)
- Anna Mozrzymas
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, ul. Norwida 25, 50-375, Wrocław, Poland.
| |
Collapse
|
12
|
Yan X, Liu Y, Hou Z, Yuan L, Yang J, Dong W. Cleaning Oil-Based Drilling Cuttings with Synthetic Gemini Surfactants. ACS OMEGA 2024; 9:10488-10497. [PMID: 38463275 PMCID: PMC10918673 DOI: 10.1021/acsomega.3c08618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
The chemical cleaning method is the simplest approach for degreasing oil-based drilling cuttings (ODCs), with the effectiveness of the treatment relying mainly on the selection of the surfactant and the cleaning conditions. However, achieving the standard treatment of ODCs directly using conventional surfactants proves challenging. In light of this, this study introduces a synthesized and purified Gemini surfactant named DCY-1. The structure of DCY-1 was confirmed through Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) analyses. The characterization in this article encompasses the use of an interface tension meter, nanoparticle size analysis, scanning electron microscopy, and infrared oil measurement. The critical micelle concentration (CMC) of DCY-1 was determined to be 3.37 × 10-3 mol/L, with a corresponding γcmc value of 37.97 mN/m. In comparison to conventional surfactants, DCY-1 exhibited a larger micelle size of 4.52 nm, approximately 24.52% larger than that of SDS. Moreover, the residual oil rate of 3.96% achieved by DCY-1 was the lowest among the chemical cleaning experimental results. Through a single-factor experiment, the optimal cleaning ability of DCY-1 for ODCs was determined as follows: a surfactant concentration of 3 mmol/L, a temperature of 60 °C, an ODC/liquid mass ratio of 1:4, a cleaning duration of 40 min, and a stirring speed of 1000 rad/min. Under these optimal conditions and after merely two cleaning procedures, the residual oil content of ODCs was reduced to 1.64%, accompanied by a smooth and loose surface structure.
Collapse
Affiliation(s)
- Xuan Yan
- College
of Chemistry and Chemical Engineering, Southwest
Petroleum University, Chengdu 610500, Sichuan, P. R. China
| | - Yucheng Liu
- College
of Chemistry and Chemical Engineering, Southwest
Petroleum University, Chengdu 610500, Sichuan, P. R. China
- Research
Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, Sichuan, P. R. China
| | - Zhengmeng Hou
- Institute
of Subsurface Energy Systems, Clausthal
University of Technology, Clausthal-Zellerfeld 38678, Germany
| | - Lina Yuan
- China
Railway Eryuan Engineering Group Co, Ltd., Chengdu 610500, Sichuan, P. R. China
| | - Jun Yang
- College
of Chemistry and Chemical Engineering, Southwest
Petroleum University, Chengdu 610500, Sichuan, P. R. China
| | - Wenxin Dong
- Industrial
Technology Research Institute, Chongqing
University, Chongqing 400044, P. R. China
| |
Collapse
|
13
|
Sui Y, Guo T, Li D, Guo D, Zhang Z, Cao G. Synthesis and Performance Evaluation of a Novel High-Temperature-Resistant Thickener. Molecules 2023; 28:7036. [PMID: 37894515 PMCID: PMC10609208 DOI: 10.3390/molecules28207036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Successful exploitation of carbonate reservoirs relies on the acid-fracturing process, while the thickeners used in this process play a key role. It is a common engineering problem that thickeners usually fail to function when used in high-temperature environments. Until now, no research has ventured into the field of synthesizing thickeners which can be effectively used at ultra-high temperatures up to 180 °C. In our current study, a novel high-temperature-resistant polyacrylamide thickener named SYGT has been developed. The thermal gravimetric analysis (TGA) reveals that SYGT is capable of withstanding temperatures of up to 300 °C. Both our scanning electron microscopy (SEM) and rheological analysis demonstrate that the SYGT exhibits excellent resistance to both temperature and shear. At 180 °C, the viscosity of the SYGT aqueous solution is no lower than 61.7 mPa·s at a 20% H+ concentration or high salt concentration, and the fracture conductivity of the thickened acid reaches 6 D·cm. For the first time, the influence of the polymer spatial network's structural parameters on the viscosity of polymer solutions has been evaluated quantitatively. It was discovered that the length and surrounding area of the SNS skeleton have a synergistic effect on the viscosity of the polymer solution. Our experiments show that SYGT effectively reduces the acid-rock reaction rate and filtration loss under harsh working conditions such as high temperature, strong shear, high salinity, and a high concentration of acid. The synthesized acid-fracturing thickener (SYGT) has wide application potential in the development of carbonate reservoirs under high-temperature conditions.
Collapse
Affiliation(s)
- Yu Sui
- Key Laboratory of Enhanced Oil Recovery, Ministry of Education, College of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China; (Y.S.); (D.L.); (Z.Z.)
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Tianyue Guo
- Key Laboratory of Enhanced Oil Recovery, Ministry of Education, College of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China; (Y.S.); (D.L.); (Z.Z.)
