1
|
Jiang D, Matsuzaki M, Ida T, Kitamura K, Tsuruda T, Kaikita K, Kato J. Natriuretic peptides potentiate cardiac hypertrophic response to noradrenaline in rats. Peptides 2023; 166:171035. [PMID: 37263541 DOI: 10.1016/j.peptides.2023.171035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
Excessive activation of the sympathetic nervous system is involved in cardiovascular damage including cardiac hypertrophy. Natriuretic peptides are assumed to exert protective actions for the heart, alleviating hypertrophy and/or fibrosis of the myocardium. In contrast to this assumption, we show in the present study that both atrial and C-type natriuretic peptides (ANP and CNP) potentiate cardiac hypertrophic response to noradrenaline (NA) in rats. Nine-week-old male Wistar rats were continuously infused with subcutaneous 30 micro-g/h NA without or with persistent intravenous administration of either 1.0 micro-g/h ANP or CNP for 14 days. Blood pressure (BP) was recorded under an unrestrained condition by a radiotelemetry system. Cardiac hypertrophic response to NA was evaluated by heart weight/body weight (HW/BW) ratio and microscopic measurement of myocyte size of the left ventricle. Mean BP levels at the light and dark cycles rose by about 20mmHg following NA infusion for 14 days, with slight increases in HW/BW ratio and ventricular myocyte size. Infusions of ANP and CNP had no significant effects on mean BP in NA-infused rats, while two natriuretic peptides potentiated cardiac hypertrophic response to NA. Cardiac hypertrophy induced by co-administration of NA and ANP was attenuated by treatment with prazosin or atenolol. In summary, both ANP and CNP potentiated cardiac hypertrophic effect of continuously infused NA in rats, suggesting a possible pro-hypertrophic action of natriuretic peptides on the heart.
Collapse
Affiliation(s)
- Danfeng Jiang
- Frontier Science Research Center, Miyazaki 889-1692, Japan.
| | | | - Takanori Ida
- Frontier Science Research Center, Miyazaki 889-1692, Japan
| | - Kazuo Kitamura
- Frontier Science Research Center, Miyazaki 889-1692, Japan
| | - Toshihiro Tsuruda
- Department of Hemo-Vascular Advanced Medicine, Miyazaki 889-1692, Japan
| | - Koichi Kaikita
- Department of Internal Medicine, University of Miyazaki Faculty of Medicine, Miyazaki 889-1692, Japan
| | - Johji Kato
- Frontier Science Research Center, Miyazaki 889-1692, Japan.
| |
Collapse
|
2
|
Grogan A, Lucero EY, Jiang H, Rockman HA. Pathophysiology and pharmacology of G protein-coupled receptors in the heart. Cardiovasc Res 2023; 119:1117-1129. [PMID: 36534965 PMCID: PMC10202650 DOI: 10.1093/cvr/cvac171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 08/10/2023] Open
Abstract
G protein-coupled receptors (GPCRs), comprising the largest superfamily of cell surface receptors, serve as fundamental modulators of cardiac health and disease owing to their key roles in the regulation of heart rate, contractile dynamics, and cardiac function. Accordingly, GPCRs are heavily pursued as drug targets for a wide variety of cardiovascular diseases ranging from heart failure, cardiomyopathy, and arrhythmia to hypertension and coronary artery disease. Recent advancements in understanding the signalling mechanisms, regulation, and pharmacological properties of GPCRs have provided valuable insights that will guide the development of novel therapeutics. Herein, we review the cellular signalling mechanisms, pathophysiological roles, and pharmacological developments of the major GPCRs in the heart, highlighting the β-adrenergic, muscarinic, and angiotensin receptors as exemplar subfamilies.
Collapse
Affiliation(s)
- Alyssa Grogan
- Department of Medicine, Duke University Medical Center, DUMC 3104, 226 CARL Building, Durham, NC 27710, USA
| | - Emilio Y Lucero
- Department of Medicine, Duke University Medical Center, DUMC 3104, 226 CARL Building, Durham, NC 27710, USA
| | - Haoran Jiang
- Department of Medicine, Duke University Medical Center, DUMC 3104, 226 CARL Building, Durham, NC 27710, USA
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, DUMC 3104, 226 CARL Building, Durham, NC 27710, USA
- Cell Biology, Duke University Medical Center, DUMC 3104, 226 CARL Building, 12 Durham, NC 27710, USA
| |
Collapse
|
3
|
Cuspidi C, Gherbesi E, Faggiano A, Sala C, Carugo S, Grassi G, Tadic M. Targeting Left Ventricular Mechanics In Patients With Pheochromocytoma/Paraganglioma: An Updated Meta-analysis. Am J Hypertens 2023; 36:333-340. [PMID: 36617865 PMCID: PMC10413314 DOI: 10.1093/ajh/hpad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/17/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Numerous studies targeting left ventricular (LV) systolic function by measuring LV ejection fraction (LVEF) in patients with pheochromocytoma and paraganglioma (PPGL) either failed to reveal any impairment of this parameter or found a super-normal systolic function compared to essential hypertensives or normotensive controls. To provide an updated piece of information on LV systolic dysfunction in the PPGL setting, we performed a meta-analysis of speckle tracking echocardiography (STE) studies investigating LV mechanics via global longitudinal strain (GLS), a more sensitive index of LV systolic function than LVEF. METHODS A computerized search was performed using PubMed, OVID, EMBASE, and Cochrane library databases from inception until September 30, 2022. Full articles reporting data on LV GLS and LVEF in patients with PPGL and controls were considered suitable. RESULTS A total of 252 patients with PPGL and 187 controls were included in 6 studies. LV GLS was worse in the pooled PPGL group than in the control group (-17.3 ± 1.2 vs. -20.0 ± 0.6) with a standard means difference (SMD) of 1.13 ± 0.36 confidence interval (CI: 0.43-1.84, P = 0.002), whereas this was not the case for LVEF (67.3 ± 1.9 and 66.4 ± 1.6%, respectively), SMD: 0.12 ± 0.03, (CI: -0.41/0.65, P = 0.66). A meta-regression analysis in PPGL patients showed an inverse relationship between adrenergic activity and GLS (P < 0.0001). CONCLUSIONS Our findings suggest that early changes in LV systolic function not detectable by conventional echocardiography in the PPGL setting can be revealed by STE; therefore, STE implementation in the workup of patients with PPGL may improve the detection of subclinical systolic dysfunction.
Collapse
Affiliation(s)
- Cesare Cuspidi
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Elisa Gherbesi
- Department of Clinical Sciences and Community Health, University of Milano, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Italy
| | - Andrea Faggiano
- Department of Clinical Sciences and Community Health, University of Milano, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Italy
| | - Carla Sala
- Department of Clinical Sciences and Community Health, University of Milano, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Italy
| | - Stefano Carugo
- Department of Clinical Sciences and Community Health, University of Milano, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Italy
| | - Guido Grassi
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Marijana Tadic
- Department of Cardiology, University Hospital “Dr.DragisaMisovic-Dedinje”, HerojaMilanaTepica 1,11000Belgrade, Serbia
| |
Collapse
|
4
|
Zhang H, Hanson A, de Almeida TS, Emfinger C, McClenaghan C, Harter T, Yan Z, Cooper PE, Brown GS, Arakel EC, Mecham RP, Kovacs A, Halabi CM, Schwappach B, Remedi MS, Nichols CG. Complex consequences of Cantu syndrome SUR2 variant R1154Q in genetically modified mice. JCI Insight 2021; 6:145934. [PMID: 33529173 PMCID: PMC8021106 DOI: 10.1172/jci.insight.145934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Cantu syndrome (CS) is caused by gain-of-function (GOF) mutations in pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunits, the most common mutations being SUR2[R1154Q] and SUR2[R1154W], carried by approximately 30% of patients. We used CRISPR/Cas9 genome engineering to introduce the equivalent of the human SUR2[R1154Q] mutation into the mouse ABCC9 gene. Along with minimal CS disease features, R1154Q cardiomyocytes and vascular smooth muscle showed much lower KATP current density and pinacidil activation than WT cells. Almost complete loss of SUR2-dependent protein and KATP in homozygous R1154Q ventricles revealed underlying diazoxide-sensitive SUR1-dependent KATP channel activity. Surprisingly, sequencing of SUR2 cDNA revealed 2 distinct transcripts, one encoding full-length SUR2 protein; and the other with an in-frame deletion of 93 bases (corresponding to 31 amino acids encoded by exon 28) that was present in approximately 40% and approximately 90% of transcripts from hetero- and homozygous R1154Q tissues, respectively. Recombinant expression of SUR2A protein lacking exon 28 resulted in nonfunctional channels. CS tissue from SUR2[R1154Q] mice and human induced pluripotent stem cell-derived (hiPSC-derived) cardiomyocytes showed only full-length SUR2 transcripts, although further studies will be required in order to fully test whether SUR2[R1154Q] or other CS mutations might result in aberrant splicing and variable expressivity of disease features in human CS.
