1
|
van Wyngaard BE, Hugo A, Strydom PE, de Witt FH, Pohl CH, Kanengoni AT. A comparison of Echium, fish, palm, soya, and linseed oil supplementation on pork quality. Anim Biosci 2023; 36:1414-1425. [PMID: 37170526 PMCID: PMC10472157 DOI: 10.5713/ab.22.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 03/02/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE Long chain n-3 polyunsaturated fatty acids (PUFA) exert positive effects on human health. The long chain n-3 PUFA of pork can be increased by adding fish oil to the diet. Due to the cost and availability of fish oil an alternative source must be found. METHODS This study evaluated the effect of five dietary oils on meat quality, fatty acid composition and lipid stability. The five diets contained 1% palm oil (Control), 1% soya oil, 1% linseed oil, 1% fish oil, and 1% Echium oil, respectively. The trial consisted of 60 gilts, randomly allocated to five groups. RESULTS All color parameters, extractable fat content, fat free dry matter, and moisture content of the m. longissimus muscle were unaffected by dietary treatment. Consumers and a trained sensory panel could not detect a difference between the control samples and the Echium oil sample during sensory analysis. Samples containing higher levels of PUFA (soya, linseed, fish, and Echium oil) had higher levels of primary and secondary lipid oxidation products after refrigerated and frozen storage. However, these values were still well below the threshold value where off flavors can be detected. The Echium oil treatment had significantly higher levels of long chain PUFA than the linseed oil treatment, but it was still significantly lower than that of the fish oil treatment. CONCLUSION Echium oil supplementation did not increase the levels of n-3 to the same extent as fish oil did. The result did however suggest that Echium oil can be used in pig diets to improve muscle long chain n-3 fatty acid content without any adverse effects on meat quality when compared to linseed, soya, and palm oil.
Collapse
Affiliation(s)
| | - Arno Hugo
- Department of Animal Science, University of the Free State, Bloemfontein, 9301,
South Africa
| | - Phillip Evert Strydom
- Department of Animal Sciences, Faculty of Agrisciences, Stellenbosch University, Stellenbosch, 7602,
South Africa
| | - Foch-Henri de Witt
- Department of Animal Science, University of the Free State, Bloemfontein, 9301,
South Africa
| | - Carolina Henritta Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301,
South Africa
| | | |
Collapse
|
2
|
Goldberg IJ, Gjini J, Fisher EA. Big Fish or No Fish; Eicosapentaenoic Acid and Cardiovascular Disease. Endocrinol Metab Clin North Am 2022; 51:625-633. [PMID: 35963632 DOI: 10.1016/j.ecl.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benefits of omega 3 fatty acids for cardiovascular and other diseases have been touted for more than 50 years. The one clear clinical benefit of these lipids is the reduction of circulating levels of triglycerides, making them a useful approach for the prevention of pancreatitis in severely hypertriglyceridemic patients. After a series of spectacularly failed clinical trials that were criticized for the choice of subjects and doses of omega 3 fatty acids used, Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial (REDUCE-IT) using a high dose of icosapent ethyl (IPE) reported a reduction in cardiovascular disease (CVD) events. However, this trial has generated controversy due to the use of mineral oil in the control group and the associated side effects of the IPA. This review will focus on the following topics: What are the epidemiologic data suggesting a benefit of omega 3 fatty acids? What might be the mechanisms for these benefits? Why have the clinical trials failed to resolve whether these fatty acids provide benefit? What choices should a clinician consider?
Collapse
Affiliation(s)
- Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, 435 First Avenue, SB 617, New York, NY 10016, USA.
| | - Jana Gjini
- Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, 435 First Avenue, SB 617, New York, NY 10016, USA
| | - Edward A Fisher
- Division of Cardiology and Center for the Prevention of Cardiovascular Disease, New York University Grossman School of Medicine, 435 First Avenue, SB 704, New York, NY 10016, USA
| |
Collapse
|
3
|
Alvarez Campano CG, Macleod MJ, Aucott L, Thies F. Marine-derived n-3 fatty acids therapy for stroke. Cochrane Database Syst Rev 2022; 6:CD012815. [PMID: 35766825 PMCID: PMC9241930 DOI: 10.1002/14651858.cd012815.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Currently, with stroke burden increasing, there is a need to explore therapeutic options that ameliorate the acute insult. There is substantial evidence of a neuroprotective effect of marine-derived n-3 polyunsaturated fatty acids (PUFAs) in animal models of stroke, leading to a better functional outcome. OBJECTIVES To assess the effects of administration of marine-derived n-3 PUFAs on functional outcomes and dependence in people with stroke. SEARCH METHODS We searched the Cochrane Stroke Trials Register (last searched 31 May 2021), the Cochrane Central Register of Controlled Trials (CENTRAL; 2021, Issue 5), MEDLINE Ovid (from 1948 to 31 May 2021), Embase Ovid (from 1980 to 31 May 2021), CINAHL EBSCO (Cumulative Index to Nursing and Allied Health Literature; from 1982 to 31 May 2021), Science Citation Index Expanded ‒ Web of Science (SCI-EXPANDED), Conference Proceedings Citation Index-Science - Web of Science (CPCI-S), and BIOSIS Citation Index. We also searched ongoing trial registers, reference lists, relevant systematic reviews, and used the Science Citation Index Reference Search. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing marine-derived n-3 PUFAs to placebo or open control (no placebo) in people with a history of stroke or transient ischaemic attack (TIA), or both. DATA COLLECTION AND ANALYSIS At least two review authors independently selected trials for inclusion, extracted data, assessed risk of bias, and used the GRADE approach to assess the certainty of the body of evidence. We contacted study authors for clarification and additional information on stroke/TIA participants. We conducted random-effects meta-analysis or narrative synthesis, as appropriate. The primary outcome was efficacy (functional outcome) assessed using a validated scale, for example, the Glasgow Outcome Scale Extended (GOSE) dichotomised into poor or good clinical outcome, the Barthel Index (higher score is better; scale from 0 to 100), or the Rivermead Mobility Index (higher score is better; scale from 0 to 15). Our secondary outcomes were vascular-related death, recurrent events, incidence of other type of stroke, adverse events, quality of life, and mood. MAIN RESULTS We included 30 RCTs; nine of them provided outcome data (3339 participants). Only one study included participants in the acute phase of stroke (haemorrhagic). Doses of marine-derived n-3 PUFAs ranged from 400 mg/day to 3300 mg/day. Risk of bias was generally low or unclear in most trials, with a higher risk of bias in smaller studies. We assessed results separately for short (up to three months) and longer (more than three months) follow-up studies. Short follow-up (up to three months) Functional outcome was reported in only one pilot study as poor clinical outcome assessed with the GOSE (risk ratio (RR) 0.78, 95% confidence interval (CI) 0.36 to 1.68, P = 0.52; 40 participants; very low-certainty evidence). Mood (assessed with the GHQ-30, lower score better) was reported by only one study and favoured control (mean difference (MD) 1.41, 95% CI 0.07 to 2.75, P = 0.04; 102 participants; low-certainty evidence). We found no evidence of an effect of the intervention for the remainder of the secondary outcomes: vascular-related death (two studies, not pooled due to differences in population, RR 0.33, 95% CI 0.01 to 8.00, P = 0.50, and RR 0.33, 95% CI 0.01 to 7.72, P = 0.49; 142 participants; low-certainty evidence); recurrent events (RR 0.41, 95% CI 0.02 to 8.84, P = 0.57; 18 participants; very low-certainty evidence); incidence of other type of stroke (two studies, not pooled due to different type of index stroke, RR 6.11, 95% CI 0.33 to 111.71, P = 0.22, and RR 0.63, 95% CI 0.25 to 1.58, P = 0.32; 58 participants; very low-certainty evidence); and quality of life (physical component, MD -2.31, 95% CI -4.81 to 0.19, P = 0.07, and mental component, MD -2.16, 95% CI -5.91 to 1.59, P = 0.26; 1 study; 102 participants; low-certainty evidence). Adverse events were reported by two studies (57 participants; very low-certainty evidence), one trial reporting extracranial haemorrhage (RR 0.25, 95% CI 0.04 to 1.73, P = 0.16) and the other one reporting bleeding complications (RR 0.32, 95% CI 0.01 to 7.35, P = 0.47). Longer follow-up (more than three months) One small trial assessed functional outcome with both the Barthel Index for activities of daily living (MD 7.09, 95% CI -5.16 to 19.34, P = 0.26), and the Rivermead Mobility Index for mobility (MD 1.30, 95% CI -1.31 to 3.91, P = 0.33) (52 participants; very low-certainty evidence). We carried out meta-analysis for vascular-related death (RR 1.02, 95% CI 0.78 to 1.35, P = 0.86; 5 studies; 2237 participants; low-certainty evidence) and fatal recurrent events (RR 0.69, 95% CI 0.31 to 1.55, P = 0.37; 3 studies; 1819 participants; low-certainty evidence). We found no evidence of an effect of the intervention for mood (MD 1.00, 95% CI -2.07 to 4.07, P = 0.61; 1 study; 14 participants; low-certainty evidence). Incidence of other type of stroke and quality of life were not reported. Adverse events (all combined) were reported by only one study (RR 0.94, 95% CI 0.56 to 1.58, P = 0.82; 1455 participants; low-certainty evidence). AUTHORS' CONCLUSIONS We are very uncertain of the effect of marine-derived n-3 PUFAs therapy on functional outcomes and dependence after stroke as there is insufficient high-certainty evidence. More well-designed RCTs are needed, specifically in acute stroke, to determine the efficacy and safety of the intervention. Studies assessing functional outcome might consider starting the intervention as early as possible after the event, as well as using standardised, clinically relevant measures for functional outcomes, such as the modified Rankin Scale. Optimal doses remain to be determined; delivery forms (type of lipid carriers) and mode of administration (ingestion or injection) also need further consideration.
Collapse
Affiliation(s)
| | | | - Lorna Aucott
- Health Services Research Unit, University of Aberdeen, Aberdeen, UK
| | - Frank Thies
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
4
|
Dakroub H, Nowak M, Benoist JF, Noël B, Vedie B, Paul JL, Fournier N. Eicosapentaenoic acid membrane incorporation stimulates ABCA1-mediated cholesterol efflux from human THP-1 macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159016. [PMID: 34332075 DOI: 10.1016/j.bbalip.2021.159016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/28/2021] [Accepted: 07/25/2021] [Indexed: 12/16/2022]
Abstract
A high intake in polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) (C20:5 n-3), is cardioprotective. Dietary PUFAs incorporate into membrane phospholipids, which may modify the function of membrane proteins. We investigated the consequences of the membrane incorporation of several PUFAs on the key antiatherogenic ABCA1-mediated cholesterol efflux pathway. Human THP-1 macrophages were incubated with EPA, arachidonic acid (AA) (C20:4 n-6) or docosahexaenoic acid (DHA) (C22:6 n-3) for a long time to mimic a chronic exposure. EPA 70 μM, but not AA 50 μM or DHA 15 μM, increased ABCA1-mediated cholesterol efflux to apolipoprotein (apo) AI by 28% without altering aqueous diffusion. No variation in ABCA1 expression or localization was observed after EPA treatment. EPA incorporation did not affect the phenotype of THP-1 macrophages. The membrane phospholipids composition of EPA cells displayed higher levels of both EPA and its elongation product docosapentaenoic acid, which was associated with drastic lower levels of AA. Treatment by EPA increased the ATPase activity of the transporter, likely through a PKA-dependent mechanism. Eicosanoids were not involved in the stimulated ABCA1-mediated cholesterol efflux from EPA-enriched macrophages. In addition, EPA supplementation increased the apo AI binding capacity from macrophages by 38%. Moreover, the increased apo AI binding in EPA-enriched macrophages can be competed. In conclusion, EPA membrane incorporation increased ABCA1 functionality in cholesterol-normal human THP-1 macrophages, likely through a combination of different mechanisms. This beneficial in vitro effect may partly contribute to the cardioprotective effect of a diet enriched with EPA highlighted by several recent clinical trials.