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Dan Li
- Key Laboratory of Enhanced Oil Recovery, Ministry of Education, College of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China; (Y.S.); (D.L.); (Z.Z.)
| | - Da Guo
- China Petroleum Tarim Oilfield Branch Oil and Gas Engineering Research Institute, No. 26, Shihua Avenue, Korla 841001, China;
| | - Zhiqiu Zhang
- Key Laboratory of Enhanced Oil Recovery, Ministry of Education, College of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China; (Y.S.); (D.L.); (Z.Z.)
| | - Guangsheng Cao
- Key Laboratory of Enhanced Oil Recovery, Ministry of Education, College of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China; (Y.S.); (D.L.); (Z.Z.)
| |
Collapse
|
14
|
Lamch Ł, Szczęsna W, Balicki SJ, Bartman M, Szyk-Warszyńska L, Warszyński P, Wilk KA. Multiheaded Cationic Surfactants with Dedicated Functionalities: Design, Synthetic Strategies, Self-Assembly and Performance. Molecules 2023; 28:5806. [PMID: 37570776 PMCID: PMC10421305 DOI: 10.3390/molecules28155806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Contemporary research concerning surfactant science and technology comprises a variety of requirements relating to the design of surfactant structures with widely varying architectures to achieve physicochemical properties and dedicated functionality. Such approaches are necessary to make them applicable to modern technologies, such as nanostructure engineering, surface structurization or fine chemicals, e.g., magnetic surfactants, biocidal agents, capping and stabilizing reagents or reactive agents at interfaces. Even slight modifications of a surfactant's molecular structure with respect to the conventional single-head-single-tail design allow for various custom-designed products. Among them, multicharge structures are the most intriguing. Their preparation requires specific synthetic routes that enable both main amphiphilic compound synthesis using appropriate step-by-step reaction strategies or coupling approaches as well as further derivatization toward specific features such as magnetic properties. Some of the most challenging aspects of multicharge cationic surfactants relate to their use at different interfaces for stable nanostructures formation, applying capping effects or complexation with polyelectrolytes. Multiheaded cationic surfactants exhibit strong antimicrobial and antiviral activity, allowing them to be implemented in various biomedical fields, especially biofilm prevention and eradication. Therefore, recent advances in synthetic strategies for multiheaded cationic surfactants, their self-aggregation and performance are scrutinized in this up-to-date review, emphasizing their applications in different fields such as building blocks in nanostructure engineering and their use as fine chemicals.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Weronika Szczęsna
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Sebastian J. Balicki
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Marcin Bartman
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Liliana Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (L.S.-W.); (P.W.)
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (L.S.-W.); (P.W.)
| | - Kazimiera A. Wilk
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| |
Collapse
|
15
|
Costa C, Viana A, Oliveira IS, Marques EF. Interactions between Ionic Cellulose Derivatives Recycled from Textile Wastes and Surfactants: Interfacial, Aggregation and Wettability Studies. Molecules 2023; 28:molecules28083454. [PMID: 37110688 PMCID: PMC10144465 DOI: 10.3390/molecules28083454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Interactions between polymers (P) and surfactants (S) in aqueous solution lead to interfacial and aggregation phenomena that are not only of great interest in physical chemistry but also important for many industrial applications, such as the development of detergents and fabric softeners. Here, we synthesized two ionic derivatives-sodium carboxymethylcellulose (NaCMC) and quaternized cellulose (QC)-from cellulose recycled from textile wastes and then explored the interactions of these polymers with assorted surfactants-cationic (CTAB, gemini), anionic (SDS, SDBS) and nonionic (TX-100)-commonly used in the textile industry. We obtained surface tension curves of the P/S mixtures by fixing the polymer concentration and then increasing the surfactant concentration. In mixtures where polymer and surfactant are oppositely charged (P-/S+ and P+/S-), a strong association is observed, and from the surface tension curves, we determined the critical aggregation concentration (cac) and critical micelle concentration in the presence of polymer (cmcp). For mixtures of similar charge (P+/S+ and P-/S-), virtually no interactions are observed, with the notable exception of the QC/CTAB system, which is much more surface active than the neat CTAB. We further investigated the effect of oppositely charged P/S mixtures on hydrophilicity by measuring the contact angles of aqueous droplets on a hydrophobic textile substrate. Significantly, both P-/S+ and P+/S- systems greatly enhance the hydrophilicity of the substrate at much lower surfactant concentrations than the surfactant alone (in particular in the QC/SDBS and QC/SDS systems).