Collapse
Affiliation(s)
- Haixia Zhang
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Alex Hanson
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Tobias Scherf de Almeida
- Department of Molecular Biology, Center for Biochemistry and Molecular Cell Biology, Heart Research Center Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Christopher Emfinger
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Theresa Harter
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Zihan Yan
- Center for the Investigation of Membrane Excitability Diseases and.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.,Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research
| | - Paige E Cooper
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - G Schuyler Brown
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Eric C Arakel
- Department of Molecular Biology, Center for Biochemistry and Molecular Cell Biology, Heart Research Center Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | | - Carmen M Halabi
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Blanche Schwappach
- Department of Molecular Biology, Center for Biochemistry and Molecular Cell Biology, Heart Research Center Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases and.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Sutanto H, Heijman J. Beta-Adrenergic Receptor Stimulation Modulates the Cellular Proarrhythmic Effects of Chloroquine and Azithromycin. Front Physiol 2020; 11:587709. [PMID: 33192602 PMCID: PMC7642988 DOI: 10.3389/fphys.2020.587709] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
The antimalarial drug, chloroquine (CQ), and antimicrobial drug, azithromycin (AZM), have received significant attention during the COVID-19 pandemic. Both drugs can alter cardiac electrophysiology and have been associated with drug-induced arrhythmias. Meanwhile, sympathetic activation is commonly observed during systemic inflammation and oxidative stress (e.g., in SARS-CoV-2 infection) and may influence the electrophysiological effects of CQ and AZM. Here, we investigated the effect of beta-adrenergic stimulation on proarrhythmic properties of CQ and AZM using detailed in silico models of ventricular electrophysiology. Concentration-dependent alterations in ion-channel function were incorporated into the Heijman canine and O’Hara-Rudy human ventricular cardiomyocyte models. Single and combined drug effects on action-potential (AP) properties were analyzed using a population of 1,000 models accommodating inter-individual variability. Sympathetic stimulation was simulated by increasing pacing rate and experimentally validated isoproterenol (ISO)-induced changes in ion-channel function. In the canine ventricular model at 1 Hz pacing, therapeutic doses of CQ and AZM (5 and 20 μM, respectively) individually prolonged AP duration (APD) by 33 and 13%. Their combination produced synergistic APD prolongation (+161%) with incidence of proarrhythmic early afterdepolarizations in 53.5% of models. Increasing the pacing frequency to 2 Hz shortened APD and together with 1 μM ISO counteracted the drug-induced APD prolongation. No afterdepolarizations occurred following increased rate and simulated application of ISO. Similarly, CQ and AZM individually prolonged APD by 43 and 29% in the human ventricular cardiomyocyte model, while their combination prolonged APD by 76% without causing early afterdepolarizations. Consistently, 1 μM ISO at 2 Hz pacing counteracted the drug-induced APD prolongation. Increasing the ICa,L window current produced afterdepolarizations, which were exacerbated by ISO. In both models, reduced extracellular K+ reduced the repolarization reserve and increased drug effects. In conclusion, CQ- and AZM-induced proarrhythmia is promoted by conditions with reduced repolarization reserve. Sympathetic stimulation limits drug-induced APD prolongation, suggesting the potential importance of heart rate and autonomic status monitoring in particular conditions (e.g., COVID-19).
Collapse
Affiliation(s)
- Henry Sutanto
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM) School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM) School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
6
|
González A, Ravassa S, López B, Moreno MU, Beaumont J, San José G, Querejeta R, Bayés-Genís A, Díez J. Myocardial Remodeling in Hypertension. Hypertension 2019; 72:549-558. [PMID: 30354762 DOI: 10.1161/hypertensionaha.118.11125] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Arantxa González
- From the Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,CIBERCV, Carlos III Institute of Health, Madrid, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., A.B.-G., J.D.)
| | - Susana Ravassa
- From the Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,CIBERCV, Carlos III Institute of Health, Madrid, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., A.B.-G., J.D.)
| | - Begoña López
- From the Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,CIBERCV, Carlos III Institute of Health, Madrid, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., A.B.-G., J.D.)
| | - María U Moreno
- From the Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,CIBERCV, Carlos III Institute of Health, Madrid, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., A.B.-G., J.D.)
| | - Javier Beaumont
- From the Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,CIBERCV, Carlos III Institute of Health, Madrid, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., A.B.-G., J.D.)
| | - Gorka San José
- From the Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,CIBERCV, Carlos III Institute of Health, Madrid, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., A.B.-G., J.D.)
| | - Ramón Querejeta
- Division of Cardiology, Donostia University Hospital, University of the Basque Country, San Sebastián, Spain (R.Q.)
| | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., A.B.-G., J.D.).,Heart Failure Unit and Cardiology Service, Hospital Universitari Germans Trias i Pujol, Badalona, Spain (A.B.-G.).,Department of Medicine, Universitat Autònoma de Barcelona, Spain (A.B.-G.)
| | - Javier Díez
- From the Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,CIBERCV, Carlos III Institute of Health, Madrid, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., A.B.-G., J.D.).,Department of Cardiology and Cardiac Surgery (J.D.).,Department of Nephrology (J.D.), University of Navarra Clinic, University of Navarra, Pamplona, Spain
| |
Collapse
|
7
|
Verboven M, Cuypers A, Deluyker D, Lambrichts I, Eijnde BO, Hansen D, Bito V. High intensity training improves cardiac function in healthy rats. Sci Rep 2019; 9:5612. [PMID: 30948751 PMCID: PMC6449502 DOI: 10.1038/s41598-019-42023-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/11/2019] [Indexed: 02/08/2023] Open
Abstract
Exercise training is a low cost and safe approach for reducing the risk of cardiovascular disease development. Currently, moderate-intensity training (MIT) is the most preferred exercise type. However, high-intensity interval training (HIIT) is gaining interest especially among athletes and healthy individuals. In this study, we examined cardiac remodeling resulting from MIT and HIIT in healthy rats. Healthy male Sprague-Dawley rats were randomly assigned to MIT or HIIT for 13 weeks. Animals kept sedentary (SED) were used as control. Cardiac function was evaluated with echocardiography and hemodynamic measurements. Heart tissue was stained for capillary density and fibrosis. After 13 weeks of training, only HIIT induced beneficial cardiac hypertrophy. Overall global cardiac parameters (such as ejection fraction, cardiac output and volumes) were improved similarly between both training modalities. At tissue level, collagen content was significantly and similarly reduced in both exercise groups. Finally, only HIIT increased significantly capillary density. Our data indicate that even if very different in design, HIIT and MIT appear to be equally effective in improving cardiac function in healthy rats. Furthermore, HIIT provides additional benefits through improved capillary density and should therefore be considered as a preferred training modality for athletes and for patients.