Collapse
Affiliation(s)
- Hani Dakroub
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Maxime Nowak
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Jean-François Benoist
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France; Laboratoire de Biochimie métabolique, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Necker, 75015 Paris, France
| | - Benoît Noël
- Allergie, Immunotoxicologie et Immunopathologie, INSERM UMR 996, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Benoît Vedie
- Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Jean-Louis Paul
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France; Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Natalie Fournier
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France; Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France.
| |
Collapse
|
5
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2020; 3:CD003177. [PMID: 32114706 PMCID: PMC7049091 DOI: 10.1002/14651858.cd003177.pub5] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3)), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) may benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess the effects of increased intake of fish- and plant-based omega-3 fats for all-cause mortality, cardiovascular events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to February 2019, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to August 2019, with no language restrictions. We handsearched systematic review references and bibliographies and contacted trial authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation or advice to increase LCn3 or ALA intake, or both, versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trials for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 86 RCTs (162,796 participants) in this review update and found that 28 were at low summary risk of bias. Trials were of 12 to 88 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most trials assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. LCn3 doses ranged from 0.5 g a day to more than 5 g a day (19 RCTs gave at least 3 g LCn3 daily). Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (risk ratio (RR) 0.97, 95% confidence interval (CI) 0.93 to 1.01; 143,693 participants; 11,297 deaths in 45 RCTs; high-certainty evidence), cardiovascular mortality (RR 0.92, 95% CI 0.86 to 0.99; 117,837 participants; 5658 deaths in 29 RCTs; moderate-certainty evidence), cardiovascular events (RR 0.96, 95% CI 0.92 to 1.01; 140,482 participants; 17,619 people experienced events in 43 RCTs; high-certainty evidence), stroke (RR 1.02, 95% CI 0.94 to 1.12; 138,888 participants; 2850 strokes in 31 RCTs; moderate-certainty evidence) or arrhythmia (RR 0.99, 95% CI 0.92 to 1.06; 77,990 participants; 4586 people experienced arrhythmia in 30 RCTs; low-certainty evidence). Increasing LCn3 may slightly reduce coronary heart disease mortality (number needed to treat for an additional beneficial outcome (NNTB) 334, RR 0.90, 95% CI 0.81 to 1.00; 127,378 participants; 3598 coronary heart disease deaths in 24 RCTs, low-certainty evidence) and coronary heart disease events (NNTB 167, RR 0.91, 95% CI 0.85 to 0.97; 134,116 participants; 8791 people experienced coronary heart disease events in 32 RCTs, low-certainty evidence). Overall, effects did not differ by trial duration or LCn3 dose in pre-planned subgrouping or meta-regression. There is little evidence of effects of eating fish. Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20; 19,327 participants; 459 deaths in 5 RCTs, moderate-certainty evidence),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25; 18,619 participants; 219 cardiovascular deaths in 4 RCTs; moderate-certainty evidence), coronary heart disease mortality (RR 0.95, 95% CI 0.72 to 1.26; 18,353 participants; 193 coronary heart disease deaths in 3 RCTs; moderate-certainty evidence) and coronary heart disease events (RR 1.00, 95% CI 0.82 to 1.22; 19,061 participants; 397 coronary heart disease events in 4 RCTs; low-certainty evidence). However, increased ALA may slightly reduce risk of cardiovascular disease events (NNTB 500, RR 0.95, 95% CI 0.83 to 1.07; but RR 0.91, 95% CI 0.79 to 1.04 in RCTs at low summary risk of bias; 19,327 participants; 884 cardiovascular disease events in 5 RCTs; low-certainty evidence), and probably slightly reduces risk of arrhythmia (NNTB 91, RR 0.73, 95% CI 0.55 to 0.97; 4912 participants; 173 events in 2 RCTs; moderate-certainty evidence). Effects on stroke are unclear. Increasing LCn3 and ALA had little or no effect on serious adverse events, adiposity, lipids and blood pressure, except increasing LCn3 reduced triglycerides by ˜15% in a dose-dependent way (high-certainty evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and low-certainty evidence suggests that increasing LCn3 slightly reduces risk of coronary heart disease mortality and events, and reduces serum triglycerides (evidence mainly from supplement trials). Increasing ALA slightly reduces risk of cardiovascular events and arrhythmia.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Teesside UniversitySchool of Social Sciences, Humanities and LawMiddlesboroughUKTS1 3BA
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Sciences42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthCoupland Building 3Oxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
6
|
Fournier N, Benoist JF, Allaoui F, Nowak M, Dakroub H, Vedie B, Paul JL. Contrasting effects of membrane enrichment with polyunsaturated fatty acids on phospholipid composition and cholesterol efflux from cholesterol-loaded J774 mouse or primary human macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158536. [PMID: 31672574 DOI: 10.1016/j.bbalip.2019.158536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/30/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022]
Abstract
A high consumption of polyunsaturated fatty acids (PUFAs), particularly n-3 PUFAs, is atheroprotective. PUFAs incorporation into membrane phospholipids alters the functionality of membrane proteins. We studied the consequences of the in vitro supplementation of several PUFAs on the FA profiles and on ABCA1-dependent cholesterol efflux capacities from cholesterol-loaded macrophages. Arachidonic acid (AA, C20:4 n-6) and, to a lesser extent, eicosapentaenoic acid (EPA, C20:5 n-3), dose-dependently impaired cholesterol efflux from cholesterol-loaded J774 mouse macrophages without alterations in ABCA1 expression, whereas docosahexaenoic acid (DHA, C22:6 n-3) had no impact. AA cells exhibited higher proportions of arachidonic acid and adrenic acid (C22:4 n-6), its elongation product. EPA cells exhibited slightly higher proportions of EPA associated with much higher proportions of docosapentaenoic acid (C22:5 n-3), its elongation product and with lower proportions of AA. Conversely, both EPA and DHA and, to a lesser extent, AA decreased cholesterol efflux from cholesterol-loaded primary human macrophages (HMDM). The differences observed in FA profiles after PUFA supplementations were different from those observed for the J774 cells. In conclusion, we are the first to report that AA and EPA, but not DHA, have deleterious effects on the cardioprotective ABCA1 cholesterol efflux pathway from J774 foam cells. Moreover, the membrane incorporation of PUFAs does not have the same impact on cholesterol efflux from murine (J774) or human (HMDM) cholesterol-loaded macrophages. This finding emphasizes the key role of the cellular model in cholesterol efflux studies and may partly explain the heterogeneous literature data on the impact of PUFAs on cholesterol efflux.
Collapse
Affiliation(s)
- Natalie Fournier
- Lip(Sys)(2) - EA 7357, Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, UFR de Pharmacie, 92290 Châtenay-Malabry, France; Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France.
| | - Jean-François Benoist
- Lip(Sys)(2) - EA 7357, Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, UFR de Pharmacie, 92290 Châtenay-Malabry, France; Laboratoire de Biochimie hormonale, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Robert Debré, 75019 Paris, France
| | - Fatima Allaoui
- Lip(Sys)(2) - EA 7357, Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, UFR de Pharmacie, 92290 Châtenay-Malabry, France
| | - Maxime Nowak
- Lip(Sys)(2) - EA 7357, Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, UFR de Pharmacie, 92290 Châtenay-Malabry, France
| | - Hani Dakroub
- Lip(Sys)(2) - EA 7357, Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, UFR de Pharmacie, 92290 Châtenay-Malabry, France
| | - Benoît Vedie
- Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Jean-Louis Paul
- Lip(Sys)(2) - EA 7357, Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, UFR de Pharmacie, 92290 Châtenay-Malabry, France; Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France
| |
Collapse
|
7
|
Abstract
BACKGROUND Currently, with stroke burden increasing, there is a need to explore therapeutic options that ameliorate the acute insult. There is substantial evidence of a neuroprotective effect of marine-derived n-3 polyunsaturated fatty acids (PUFAs) in experimental stroke, leading to a better functional outcome. OBJECTIVES To assess the effects of administration of marine-derived n-3 PUFAs on functional outcomes and dependence in people with stroke.Our secondary outcomes were vascular-related death, recurrent events, incidence of other type of stroke, adverse events, quality of life, and mood. SEARCH METHODS We searched the Cochrane Stroke Group trials register (6 August 2018), the Cochrane Central Register of Controlled Trials (CENTRAL; Issue 1, January 2019), MEDLINE Ovid (from 1948 to 6 August 2018), Embase Ovid (from 1980 to 6 August 2018), CINAHL EBSCO (Cumulative Index to Nursing and Allied Health Literature; from 1982 to 6 August 2018), Science Citation Index Expanded ‒ Web of Science (SCI-EXPANDED), Conference Proceedings Citation Index-Science - Web of Science (CPCI-S), and BIOSIS Citation Index. We also searched ongoing trial registers, reference lists, relevant systematic reviews, and used the Science Citation Index Reference Search. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing marine-derived n-3 PUFAs to placebo or open control (no placebo) in people with a history of stroke or transient ischaemic attack (TIA), or both. DATA COLLECTION AND ANALYSIS At least two review authors independently selected trials for inclusion, extracted data, assessed risk of bias, and used the GRADE approach to assess the quality of the body of evidence. We contacted study authors for clarification and additional information on stroke/TIA participants. We conducted random-effects meta-analysis or narrative synthesis, as appropriate. The primary outcome was efficacy (functional outcome) assessed using a validated scale e.g. Glasgow Outcome Scale Extended (GOSE) dichotomised into poor or good clinical outcome, Barthel Index (higher score is better; scale from 0 to 100) or Rivermead Mobility Index (higher score is better; scale from 0 to 15). MAIN RESULTS We included 29 RCTs; nine of them provided outcome data (3339 participants). Only one study included participants in the acute phase of stroke (haemorrhagic). Doses of marine-derived n-3 PUFAs ranged from 400 mg/day to 3300 mg/day. Risk of bias was generally low or unclear in most trials, with a higher risk of bias in smaller studies. We assessed results separately for short (up to three months) and longer (more than three months) follow-up studies.Short follow-up (up to three months)Functional outcome was reported in only one pilot study as poor clinical outcome assessed with GOSE (risk ratio (RR) 0.78, 95% confidence interval (CI) 0.36 to 1.68; 40 participants; very low quality evidence). Mood (assessed with GHQ-30, lower score better), was reported by only one study and favoured control (mean difference (MD) 1.41, 95% CI 0.07 to 2.75; 102 participants; low-quality evidence).We found no evidence of an effect of the intervention for the remainder of the secondary outcomes: vascular-related death (two studies, not pooled due to differences in population, RR 0.33, 95% CI 0.01 to 8.00, and RR 0.33, 95% CI 0.01 to 7.72; 142 participants; low-quality evidence); recurrent events (RR 0.41, 95% CI 0.02 to 8.84; 18 participants; very low quality evidence); incidence of other type of stroke (two studies, not pooled due to different type of index stroke, RR 6.11, 95% CI 0.33 to 111.71, and RR 0.63, 95% CI 0.25 to 1.58; 58 participants; very low quality evidence); and quality of life (physical component mean difference (MD) -2.31, 95% CI -4.81 to 0.19, and mental component MD -2.16, 95% CI -5.91 to 1.59; one study; 102 participants; low-quality evidence).Adverse events were reported by two studies (57 participants; very low quality evidence), one trial reporting extracranial haemorrhage (RR 0.25, 95% CI 0.04 to 1.73) and the other one reporting bleeding complications (RR 0.32, 95% CI 0.01 to 7.35).Longer follow-up (more than three months)One small trial assessed functional outcome with both Barthel Index (MD 7.09, 95% CI -5.16 to 19.34) for activities of daily living, and Rivermead Mobility Index (MD 1.30, 95% CI -1.31 to 3.91) for mobility (52 participants; very low quality evidence). We carried out meta-analysis for vascular-related death (RR 1.02, 95% CI 0.78 to 1.35; five studies; 2237 participants; low-quality evidence) and fatal recurrent events (RR 0.69, 95% CI 0.31 to 1.55; three studies; 1819 participants; low-quality evidence).We found no evidence of an effect of the intervention for mood (MD 1.00, 95% CI -2.07 to 4.07; one study; 14 participants; low-quality evidence). Incidence of other type of stroke and quality of life were not reported.Adverse events (all combined) were reported by only one study (RR 0.94, 95% CI 0.56 to 1.58; 1455 participants; low-quality evidence). AUTHORS' CONCLUSIONS We are very uncertain of the effect of marine-derived n-3 PUFAs therapy on functional outcomes and dependence after stroke as there is insufficient high-quality evidence. More well-designed RCTs are needed, specifically in acute stroke, to determine the efficacy and safety of the intervention.Studies assessing functionality might consider starting the intervention as early as possible after the event, as well as using standardised clinically-relevant measures for functional outcomes, such as the modified Rankin Scale. Optimal doses remain to be determined; delivery forms (type of lipid carriers) and mode of administration (ingestion or injection) also need further consideration.