Collapse
Affiliation(s)
- Catarina Costa
- CIQUP, IMS (Institute for Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CeNTI-Centre for Nanotechnology and Smart Materials, Rua Fernando Mesquita, 4760-034 Vila Nova de Famalicão, Portugal
| | - André Viana
- CIQUP, IMS (Institute for Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CeNTI-Centre for Nanotechnology and Smart Materials, Rua Fernando Mesquita, 4760-034 Vila Nova de Famalicão, Portugal
| | - Isabel S Oliveira
- CIQUP, IMS (Institute for Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Eduardo F Marques
- CIQUP, IMS (Institute for Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
16
|
Parekh PY, Patel VI, Khimani MR, Bahadur P. Self-assembly of bile salts and their mixed aggregates as building blocks for smart aggregates. Adv Colloid Interface Sci 2023; 312:102846. [PMID: 36736167 DOI: 10.1016/j.cis.2023.102846] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
The present communication offers a comprehensive overview of the self-assembly of bile salts emphasizing their mixed smart aggregates with a variety of amphiphiles. Using an updated literature survey, we have explored the dissimilar interactions of bile salts with different types of surfactants, phospholipids, ionic liquids, drugs, and a variety of natural and synthetic polymers. While assembling this review, special attention was also provided to the potency of bile salts to alter the size/shape of aggregates formed by several amphiphiles to use these aggregates for solubility improvement of medicinally important compounds, active pharmaceutical ingredients, and also to develop their smart delivery vehicles. A fundamental understanding of bile salt mixed aggregates will enable the development of new strategies for improving the bioavailability of drugs solubilized in newly developed potential hosts and to formulate smart aggregates of desired morphology for specific targeted applications. It enriches our existing knowledge of the distinct interactions exerted in mixed systems of bile salts with variety of amphiphiles. By virtue of this, researchers can get innovative ideas to construct novel nanoaggregates from bile salts by incorporating various amphiphiles that serve as a building block for smart aggregates for their numerous industrial applications.
Collapse
Affiliation(s)
- Paresh Y Parekh
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India
| | - Vijay I Patel
- Department of Chemistry, Navyug Science College, Rander Road, Surat 395009, Gujarat, India.
| | - Mehul R Khimani
- Countryside International School, Nr. Bhesan Railway Crossing, CIS Barbodhan Road, Surat 394125, Gujarat, India
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India
| |
Collapse
|
17
|
Alghamdi YG, Rub MA, Kumar D. Influence of twin-headed gemini micellar system on the study of methionine amino acid with ninhydrin in buffer solution. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221249. [PMID: 36816844 PMCID: PMC9929513 DOI: 10.1098/rsos.221249] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The influence of double-headed gemini was examined in the present study by studying the amino acid methionine mixed with ninhydrin in CH3COOH-CH3COONa buffer solvent. The absorbance was monitored at fixed time intervals with UV-vis spectroscopy. An impact typical of surfactants was observed on the ninhydrin-methionine reaction and explained by a pseudo-phase model of micelles. The effect of different temperatures (343 to 363 K) was also determined. Based on data showing the impact of temperature on kψ , several relevant thermodynamic quantities, ΔH #, ΔS #, and E a, were calculated using linear least-squares regression. In addition, the influence of the other reaction ingredients on the reaction, that is, pH and the concentration of ninhydrin and methionine, was studied. The CMC (critical micelle concentration) of pure geminis and the surfactant system with methionine and ninhydrin was evaluated at two temperatures, i.e. at 303 K and 353 K by conductivity measurements. The CMC values of pure gemini surfactants evaluated in the existing case at 303 K are concordant with the results stated before. Moreover, other parameters, including rates and binding constants, were calculated.
Collapse
Affiliation(s)
- Yousef G. Alghamdi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah-21589, Saudi Arabia
| | - Malik Abdul Rub
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah-21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah-21589, Saudi Arabia
| | - Dileep Kumar
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
18
|
González-Fernández FM, Delledonne A, Nicoli S, Gasco P, Padula C, Santi P, Sissa C, Pescina S. Nanostructured Lipid Carriers for Enhanced Transscleral Delivery of Dexamethasone Acetate: Development, Ex Vivo Characterization and Multiphoton Microscopy Studies. Pharmaceutics 2023; 15:pharmaceutics15020407. [PMID: 36839729 PMCID: PMC9961953 DOI: 10.3390/pharmaceutics15020407] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Corticosteroids, although highly effective for the treatment of both anterior and posterior ocular segment inflammation, still nowadays struggle for effective drug delivery due to their poor solubilization capabilities in water. This research work aims to develop nanostructured lipid carriers (NLC) intended for periocular administration of dexamethasone acetate to the posterior segment of the eye. Pre-formulation studies were initially performed to find solid and liquid lipid mixtures for dexamethasone acetate solubilization. Pseudoternary diagrams at 65 °C were constructed to select the best surfactant based on the macroscopic transparency and microscopic isotropy of the systems. The resulting NLC, obtained following an organic solvent-free methodology, was composed of triacetin, Imwitor® 491 (glycerol monostearate >90%) and tyloxapol with Z-average = 106.9 ± 1.2 nm, PDI = 0.104 ± 0.019 and zeta potential = -6.51 ± 0.575 mV. Ex vivo porcine sclera and choroid permeation studies revealed a considerable metabolism in the sclera of dexamethasone acetate into free dexamethasone, which demonstrated higher permeation capabilities across both tissues. In addition, the NLC behavior once applied onto the sclera was further studied by means of multiphoton microscopy by loading the NLC with the fluorescent probe Nile red.