Collapse
Affiliation(s)
- Maxim Verboven
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Anne Cuypers
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Dorien Deluyker
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Bert O Eijnde
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Dominique Hansen
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Heart Centre Hasselt, Jessa hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - Virginie Bito
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
8
|
Gao J, Li Y, Wang T, Shi Z, Zhang Y, Liu S, Wen P, Ma C. Analyzing gene expression profiles with preliminary validations in cardiac hypertrophy induced by pressure overload. Can J Physiol Pharmacol 2018; 96:701-709. [PMID: 29510080 DOI: 10.1139/cjpp-2017-0585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The aim of this study was to identify the key genes involved in the cardiac hypertrophy (CH) induced by pressure overload. mRNA microarray data sets GSE5500 and GSE18801 were downloaded from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) were screened using the Limma package; then, functional and pathway enrichment analysis were performed for common DEGs using the Database for Annotation, Visualization and Integrated Discovery database. Furthermore, the top DEGs were further validated using quantitative PCR in the hypertrophic heart tissue induced by isoprenaline. A total of 113 common DEGs with absolute fold change > 0.5, including 60 significantly upregulated DEGs and 53 downregulated DEGs, were obtained. Gene ontology term enrichment analysis suggested that common upregulated DEG were mainly enriched in neutrophil chemotaxis, extracellular fibril organization, and cell proliferation; and the common downregulated genes were significantly enriched in ion transport, endoplasmic reticulum, and dendritic spine. Kyoto Encyclopedia of Genes and Genomes pathway analysis found that the common DEGs were mainly enriched in extracellular matrix receptor interaction, phagosome, and focal adhesion. Additionally, the expression of Mfap4, Ltbp2, Aspn, Serpina3n, and Cnksr1 were upregulated in the model of CH, while the expression of Anp32a was downregulated. The current study identified the key deregulated genes and pathways involved in the CH, which could shed new light to understand the mechanism of CH.
Collapse
Affiliation(s)
- Jing Gao
- a Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang 110001, China.,b Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Yuhong Li
- b Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Tongmei Wang
- c Department of Pathophysiology, Jinzhou Medical University, Jinzhou 121001, China
| | - Zhuo Shi
- d Department of Anatomy, Jinzhou Medical University, Jinzhou 121001, China
| | - Yiqi Zhang
- c Department of Pathophysiology, Jinzhou Medical University, Jinzhou 121001, China
| | - Shuang Liu
- a Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang 110001, China
| | - Pushuai Wen
- c Department of Pathophysiology, Jinzhou Medical University, Jinzhou 121001, China
| | - Chunyan Ma
- a Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
9
|
Nagler J, Schriever SC, De Angelis M, Pfluger PT, Schramm KW. Comprehensive analysis of nine monoamines and metabolites in small amounts of peripheral murine (C57Bl/6 J) tissues. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/20/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Joachim Nagler
- Helmholtz Center Munich-German Research Center for Environmental Health, Molecular EXposomics; Neuherberg Germany
| | - Sonja C. Schriever
- Helmholtz Center Munich-German Research Center for Environmental Health, NeuroBioloy of Diabetes, Business Campus Garching; Garching Germany
| | - Meri De Angelis
- Helmholtz Center Munich-German Research Center for Environmental Health, Molecular EXposomics; Neuherberg Germany
| | - Paul T. Pfluger
- Helmholtz Center Munich-German Research Center for Environmental Health, NeuroBioloy of Diabetes, Business Campus Garching; Garching Germany
| | - Karl-Werner Schramm
- Helmholtz Center Munich-German Research Center for Environmental Health, Molecular EXposomics; Neuherberg Germany
- Department für Biowissenschaftliche Grundlagen; TUM, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt; Freising Germany
| |
Collapse
|
10
|
Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Cyclic ADP-Ribose (cADPR) Mediate Ca2+ Signaling in Cardiac Hypertrophy Induced by β-Adrenergic Stimulation. PLoS One 2016; 11:e0149125. [PMID: 26959359 PMCID: PMC4784992 DOI: 10.1371/journal.pone.0149125] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/27/2016] [Indexed: 01/19/2023] Open
Abstract
Ca2+ signaling plays a fundamental role in cardiac hypertrophic remodeling, but the underlying mechanisms remain poorly understood. We investigated the role of Ca2+-mobilizing second messengers, NAADP and cADPR, in the cardiac hypertrophy induced by β-adrenergic stimulation by isoproterenol. Isoproterenol induced an initial Ca2+ transients followed by sustained Ca2+ rises. Inhibition of the cADPR pathway with 8-Br-cADPR abolished only the sustained Ca2+ increase, whereas inhibition of the NAADP pathway with bafilomycin-A1 abolished both rapid and sustained phases of the isoproterenol-mediated signal, indicating that the Ca2+ signal is mediated by a sequential action of NAADP and cADPR. The sequential production of NAADP and cADPR was confirmed biochemically. The isoproterenol-mediated Ca2+ increase and cADPR production, but not NAADP production, were markedly reduced in cardiomyocytes obtained from CD38 knockout mice. CD38 knockout mice were rescued from chronic isoproterenol infusion-induced myocardial hypertrophy, interstitial fibrosis, and decrease in fractional shortening and ejection fraction. Thus, our findings indicate that β-adrenergic stimulation contributes to the development of maladaptive cardiac hypertrophy via Ca2+ signaling mediated by NAADP-synthesizing enzyme and CD38 that produce NAADP and cADPR, respectively.
Collapse
|
11
|
Evaluation of Cardiovascular Risk Factors in the Wistar Audiogenic Rat (WAR) Strain. PLoS One 2015; 10:e0129574. [PMID: 26029918 PMCID: PMC4450865 DOI: 10.1371/journal.pone.0129574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 05/11/2015] [Indexed: 11/24/2022] Open
Abstract
Introduction Risk factors for life-threatening cardiovascular events were evaluated in an experimental model of epilepsy, the Wistar Audiogenic Rat (WAR) strain. Methods We used long-term ECG recordings in conscious, one year old, WAR and Wistar control counterparts to evaluate spontaneous arrhythmias and heart rate variability, a tool to assess autonomic cardiac control. Ventricular function was also evaluated using the pressure-volume conductance system in anesthetized rats. Results Basal RR interval (RRi) was similar between WAR and Wistar rats (188±5 vs 199±6 ms). RRi variability strongly suggests that WAR present an autonomic imbalance with sympathetic overactivity, which is an isolated risk factor for cardiovascular events. Anesthetized WAR showed lower arterial pressure (92±3 vs 115±5 mmHg) and exhibited indices of systolic dysfunction, such as higher ventricle end-diastolic pressure (9.2±0.6 vs 5.6±1 mmHg) and volume (137±9 vs 68±9 μL) as well as lower rate of increase in ventricular pressure (5266±602 vs 7320±538 mmHg.s-1). Indices of diastolic cardiac function, such as lower rate of decrease in ventricular pressure (-5014±780 vs -7766±998 mmHg.s-1) and a higher slope of the linear relationship between end-diastolic pressure and volume (0.078±0.011 vs 0.036±0.011 mmHg.μL), were also found in WAR as compared to Wistar control rats. Moreover, Wistar rats had 3 to 6 ventricular ectopic beats, whereas WAR showed 15 to 30 ectopic beats out of the 20,000 beats analyzed in each rat. Conclusions The autonomic imbalance observed previously at younger age is also present in aged WAR and, additionally, a cardiac dysfunction was also observed in the rats. These findings make this experimental model of epilepsy a valuable tool to study risk factors for cardiovascular events in epilepsy.