Collapse
|
8
|
Sirtori CR, Yamashita S, Greco MF, Corsini A, Watts GF, Ruscica M. Recent advances in synthetic pharmacotherapies for dyslipidaemias. Eur J Prev Cardiol 2019; 27:1576-1596. [DOI: 10.1177/2047487319845314] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite the demonstrated benefits of statins and injectable biologics, there is a need for new and safe oral agents for addressing classical lipid targets, low-density lipoprotein cholesterol (LDL-C), triglycerides and high-density lipoprotein cholesterol (HDL-C). LDL-C is unquestionably causal in the development of atherogenesis and atherosclerotic cardiovascular disease, but new options are required to address triglyceride-rich lipoproteins and lipoprotein(a). For hypercholesterolaemia, pitavastatin provides a very low dose and potent statin that does not adversely affect glucose metabolism; bempedoic acid acts at a biochemical step preceding hydroxymethylglutaryl-CoA reductase and is not associated with muscular side effects. For hypertriglyceridaemia, pemafibrate displays a unique and selective agonist activity on peroxisomal proliferator activated receptor-α that does not elevate homocysteine or creatinine. Although omega-3 fatty acids supplementation is not effective in secondary prevention, high dose eicosapentaenoic ethyl ester can lead to a remarkable fall in first and recurrent events in high risk patients with hypertriglyceridaemia/low HDL-C. Gemcabene, a dicarboxylic acid regulating apolipoprotein B-100, is effective in reducing both cholesterol and triglycerides. Among cholesteryl ester transfer protein antagonists that elevate HDL-C, only anacetrapib reduces cardiovascular events. Probucol stimulates reverse cholesteryl ester transport, lowers LDL-C stabilizing plaques and may lower incidence of cardiovascular events. These agents, which act through novel mechanisms, afford good and potentially safe treatment choices that may increase adherence and the attainment of therapeutic targets.
Collapse
Affiliation(s)
- Cesare R Sirtori
- Centro Dislipidemie, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Shizuya Yamashita
- Rinku General Medical Centre, Izumisano, Japan
- Department of Community Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Maria Francesca Greco
- Department of Pharmacological and Bimolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Bimolecular Sciences, Università degli Studi di Milano, Milan, Italy
- Multimedica, IRCCS, Sesto San Giovanni, MI, Italy
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Lipid Disorders Clinic, Cardiometabolic Services, Department of Cardiology, Royal Perth Hospital, Australia
| | - Massimiliano Ruscica
- Department of Pharmacological and Bimolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, AlAbdulghafoor FK, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11:CD003177. [PMID: 30521670 PMCID: PMC6517311 DOI: 10.1002/14651858.cd003177.pub4] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. LCn3 doses ranged from 0.5g/d LCn3 to > 5 g/d (16 RCTs gave at least 3g/d LCn3).Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses - LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs) and ALA may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence with greater effects in trials at low summary risk of bias), and probably reduces risk of arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression.There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, except LCn3 reduced triglycerides by ˜15% in a dose-dependant way (high-quality evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event and arrhythmia risk.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Durham UniversityWolfson Research InstituteDurhamUKDH1 3LE
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Fai K AlAbdulghafoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Science42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthJR Moore BuildingOxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
10
|
Abdelhamid AS, Martin N, Bridges C, Brainard JS, Wang X, Brown TJ, Hanson S, Jimoh OF, Ajabnoor SM, Deane KHO, Song F, Hooper L. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11:CD012345. [PMID: 30484282 PMCID: PMC6517012 DOI: 10.1002/14651858.cd012345.pub3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Evidence on the health effects of total polyunsaturated fatty acids (PUFA) is equivocal. Fish oils are rich in omega-3 PUFA and plant oils in omega-6 PUFA. Evidence suggests that increasing PUFA-rich foods, supplements or supplemented foods can reduce serum cholesterol, but may increase body weight, so overall cardiovascular effects are unclear. OBJECTIVES To assess effects of increasing total PUFA intake on cardiovascular disease and all-cause mortality, lipids and adiposity in adults. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017 and clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to September 2016, without language restrictions. We checked trials included in relevant systematic reviews. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing higher with lower PUFA intakes in adults with or without cardiovascular disease that assessed effects over 12 months or longer. We included full texts, abstracts, trials registry entries and unpublished data. Outcomes were all-cause mortality, cardiovascular disease mortality and events, risk factors (blood lipids, adiposity, blood pressure), and adverse events. We excluded trials where we could not separate effects of PUFA intake from other dietary, lifestyle or medication interventions. DATA COLLECTION AND ANALYSIS Two review authors independently screened titles and abstracts, assessed trials for inclusion, extracted data, and assessed risk of bias. We wrote to authors of included trials for further data. Meta-analyses used random-effects analysis, sensitivity analyses included fixed-effects and limiting to low summary risk of bias. We assessed GRADE quality of evidence. MAIN RESULTS We included 49 RCTs randomising 24,272 participants, with duration of one to eight years. Eleven included trials were at low summary risk of bias, 33 recruited participants without cardiovascular disease. Baseline PUFA intake was unclear in most trials, but 3.9% to 8% of total energy intake where reported. Most trials gave supplemental capsules, but eight gave dietary advice, eight gave supplemental foods such as nuts or margarine, and three used a combination of methods to increase PUFA.Increasing PUFA intake probably has little or no effect on all-cause mortality (risk 7.8% vs 7.6%, risk ratio (RR) 0.98, 95% confidence interval (CI) 0.89 to 1.07, 19,290 participants in 24 trials), but probably slightly reduces risk of coronary heart disease events from 14.2% to 12.3% (RR 0.87, 95% CI 0.72 to 1.06, 15 trials, 10,076 participants) and cardiovascular disease events from 14.6% to 13.0% (RR 0.89, 95% CI 0.79 to 1.01, 17,799 participants in 21 trials), all moderate-quality evidence. Increasing PUFA may slightly reduce risk of coronary heart disease death (6.6% to 6.1%, RR 0.91, 95% CI 0.78 to 1.06, 9 trials, 8810 participants) andstroke (1.2% to 1.1%, RR 0.91, 95% CI 0.58 to 1.44, 11 trials, 14,742 participants, though confidence intervals include important harms), but has little or no effect on cardiovascular mortality (RR 1.02, 95% CI 0.82 to 1.26, 16 trials, 15,107 participants) all low-quality evidence. Effects of increasing PUFA on major adverse cardiac and cerebrovascular events and atrial fibrillation are unclear as evidence is of very low quality.Increasing PUFA intake probably slightly decreases triglycerides (by 15%, MD -0.12 mmol/L, 95% CI -0.20 to -0.04, 20 trials, 3905 participants), but has little or no effect on total cholesterol (mean difference (MD) -0.12 mmol/L, 95% CI -0.23 to -0.02, 26 trials, 8072 participants), high-density lipoprotein (HDL) (MD -0.01 mmol/L, 95% CI -0.02 to 0.01, 18 trials, 4674 participants) or low-density lipoprotein (LDL) (MD -0.01 mmol/L, 95% CI -0.09 to 0.06, 15 trials, 3362 participants). Increasing PUFA probably has little or no effect on adiposity (body weight MD 0.76 kg, 95% CI 0.34 to 1.19, 12 trials, 7100 participants).Effects of increasing PUFA on serious adverse events such as pulmonary embolism and bleeding are unclear as the evidence is of very low quality. AUTHORS' CONCLUSIONS This is the most extensive systematic review of RCTs conducted to date to assess effects of increasing PUFA on cardiovascular disease, mortality, lipids or adiposity. Increasing PUFA intake probably slightly reduces risk of coronary heart disease and cardiovascular disease events, may slightly reduce risk of coronary heart disease mortality and stroke (though not ruling out harms), but has little or no effect on all-cause or cardiovascular disease mortality. The mechanism may be via TG reduction.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Nicole Martin
- University College LondonInstitute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Charlene Bridges
- University College LondonInstitute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Xia Wang
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Sarah Hanson
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Oluseyi F Jimoh
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Sarah M Ajabnoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
11
|
Abdelhamid AS, Martin N, Bridges C, Brainard JS, Wang X, Brown TJ, Hanson S, Jimoh OF, Ajabnoor SM, Deane KHO, Song F, Hooper L. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 7:CD012345. [PMID: 30019767 PMCID: PMC6513571 DOI: 10.1002/14651858.cd012345.pub2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Evidence on the health effects of total polyunsaturated fatty acids (PUFA) is equivocal. Fish oils are rich in omega-3 PUFA and plant oils in omega-6 PUFA. Evidence suggests that increasing PUFA-rich foods, supplements or supplemented foods can reduce serum cholesterol, but may increase body weight, so overall cardiovascular effects are unclear. OBJECTIVES To assess effects of increasing total PUFA intake on cardiovascular disease and all-cause mortality, lipids and adiposity in adults. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017 and clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to September 2016, without language restrictions. We checked trials included in relevant systematic reviews. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing higher with lower PUFA intakes in adults with or without cardiovascular disease that assessed effects over 12 months or longer. We included full texts, abstracts, trials registry entries and unpublished data. Outcomes were all-cause mortality, cardiovascular disease mortality and events, risk factors (blood lipids, adiposity, blood pressure), and adverse events. We excluded trials where we could not separate effects of PUFA intake from other dietary, lifestyle or medication interventions. DATA COLLECTION AND ANALYSIS Two review authors independently screened titles and abstracts, assessed trials for inclusion, extracted data, and assessed risk of bias. We wrote to authors of included trials for further data. Meta-analyses used random-effects analysis, sensitivity analyses included fixed-effects and limiting to low summary risk of bias. We assessed GRADE quality of evidence. MAIN RESULTS We included 49 RCTs randomising 24,272 participants, with duration of one to eight years. Eleven included trials were at low summary risk of bias, 33 recruited participants without cardiovascular disease. Baseline PUFA intake was unclear in most trials, but 3.9% to 8% of total energy intake where reported. Most trials gave supplemental capsules, but eight gave dietary advice, eight gave supplemental foods such as nuts or margarine, and three used a combination of methods to increase PUFA.Increasing PUFA intake probably has little or no effect on all-cause mortality (risk 7.8% vs 7.6%, risk ratio (RR) 0.98, 95% confidence interval (CI) 0.89 to 1.07, 19,290 participants in 24 trials), but probably slightly reduces risk of coronary heart disease events from 14.2% to 12.3% (RR 0.87, 95% CI 0.72 to 1.06, 15 trials, 10,076 participants) and cardiovascular disease events from 14.6% to 13.0% (RR 0.89, 95% CI 0.79 to 1.01, 17,799 participants in 21 trials), all moderate-quality evidence. Increasing PUFA may slightly reduce risk of coronary heart disease death (6.6% to 6.1%, RR 0.91, 95% CI 0.78 to 1.06, 9 trials, 8810 participants) andstroke (1.2% to 1.1%, RR 0.91, 95% CI 0.58 to 1.44, 11 trials, 14,742 participants, though confidence intervals include important harms), but has little or no effect on cardiovascular mortality (RR 1.02, 95% CI 0.82 to 1.26, 16 trials, 15,107 participants) all low-quality evidence. Effects of increasing PUFA on major adverse cardiac and cerebrovascular events and atrial fibrillation are unclear as evidence is of very low quality.Increasing PUFA intake slightly reduces total cholesterol (mean difference (MD) -0.12 mmol/L, 95% CI -0.23 to -0.02, 26 trials, 8072 participants) and probably slightly decreases triglycerides (MD -0.12 mmol/L, 95% CI -0.20 to -0.04, 20 trials, 3905 participants), but has little or no effect on high-density lipoprotein (HDL) (MD -0.01 mmol/L, 95% CI -0.02 to 0.01, 18 trials, 4674 participants) or low-density lipoprotein (LDL) (MD -0.01 mmol/L, 95% CI -0.09 to 0.06, 15 trials, 3362 participants). Increasing PUFA probably causes slight weight gain (MD 0.76 kg, 95% CI 0.34 to 1.19, 12 trials, 7100 participants).Effects of increasing PUFA on serious adverse events such as pulmonary embolism and bleeding are unclear as the evidence is of very low quality. AUTHORS' CONCLUSIONS This is the most extensive systematic review of RCTs conducted to date to assess effects of increasing PUFA on cardiovascular disease, mortality, lipids or adiposity. Increasing PUFA intake probably slightly reduces risk of coronary heart disease and cardiovascular disease events, may slightly reduce risk of coronary heart disease mortality and stroke (though not ruling out harms), but has little or no effect on all-cause or cardiovascular disease mortality. The mechanism may be via lipid reduction, but increasing PUFA probably slightly increases weight.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Nicole Martin
- University College LondonFarr Institute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Charlene Bridges
- University College LondonFarr Institute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Xia Wang
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Sarah Hanson
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Oluseyi F Jimoh
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Sarah M Ajabnoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| |
Collapse
|
12
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, AlAbdulghafoor FK, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 7:CD003177. [PMID: 30019766 PMCID: PMC6513557 DOI: 10.1002/14651858.cd003177.pub3] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet.Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses - LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and it may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence), and probably reduces risk of CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs), and arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression.There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, although LCn3 slightly reduced triglycerides and increased HDL. ALA probably reduces HDL (high- or moderate-quality evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event risk, CHD mortality and arrhythmia.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Durham UniversityWolfson Research InstituteDurhamUKDH1 3LE
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Fai K AlAbdulghafoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Science42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthJR Moore BuildingOxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| |
Collapse
|
13
|
Fournier N, Sayet G, Vedie B, Nowak M, Allaoui F, Solgadi A, Caudron E, Chaminade P, Benoist JF, Paul JL. Eicosapentaenoic acid membrane incorporation impairs cholesterol efflux from cholesterol-loaded human macrophages by reducing the cholesteryl ester mobilization from lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1079-1091. [PMID: 28739279 DOI: 10.1016/j.bbalip.2017.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/26/2022]
Abstract
A diet containing a high n-3/n-6 polyunsaturated fatty acids (PUFA) ratio has cardioprotective properties. PUFAs incorporation into membranes influences the function of membrane proteins. We investigated the impact of the membrane incorporation of PUFAs, especially eicosapentaenoic acid (EPA) (C20:5 n-3), on the anti-atherogenic cholesterol efflux pathways. We used cholesteryl esters (CE)-loaded human monocyte-derived macrophages (HMDM) to mimic foam cells exposed to the FAs for a long period of time to ensure their incorporation into cellular membranes. Phospholipid fraction of EPA cells exhibited high levels of EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which was associated with a decreased level of arachidonic acid (AA) (C20:4 n-6). EPA 70μM reduced ABCA1-mediated cholesterol efflux to apolipoprotein (apo) AI by 30% without any alteration in ABCA1 expression. The other tested PUFAs, DPA, docosahexaenoic acid (DHA) (C22:6 n-3), and AA, were also able to reduce ABCA1 functionality while the monounsaturated oleic FA slightly decreased efflux and the saturated palmitic FA had no impact. Moreover, EPA also reduced cholesterol efflux to HDL mediated by the Cla-1 and ABCG1 pathways. EPA incorporation did not hinder efflux in free cholesterol-loaded HMDM and did not promote esterification of cholesterol. Conversely, EPA reduced the neutral hydrolysis of cytoplasmic CE by 24%. The reduced CE hydrolysis was likely attributed to the increase in cellular TG contents and/or the decrease in apo E secretion after EPA treatment. In conclusion, EPA membrane incorporation reduces cholesterol efflux in human foam cells by reducing the cholesteryl ester mobilization from lipid droplets.