Collapse
Affiliation(s)
- Felipe M. González-Fernández
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
- Nanovector S.r.l., Via Livorno, 60, 10144 Torino, Italy
- Correspondence: (F.M.G.-F.); (S.P.)
| | - Andrea Delledonne
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Sara Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
| | - Paolo Gasco
- Nanovector S.r.l., Via Livorno, 60, 10144 Torino, Italy
| | - Cristina Padula
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
| | - Patrizia Santi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
| | - Cristina Sissa
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Silvia Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
- Correspondence: (F.M.G.-F.); (S.P.)
| |
Collapse
|
19
|
YOSHIZAWA M, CATTI L. Aromatic micelles: toward a third-generation of micelles. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:29-38. [PMID: 36631075 PMCID: PMC9851959 DOI: 10.2183/pjab.99.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Micelles are useful and widely applied molecular assemblies, formed from amphiphilic molecules, in water. The majority of amphiphiles possess an alkyl chain as the hydrophobic part. Amphiphiles bearing hydrophilic and hydrophobic polymer chains generate so-called polymeric micelles in water. This review focuses on the recent progress of "aromatic micelles", formed from bent polyaromatic/aromatic amphiphiles, for the development of third-generation micelles. Thanks to multiple host-guest interactions, e.g., the hydrophobic effect and π-π/CH-π interactions, the present micelles display wide-ranging uptake abilities toward various hydrophobic compounds in water. In addition to such host functions, new stimuli-responsive aromatic micelles with pH, light, and redox switches, aromatic oligomer micelles, saccharide-coated aromatic micelles, and related cycloalkane-based micelles were recently developed by our group.
Collapse
Affiliation(s)
- Michito YOSHIZAWA
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Lorenzo CATTI
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
20
|
Morita T, Yada S, Yoshimura T. Linear- and star-type quaternary ammonium salt-based trimeric surfactants: Effect of structure on adsorption and aggregation properties. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Singh SK, Yeboah A, Bu W, Sun P, Paige MF. Physicochemical Properties of Monolayers of a Gemini Surfactant with a Minimal-Length Spacer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:16004-16013. [PMID: 36521073 DOI: 10.1021/acs.langmuir.2c02462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fundamental physical chemical properties of monolayers formed from a new anionic gemini surfactant with a minimal-length (single-bond) spacer unit have been investigated at the air-water interface and compared with those of monolayers formed from affiliated comparator surfactants. The minimal spacer surfactant, dubbed C18-0-C18, exhibited strikingly different packing characteristics from an anionic gemini surfactant with a comparatively bulkier headgroup, including the formation of close-packed, crystalline films, and shared similar characteristics to simple fatty acid-based monolayers. Monolayers of C18-0-C18 also exhibited good stability at the air-water interface and transferred with reasonable efficiency to solid substrates, although the film integrity was compromised during the transfer. Results from this work suggest that the single-bond spacer approach might be more broadly useful for designing gemini surfactants that pack efficiently into ordered monolayers.
Collapse
Affiliation(s)
- Srikant Kumar Singh
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Alfred Yeboah
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Wei Bu
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Pan Sun
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew F Paige
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
22
|
Zhang H, Xu L, Gu X, Yu D, Li S. Amphiphilic di-cationic methylene blue for improving antibacterial photodynamic efficiency through high accumulation and low aggregation on bacterial cell surfaces. RSC Adv 2022; 13:239-250. [PMID: 36605628 PMCID: PMC9766197 DOI: 10.1039/d2ra06484g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The aggregation state of photosensitizers on the surface of bacterial cells is an important scientific problem for antibacterial photodynamic therapy (APDT). High accumulation and high photoactive state maintenance of photosensitizers are the prerequisite of high APDT efficiency. In this study, an amphiphilic di-cationic methylene blue photosensitizer (C12-MB) was synthesized through quaternization, and its structure, interface properties, photophysical properties and antibacterial photodynamic properties were studied. The results showed that C12-MB could reduce 4.27 log10 CFU and 4.8 log10 CFU for P. aeruginosa and S. aureus under irradiation of light at 660 nm, higher than the parent methylene blue. Through a spectroscopic study on photosensitizer adsorption over the bacterial surface, C12-MB can be accumulated with higher concentration, and the photo-active monomer content is 73% and 70% over P. aeruginosa and S. aureus, higher than those of methylene blue: 25% and 49%, respectively. The higher content of non-aggregated photo-active monomer could contribute to higher antibacterial photodynamic efficiency. For C12-MB adsorbed over bacterial surfaces, planar packing inhibition and electrostatic repulsion could contribute to lower C12-MB aggregation, which provides an useful reference for the structural design of high-efficiency photosensitizers.