Collapse
|
12
|
Role of soluble adenylyl cyclase in cell death and growth. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2646-55. [PMID: 25010002 DOI: 10.1016/j.bbadis.2014.06.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022]
Abstract
cAMP signaling is an evolutionarily conserved intracellular communication system controlling numerous cellular functions. Until recently, transmembrane adenylyl cyclase (tmAC) was considered the major source for cAMP in the cell, and the role of cAMP signaling was therefore attributed exclusively to the activity of this family of enzymes. However, increasing evidence demonstrates the role of an alternative, intracellular source of cAMP produced by type 10 soluble adenylyl cyclase (sAC). In contrast to tmAC, sAC produces cAMP in various intracellular microdomains close to specific cAMP targets, e.g., in nucleus and mitochondria. Ongoing research demonstrates involvement of sAC in diverse physiological and pathological processes. The present review is focused on the role of cAMP signaling, particularly that of sAC, in cell death and growth. Although the contributions of sAC to the regulation of these cellular functions have only recently been discovered, current data suggest that sAC plays key roles in mitochondrial bioenergetics and the mitochondrial apoptosis pathway, as well as cell proliferation and development. Furthermore, recent reports suggest the importance of sAC in several pathologies associated with apoptosis as well as in oncogenesis. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
|
13
|
Shibata M, Takeshita D, Obata K, Mitsuyama S, Ito H, Zhang GX, Takaki M. NHE-1 participates in isoproterenol-induced downregulation of SERCA2a and development of cardiac remodeling in rat hearts. Am J Physiol Heart Circ Physiol 2011; 301:H2154-60. [DOI: 10.1152/ajpheart.00483.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Impaired Ca2+ handling is one of the main characteristics in heart failure patients. Recently, we reported abnormal expressions of Ca2+-handling proteins in isoproterenol (ISO)-induced hypertrophied rat hearts. On the other hand, Na+/H+ exchanger (NHE)-1 inhibitor has been demonstrated to exert beneficial effects in ischemic-reperfusion injury and in the development of cardiac remodeling. The aims of the present study are to investigate the role of NHE-1 on Ca2+ handling and development of cardiac hypertrophy in ISO-infused rats. Male Wistar rats were randomly divided into vehicle [control (CTL)] and ISO groups without or with pretreatment with a selective NHE-1 inhibitor, BIIB-723. ISO infusion for 1 wk significantly increased the ratios of heart to body weight and left ventricle (LV) to body weight and collagen accumulation. All of these increases were antagonized by coadministration with BIIB-723. The ISO-induced significant increase in LV wall thickness was suppressed significantly ( P < 0.05) by BIIB-723. ISO-induced decreases in cardiac stroke volume and a total mechanical energy per beat index, systolic pressure-volume area at midrange LV volume, were normalized by BIIB-723. The markedly higher expression of NHE-1 protein in the ISO group than that in CTL group was suppressed ( P < 0.05) by BIIB-723. Surprisingly, ISO induced downregulation of the important Ca2+-handling protein sarcoplasmic reticulum Ca2+-ATPase 2a, the expression of which was also normalized by BIIB-723 without changes in phosphorylated phospholamban (PLB)/PLB expression. We conclude that NHE-1 contributes to ISO-induced abnormal Ca2+ handling associated with cardiac hypertrophy. Inhibition of NHE-1 ameliorates cardiac Ca2+-handling impairment and prevents the development of cardiac dysfunction in ISO-infused rats.
Collapse
Affiliation(s)
- Munetaka Shibata
- Department of Physiology II, Nara Medical University School of Medicine, Kashihara, Nara, Japan; and
| | - Daisuke Takeshita
- Department of Physiology II, Nara Medical University School of Medicine, Kashihara, Nara, Japan; and
| | - Koji Obata
- Department of Physiology II, Nara Medical University School of Medicine, Kashihara, Nara, Japan; and
| | - Shinichi Mitsuyama
- Department of Physiology II, Nara Medical University School of Medicine, Kashihara, Nara, Japan; and
| | - Haruo Ito
- Department of Physiology II, Nara Medical University School of Medicine, Kashihara, Nara, Japan; and
| | - Guo-Xing Zhang
- Department of Physiology II, Nara Medical University School of Medicine, Kashihara, Nara, Japan; and
- Department of Physiology, Medical College of Soochow University, Suzhou, Peoples Republic of China
| | - Miyako Takaki
- Department of Physiology II, Nara Medical University School of Medicine, Kashihara, Nara, Japan; and
| |
Collapse
|
14
|
Mullick A, Tremblay J, Leon Z, Gros P. A novel role for the fifth component of complement (C5) in cardiac physiology. PLoS One 2011; 6:e22919. [PMID: 21829669 PMCID: PMC3148243 DOI: 10.1371/journal.pone.0022919] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 07/09/2011] [Indexed: 12/17/2022] Open
Abstract
We have previously demonstrated that C5-deficient A/J and recombinant congenic BcA17 mice suffer from cardiac dysfunction when infected with C. albicans blastospores intravenously. During these studies we had observed that, even in the control un-infected state, BcA17 hearts displayed alterations in gene expression that have been associated with pathological cardiac hypertrophy in comparison to parental C5-sufficient C57Bl/6J (B6) mice. Of note was an increase in the expression of Nppb, a member of the fetal gene program and a decrease in the expression of Rgs2, an inhibitor of the hypertrophic response. We now report that C5-deletion has also affected the expression of other elements of the fetal gene program. Moreover deleting the C5a receptor, C5aR, has essentially the same effect as deleting C5, indicating a key role for C5a-C5aR signaling in the phenotype. Having noted a pathological phenotype in the un-infected state, we investigated the role of C5 in the response to cardiac stress. In previous studies, comparison of the expression profiles of C. albicans-infected BcA17 and similarly infected B6 hearts had revealed a paucity of cardioprotective genes in the C5-deficient heart. To determine whether this was also directly linked to C5-deficiency, we tested the expression of 5 such genes in the C. albicans-infected C5aR(-/-) mice. We found again that deletion of C5aR recapitulated the alterations in stress response of BcA17. To determine whether our observations were relevant to other forms of cardiac injury, we tested the effect of C5-deficiency on the response to isoproterenol-induced hypertrophic stimulation. Consistent with our hypothesis, A/J, BcA17 and C5aR(-/-) mice responded with higher levels of Nppa expression than B6 and BALB/c mice. In conclusion, our results suggest that an absence of functional C5a renders the heart in a state of distress, conferring a predisposition to cardiac dysfunction in the face of additional injury.
Collapse
Affiliation(s)
- Alaka Mullick
- Biotechnology Research Institute, Montréal, Québec, Canada.
| | | | | | | |
Collapse
|
15
|
Asemu G, Fishbein K, Lao QZ, Ravindran A, Herbert R, Canuto HC, Spencer RG, Soldatov NM. Cardiac phenotype induced by a dysfunctional α 1C transgene: a general problem for the transgenic approach. Channels (Austin) 2011; 5:138-47. [PMID: 21224729 DOI: 10.4161/chan.5.2.14314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Based on stable integration of recombinant DNA into a host genome, transgenic technology has become an important genetic engineering methodology. An organism whose genetic characteristics have been altered by the insertion of foreign DNA is supposed to exhibit a new phenotype associated with the function of the transgene. However, successful insertion may not be sufficient to achieve specific modification of function. In this study we describe a strain of transgenic mouse, G7-882, generated by incorporation into the mouse genome of human CaV 1.2 α(1C) cDNA deprived of 3'-UTR to exclude transcription. We found that, in response to chronic infusion of isoproterenol, G7-882 develops dilated cardiomyopathy, a misleading "transgenic artifact" compatible with the expected function of the incorporated "correct" transgene. Specifically, using magnetic resonance imaging (MRI), we found that chronic β-adrenergic stimulation of G7-882 mice caused left ventricular hypertrophy and aggravated development of dilated cardiomyopathy, although no significant changes in the kinetics, density and voltage dependence of the calcium current were observed in G7-882 cardiomyocytes as compared to cells from wild type mice. This result illustrates the possibility that even when a functional transgene is expressed, an observed change in phenotype may be due to the artifact of "incidental incorporation" leading to misleading conclusions. To exclude this possibility and thus provide a robust tool for exploring biological function, the new transgenic phenotype must be replicated in several independently generated transgenic strains.