Collapse
Affiliation(s)
- Natalie Fournier
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France; AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Laboratoire de Biochimie, 75015 Paris, France.
| | - Guillaume Sayet
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA 4041), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Benoît Vedie
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Laboratoire de Biochimie, 75015 Paris, France
| | - Maxime Nowak
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Fatima Allaoui
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Audrey Solgadi
- Univ Paris Sud-Paris Saclay, SFR IPSIT (Institut Paris-Saclay d'Innovation Thérapeutique), UMS IPSIT Service d'Analyse des Médicaments et Métabolites, 92296 Châtenay-Malabry, France
| | - Eric Caudron
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA 4041), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Pierre Chaminade
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA 4041), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Jean-François Benoist
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Robert Debré, Laboratoire de Biochimie hormonale, 75019 Paris, France
| | - Jean-Louis Paul
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France; AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Laboratoire de Biochimie, 75015 Paris, France
| |
Collapse
|
14
|
Takamura M, Kurokawa K, Ootsuji H, Inoue O, Okada H, Nomura A, Kaneko S, Usui S. Long-Term Administration of Eicosapentaenoic Acid Improves Post-Myocardial Infarction Cardiac Remodeling in Mice by Regulating Macrophage Polarization. J Am Heart Assoc 2017; 6:JAHA.116.004560. [PMID: 28223437 PMCID: PMC5523759 DOI: 10.1161/jaha.116.004560] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Consumption of n‐3 fatty acids reduces the incidence of cardiovascular mortality in populations that consume diets rich in fish oil. Eicosapentaenoic acid (EPA) is an n‐3 fatty acid known to reduce the frequency of nonfatal coronary events; however, the frequency of mortality after myocardial infarction (MI) is not reduced. The aims of this study were to determine whether long‐term administration of EPA regulated cardiac remodeling after MI and to elucidate the underlying therapeutic mechanisms of EPA. Methods and Results C57BL/6J mice were divided into control (phosphate‐buffered saline–treated) and EPA‐treated groups. After 28 days of treatment, the mice were subjected to either sham surgery or MI by left anterior descending coronary artery ligation. Mortality due to MI or heart failure was significantly lower in the EPA‐treated mice than in the phosphate‐buffered saline–treated mice. However, the incidence of cardiac rupture was comparable between the EPA‐treated mice and the phosphate‐buffered saline–treated mice after MI. Echocardiographic tests indicated that EPA treatment attenuated post‐MI cardiac remodeling by preventing issues such as left ventricular systolic dysfunction and left ventricle dilatation 28 days after MI induction. Moreover, during the chronic remodeling phase, ie, 28 days after MI, flow cytometry demonstrated that EPA treatment significantly inhibited polarization toward proinflammatory M1 macrophages, but not anti‐inflammatory M2 macrophages, in the infarcted heart. Furthermore, EPA treatment attenuated fibrosis in the noninfarcted remote areas during the chronic phase. Conclusions Long‐term administration of EPA improved the prognosis of and attenuated chronic cardiac remodeling after MI by modulating the activation of proinflammatory M1 macrophages.
Collapse
Affiliation(s)
- Masayuki Takamura
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Keisuke Kurokawa
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ootsuji
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Oto Inoue
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hikari Okada
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Ayano Nomura
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Soichiro Usui
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
15
|
Brinton EA, Mason RP. Prescription omega-3 fatty acid products containing highly purified eicosapentaenoic acid (EPA). Lipids Health Dis 2017; 16:23. [PMID: 28137294 PMCID: PMC5282870 DOI: 10.1186/s12944-017-0415-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 01/16/2017] [Indexed: 11/10/2022] Open
Abstract
The omega-3 fatty acid eicosapentaenoic acid (EPA) has multiple actions potentially conferring cardiovascular benefit, including lowering serum triglyceride (TG) and non-high-density lipoprotein cholesterol (non-HDL-C) levels and potentially reducing key steps in atherogenesis. Dietary supplements are a common source of omega-3 fatty acids in the US, but virtually all contain docosahexaenoic acid (DHA) in addition to EPA, and lipid effects differ between DHA and EPA. Contrary to popular belief, no over-the-counter omega-3 products are available in the US, only prescription products and dietary supplements. Among the US prescription omega-3 products, only one contains EPA exclusively (Vascepa); another closely related prescription omega-3 product also contains highly purified EPA, but is approved only in Japan and is provided in different capsule sizes. These high-purity EPA products do not raise low-density lipoprotein cholesterol (LDL-C) levels, even in patients with TG levels >500 mg/dL, in contrast to the increase in LDL-C levels with prescription omega-3 products that also contain DHA. The Japanese prescription EPA product was shown to significantly reduce major coronary events in hypercholesterolemic patients when added to statin therapy in the Japan EPA Lipid Intervention Study (JELIS). The effects of Vascepa on cardiovascular outcomes are being investigated in statin-treated patients with high TG levels in the Reduction of Cardiovascular Events With EPA-Intervention Trial (REDUCE-IT).
Collapse
Affiliation(s)
- Eliot A. Brinton
- Utah Foundation for Biomedical Research and the Utah Lipid Center, 419 Wakara Way, Suite 211, Salt Lake City, UT 84108 USA
| | - R. Preston Mason
- Department of Medicine, Cardiovascular Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA and Elucida Research LLC, PO Box 7100, Beverly, MA 01915-6127 USA
| |
Collapse
|
16
|
Bays HE, Jones PH, Orringer CE, Brown WV, Jacobson TA. National Lipid Association Annual Summary of Clinical Lipidology 2016. J Clin Lipidol 2016; 10:S1-43. [PMID: 26891998 DOI: 10.1016/j.jacl.2015.08.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/03/2015] [Indexed: 01/25/2023]
Abstract
The National Lipid Association (NLA) Annual Summary of Clinical Lipidology is a yearly updated summary of principles important to the patient-centered evaluation, management, and care of patients with dyslipidemia. This summary is intended to be a "living document," with future annual updates based on emerging science, clinical considerations, and new NLA Position, Consensus, and Scientific Statements, thus providing an ongoing resource that applies the latest in medical science towards the clinical management of patients with dyslipidemia. Topics include the NLA Recommendations for Patient-Centered Management of Dyslipidemia, genetics, Familial Hypercholesterolemia, secondary causes of dyslipidemia, biomarkers and advanced lipid testing, nutrition, physical activity, obesity, adiposopathy, metabolic syndrome, diabetes mellitus, lipid pharmacotherapy, lipid-altering drug interactions, lipoprotein apheresis, dyslipidemia management and treatment based upon age (children, adolescents, and older individuals), dyslipidemia considerations based upon race, ethnicity and gender, dyslipidemia and human immune virus infection, dyslipidemia and immune disorders, adherence strategies and collaborative care, and lipid-altering drugs in development. Hyperlinks direct the reader to sentinel online tables, charts, and figures relevant to lipidology, access to online atherosclerotic cardiovascular disease risk calculators, worldwide lipid guidelines, recommendations, and position/scientific statements, as well as links to online audio files, websites, slide shows, applications, continuing medical education opportunities, and patient information.
Collapse
Affiliation(s)
- Harold E Bays
- Louisville Metabolic and Atherosclerosis Research Center, Louisville, KY, USA.
| | | | - Carl E Orringer
- University of Miami Leonard M. Miller School of Medicine, Miami, FL
| | | | | |
Collapse
|
17
|
Sawada T, Tsubata H, Hashimoto N, Takabe M, Miyata T, Aoki K, Yamashita S, Oishi S, Osue T, Yokoi K, Tsukishiro Y, Onishi T, Shimane A, Taniguchi Y, Yasaka Y, Ohara T, Kawai H, Yokoyama M. Effects of 6-month eicosapentaenoic acid treatment on postprandial hyperglycemia, hyperlipidemia, insulin secretion ability, and concomitant endothelial dysfunction among newly-diagnosed impaired glucose metabolism patients with coronary artery disease. An open label, single blinded, prospective randomized controlled trial. Cardiovasc Diabetol 2016; 15:121. [PMID: 27565734 PMCID: PMC5002116 DOI: 10.1186/s12933-016-0437-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/12/2016] [Indexed: 01/18/2023] Open
Abstract
Background Recent experimental studies have revealed that n-3 fatty acids, such as eicosapentaenoic acid (EPA) regulate postprandial insulin secretion, and correct postprandial glucose and lipid abnormalities. However, the effects of 6-month EPA treatment on postprandial hyperglycemia and hyperlipidemia, insulin secretion, and concomitant endothelial dysfunction remain unknown in patients with impaired glucose metabolism (IGM) and coronary artery disease (CAD). Methods and results We randomized 107 newly diagnosed IGM patients with CAD to receive either 1800 mg/day of EPA (EPA group, n = 53) or no EPA (n = 54). Cookie meal testing (carbohydrates: 75 g, fat: 28.5 g) and endothelial function testing using fasting-state flow-mediated dilatation (FMD) were performed before and after 6 months of treatment. The primary outcome of this study was changes in postprandial glycemic and triglyceridemic control and secondary outcomes were improvement of insulin secretion and endothelial dysfunction. After 6 months, the EPA group exhibited significant improvements in EPA/arachidonic acid, fasting triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C). The EPA group also exhibited significant decreases in the incremental TG peak, area under the curve (AUC) for postprandial TG, incremental glucose peak, AUC for postprandial glucose, and improvements in glycometabolism categorization. No significant changes were observed for hemoglobin A1c and fasting plasma glucose levels. The EPA group exhibited a significant increase in AUC-immune reactive insulin/AUC-plasma glucose ratio (which indicates postprandial insulin secretory ability) and significant improvements in FMD. Multiple regression analysis revealed that decreases in the TG/HDL-C ratio and incremental TG peak were independent predictors of FMD improvement in the EPA group. Conclusions EPA corrected postprandial hypertriglyceridemia, hyperglycemia and insulin secretion ability. This amelioration of several metabolic abnormalities was accompanied by recovery of concomitant endothelial dysfunction in newly diagnosed IGM patients with CAD. Clinical Trial Registration UMIN Registry number: UMIN000011265 (https://www.upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000013200&language=E) Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0437-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takahiro Sawada
- Division of Cardiovascular Medicine, Department of Internal Medicine, Hyogo Prefectural Himeji Cardiovascular Center, 520 Saisho-Kou, Himeji, Hyogo, 670-0981, Japan.