Collapse
Affiliation(s)
- Hao Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 P. R. China +86-25-58139386
| | - Lixian Xu
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University No. 121 Jiangjiayuan Road Nanjing 210000 P. R. China
| | - Xiaoxiao Gu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 P. R. China +86-25-58139386
| | - Dinghua Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 P. R. China +86-25-58139386
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 P. R. China +86-25-58139386
| |
Collapse
|
23
|
Studies of ninhydrin and phenylalanine in cationic dimeric gemini micellar system: Spectrophotometric and conductometric measurements. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Du A, Jiang J, Wang D, Mao J, Ye C. Viscoelastic fluids formed by an ultralong-chain trimeric surfactant and its application in fracturing fluids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Zhang W, Qu Y, Lv W, Li Y. Interfacial properties of cationic and anionic Gemini surfactant mixtures. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wanju Zhang
- Hubei Key Laboratory for Processing and Application of Catalytic Materials Huanggang Normal University Huanggang China
| | - Yanbo Qu
- Hubei Key Laboratory for Processing and Application of Catalytic Materials Huanggang Normal University Huanggang China
| | - Weixiang Lv
- Hubei Key Laboratory for Processing and Application of Catalytic Materials Huanggang Normal University Huanggang China
| | - Yichang Li
- Hubei Key Laboratory for Processing and Application of Catalytic Materials Huanggang Normal University Huanggang China
| |
Collapse
|
26
|
Effects of the number of cationic sites on the surface/interfacial activity and application properties of quaternary ammonium surfactants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Pisárčik M, Lukáč M, Jampílek J, Pašková Ľ, Bilka F, Bilková A, Devínsky F, Vaľko J, Horáková R, Hošek J, Březina M, Opravil T. Controlled synthesis of gemini surfactant-capped gold nanoparticles. Gemini structure-nanoparticle properties relationship study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Sood AK, Sethi O, Aggarwal M. Evaluation of mixed micellar interactions of
C
n
BCl
and
SDBS
mixtures using dissociated Margules model and influence of different salts. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ashwani Kumar Sood
- Department of Chemistry, UGC Centre for Advanced Studies II Guru Nanak Dev University Amritsar India
| | - Omish Sethi
- Department of Chemistry, UGC Centre for Advanced Studies II Guru Nanak Dev University Amritsar India
| | | |
Collapse
|
29
|
Xie D, Jiang Y, Song B, Yang X. Switchable Pickering foams stabilized by mesoporous nanosilica hydrophobized in situ with a Gemini surfactant. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Patel B, Singh S, Parikh K, Chavda V, Hirpara D, Ray D, Aswal VK, Kumar S. Composition triggered Aggregation/Solubilization behaviour of mixed counter charged gemini Surfactants: A Multi-technique investigations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Redox-responsive carrier based on fluorinated gemini amphiphilic polymer for combinational cancer therapy. Colloids Surf B Biointerfaces 2022; 216:112551. [PMID: 35567807 DOI: 10.1016/j.colsurfb.2022.112551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022]
Abstract
Polymeric micelle has emerged as an efficient implement to overcome the shortcomings of conventional cancer chemotherapy due to its superior solubility of hydrophobic drugs and less side effects of drugs. However, insufficient dilution resistance and ordinary therapeutic effect severely restrict the further translation of current drug-loaded polymeric micelles. Here, we showed that well-defined G-Fn (n = 5, 9, 13) polymeric micelles possessed excellent capabilities as a drug carrier in light of high drug loading content, high stability and precise drug release combined with wonderful endocytosis efficiency to tumors. The representative G-F13 exhibited an excellent dilution resistance, outstanding high drug loading content (22 wt%) and drug loading efficiency (82%), which might be attributed to the extremely low critical micelle concentration conferred by its special Gemini structure and the superhydrophobicity of the fluorocarbon chain. Furthermore, the "cross-linked" internal fluoride membrane consisted of the two chains of the Gemini structure made G-F13 stable even after 24 h of incubation in 10% fetal bovine serum (FBS). The camptothecin (CPT) release was selectively triggered by glutathione (GSH) and H2O2, reaching 75% and 85% after 24 h respectively, in which only 15% of drugs leak under physiological conditions. The CCK-8 assays of Hela cells showed that CPT-loaded G-F13 micelles had high cell compatibility (200 μg/mL, 93% cell viability, 48 h) and high cancer cytotoxicity (IC50 0.1 μg/mL). Notably, a tenfold lower dosage of loaded CPT had an higher tumor growth inhibition than the free CPT. This result was attributed to the combined treatment of fluorinated drug carriers were more likely to penetrate the cell membrane to enter tumor cells, the cytotoxicity of selenic acid generated after the oxidation of G-F13 and the large amounts of CPT after redox release. Excellent physical and chemical properties as well as good therapeutic effects reveal that G-F13 can act as a promising drug carrier to widely use in cancer chemotherapy.