Collapse
Affiliation(s)
- Girma Asemu
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 2010; 128:191-227. [PMID: 20438756 DOI: 10.1016/j.pharmthera.2010.04.005] [Citation(s) in RCA: 632] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy can be defined as an increase in heart mass. Pathological cardiac hypertrophy (heart growth that occurs in settings of disease, e.g. hypertension) is a key risk factor for heart failure. Pathological hypertrophy is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. In contrast, physiological cardiac hypertrophy (heart growth that occurs in response to chronic exercise training, i.e. the 'athlete's heart') is reversible and is characterized by normal cardiac morphology (i.e. no fibrosis or apoptosis) and normal or enhanced cardiac function. Given that there are clear functional, structural, metabolic and molecular differences between pathological and physiological hypertrophy, a key question in cardiovascular medicine is whether mechanisms responsible for enhancing function of the athlete's heart can be exploited to benefit patients with pathological hypertrophy and heart failure. This review summarizes key experimental findings that have contributed to our understanding of pathological and physiological heart growth. In particular, we focus on signaling pathways that play a causal role in the development of pathological and physiological hypertrophy. We discuss molecular mechanisms associated with features of cardiac hypertrophy, including protein synthesis, sarcomeric organization, fibrosis, cell death and energy metabolism and provide a summary of profiling studies that have examined genes, microRNAs and proteins that are differentially expressed in models of pathological and physiological hypertrophy. How gender and sex hormones affect cardiac hypertrophy is also discussed. Finally, we explore how knowledge of molecular mechanisms underlying pathological and physiological hypertrophy may influence therapeutic strategies for the treatment of cardiovascular disease and heart failure.
Collapse
|
17
|
Rathore HA, Munavvar AS, Abdullah NA, Khan AH, Fathihah B, NurJannah MH, Raisa NA, Anand Swarup KRL, Abdullah MH, Salman IM, Johns EJ. Interaction between renin-angiotensin and sympathetic nervous systems in a rat model of pressure overload cardiac hypertrophy. ACTA ACUST UNITED AC 2009; 29:171-80. [PMID: 19740088 DOI: 10.1111/j.1474-8665.2009.00445.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
1 A raised cardiac workload activates neurohormones which will increase muscle mass and shift contractility to the right along the Frank-Starling curve. 2 This study examined the interaction between the SNS and RAS in contributing to vascular responsiveness following the development of cardiac hypertrophy due to aortic banding. 3 Sprague Dawley rats (180-200 g) were assigned to one of six groups; Normal, Sham-operated, Aortic Banded (AB), Aortic Banded treated with losartan (ABLOS), Aortic Banded treated with 6-hydroxydopamine (ABSYMP) and Aortic banded treated with both losartan and 6-hydroxydopamine (ABSYMPLOS). A constricting band was placed around the supra renal aorta on day zero with drug treatment from day 37 to day 44. Vasopressor responses to noradrenaline, phenylephrine, methoxamine and angiotensin II were measured on day 45. 4 The magnitudes of the MAP responses to all vasoactive agents, expressed as percentage changes, were similar in Normal and Sham groups, but reduced in the AB group. ABLOS group showed attenuated response to ANGII whereas all responses were enhanced in the ABSYM group. 5 A positive interaction between the two systems was observed with alpha(1A)-adrenoceptors identified as a major component of SNS and AT(1) receptors of RAS to induce vasopressor effects.
Collapse
Affiliation(s)
- H A Rathore
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Li Z, Liu N, Zhang LS, Gong K, Cai Y, Gao W, Liu Z, Liu S, Han Q, Zhang Y. Proteomic profiling reveals comprehensive insights into adrenergic receptor-mediated hypertrophy in neonatal rat cardiomyocytes. Proteomics Clin Appl 2009; 3:1407-21. [PMID: 21136960 DOI: 10.1002/prca.200900029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 07/27/2009] [Accepted: 08/24/2009] [Indexed: 11/11/2022]
Abstract
Myocardial adrenergic receptors (ARs) play important roles in cardiac hypertrophy. However, the detailed molecular mechanism of AR-mediated cardiac hypertrophy remains elusive to date. To gain full insight into how ARs are involved in the regulation of cardiac hypertrophy, protein expression profiling was performed with comparative proteomics approach on neonatal rat cardiomyocytes. Forty-six proteins were identified as differentially expressed in hypertrophic cardiomyocytes induced by AR stimulation. To better understand the biological significance of the obtained proteomic data, we utilized the ingenuity pathway analysis tool to construct biological networks and analyze function and pathways that might associate with AR-mediated cardiac hypertrophy. Pathway analysis strongly suggested that ROS may be involved in the development of AR-mediated cardiac hypertrophy, which was then confirmed by further experimentation. The results showed that a marked increase in ROS production was detected in AR-mediated cardiac hypertrophy and blocking of ROS production significantly inhibited AR-mediated cardiac hypertrophy. We further proved that the ROS production was through NADPH oxidase or the mitochondrial electron transport chain and this ROS accumulation resulted in activation of extracellular signal-regulated kinase 1/2 leading to AR-mediated cardiac hypertrophy. These experimental results support the hypothesis, from the ingenuity pathway analysis, that AR-mediated cardiac hypertrophy is associated with the dysregulation of a complicated oxidative stress-regulatory network. In conclusion, our results provide a basis for understanding the detailed molecular mechanisms of AR-mediated cardiac hypertrophy.
Collapse
Affiliation(s)
- Zijian Li
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, P. R China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nakajima-Takenaka C, Zhang GX, Obata K, Tohne K, Matsuyoshi H, Nagai Y, Nishiyama A, Takaki M. Left ventricular function of isoproterenol-induced hypertrophied rat hearts perfused with blood: mechanical work and energetics. Am J Physiol Heart Circ Physiol 2009; 297:H1736-43. [PMID: 19734357 DOI: 10.1152/ajpheart.00672.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated left ventricular (LV) mechanical work and energetics in the cross-circulated (blood-perfused) isoproterenol [Iso 1.2 mg x kg(-1).day(-1) for 3 days (Iso3) or 7 days (Iso7)]-induced hypertrophied rat heart preparation under isovolumic contraction-relaxation. We evaluated pressure-time curves per beat, end-systolic pressure-volume and end-diastolic pressure-volume relations, and myocardial O(2) consumption per beat (Vo(2))-systolic pressure-volume area (PVA; a total mechanical energy per beat) linear relations at 240 beats/min, because Iso-induced hypertrophied hearts failed to completely relax at 300 beats/min. The LV relaxation rate at 240 beats/min in Iso-induced hypertrophied hearts was significantly slower than that in control hearts [saline 24 microl/day for 3 and 7 days (Sa)] with unchanged contraction rate. The Vo(2)-intercepts (composed of basal metabolism and Ca(2+) cycling energy consumption in excitation-contraction coupling) of Vo(2)-PVA linear relations were unchanged associated with their unchanged slopes in Sa, Iso3, and Iso7 groups. The oxygen costs of LV contractility were also unchanged in all three groups. The amounts of expression of sarcoplasmic reticulum Ca(2+)-ATPase, phospholamban (PLB), phosphorylated-Ser(16) PLB, phospholemman, and Na(+)-K(+)-ATPase are significantly decreased in Iso3 and Iso7 groups, although the amount of expression of NCX1 is unchanged in all three groups. Furthermore, the marked collagen production (types I and III) was observed in Iso3 and Iso7 groups. These results suggested the possibility that lowering the heart rate was beneficial to improve mechanical work and energetics in isoproterenol-induced hypertrophied rat hearts, although LV relaxation rate was slower than in normal hearts.