| | - Hideo Tsubata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Hyogo Prefectural Himeji Cardiovascular Center, 520 Saisho-Kou, Himeji, Hyogo, 670-0981, Japan
| | - Naoko Hashimoto
- Division of Diabetes and Endocrinology, Hyogo Prefectural Himeji Cardiovascular Center, 520, Saisho-Kou, Himeji, Hyogo, 670-0981, Japan
| | - Michinori Takabe
- Division of Diabetes and Endocrinology, Hyogo Prefectural Himeji Cardiovascular Center, 520, Saisho-Kou, Himeji, Hyogo, 670-0981, Japan
| | - Taishi Miyata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Hyogo Prefectural Himeji Cardiovascular Center, 520 Saisho-Kou, Himeji, Hyogo, 670-0981, Japan
| | - Kosuke Aoki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Hyogo Prefectural Himeji Cardiovascular Center, 520 Saisho-Kou, Himeji, Hyogo, 670-0981, Japan
| | - Soichiro Yamashita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Hyogo Prefectural Himeji Cardiovascular Center, 520 Saisho-Kou, Himeji, Hyogo, 670-0981, Japan
| | - Shogo Oishi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Hyogo Prefectural Himeji Cardiovascular Center, 520 Saisho-Kou, Himeji, Hyogo, 670-0981, Japan
| | - Tsuyoshi Osue
- Division of Cardiovascular Medicine, Department of Internal Medicine, Hyogo Prefectural Himeji Cardiovascular Center, 520 Saisho-Kou, Himeji, Hyogo, 670-0981, Japan
| | - Kiminobu Yokoi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Hyogo Prefectural Himeji Cardiovascular Center, 520 Saisho-Kou, Himeji, Hyogo, 670-0981, Japan
| | - Yasue Tsukishiro
- Division of Cardiovascular Medicine, Department of Internal Medicine, Hyogo Prefectural Himeji Cardiovascular Center, 520 Saisho-Kou, Himeji, Hyogo, 670-0981, Japan
| | - Tetsuari Onishi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Hyogo Prefectural Himeji Cardiovascular Center, 520 Saisho-Kou, Himeji, Hyogo, 670-0981, Japan
| | - Akira Shimane
- Division of Cardiovascular Medicine, Department of Internal Medicine, Hyogo Prefectural Himeji Cardiovascular Center, 520 Saisho-Kou, Himeji, Hyogo, 670-0981, Japan
| | - Yasuyo Taniguchi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Hyogo Prefectural Himeji Cardiovascular Center, 520 Saisho-Kou, Himeji, Hyogo, 670-0981, Japan
| | - Yoshinori Yasaka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Hyogo Prefectural Himeji Cardiovascular Center, 520 Saisho-Kou, Himeji, Hyogo, 670-0981, Japan
| | - Takeshi Ohara
- Division of Diabetes and Endocrinology, Hyogo Prefectural Himeji Cardiovascular Center, 520, Saisho-Kou, Himeji, Hyogo, 670-0981, Japan
| | - Hiroya Kawai
- Division of Cardiovascular Medicine, Department of Internal Medicine, Hyogo Prefectural Himeji Cardiovascular Center, 520 Saisho-Kou, Himeji, Hyogo, 670-0981, Japan
| | - Mitsuhiro Yokoyama
- Division of Cardiovascular Medicine, Department of Internal Medicine, Hyogo Prefectural Himeji Cardiovascular Center, 520 Saisho-Kou, Himeji, Hyogo, 670-0981, Japan
| |
Collapse
|
18
|
Tajuddin N, Shaikh A, Hassan A. Prescription omega-3 fatty acid products: considerations for patients with diabetes mellitus. Diabetes Metab Syndr Obes 2016; 9:109-18. [PMID: 27143943 PMCID: PMC4846047 DOI: 10.2147/dmso.s97036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and metabolic syndrome contribute to hypertriglyceridemia, which may increase residual risk of cardiovascular disease in patients with elevated triglyceride (TG) levels despite optimal low-density lipoprotein cholesterol (LDL-C) levels with statin therapy. Prescription products containing the long-chain omega-3 fatty acids (OM3FAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are an effective strategy for reducing TG levels. This article provides an overview of prescription OM3FAs, including relevant clinical data in patients with T2DM and/or metabolic syndrome. Prescription OM3FAs contain either combinations of DHA and EPA (omega-3-acid ethyl esters, omega-3-carboxylic acids, omega-3-acid ethyl esters A) or EPA alone (icosapent ethyl). These products are well tolerated and can be used safely with statins. Randomized controlled trials have demonstrated that all prescription OM3FAs produce statistically significant reductions in TG levels compared with placebo; however, differential effects on LDL-C levels have been reported. Products containing DHA may increase LDL-C levels, whereas the EPA-only product did not increase LDL-C levels compared with placebo. Because increases in LDL-C levels may be unwanted in patients with T2DM and/or dyslipidemia, the EPA-only product should not be replaced with products containing DHA. Available data on the effects of OM3FAs in patients with diabetes and/or metabolic syndrome support that these products can be used safely in patients with T2DM and have beneficial effects on atherogenic parameters; in particular, the EPA-only prescription product significantly reduced TG, non-high-density lipoprotein cholesterol, Apo B, remnant lipoprotein cholesterol, and high-sensitivity CRP levels without increasing LDL-C levels compared with placebo. Ongoing studies of the effects of prescription OM3FAs on cardiovascular outcomes will help determine whether these products will emerge as effective add-on options to statin therapy for reduction of residual cardiovascular disease risk.
Collapse
Affiliation(s)
- Nadeem Tajuddin
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ali Shaikh
- Clinic of Endocrinology, Houston, TX, USA
| | | |
Collapse
|
19
|
Eicosapentaenoic acid membrane incorporation impairs ABCA1-dependent cholesterol efflux via a protein kinase A signaling pathway in primary human macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:331-41. [DOI: 10.1016/j.bbalip.2016.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/04/2016] [Accepted: 01/07/2016] [Indexed: 11/22/2022]
|
20
|
Ruiz-Núñez B, Dijck-Brouwer DAJ, Muskiet FAJ. The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. J Nutr Biochem 2016; 36:1-20. [PMID: 27692243 DOI: 10.1016/j.jnutbio.2015.12.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 12/03/2015] [Accepted: 12/16/2015] [Indexed: 12/15/2022]
Abstract
The mantra that dietary (saturated) fat must be minimized to reduce cardiovascular disease (CVD) risk has dominated nutritional guidelines for decades. Parallel to decreasing intakes of fat and saturated fatty acids (SFA), there have been increases in carbohydrate and sugar intakes, overweight, obesity and type 2 diabetes mellitus. The "lipid hypothesis" coined the concept that fat, especially SFA, raises blood low-density lipoprotein-cholesterol and thereby CVD risk. In view of current controversies regarding their adequate intakes and effects, this review aims to summarize research regarding this heterogenic group of fatty acids and the mechanisms relating them to (chronic) systemic low-grade inflammation, insulin resistance, metabolic syndrome and notably CVD. The intimate relationship between inflammation and metabolism, including glucose, fat and cholesterol metabolism, revealed that the dyslipidemia in Western societies, notably increased triglycerides, "small dense" low-density lipoprotein and "dysfunctional" high-density lipoprotein, is influenced by many unfavorable lifestyle factors. Dietary SFA is only one of these, not necessarily the most important, in healthy, insulin-sensitive people. The environment provides us not only with many other proinflammatory stimuli than SFA but also with many antiinflammatory counterparts. Resolution of the conflict between our self-designed environment and ancient genome may rather rely on returning to the proinflammatory/antiinflammatory balance of the Paleolithic era in consonance with the 21st century culture. Accordingly, dietary guidelines might reconsider recommendations for SFA replacement and investigate diet in a broader context, together with nondietary lifestyle factors. This should be a clear priority, opposed to the reductionist approach of studying the effects of single nutrients, such as SFA.
Collapse
Affiliation(s)
- Begoña Ruiz-Núñez
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - D A Janneke Dijck-Brouwer
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frits A J Muskiet
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Chen SJ, Chuang LT, Chen SN. Incorporation of eicosatrienoic acid exerts mild anti-inflammatory properties in murine RAW264.7 cells. Inflammation 2015; 38:534-45. [PMID: 24993153 DOI: 10.1007/s10753-014-9960-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eicosatrienoic acid (Δ11,14,17-20:3; ETrA) is a rare naturally occurring n-3 polyunsaturated fatty acid (PUFA). Using murine RAW264.7 cells, the objectives were to determine how ETrA modulated phospholipid fatty acid compositions and the production of pro-inflammatory mediators. Incubation cells with ETrA dose-dependently increased the proportions of phospholipid ETrA and its metabolites to 33 % of the fatty acid total. Incorporation of ETrA also reduced the proportions of total n-6 PUFA and monounsaturated fatty acids (MUFA) by 30 and 60 %, respectively. ETrA suppressed LPS-stimulated nuclear factor-kappa B (NF-κB)-mediated nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression. However, no such suppressive effect on the production of prostaglandin E2 (PGE2), cytokines, or expression of cyclooxygenase-2 (COX-2) was observed. As compared with ETrA, eicosapentaenoic acid (EPA) exerted a more potent anti-inflammatory effect. In conclusion, although ETrA suppresses significant NO synthesis and iNOS expression, this n-3 PUFA was a less potent anti-inflammatory agent than EPA.
Collapse
Affiliation(s)
- Szu-Jung Chen
- Department of Radiation Oncology, Tao Yuan General Hospital, Tao-Yuan, Taiwan, Republic of China
| | | | | |
Collapse
|
22
|
Patients undergoing elective coronary artery bypass grafting exhibit poor pre-operative intakes of fruit, vegetables, dietary fibre, fish and vitamin D. Br J Nutr 2015; 113:1466-76. [PMID: 25827177 DOI: 10.1017/s0007114515000434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CHD may ensue from chronic systemic low-grade inflammation. Diet is a modifiable risk factor for both, and its optimisation may reduce post-operative mortality, atrial fibrillation and cognitive decline. In the present study, we investigated the usual dietary intakes of patients undergoing elective coronary artery bypass grafting (CABG), emphasising on food groups and nutrients with putative roles in the inflammatory/anti-inflammatory balance. From November 2012 to April 2013, we approached ninety-three consecutive patients (80% men) undergoing elective CABG. Of these, fifty-five were finally included (84% men, median age 69 years; range 46-84 years). The median BMI was 27 (range 18-36) kg/m(2). The dietary intake items were fruits (median 181 g/d; range 0-433 g/d), vegetables (median 115 g/d; range 0-303 g/d), dietary fibre (median 22 g/d; range 9-45 g/d), EPA+DHA (median 0.14 g/d; range 0.01-1.06 g/d), vitamin D (median 4.9 μg/d; range 1.9-11.2 μg/d), saturated fat (median 13.1% of energy (E%); range 9-23 E%) and linoleic acid (LA; median 6.3 E%; range 1.9-11.3 E%). The percentages of patients with dietary intakes below recommendations were 62% (fruits; recommendation 200 g/d), 87 % (vegetables; recommendation 150-200 g/d), 73% (dietary fibre; recommendation 30-45 g/d), 91% (EPA+DHA; recommendation 0.45 g/d), 98% (vitamin D; recommendation 10-20 μg/d) and 13% (LA; recommendation 5-10 E%). The percentages of patients with dietary intakes above recommendations were 95% (saturated fat; recommendation < 10 E%) and 7% (LA). The dietary intakes of patients proved comparable with the average nutritional intake of the age- and sex-matched healthy Dutch population. These unbalanced pre-operative diets may put them at risk of unfavourable surgical outcomes, since they promote a pro-inflammatory state. We conclude that there is an urgent need for intervention trials aiming at rapid improvement of their diets to reduce peri-operative risks.