Collapse
|
32
|
Zhang S, Liu X, Luo H, Wu Z, Wei B, Shao Z, Huang C, Hua K, Xia L, Li J, Liu L, Ding W, Wang H, Sun Y. Morphological Modulation of Co 2C by Surface-Adsorbed Species for Highly Effective Low-Temperature CO 2 Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shunan Zhang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaofang Liu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Hu Luo
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Zhaoxuan Wu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Baiyin Wei
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Zilong Shao
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chaojie Huang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaimin Hua
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lin Xia
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Lei Liu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weitong Ding
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hui Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- Institute of Carbon Neutrality, Shanghai Tech University, Shanghai 201203, P. R. China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- Institute of Carbon Neutrality, Shanghai Tech University, Shanghai 201203, P. R. China
- Shanghai Institute of Clean Technology, Shanghai 201620, P. R. China
| |
Collapse
|
33
|
Fetin P, Lezov A, Fetina V, Kadnikov M, Tsvetkov N, Zorin I. Comb-like polyelectrolytes – New surfactants with controlled solubilization capacity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Kushnazarova RA, Mirgorodskaya AB, Mikhailov VA, Belousova IA, Zubareva TM, Prokop’eva TM, Voloshina AD, Amerhanova SK, Zakharova LY. Dicationic Imidazolium Surfactants with a Hydroxyl Substituent in the Spacer Fragment. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222040077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Lan L, Lu X, Zheng Y, Zhang G, Cheng Z. Synthesis and Performance of D230 Polyether Ammonium Salts Mixed with Cationic Gemini Surfactant as Clay Stabilizer for Water Injection Reservoirs. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Warszyński P, Szyk-Warszyńska L, Wilk KA, Lamch Ł. Adsorption of cationic multicharged surfactants at liquid/gas interface. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Yang X, Jin X, Zhou L, Duan P, Fan Y, Wang Y. Modulating the Excited State Chirality of Dynamic Chemical Reactions in Chiral Micelles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xuefeng Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District 100049 Beijing P. R. China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Lili Zhou
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District 100049 Beijing P. R. China
| | - Yaxun Fan
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Yilin Wang
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District 100049 Beijing P. R. China
| |
Collapse
|
38
|
Mixed Oxime-Functionalized IL/16-s-16 Gemini Surfactants System: Physicochemical Study and Structural Transitions in the Presence of Promethazine as a Potential Chiral Pollutant. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The increasing concern about chiral pharmaceutical pollutants is connected to environmental contamination causing both chronic and acute harmful effects on living organisms. The design and application of sustainable surfactants in the remediation of polluted sites require knowledge of partitioning between surfactants and potential pollutants. The interfacial and thermodynamic properties of two gemini surfactants, namely, alkanediyi-α,ω-bis(dimethylhexadecyl ammonium bromide) (16-s-16, where s = 10, 12), were studied in the presence of the inherently biodegradable oxime-functionalized ionic liquid (IL) 4-((hydroxyimino)methyl)-1-(2-(octylamino)-2-oxoethyl)pyridin-1-ium bromide (4-PyC8) in an aqueous solution using surface tension, conductivity, fluorescence, FTIR and 1H NMR spectroscopic techniques. The conductivity, surface tension and fluorescence measurements indicated that the presence of the IL 4-PyC8 resulted in decreasing CMC and facilitated the aggregation process. The various thermodynamic parameters, interfacial properties, aggregation number and Stern–Volmer constant were also evaluated. The IL 4-PyC8-gemini interactions were studied using DLS, FTIR and NMR spectroscopic techniques. The hydrodynamic diameter of the gemini aggregates in the presence of promethazine (PMZ) as a potential chiral pollutant and the IL 4-PyC8 underwent a transition when the drug was added, from large aggregates (270 nm) to small micelles, which supported the gemini:IL 4-PyC8:promethazine interaction. The structural transitions in the presence of promethazine may be used for designing systems that are responsive to changes in size and shape of the aggregates as an analytical signal for selective detection and binding pollutants.