Collapse
|
20
|
Ritchie RH, Irvine JC, Rosenkranz AC, Patel R, Wendt IR, Horowitz JD, Kemp-Harper BK. Exploiting cGMP-based therapies for the prevention of left ventricular hypertrophy: NO* and beyond. Pharmacol Ther 2009; 124:279-300. [PMID: 19723539 DOI: 10.1016/j.pharmthera.2009.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 08/14/2009] [Indexed: 02/07/2023]
Abstract
Left ventricular hypertrophy (LVH), an increased left ventricular (LV) mass, is common to many cardiovascular disorders, initially developing as an adaptive response to maintain myocardial function. In the longer term, this LV remodelling becomes maladaptive, with progressive decline in LV contractility and diastolic function. Indeed LVH is recognised as an important blood-pressure independent predictor of cardiovascular morbidity and mortality. The clinical efficacy of current treatments for LVH is reduced, however, by their tendency to slow disease progression rather than induce its reversal, and thus the development of new therapies for LVH is paramount. The signalling molecule cyclic guanosine-3',5'-monophosphate (cGMP), well-recognised for its role in regulating vascular tone, is now being increasingly identified as an important anti-hypertrophic mediator. This review is focused on the various means by which cGMP can be stimulated in the heart, such as via the natriuretic peptides, to exert anti-hypertrophic actions. In particular we address the limitations of traditional nitric oxide (NO*) donors in the face of the potential therapeutic advantages offered by novel alternatives; NO* siblings, ligands of the cGMP-generating enzymes, soluble (sGC) and particulate guanylyl cyclases (pGC), and phosphodiesterase inhibitors. Further impact of cGMP within the cardiovascular system is also discussed with a view to representing cGMP-based therapies as innovative pharmacotherapy, alone or concurrent with standard care, for the management of LVH.
Collapse
Affiliation(s)
- Rebecca H Ritchie
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute Melbourne, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
21
|
Shimizu J, Yamashita D, Misawa H, Tohne K, Matsuoka S, Kim B, Takeuchi A, Nakajima-Takenaka C, Takaki M. Increased O2 consumption in excitation-contraction coupling in hypertrophied rat heart slices related to increased Na+ -Ca2+ exchange activity. J Physiol Sci 2009; 59:63-74. [PMID: 19340563 PMCID: PMC10717199 DOI: 10.1007/s12576-008-0006-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/31/2008] [Indexed: 10/20/2022]
Abstract
The goal of our study was to evaluate the origin of the increased O(2) consumption in electrically stimulated left ventricular slices of isoproterenol-induced hypertrophied rat hearts with normal left ventricular pressure. O(2) consumption per minute (mVO(2)) of mechanically unloaded left ventricular slices was measured in the absence and presence of 1-Hz field stimulation. Basal metabolic mVO(2), i.e., mVO(2) without electrical stimulation, was significantly smaller, but mVO(2) for the total Ca(2+) handling in excitation-contraction coupling (E-C coupling mVO(2)), i.e., delta mVO(2) (=mVO(2) with stimulation - mVO(2) without stimulation), was significantly larger in the hypertrophied heart. Furthermore, the fraction of E-C coupling mVO(2) was markedly altered in the hypertrophied heart. Namely, mVO(2) consumed by sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2) was depressed by 40%; mVO(2) consumed by the Na(+)/K(+)-ATPase (NKA)-Na(+)/Ca(2+) exchange (NCX) coupling was increased by 100%. The depressed mVO(2) consumption by SERCA2 was supported by lower protein expressions of phosphorylated-Ser(16) phospholamban and SERCA2. The increase in NKA-NCX coupling mVO(2) was supported by marked augmentation of NCX current. However, the increase in NCX current was not due to the increase in NCX1 protein expression, but was attributable to attenuation of the intrinsic inactivation mechanisms. The present results demonstrated that the altered origin of the increased E-C coupling mVO(2) in hypertrophy was derived from decreased SERCA2 activity (1ATP: 2Ca(2+)) and increased NCX activity coupled to NKA activity (1ATP: Ca(2+)). Taken together, we conclude that the energetically less efficient Ca(2+) extrusion pathway evenly contributes to Ca(2+) handling in E-C coupling in the present hypertrophy model.
Collapse
Affiliation(s)
- Juichiro Shimizu
- Department of Physiology II, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521 Japan
| | - Daisuke Yamashita
- Department of Physiology II, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521 Japan
| | - Hiromi Misawa
- Department of Physiology II, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521 Japan
| | - Kiyoe Tohne
- Department of Physiology II, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521 Japan
| | - Satoshi Matsuoka
- Department of Physiology and Biophysics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Bongju Kim
- Department of Physiology and Biophysics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Ayako Takeuchi
- Department of Physiology and Biophysics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | | | - Miyako Takaki
- Department of Physiology II, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521 Japan
| |
Collapse
|
22
|
Zarrinpashneh E, Beauloye C, Ginion A, Pouleur AC, Havaux X, Hue L, Viollet B, Vanoverschelde JL, Bertrand L. AMPKalpha2 counteracts the development of cardiac hypertrophy induced by isoproterenol. Biochem Biophys Res Commun 2008; 376:677-81. [PMID: 18812163 DOI: 10.1016/j.bbrc.2008.09.057] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 12/26/2022]
Abstract
As AMP-activated protein kinase (AMPK) controls protein translation, an anti-hypertrophic effect of AMPK has been suggested. However, there is no genetic evidence to confirm this hypothesis. We investigated the contribution of AMPKalpha2 in the control of cardiac hypertrophy by using AMPKalpha2-/- mice submitted to isoproterenol. The isoproterenol-induced cardiac hypertrophy, measured by left ventricular mass and histological examination, was significantly higher in AMPKalpha2-/- than in WT animals. Moreover, the intensification of cardiac hypertrophy found in AMPKalpha2-/- mice can be linked to the abnormal basal overstimulation of the p70 ribosomal S6 protein kinase, an enzyme known to regulate protein translation and cell growth. In conclusion, this work shows that AMPKalpha2 plays a role of brake for the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Elham Zarrinpashneh
- Université catholique de Louvain, Division of Cardiology, 55 Avenue Hippocrate, CARD5550, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Calcium in the heart: when it's good, it's very very good, but when it's bad, it's horrid. Biochem Soc Trans 2008; 35:957-61. [PMID: 17956254 DOI: 10.1042/bst0350957] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ca(2+) increases in the heart control both contraction and transcription. To accommodate a short-term increased cardiovascular demand, neurohormonal modulators acting on the cardiac pacemaker and individual myocytes induce an increase in frequency and magnitude of myocyte contraction respectively. Prolonged, enhanced function results in hypertrophic growth of the heart, which is initially also associated with greater Ca(2+) signals and cardiac contraction. As a result of disease, however, hypertrophy progresses to a decompensated state and Ca(2+) signalling capacity and cardiac output are reduced. Here, the role that Ca(2+) plays in the induction of hypertrophy as well as the impact that cardiac hypertrophy and failure has on Ca(2+) fluxes will be discussed.