Collapse
|
23
|
Lim TH, Orija IB, Pearlman BL. The New Cholesterol Treatment Guidelines from the American College of Cardiology/American Heart Association, 2013: What Clinicians Need to Know. Postgrad Med 2015; 126:35-44. [DOI: 10.3810/pgm.2014.11.2831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Encarnação T, Pais AA, Campos MG, Burrows HD. Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals. Sci Prog 2015; 98:145-68. [PMID: 26288917 PMCID: PMC10365369 DOI: 10.3184/003685015x14298590596266] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microalgae and cyanobacteria are rich sources of many valuable compounds, including important bioactive and biotechnologically relevant chemicals. Their enormous biodiversity, and the consequent variability in the respective biochemical composition, make microalgae cultivations a promising resource for many novel chemically and biologically active molecules and compounds of high commercial value such as lipids and dyes. The nature of the chemicals produced can be manipulated by changing the cultivation media and conditions. Algae are extremely versatile because they can be adapted to a variety of cell culture conditions. They do not require arable land, can be cultivated on saline water and wastewaters, and require much less water than plants. They possess an extremely high growth rate making these microorganisms very attractive for use in biofuel production--some species of algae can achieve around 100 times more oil than oil seeds. In addition, microalgae and cyanobacteria can accumulate various biotoxins and can contribute to mitigate greenhouse gases since they produce biomass through carbon dioxide fixation. In this review, we provide an overview of the application of microalgae in the production of bioactive and other chemicals.
Collapse
Affiliation(s)
- Telma Encarnação
- Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | | | | | | |
Collapse
|
25
|
Cho SM, Park JA, Kim NH, Kim DS, Zhang D, Yi H, Cho HJ, Kim JK, Lee DK, Kim JS, Shin HC. Effect of eicosapentaenoic acid on cholesterol gallstone formation in C57BL/6J mice. Mol Med Rep 2014; 11:362-6. [PMID: 25333303 DOI: 10.3892/mmr.2014.2687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 05/19/2014] [Indexed: 11/05/2022] Open
Abstract
The present study investigated the preventive effect of ω-3 fatty acids against cholesterol gallstone (CG) formation. CG formation was induced in C57BL/6J mice using a lithogenic diet (LD). The mice were divided into four treatment groups: i) LD, ii) LD plus eicosapentaenoic acid (EPA), iii) LD plus docosahexaenoic acid (DHA) and iv) LD plus EPA plus DHA. Subsequent to feeding the mice the LD for four weeks, EPA and/or DHA (70 mg/kg/day) were orally administered for eight weeks. The mice in the EPA treatment groups exhibited significantly less gallstone formation than those in the LD group. By contrast, DHA treatment only slightly suppressed gallstone formation. The expression of mucin 2, 5AC, 5B and 6 was significantly decreased in the gallbladders of mice in the EPA groups (70-90%) and the LD plus DHA group (30-50%), compared with that in the mice in the LD group. In addition, the mRNA expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase was significantly decreased in the livers of mice in the EPA treatment group compared with that in the livers of mice in the LD group. In conclusion, EPA was found to have a dominant anti-lithogenic effect in C57BL/6J mice.
Collapse
Affiliation(s)
- Soo-Min Cho
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143‑701, Republic of Korea
| | - Jin-A Park
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143‑701, Republic of Korea
| | - Na-Hyun Kim
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143‑701, Republic of Korea
| | - Dong-Soon Kim
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143‑701, Republic of Korea
| | - Dan Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143‑701, Republic of Korea
| | - Hee Yi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143‑701, Republic of Korea
| | - Hee-Jung Cho
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143‑701, Republic of Korea
| | - Ja Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120‑752, Republic of Korea
| | - Dong Ki Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120‑752, Republic of Korea
| | - Jin-Suk Kim
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143‑701, Republic of Korea
| | - Ho-Chul Shin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143‑701, Republic of Korea
| |
Collapse
|
26
|
Bays HE, Jones PH, Brown WV, Jacobson TA. National Lipid Association Annual Summary of Clinical Lipidology 2015. J Clin Lipidol 2014; 8:S1-36. [PMID: 25523435 DOI: 10.1016/j.jacl.2014.10.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 01/26/2023]
Abstract
The National Lipid Association (NLA) Annual Summary of Clinical Lipidology 2015 is a summary of principles important to the patient-centered evaluation, management, and care of patients with dyslipidemia. This summary is intended to be a "living document," with future annual updates based on emerging science, clinical considerations, and new NLA Position and Consensus Statements. The goal is to provide clinicians an ongoing resource that translates the latest advances in medical science toward the evaluation and treatment of patients with dyslipidemia. The 2015 NLA Annual Summary of Clinical Lipidology was founded on the principles of evidence-based medicine and is generally consistent with established national and international lipid guidelines. Topics include a general discussion of the 2014 NLA Recommendations for Patient-Centered Management of Dyslipidemia, genetics, secondary causes of dyslipidemia, biomarkers and "advanced lipid testing," medical nutrition, physical activity, obesity, pharmacotherapy, statin safety, lipid-altering drug interactions, lipoprotein apheresis, dyslipidemia in children and adolescence, dyslipidemia in older individuals, race/ethnicity, and women, health information technology and electronic medical records, as well as investigational lipid-altering drugs in development.
Collapse
Affiliation(s)
- Harold E Bays
- Louisville Metabolic and Atherosclerosis Research Center, Louisville, KY, USA.
| | | | | | | | | |
Collapse
|
27
|
Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith SC, Watson K, Wilson PWF. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013; 63:2889-934. [PMID: 24239923 DOI: 10.1016/j.jacc.2013.11.002] [Citation(s) in RCA: 2973] [Impact Index Per Article: 270.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith SC, Watson K, Wilson PWF, Eddleman KM, Jarrett NM, LaBresh K, Nevo L, Wnek J, Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Curtis LH, DeMets D, Hochman JS, Kovacs RJ, Ohman EM, Pressler SJ, Sellke FW, Shen WK, Smith SC, Tomaselli GF. 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults. Circulation 2013; 129:S1-45. [DOI: 10.1161/01.cir.0000437738.63853.7a] [Citation(s) in RCA: 3010] [Impact Index Per Article: 273.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Igarashi M, Chang L, Ma K, Rapoport SI. Kinetics of eicosapentaenoic acid in brain, heart and liver of conscious rats fed a high n-3 PUFA containing diet. Prostaglandins Leukot Essent Fatty Acids 2013; 89:403-12. [PMID: 24209500 PMCID: PMC5861380 DOI: 10.1016/j.plefa.2013.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/07/2013] [Accepted: 09/07/2013] [Indexed: 01/06/2023]
Abstract
Eicosapentaenoic acid (EPA, 20:5n-3), a precursor of docosahexaenoic acid (DHA), may benefit cardiovascular and brain health. Quantifying EPA's in vivo kinetics might elucidate these effects. [1-(14)C]EPA was infused i.v. for 5min in unanesthetized male rats fed a standard EPA-DHA diet. Plasma and microwaved tissue were analyzed. Kinetic parameters were calculated using our compartmental model. At 5min, 31-48% of labeled EPA in brain and heart was oxidized, 7% in liver. EPA incorporation rates from brain and liver precursor EPA-CoA pools into lipids, mainly phospholipids, were 36 and 2529nmol/s/g×10(-4), insignificant for heart. Deacylation-reacylation half-lives were 22h and 38-128min. Conversion rates to DHA equaled 0.65 and 25.1nmol/s/g×10(-4), respectively. The low brain concentration and incorporation rate and high oxidation of EPA suggest that, if EPA has a beneficial effect in brain, it might result from its suppression of peripheral inflammation and hepatic conversion to bioactive DHA.
Collapse
Affiliation(s)
- Miki Igarashi
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Building 9, Room 1S126, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
30
|
Tatsuno I, Saito Y, Kudou K, Ootake J. Efficacy and safety of TAK-085 compared with eicosapentaenoic acid in Japanese subjects with hypertriglyceridemia undergoing lifestyle modification: The omega-3 fatty acids randomized double-blind (ORD) study. J Clin Lipidol 2013; 7:199-207. [DOI: 10.1016/j.jacl.2013.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 01/18/2013] [Accepted: 01/27/2013] [Indexed: 11/16/2022]
|
31
|
Mishina M, Kim K, Kominami S, Mizunari T, Kobayashi S, Katayama Y. Impact of polyunsaturated fatty acid consumption prior to ischemic stroke. Acta Neurol Scand 2013; 127:181-5. [PMID: 22694736 DOI: 10.1111/j.1600-0404.2012.01695.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The Japanese have higher levels of n-3 polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in their diets. These facts may contribute to the lower rates of atherosclerosis in Japanese. The purposes of this study were to assess the PUFA levels in patients with subtypes of acute ischemic stroke and to assess the relationship between severity and PUFA levels. MATERIAL AND METHODS We studied 75 patients with lacunar infarction (LI; n = 25), atherothrombotic infarction (AT; n = 32), and cardiogenic embolism (CE; n = 18). The patients underwent blood examinations in a fasting state next morning of hospitalization, including examination of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), triglyceride (TG), blood glucose, hemoglobin A1c (HbA1c), uric acid, and fatty acid fractions of EPA, DHA, dihomo-γ-linolenic acid (DGLA), and arachidonic acid (AA). We used the modified Rankin Scale (mRS) to assess clinical severity at discharge. RESULTS There was no significant difference in the EPA/AA and DHA/AA ratio among the three stroke subgroups, although the DGLA/AA ratio was significantly higher in patients with LI than in patients with CE. Considering the confounding factors, the mRS was negatively correlated with EPA/AA and positively correlated with age, DHA/AA, and blood glucose. CONCLUSIONS High EPA/AA ratio was associated with good outcome in ischemic stroke. Our paper suggests that prestroke dietary habits affect the severity in patients with ischemic stroke.
Collapse
Affiliation(s)
| | - K. Kim
- Neurological Institute; Nippon Medical School; Chiba Hokusoh Hospital; Tokyo; Japan
| | - S. Kominami
- Neurological Institute; Nippon Medical School; Chiba Hokusoh Hospital; Tokyo; Japan
| | - T. Mizunari
- Neurological Institute; Nippon Medical School; Chiba Hokusoh Hospital; Tokyo; Japan
| | - S. Kobayashi
- Neurological Institute; Nippon Medical School; Chiba Hokusoh Hospital; Tokyo; Japan
| | - Y. Katayama
- The Second Department of Internal Medicine; Nippon Medical School; Tokyo; Japan
| |
Collapse
|
32
|
Poole CD, Halcox JP, Jenkins-Jones S, Carr ES, Schifflers MG, Ray KK, Currie CJ. Omega-3 Fatty Acids and Mortality Outcome in Patients With and Without Type 2 Diabetes After Myocardial Infarction: A Retrospective, Matched-Cohort Study. Clin Ther 2013; 35:40-51. [DOI: 10.1016/j.clinthera.2012.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/15/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
|
33
|
Bays HE, Braeckman RA, Ballantyne CM, Kastelein JJ, Otvos JD, Stirtan WG, Soni PN. Icosapent ethyl, a pure EPA omega-3 fatty acid: Effects on lipoprotein particle concentration and size in patients with very high triglyceride levels (the MARINE study). J Clin Lipidol 2012; 6:565-72. [DOI: 10.1016/j.jacl.2012.07.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 06/28/2012] [Accepted: 07/15/2012] [Indexed: 10/28/2022]
|
34
|
Jump DB, Depner CM, Tripathy S. Omega-3 fatty acid supplementation and cardiovascular disease. J Lipid Res 2012; 53:2525-45. [PMID: 22904344 DOI: 10.1194/jlr.r027904] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epidemiological studies on Greenland Inuits in the 1970s and subsequent human studies have established an inverse relationship between the ingestion of omega-3 fatty acids [C(20-22) ω 3 polyunsaturated fatty acids (PUFA)], blood levels of C(20-22) ω 3 PUFA, and mortality associated with cardiovascular disease (CVD). C(20-22) ω 3 PUFA have pleiotropic effects on cell function and regulate multiple pathways controlling blood lipids, inflammatory factors, and cellular events in cardiomyocytes and vascular endothelial cells. The hypolipemic, anti-inflammatory, anti-arrhythmic properties of these fatty acids confer cardioprotection. Accordingly, national heart associations and government agencies have recommended increased consumption of fatty fish or ω 3 PUFA supplements to prevent CVD. In addition to fatty fish, sources of ω 3 PUFA are available from plants, algae, and yeast. A key question examined in this review is whether nonfish sources of ω 3 PUFA are as effective as fatty fish-derived C(20-22) ω 3 PUFA at managing risk factors linked to CVD. We focused on ω 3 PUFA metabolism and the capacity of ω 3 PUFA supplements to regulate key cellular events linked to CVD. The outcome of our analysis reveals that nonfish sources of ω 3 PUFA vary in their capacity to regulate blood levels of C(20-22) ω 3 PUFA and CVD risk factors.