Collapse
|
39
|
Pandya SJ, Kapitanov IV, Banjare MK, Behera K, Borovkov V, Ghosh KK, Karpichev Y. Mixed Oxime-Functionalized IL/16-s-16 Gemini Surfactants System: Physicochemical Study and Structural Transitions in the Presence of Promethazine as a Potential Chiral Pollutant. CHEMOSENSORS 2022; 10:46. [DOI: https:/doi.org/10.3390/chemosensors10020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
The increasing concern about chiral pharmaceutical pollutants is connected to environmental contamination causing both chronic and acute harmful effects on living organisms. The design and application of sustainable surfactants in the remediation of polluted sites require knowledge of partitioning between surfactants and potential pollutants. The interfacial and thermodynamic properties of two gemini surfactants, namely, alkanediyi-α,ω-bis(dimethylhexadecyl ammonium bromide) (16-s-16, where s = 10, 12), were studied in the presence of the inherently biodegradable oxime-functionalized ionic liquid (IL) 4-((hydroxyimino)methyl)-1-(2-(octylamino)-2-oxoethyl)pyridin-1-ium bromide (4-PyC8) in an aqueous solution using surface tension, conductivity, fluorescence, FTIR and 1H NMR spectroscopic techniques. The conductivity, surface tension and fluorescence measurements indicated that the presence of the IL 4-PyC8 resulted in decreasing CMC and facilitated the aggregation process. The various thermodynamic parameters, interfacial properties, aggregation number and Stern–Volmer constant were also evaluated. The IL 4-PyC8-gemini interactions were studied using DLS, FTIR and NMR spectroscopic techniques. The hydrodynamic diameter of the gemini aggregates in the presence of promethazine (PMZ) as a potential chiral pollutant and the IL 4-PyC8 underwent a transition when the drug was added, from large aggregates (270 nm) to small micelles, which supported the gemini:IL 4-PyC8:promethazine interaction. The structural transitions in the presence of promethazine may be used for designing systems that are responsive to changes in size and shape of the aggregates as an analytical signal for selective detection and binding pollutants.
Collapse
|
40
|
Effect of dicationic gemini surfactants on the rate of reaction between ninhydrin and arginine. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02076-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Jia W, Xian C, Wu J. Temperature-sensitive foaming agent developed for smart foam drainage technology. RSC Adv 2022; 12:23447-23453. [PMID: 36090426 PMCID: PMC9382362 DOI: 10.1039/d2ra04034d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
A temperature-sensitive surfactant with Gemini structure, possessing intelligent temperature response switching performance, was synthesized for smart foam drainage technology.
Collapse
Affiliation(s)
- Wenfeng Jia
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
- Unconventional Oil and Gas Institute, China University of Petroleum, Beijing, 102249, PR China
| | - Chenggang Xian
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
- Unconventional Oil and Gas Institute, China University of Petroleum, Beijing, 102249, PR China
| | - Junwen Wu
- Sinopec Research Institute of Petroleum Exploration and Development, Beijing 102206, PR China
| |
Collapse
|
42
|
Cationic gemini surfactant properties, its potential as a promising bioapplication candidate, and strategies for improving its biocompatibility: A review. Adv Colloid Interface Sci 2022; 299:102581. [PMID: 34891074 DOI: 10.1016/j.cis.2021.102581] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
Gemini surfactants consist of two cationic monomers of a surfactant linked together with a spacer. The specific structure of a cationic gemini surfactant is the reason for both its high surface activity and its ability to decrease the surface tension of water. The high surface activity and unique structure of gemini surfactants result in outstanding properties, including antibacterial and antifungal activity, anticorrosion properties, unique aggregation behaviour, the ability to form various structures reversibly in response to environmental conditions, and interactions with biomacromolecules such as DNA and proteins. These properties can be tailored by selecting the optimal structure of a gemini surfactant in terms of the nature and length of its alkyl substituents, spacer, and head group. Additionally, regarding their properties, comparison with their monomeric counterparts demonstrates that gemini surfactants have higher performance efficacy at lower concentrations. Hence, less material is needed, and the toxicity is lower. However, there are some limitations regarding their biocompatibility that have led researchers to develop amino acid-based and sugar-based gemini surfactants. Owing to their remarkable properties, cationic gemini surfactants are promising candidates for bioapplications such as drug delivery systems, gene carriers, and biomaterial surface modification.
Collapse
|
43
|
Abstract
Electrospinning is one of the simple, versatile, and convenient techniques for producing nanofibers that have found numerous applications in the fields of biomedical engineering, surface materials, and catalysis. Despite the great achievements, the electrospinning compounds are still limited to the utilization of polymers with high molar mass which are regarded as an indispensable element for the production of nanofibers. It is found that electrospinning chemicals based on supramolecular systems can avoid the use of high molecular weight polymers, and it is emerging as a powerful route to generate fibers in the nano-scale size. The presence of strong intermolecular interactions that function as chain entanglements allows for the formation of nanofibers during the process of electrospinning. This article provides recent impressive developments concerning nanofiber preparation made by the combination of electrospinning and supramolecular chemistry, which enables easy access to tailor-made nanofibers. Electrospinning supramolecular systems consisting of phospholipids, surfactants, crown ether derivatives as well as cyclodextrins will be highlighted in this review. Moreover, we will pay particular attention to the functionalities of electrospun nanofibers obtained from supramolecular systems.
Collapse
Affiliation(s)
- Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 200444, Shanghai, China.