Collapse
|
24
|
Osadchii O, Norton G, Deftereos D, Woodiwiss A. Rat strain-related differences in myocardial adrenergic tone and the impact on cardiac fibrosis, adrenergic responsiveness and myocardial structure and function. Pharmacol Res 2007; 55:287-94. [PMID: 17257851 DOI: 10.1016/j.phrs.2006.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/25/2006] [Accepted: 12/11/2006] [Indexed: 12/12/2022]
Abstract
Sprague-Dawley (SD) rats have been reported to have a higher sympathetic activity than Wistar-Kyoto (WKY) rats. In the present study we sought to determine if these rat strain-related differences in sympathetic activity exist at a myocardial level and whether they translate into changes in cardiac fibrosis, contractile responsiveness to adrenergic agonists, and cardiac structure and function. Coronary effluent noradrenaline concentrations, as determined in isolated, perfused heart preparations, were higher in 5-month-old SD as compared to age-matched WKY male rats. This difference was accompanied by higher resting heart rates in SD rats as assessed in vivo. However, increases in myocardial noradrenaline release in SD rats did not translate into enhanced myocardial fibrosis, cardiac hypertrophy or remodeling, changes in basal ventricular systolic and diastolic function, or to down-regulation of inotropic responses to the beta-adrenoreceptor agonists, noradrenaline, isoproterenol and dobutamine. Although age-matched male SD rats were heavier, no differences in absolute heart weights were noted between rat strains. Moreover, left ventricular (LV) posterior wall thickness as assessed by echocardiography, as well as cardiac myocyte dimensions as determined by laser scanning confocal microscopy were similar between rat strains. Furthermore, LV internal diameters as determined in vivo, as well as LV diastolic volume intercept determined in isolated, perfused heart preparations were similar between rat strains. Increases in myocardial noradrenaline release in SD rats also did not translate into differences in LV systolic chamber and myocardial function as assessed in vivo (LV endocardial and midwall fractional shortening) and at controlled loads and heart rates ex vivo (the slope of the LV developed pressure-volume relation determined). Likewise, neither myocardial hydroxyproline content nor LV chamber stiffness as assessed by the slope of the LV end-diastolic pressure-volume relation were different in SD and WKY rats. In conclusion, rat strain-related differences in cardiac adrenergic tone do indeed exist, but in young animals these differences do not translate into cardiac phenotypes known to contribute to progressive cardiac dysfunction.
Collapse
Affiliation(s)
- Oleg Osadchii
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa.
| | | | | | | |
Collapse
|
25
|
Zhang GX, Ohmori K, Nagai Y, Fujisawa Y, Nishiyama A, Abe Y, Kimura S. Role of AT1 receptor in isoproterenol-induced cardiac hypertrophy and oxidative stress in mice. J Mol Cell Cardiol 2007; 42:804-11. [PMID: 17350036 DOI: 10.1016/j.yjmcc.2007.01.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 01/17/2007] [Accepted: 01/26/2007] [Indexed: 01/08/2023]
Abstract
Elevated activities of the sympathetic nerve and renin-angiotensin systems are common features of heart failure. This study was designed to investigate the roles of the AT1 receptor in cardiac hypertrophy and oxidative stress during excessive beta-adrenoceptor stimulation using an AT1 receptor antagonist (ARB) and AT1a receptor-deficient (AT1aR(-/-)) mice. Isoproterenol (ISO) was given to C57BL mice with or without ARB (olmesartan) treatment and to AT1aR(-/-) mice by a subcutaneously implanted osmotic mini-pump for 11 days at a rate of 15 mg/kg/day. Chronic ISO infusion to C57BL mice caused concentric cardiac hypertrophy (sham; 4.1+/-0.1, ISO; 5.2+/-0.2 mg/g heart to body weight ratio), accompanied by enhancement of cardiac collagen accumulation, lipid peroxidation, superoxide generation and NADPH oxidase activity. The AT1a and beta-1,2 receptor mRNA expressions were down-regulated in the heart of ISO-infused mice. Olmesartan markedly suppressed cardiac mass enlargement as well as increases of oxidative indicators without any effects on heart rate. Olmesartan did not affect the cardiac angiotensin and beta-adrenergic receptor mRNA expression patterns. The AT1a receptor contribution to ISO-induced cardiac hypertrophy was reproduced in AT1aR(-/-) mice. These data suggest that the AT1 receptor plays a crucial role in the development of cardiac hypertrophy and oxidative stress under excessive beta-adrenergic stimulation, and that ARB treatment is beneficial for sympatho-excitatory cardiac hypertrophy and failure in mice.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Angiotensins/genetics
- Angiotensins/metabolism
- Animals
- Antioxidants/pharmacology
- Blotting, Western/methods
- Cardiomegaly/chemically induced
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Collagen Type I/metabolism
- Cyclic AMP Response Element-Binding Protein/metabolism
- Fibrosis/etiology
- Fibrosis/metabolism
- Fibrosis/pathology
- Isoproterenol/adverse effects
- Lipid Peroxidation
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardium/metabolism
- Myocardium/pathology
- NADPH Oxidases/metabolism
- Oxidative Stress
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/physiology
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Superoxides/metabolism
Collapse
Affiliation(s)
- Guo-Xing Zhang
- Department of Pharmacology, Kagawa University Medical School, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Weismüller T, Klein J, Löffelholz K. Effects of norepinephrine and cardiotrophin-1 on phospholipase D activity and incorporation of myristic acid into phosphatidylcholine in rat heart. J Pharmacol Sci 2005; 95:335-40. [PMID: 15272209 DOI: 10.1254/jphs.fpe04001x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The present study is part of a project on phospholipase D (PLD) in cardiac hypertrophy and analyzed effects on PLD activity of two growth stimuli, norepinephrine (NE) and cardiotrophin-1 (CT-1), in incubated rat heart. Phosphatidylcholine (PC) was labeled by (3)H-myristic acid. PLD produced (3)H-phosphatidylethanol ((3)H-PEth) from (3)H-PC in the presence of ethanol and maintained a basal formation of (3)H-PEth. Short-term and long-term exposure to NE for 2 or 13 h, respectively, enhanced the formation of (3)H-PEth, which was blocked by prazosin. Long-term pretreatment with NE or CT-1 increased the incorporation of (3)H-myristic acid into PC, which was blocked by atenolol. When the (3)H-PEth formation was expressed as a fraction of (3)H-PC, PLD activity seemingly was unchanged (NE) or markedly reduced (CT-1); the true effects, namely, stimulation by NE and nonresponsiveness towards CT-1, were unraveled by atenolol (NE) or when PLD activity was expressed as (3)H-PEth per ng protein. In conclusion, alpha-adrenoceptor activation increased PLD activity. Long-term treatment with NE (via beta-receptors) or CT-1 enhanced the (3)H-myristic acid incorporation into a PC compartment, that was not available for the alpha-receptor-mediated PLD activation. These results were discussed in regard to cellular mechanisms of cardiac hypertrophy and to the transphosphatidylation assay of PLD.