Collapse
Affiliation(s)
- Donald B Jump
- Nutrition Program, School of Biological and Population Health Sciences, The Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | | | | |
Collapse
|
35
|
Itakura H, Yokoyama M, Matsuzaki M, Saito Y, Origasa H, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K, Matsuzawa Y. The change in low-density lipoprotein cholesterol concentration is positively related to plasma docosahexaenoic acid but not eicosapentaenoic acid. J Atheroscler Thromb 2012; 19:673-9. [PMID: 22653220 DOI: 10.5551/jat.11593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM The Japan EPA Lipid Intervention Study (JELIS) reported a 19% reduction of the risk for coronary artery disease after long-term use of pure eicosapentaenoic acid (EPA) in Japanese patients with hypercholesterolemia. The variation in plasma fatty acid composition influenced the risk of coronary events. The aim of this study was to examine in JELIS participants the possible correlation of changes in plasma fatty acids with those of serum lipids. METHODS The coefficient for the correlation between the absolute change in plasma fatty acid concentrations and the changes in serum lipids was calculated in 13,901 JELIS participants. RESULTS Low-density lipoprotein (LDL) cholesterol exhibited a positive correlation with docosahexaenoic acid (DHA; r=0.117 in control group, r=0.155 in EPA group) and linoleic acid (r=0.139 in control group, r=0.177 in EPA group), but the correlation coefficients with EPA (r=0.097 in control group, r=-0.032 in EPA group) were less than 0.1. We distributed the patients into 9 groups according to tertiles of the change in EPA and DHA. The average absolute decrease of LDL cholesterol and L/H ratio in each group was significantly smaller (p<0.001) in the DHA-high tertile, but not in any EPA tertile. CONCLUSION The changes in DHA, but not in EPA, showed a positive correlation with the changes in LDL-cholesterol.
Collapse
|
36
|
Watanabe E, Sobue Y, Sano K, Okuda K, Yamamoto M, Ozaki Y. Eicosapentaenoic acid for the prevention of recurrent atrial fibrillation. Ann Noninvasive Electrocardiol 2012; 16:373-8. [PMID: 22008493 DOI: 10.1111/j.1542-474x.2011.00465.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND n-3 polyunsaturated fatty acids, primarily eicosapentaenoic acid (EPA), has been reported to have antiarrhythmic and antiinflammatory effects. The aim of the present study was to examine whether the combination of antiarrhythmic drugs and EPA reduced the frequency of atrial fibrillation (AF) in patients with paroxysmal AF. METHODS We studied 50 patients with paroxysmal AF (age, 54 ± 9 years) after excluding the clinical conditions associated with an increased risk of AF. Patients were initially treated with antiarrhythmic drugs for 6 months (the observation period), and thereafter, EPA was added at a dose of 1.8 g/day for 6 months (the intervention period). During a one-year period, patients obtained an ECG recording using a portable device each morning and when arrhythmia-related symptom occurred. The end point was the difference of the AF burden (defined by the days of AF per month) between observation period and intervention period. Plasma EPA and C-reactive protein (CRP) levels were also determined. RESULTS There was no significant difference in the AF burden before and after intervention (2.6 ± 2.2 days/months vs. 2.5 ± 2.2 days/months, P = 0.45). Although EPA level was significantly increased (42 ± 15 μg/mL to 120 ± 47 μg/mL, P < 0.001), CRP level was unchanged (1.04 ± 0.69 mg/L to 0.96 ± 0.56 mg/L, P = 0.24) following EPA treatment. CONCLUSIONS Treatment of EPA in combination with antiarrhythmic drugs did not reduce the AF burden or the CRP levels in paroxysmal AF patients who had no evidence of substantial structural heart disease.
Collapse
Affiliation(s)
- Eiichi Watanabe
- Department of Cardiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Sasaki J, Yokoyama M, Matsuzaki M, Saito Y, Origasa H, Ishikawa Y, Oikawa S, Itakura H, Hishida H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K, Matsuzawa Y. Relationship between Coronary Artery Disease and Non-HDL-C, and Effect of Highly Purified EPA on the Risk of Coronary Artery Disease in Hypercholesterolemic Patients Treated with Statins: Sub-Analysis of the Japan EPA Lipid Intervention Study (JELIS). J Atheroscler Thromb 2012; 19:194-204. [DOI: 10.5551/jat.8326] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
38
|
Daily intake of cod or salmon for 2 weeks decreases the 18:1n-9/18:0 ratio and serum triacylglycerols in healthy subjects. Lipids 2011; 47:151-60. [PMID: 22139893 DOI: 10.1007/s11745-011-3637-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/16/2011] [Indexed: 12/31/2022]
Abstract
Intake of fish and omega-3 (n-3) fatty acids is associated with a reduced concentration of plasma triacylglycerols (TAG) but the mechanisms are not fully clarified. Stearoyl-CoA desaturase-1 (SCD1) activity, governing TAG synthesis, is affected by n-3 fatty acids. Peripheral blood mononuclear cells (PBMC) display expression of genes involved in lipid metabolism. The aim of the present study was to estimate whether intake of lean and fatty fish would influence n-3 fatty acids composition in plasma phospholipids (PL), serum TAG, 18:1n-9/18:0 ratio in plasma PL, as well as PBMC gene expression of SCD1 and fatty acid synthase (FAS). Healthy males and females (n = 30), aged 20-40, consumed either 150 g of cod, salmon, or potato (control) daily for 15 days. During intervention docosahexaenoic acid (DHA, 22:6n-3) increased in the cod group (P < 0.05), while TAG concentration decreased (P < 0.05). In the salmon group both eicosapentaenoic acid (EPA, 20:5n-3) and DHA increased (P < 0.05) whereas TAG concentration and the 18:1n-9/18:0 ratio decreased (P < 0.05). Reduction of the 18:1n-9/18:0 ratio was associated with a corresponding lowering of TAG (P < 0.05) and an increase in EPA and DHA (P < 0.05). The mRNA levels of SCD1 and FAS in PBMC were not significantly altered after intake of cod or salmon when compared with the control group. In conclusion, both lean and fatty fish may lower TAG, possibly by reducing the 18:1n-9/18:0 ratio related to allosteric inhibition of SCD1 activity, rather than by influencing the synthesis of enzyme protein.
Collapse
|
39
|
Affiliation(s)
- Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602, USA.
| | | | | | | | | |
Collapse
|
40
|
Brooks JD, Musiek ES, Koestner TR, Stankowski JN, Howard JR, Brunoldi EM, Porta A, Zanoni G, Vidari G, Morrow JD, Milne GL, McLaughlin B. The fatty acid oxidation product 15-A3t-isoprostane is a potent inhibitor of NFκB transcription and macrophage transformation. J Neurochem 2011; 119:604-16. [PMID: 21838782 DOI: 10.1111/j.1471-4159.2011.07422.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fatty acids such as eicosapentaenoic acid (EPA) have been shown to be beneficial for neurological function and human health. It is widely thought that oxidation products of EPA are responsible for biological activity, although the specific EPA peroxidation product(s) which exert these responses have not yet been identified. In this work we provide the first evidence that the synthesized representative cyclopentenone IsoP, 15-A(3t)-IsoP, serves as a potent inhibitor of lipopolysaccharide-stimulated macrophage activation. The anti-inflammatory activities of 15-A(3t)-IsoP were observed in response not only to lipopolysaccharide, but also to tumor necrosis factor alpha and IL-1b stimulation. Subsequently, this response blocked the ability of these compounds to stimulate nuclear factor kappa b (NFκB) activation and production of proinflammatory cytokines. The bioactivity of 15-A(3t)-IsoP was shown to be dependent upon an unsaturated carbonyl residue which transiently adducts to free thiols. Site directed mutagenesis of the redox sensitive C179 site of the Ikappa kinase beta subunit, blocked the biological activity of 15-A(3t)-IsoP and NFκB activation. The vasoprotective potential of 15-A(3t)-IsoP was underscored by the ability of this compound to block oxidized lipid accumulation, a critical step in foam cell transformation and atherosclerotic plaque formation. Taken together, these are the first data identifying the biological activity of a specific product of EPA peroxidation, which is formed in abundance in vivo. The clear mechanism linking 15-A(3t)-IsoP to redox control of NFκB transcription, and the compound's ability to block foam cell transformation suggest that 15-A(3t)-IsoP provides a unique and potent tool to provide vaso- and cytoprotection under conditions of oxidative stress.
Collapse
Affiliation(s)
- Joshua D Brooks
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8548, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Teramoto T, Kitagawa Y, Daida H. APPROACH-J study: design, rationale, and baseline data of the affirmation primary prevention with pravastatin in reduction of occlusive atherosclerotic complications in hypercholesterolemia--Japan study. J Atheroscler Thromb 2011; 18:1054-61. [PMID: 21921414 DOI: 10.5551/jat.9001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM We investigated the relationship between the lipid levels achieved in a high-risk group of patients undergoing primary prevention with pravastatin and the incidence of cardiovascular disease, and moreover the influence of lifestyle compliance on lipid control. METHODS In the APPROACH-J study, 6,229 patients who were treated with pravastatin were enrolled, and will be followed for two years. The subjects are men aged 20 years or older and women aged 55 years or older (or postmenopausal women) receiving primary prevention, who are categorized as high-risk patients with 3 or more major risk factors other than the LDL-C level according to the Japan Atherosclerosis Society guideline. Achieved LDL-C levels will be used to categorize the subjects into four quartiles for this analysis, and the maximum contrast method based on the Cox proportional hazards model will be used to investigate the relations between achieved LDL-C and the incidence of vascular event. Multiple linear regression analysis will be used to investigate the relations between adherence scores and achieved lipid level. RESULTS In 5,871 patients (58.5% women) who were eligible for analysis, the mean age was 66.4 years. The mean LDL-C at baseline was 135.9 mg/dL. The risk factors other than LDL-C were aging in 95.4%, diabetes in 76.9%, hypertension in 72.2%, a family history of coronary artery disease (CAD) in 20.9%, smoking in 20.0%, and low high-density lipoprotein cholesterol in 11.1%. CONCLUSIONS The results of this study are expected to confirm the validity of the target LDL-C level for high-risk patients receiving primary prevention and the importance of improving adherence for primary prevention.
Collapse
Affiliation(s)
- Tamio Teramoto
- Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
42
|
Dujovne CA, Williams CD, Ito MK. What combination therapy with a statin, if any, would you recommend? Curr Atheroscler Rep 2011; 13:12-22. [PMID: 21107758 DOI: 10.1007/s11883-010-0150-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The latest recommended goals for blood lipid levels may require multiple lipid drugs. Lower doses in combination may render more efficacy and safety than highest doses of single agents. Except for isolated hypoalphalipoproteinemia (a low level of high-density lipoprotein cholesterol), therapies will start with a statin. All marketed statins are acceptable. The choice may be based on dose- efficacy and patient's tolerability. High-potency statins (eg, atorvastatin, simvastatin, or rosuvastatin) are often chosen. Currently, generic statins, such as simvastatin, lovastatin, pravastatin, and fluvastatin, offer cost benefits. The choice of added agent depends on the "residual lipoprotein abnormalities" after statin therapy, efficacy, compliance issues, and cost. Approved "combined" preparations improve cost and compliance. To further lower low-density lipoprotein cholesterol, ezetimibe is a safe, efficacious choice, pending resolution of a controversial trial's results. Colesevelam is moderately effective and the best tolerated bile acids sequestrant. In combined dyslipidemias, extended-release niacin is the best tolerated niacin preparation; other quality-controlled immediate-release preparations have similar safety and efficacy but produce more flushing of the skin. Niacin or fenofibrate is effective in normalizing high-density lipoprotein and triglyceride levels persisting after statin therapy. Agents approved by the US Food and Drug Administration and the latest guidelines of the National Cholesterol Education Program, American Heart Association/American College of Cardiology provide choices and indications of drug combinations.