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
44
|
Shibaev AV, Osiptsov AA, Philippova OE. Novel Trends in the Development of Surfactant-Based Hydraulic Fracturing Fluids: A Review. Gels 2021; 7:258. [PMID: 34940318 PMCID: PMC8701209 DOI: 10.3390/gels7040258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/04/2022] Open
Abstract
Viscoelastic surfactants (VES) are amphiphilic molecules which self-assemble into long polymer-like aggregates-wormlike micelles. Such micellar chains form an entangled network, imparting high viscosity and viscoelasticity to aqueous solutions. VES are currently attracting great attention as the main components of clean hydraulic fracturing fluids used for enhanced oil recovery (EOR). Fracturing fluids consist of proppant particles suspended in a viscoelastic medium. They are pumped into a wellbore under high pressure to create fractures, through which the oil can flow into the well. Polymer gels have been used most often for fracturing operations; however, VES solutions are advantageous as they usually require no breakers other than reservoir hydrocarbons to be cleaned from the well. Many attempts have recently been made to improve the viscoelastic properties, temperature, and salt resistance of VES fluids to make them a cost-effective alternative to polymer gels. This review aims at describing the novel concepts and advancements in the fundamental science of VES-based fracturing fluids reported in the last few years, which have not yet been widely industrially implemented, but are significant for prospective future applications. Recent achievements, reviewed in this paper, include the use of oligomeric surfactants, surfactant mixtures, hybrid nanoparticle/VES, or polymer/VES fluids. The advantages and limitations of the different VES fluids are discussed. The fundamental reasons for the different ways of improvement of VES performance for fracturing are described.
Collapse
Affiliation(s)
| | - Andrei A. Osiptsov
- Skolkovo Institute of Science and Technology (Skoltech), 121205 Moscow, Russia;
| | | |
Collapse
|
45
|
Mir AW, Shaheen A, Wani MR, Arif R. Synthesis, micellization and cytotoxic studies of ester‐functionalized imidazolium gemini surfactants. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ab Waheed Mir
- Department of Chemistry Aligarh Muslim University Aligarh India
| | - Arifa Shaheen
- Department of Chemistry Aligarh Muslim University Aligarh India
| | | | - Rabia Arif
- Department of Chemistry Aligarh Muslim University Aligarh India
| |
Collapse
|
46
|
Yang X, Jin X, Zhou L, Duan P, Fan Y, Wang Y. Modulating the Excited State Chirality of Dynamic Chemical Reactions in Chiral Micelles. Angew Chem Int Ed Engl 2021; 61:e202115600. [PMID: 34881474 DOI: 10.1002/anie.202115600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/11/2022]
Abstract
Chirality generation and transfer is not only of critical importance in resolving the origin of biological homochirality, but also is of great significance for exploring the chirality-related functionalities in nanomaterials and supramolecular systems. Although modulating the ground state chirality in chiral nanomaterials has been widely demonstrated, it remains a big challenge to steer the excited state chirality (circularly polarized luminescence, CPL). Herein, we present a kind of chiral spherical micelles constructed by chiral cationic gemini surfactants, whose surfaces and cavities could co-assemble with hydrophilic and hydrophobic emitters concurrently. Subsequently, the hydrophilic and hydrophobic emitters could be endowed with CPL activity in the aqueous phase. Additionally, the cavities of such micelles can be regarded as the powerful chiral confined space, which could effectively modulate the excited state chirality of dynamic chemical reactions, enabling color-adjustable CPL emission.
Collapse
Affiliation(s)
- Xuefeng Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, P. R. China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Lili Zhou
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, P. R. China
| | - Yaxun Fan
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
| | - Yilin Wang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, P. R. China
| |
Collapse
|
47
|
Antimicrobial Properties and Cytotoxic Effect of Imidazolium Geminis with Tunable Hydrophobicity. Int J Mol Sci 2021; 22:ijms222313148. [PMID: 34884951 PMCID: PMC8658214 DOI: 10.3390/ijms222313148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
Antimicrobial, membranotropic and cytotoxic properties of dicationic imidazolium surfactants of n-s-n (Im) series with variable length of alkyl group (n = 8, 10, 12, 14, 16) and spacer fragment (s = 2, 3, 4) were explored and compared with monocationic analogues. Their activity against a representative range of Gram-positive and Gram-negative bacteria, and also fungi, is characterized. The relationship between the biological activity and the structural features of these compounds is revealed, with the hydrophobicity emphasized as a key factor. Among dicationic surfactants, decyl derivatives showed highest antimicrobial effect, while for monocationic analogues, the maximum activity is observed in the case of tetradecyl tail. The leading compounds are 2–4 times higher in activity compared to reference antibiotics and prove effective against resistant strains. It has been shown that the antimicrobial effect is not associated with the destruction of the cell membrane, but is due to specific interactions of surfactants and cell components. Importantly, they show strong selectivity for microorganism cells while being of low harm to healthy human cells, with a SI ranging from 30 to 100.
Collapse
|
48
|
Naqvi AZ, Kabir-ud-Din, Panda M. Mixed micellization: Improved physicochemical behavior of different amphiphiles in presence of gemini surfactants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Efficient removal of hazardous benzohydroxamic acid (BHA) contaminants from the industrial beneficiation wastewaters by facile precipitation flotation process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
Synthesis and properties of stellate lactosamide quaternary ammonium surfactants. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|