Collapse
Affiliation(s)
- Carlos A Dujovne
- Division of Cardiovascular Medicine, Oregon Health and Science University, Portland, OR 97239-3098, USA.
| | | | | |
Collapse
|
43
|
Itakura H, Yokoyama M, Matsuzaki M, Saito Y, Origasa H, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K, Matsuzawa Y. Relationships between plasma fatty acid composition and coronary artery disease. J Atheroscler Thromb 2010; 18:99-107. [PMID: 21099130 DOI: 10.5551/jat.5876] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM The Japan EPA Lipid Intervention Study (JELIS) was the first prospective randomized clinical trial to demonstrate prevention of coronary events by pure eicosapentaenoic acid (EPA). The aim of this study was to examine the relationships between various plasma fatty acid concentrations and the risk of coronary events in JELIS participants. METHODS In 15,534 participants, we calculated the hazard ratio for major coronary events (sudden cardiac death, fatal or nonfatal myocardial infarction, unstable angina pectoris, and angioplasty/stenting or coronary artery bypass grafting) relative to the on-treatment average level of plasma fatty acids with the Cox proportional hazard model. RESULTS As a result of EPA intervention, the plasma EPA concentration increased, but the docosahexaenoic acid (DHA) concentration did not. The other fatty acids measured decreased slightly. The higher plasma level of EPA (hazard ratio=0.83, p=0.049, in all participants and hazard ratio=0.71, p=0.018, in the EPA intervention group), but not of DHA, was inversely associated with the risk of major coronary events. The associations between other fatty acids and the risk of major coronary events were not significant. In all JELIS participants, the risk of major coronary events was significantly decreased (20%) in the group with high (150 µg/mL or more) on-treatment plasma EPA concentration compared with that in the low (less than 87 µg/mL) group. CONCLUSION The risk of coronary artery disease is influenced by variations in plasma fatty acid composition. Among n-3 polyunsaturated fatty acids, EPA and DHA exhibited differences in the correlation with the risk of major coronary events.
Collapse
|
44
|
Ishikawa Y, Yokoyama M, Saito Y, Matsuzaki M, Origasa H, Oikawa S, Sasaki J, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K, Matsuzawa Y. Preventive effects of eicosapentaenoic acid on coronary artery disease in patients with peripheral artery disease. Circ J 2010; 74:1451-7. [PMID: 20484828 DOI: 10.1253/circj.cj-09-0520] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The JELIS trial examined the preventive effects of eicosapentaenoic acid (EPA) on coronary artery disease (CAD) in hypercholesterolemia. Previous investigators have reported that patients with peripheral artery disease (PAD) have a poor prognosis due to the potential risk for CAD. We conducted a subanalysis to examine whether the incidence of CAD was high in patients with PAD and whether EPA prevented the occurrence of CAD. METHODS AND RESULTS Of 18,645 the Japan EPA lipid intervention study (JELIS) patients, 223 had PAD (control group; complicated (n=77), newly diagnosed (n=29), EPA group; complicated (n=96), newly diagnosed (n=21)). We analyzed the incidence of major coronary events (MCE) in the 2 groups. Cox proportional hazard ratio adjusted for baseline risk factor levels was used to test differences between the 2 groups. The incidence of MCE in the control group was significantly higher in patients complicated with PAD and in those newly diagnosed with PAD than in patients without PAD (complicated: hazard ratio 1.97, P=0.039; newly diagnosed: hazard ratio 2.88, P=0.030). As for patients with PAD, the EPA group had a significantly lower MCE hazard ratio than the control group (hazard ratio 0.44, 95% confidence interval 0.19-0.97, P=0.041). CONCLUSIONS Subanalysis of the JELIS trial demonstrated that in patients with PAD the incidence of CAD was higher than in controls, and that EPA markedly reduced the occurrence of CAD in those patients.
Collapse
|
45
|
Abstract
There is strong evidence that the intake of EPA and DHA reduces the risk of adverse cardiac events. Fish and fish oil capsules are not necessarily an ideal source of EPA and DHA for every individual. The aim of the present study was to evaluate the effect of a convenience drink enriched with 500 mg EPA and DHA on the n-3 index, a biomarker of EPA and DHA status in an individual. Of the 190 subjects with atherosclerotic disease screened between February and June 2009, 50 were recruited based on an n-3 index < 5 %. Participants were randomly assigned to receive a convenience drink supplemented either with n-3 fatty acids (n 40, 200 mg EPA and 300 mg DHA) or placebo (n 10, 1.1 g linoleic acid, C18 : 2n-6, from maize oil) daily for 8 weeks. The primary end point was a change in the n-3 index. Intention-to-treat analysis was done. After 8 weeks of daily intake of 200 mg EPA+300 mg DHA, the mean n-3 index increased from 4.37 (sd 0.51) to 6.80 (sd 1.45) % (P < 0.001). Interindividual variability in response was high (CV of the Delta, cv = 0.21). The control group showed no change in the n-3 index. The results showed that daily intake of a convenience drink supplemented with n-3 fatty acids leads to a significant increase of the n-3 index with high interindividual variability in response. Dose and preparation used were safe, well tolerated and highly palatable.
Collapse
|
46
|
Supinski GS, Vanags J, Callahan LA. Eicosapentaenoic acid preserves diaphragm force generation following endotoxin administration. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R35. [PMID: 20233404 PMCID: PMC2887142 DOI: 10.1186/cc8913] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 01/22/2010] [Accepted: 03/16/2010] [Indexed: 01/06/2023]
Abstract
Introduction Infections produce severe respiratory muscle weakness, which contributes to the development of respiratory failure. An effective, safe therapy to prevent respiratory muscle dysfunction in infected patients has not been defined. This study examined the effect of eicosapentaenoic acid (EPA), an immunomodulator that can be safely administered to patients, on diaphragm force generation following endotoxin administration. Methods Rats were administered the following (n = 5/group): (a) saline, (b) endotoxin, 12 mg/kg IP, (c) endotoxin + EPA (1.0 g/kg/d), and (d) EPA alone. Diaphragms were removed and measurements made of the diaphragm force-frequency curve, calpain activation, caspase activation, and protein carbonyl levels. Results Endotoxin elicited large reductions in diaphragm specific force generation (P < 0.001), and increased diaphragm caspase activation (P < 0.01), calpain activation (P < 0.001) and protein carbonyl levels (P < 0.01). EPA administration attenuated endotoxin-induced reductions in diaphragm specific force, with maximum specific force levels of 27 ± 1, 14 ± 1, 23 ± 1, and 24 ± 1 N/cm2, respectively, for control, endotoxin, endotoxin + EPA, and EPA treated groups (P < 0.001). EPA did not prevent endotoxin induced caspase activation or protein carbonyl formation but significantly reduced calpain activation (P < 0.02). Conclusions These data indicate that endotoxin-induced reductions in diaphragm specific force generation can be partially prevented by administration of EPA, a nontoxic biopharmaceutical that can be safely given to patients. We speculate that it may be possible to reduce infection-induced skeletal muscle weakness in critically ill patients by administration of EPA.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kentucky, 740 South Limestone, Lexington, KY 40536-0284, USA.
| | | | | |
Collapse
|
47
|
Origasa H, Yokoyama M, Matsuzaki M, Saito Y, Matsuzawa Y. Clinical importance of adherence to treatment with eicosapentaenoic acid by patients with hypercholesterolemia. Circ J 2010; 74:510-7. [PMID: 20145342 DOI: 10.1253/circj.cj-09-0746] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Despite the risk of critical heart disease, poor adherence to treatment is common in patients with lifestyle-related diseases such as hypercholesterolemia. The association between adherence to treatment and clinical outcome was examined in JELIS (Japan EPA Lipid Intervention Study) and strategies for avoiding poor adherence were explored. METHODS AND RESULTS Patients taking 80% or more of the study medications were considered to exhibit good adherence. The primary endpoint was either sudden cardiac death or myocardial infarction. Adherence was lower in the eicosapentaenoic acid (EPA) + statin group (66.5%) than in the statin alone group (72.5%). In good adherers with previous coronary artery disease, EPA substantially reduced the risk compared with statin alone (hazard ratio 0.55, 95% confidence intervals 0.34-0.88, P<0.014). Furthermore, the clinical benefit of EPA + statin was significantly larger in patients with good adherence than in those with poor adherence (P=0.041). Finally, a 5-year risk prediction model constructed from the data indicated that complete adherence would lead to 51% reduction of risk compared with non-adherence. CONCLUSIONS Good adherence to medication was associated with a lower cardiovascular risk than with poor adherence, and the assistance of a pharmacist is of great importance in achieving persistent adherence during treatment.
Collapse
Affiliation(s)
- Hideki Origasa
- Division of Biostatistics and Clinical Epidemiology, University of Toyama School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Zaiden N, Yap WN, Ong S, Xu CH, Teo VH, Chang CP, Zhang XW, Nesaretnam K, Shiba S, Yap YL. Gamma Delta Tocotrienols Reduce Hepatic Triglyceride Synthesis and VLDL Secretion. J Atheroscler Thromb 2010; 17:1019-32. [DOI: 10.5551/jat.4911] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
49
|
Abstract
Dr Lavie graduated from Louisiana State University Medical School, LA, USA, in 1983 and performed his internship and residency in internal medicine at the Ochsner Medical Institution, LA, USA. He subsequently completed a fellowship in cardiovascular diseases at the Mayo Graduate School of Medicine, Rochester, MN, USA, where he also served as a member of the faculty in 1989. He is boardcertified in internal medicine, cardiovascular diseases and nuclear cardiology. Dr Lavie is a staff cardiologist at the Ochsner Heart and Vascular Institute in New Orleans, LA, USA, and currently is Medical Director for Cardiac Rehabilitation and Preventive Cardiology, Director for the Exercise Testing Laboratory and Staff Cardiologist for the Echocardiographic Laboratory at the Ochsner Clinic Foundation, LA, USA. Dr Lavie’s research interests include the fields of cardiac rehabilitation and prevention, including lipids, hypertension, obesity and exercise, as well as noninvasive testing, encompassing echocardiography, exercise testing and nuclear cardiology. He is the author or co-author of nearly 600 medical publications, including one cardiology textbook and over 30 book chapters. During 2003–2004, he served as Chairman of Vascular, Hypertension and Prevention for the American College of Cardiology and he has been an elite reviewer for the college.
Collapse
Affiliation(s)
- Carl J Lavie
- Ochsner Heart & Vascular Institute, 3rd floor, Cardiology, 1514 Jefferson Highway, New Orleans, LA 70121, USA
| |
Collapse
|
50
|
Matsuzaki M, Yokoyama M, Saito Y, Origasa H, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K, Matsuzawa Y. Incremental effects of eicosapentaenoic acid on cardiovascular events in statin-treated patients with coronary artery disease. Circ J 2009; 73:1283-90. [PMID: 19423946 DOI: 10.1253/circj.cj-08-1197] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Results from JELIS (Japan EPA Lipid Intervention Study) demonstrated the efficacy of pure eicosapentaenoic acid (EPA) in preventing coronary artery disease (CAD) in hypercholesterolemic patients under statin treatment. The present study examined in detail whether EPA is effective for the secondary prevention of CAD. METHODS AND RESULTS Patients with established CAD and a total cholesterol level > or =250 mg/dl were observed with a mean follow-up of 4.6 years. They were randomly assigned to receive either 1,800 mg of EPA + statin (EPA group) or statin alone (control group). The incidence of major coronary events (MCE) were compared in the 2 groups. The incidence of MCE was significantly lower in the EPA group (8.7% vs 10.7%, adjusted hazard ratio =0.77, 95% confidence interval (CI) 0.63-0.96, P=0.017, number needed to treat (NNT) =49). Among 1,050 patients with prior myocardial infarction (MI), the incidence of MCE in the EPA group (15.0%) was significantly lower than that in the control group (20.1%, adjusted hazard ratio =0.73, 95%CI 0.54-0.98, P=0.033, NNT =19). CONCLUSIONS EPA is effective for secondary prevention of CAD, especially in individuals with prior MI, and should be added to conventional treatment.
Collapse
Affiliation(s)
- Masunori Matsuzaki
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Minamikogushi, Ube, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|