Collapse
Affiliation(s)
- Tobias Weismüller
- Department of Pharmacology, Johannes-Gutenberg-University of Mainz, Obere Zahlbacher Str. 67, D-55101 Mainz, Germany
| | | | | |
Collapse
|
27
|
Su F, Ouyang N, Zhu P, Ouyang N, Jia W, Gong C, Ma X, Xu H, Song E. Psychological stress induces chemoresistance in breast cancer by upregulating mdr1. Biochem Biophys Res Commun 2005; 329:888-97. [PMID: 15752739 DOI: 10.1016/j.bbrc.2005.02.056] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Indexed: 11/23/2022]
Abstract
Psychological distress reduces the efficacy of chemotherapy in breast cancer patients. The mechanism may be related to the altered neuronal or hormonal secretions during stress. Here, we reported that adrenaline, a hormone mediating the biological activities of stress, upregulates mdr1 gene expression in MCF-7 breast cancer cells via alpha(2)-adrenergic receptors in a dose-dependent manner. Mdr1 upregulation can be specifically inhibited by pretreatment with mdr1-siRNA. Consequently, adrenergic stimulation enhances the pump function of P-glycoprotein and confers resistance of MCF-7 cells to paclitaxel. In vivo, restraint stress increases mdr1 gene expression in the MCF-7 cancers that are inoculated subcutaneously into the SCID mice and provokes resistance to doxorubicin in the implanted tumors. The effect can be blocked by injection of yohimbine, an alpha(2)-adrenergic inhibitor, but not by metyrapone, a corticosterone synthesis blocker. Therefore, we conclude that breast cancers may develop resistance against chemotherapeutic drugs under psychological distress by over-expressing mdr1 via adrenergic stimulation.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacokinetics
- Breast Neoplasms/complications
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Epinephrine/pharmacology
- Female
- Humans
- Mice
- Mice, SCID
- Paclitaxel/administration & dosage
- Paclitaxel/pharmacokinetics
- Stress, Psychological/complications
- Stress, Psychological/metabolism
- Treatment Outcome
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Fengxi Su
- Department of Breast Surgery, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Faulx MD, Ernsberger P, Vatner D, Hoffman RD, Lewis W, Strachan R, Hoit BD. Strain-dependent beta-adrenergic receptor function influences myocardial responses to isoproterenol stimulation in mice. Am J Physiol Heart Circ Physiol 2005; 289:H30-6. [PMID: 15749746 DOI: 10.1152/ajpheart.00636.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recently, we showed that compared with the A/J inbred mouse strain, C57BL/6J (B6) mice have an athlete's cardiac phenotype. We postulated that strain differences would result in greater left ventricular (LV) hypertrophy in response to isoproterenol in B6 than A/J mice and tested the hypothesis that a differential response could be explained partly by differences in beta-adrenergic receptor (beta-AR) density and/or coupling. A/J and B6 mice were randomized to receive daily isoproterenol (100 mg/kg sc) or isovolumic vehicle for 5 days. Animals were studied using echocardiography, tail-cuff blood pressure, histopathology, beta-AR density and percent high-affinity binding, and basal and stimulated adenylyl cyclase activities. One hundred twenty-eight mice (66 A/J and 62 B6) were studied. Isoproterenol-treated A/J mice demonstrated greater percent increases in echocardiographic LV mass/body weight (97 +/- 11 vs. 20 +/- 10%, P = 0.001) and in gravimetric heart mass/body weight versus same-strain controls than B6 mice. Histopathology scores (a composite of myocyte hypertrophy, nuclear changes, fibrosis, and calcification) were greater in isoproterenol-treated A/J vs. B6 mice (2.8 +/- 0.2 vs.1.9 +/- 0.3, P < 0.05), as was quantitation of myocyte damage (22.3 +/- 11.5 vs. 4.3 +/- 3.5%). Interstrain differences in basal beta-AR density, high-affinity binding, and adenylyl cyclase activity were not significant. However, whereas isoproterenol-treated A/J mice showed nonsignificant increases in all beta-AR activity measures, isoproterenol-treated B6 mice had lower beta-AR density (57 +/- 6 vs. 83 +/- 8 fmol/mg, P < 0.05), percent high-affinity binding (15 +/- 2 vs. 26 +/- 3%, P < 0.005), and GTP + isoproterenol-stimulated adenylyl cyclase activity (10 +/- 1.1 vs. 5.8 +/- 1.5 pmol cAMP.mg(-1).min(-1)) compared with controls. High-dose, short-term isoproterenol produces greater macro- and microscopic cardiac hypertrophy and injury in A/J than B6 mice. A/J mice, unlike B6 mice, do not experience beta-AR downregulation or uncoupling in response to isoproterenol. Abnormalities in beta-adrenergic regulation may contribute to strain-related differences in the vulnerability to isoproterenol-induced cardiac changes.
Collapse
Affiliation(s)
- Michael D Faulx
- Division of Cardiology, Dept. of Medicine, Univ. Hospitals of Cleveland and Case Western Reserve Univ., MS 5038, 11100 Euclid Ave., Cleveland, OH 44106-5038, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Moritz F, Monteil C, Mulder P, Derumeaux G, Bizet C, Renet S, Lallemand F, Richard V, Thuillez C. Prolonged Cardiac Dysfunction After Withdrawal of Chronic Cocaine Exposure in Rats. J Cardiovasc Pharmacol 2003; 42:642-7. [PMID: 14576513 DOI: 10.1097/00005344-200311000-00010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cocaine abuse causes myocardial dysfunction and induces oxidative stress. However, the reversibility of these effects is unknown. We evaluated myocardial function and oxidative stress after cocaine withdrawal, in a rat model of chronic cocaine exposure. Standard echocardiography and Doppler tissue imaging were performed after 4 weeks (W4) of cocaine administration (2 x 7.5 mg/kg/d, i.p.) and 4 weeks after interruption (W8). At these time points, redox state (reduced glutathione GSH, oxidized glutathione GSH, and GSH/GSSG) as well as activities of GSH peroxidase (GPX), superoxide dismutase (SOD), and catalase were determined in the left ventricle (LV). At W4, LV fractional shortening, posterior wall thickening, systolic myocardial ventricular gradient (SMVG), dP/dt(max), and dp/dt(min) were decreased, compared with control values while LV myocardial thickness was increased. At W8, even though dP/dtmax and dp/dt(min) were restored, myocardial function was still impaired as demonstrated by the decrease in posterior wall thickening, and systolic myocardial velocity gradient. At W4, CAT and GPX activities as well as GSH/GSSG ratio were reduced while SOD activity was increased. Antioxidant markers and redox ratio remained altered 4 weeks after the last injection. Thus, these data demonstrate the persistence of LV dysfunction after cocaine withdrawal, which occurs in a context of a deficit in antioxidant defenses.
Collapse
Affiliation(s)
- Fabienne Moritz
- INSERM E 9920, IFRMP no. 23, University Medical School, Rouen, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Oudit GY, Crackower MA, Eriksson U, Sarao R, Kozieradzki I, Sasaki T, Irie-Sasaki J, Gidrewicz D, Rybin VO, Wada T, Steinberg SF, Backx PH, Penninger JM. Phosphoinositide 3-kinase gamma-deficient mice are protected from isoproterenol-induced heart failure. Circulation 2003; 108:2147-52. [PMID: 12963636 DOI: 10.1161/01.cir.0000091403.62293.2b] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND We have recently shown that genetic inactivation of phosphoinositide 3-kinase gamma (PI3Kgamma), the isoform linked to G-protein-coupled receptors, results in increased cardiac contractility with no effect on basal cell size. Signaling via the G-protein-coupled beta-adrenergic receptors has been implicated in cardiac hypertrophy and heart failure, suggesting that PI3Kgamma might play a role in the pathogenesis of heart disease. METHODS AND RESULTS To determine the role for PI3Kgamma in hypertrophy induced by G-protein-coupled receptors and cardiomyopathy, we infused isoproterenol, a beta-adrenergic receptor agonist, into PI3Kgamma-deficient mice. Compared with controls, isoproterenol infusion in PI3Kgamma-deficient mice resulted in an attenuated cardiac hypertrophic response and markedly reduced interstitial fibrosis. Intriguingly, chronic beta-adrenergic receptor stimulation triggered impaired heart functions in wild-type mice, whereas PI3Kgamma-deficient mice retained their increased heart function and did not develop heart failure. The lack of PI3Kgamma attenuated the activation of Akt/protein kinase B and extracellular signal-regulated kinase 1/2 signaling pathways in cardiac myocytes in response to isoproterenol. beta1- and beta2-adrenergic receptor densities were decreased by similar amounts in PI3Kgamma-deficient and control mice, suggesting that PI3Kgamma isoform plays no role in the downregulation of beta-adrenergic receptors after chronic beta-adrenergic stimulation. CONCLUSIONS Our data show that PI3Kgamma is critical for the induction of hypertrophy, fibrosis, and cardiac dysfunction function in response to beta-adrenergic receptor stimulation in vivo. Thus, PI3Kgamma may represent a novel therapeutic target for the treatment of decreased cardiac function in heart failure.
Collapse
Affiliation(s)
- Gavin Y Oudit
- Department of Physiology, University Health Network, University of Toronto, 620 University Ave, Toronto, Ontario M5G 2C1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ueno S, Ohki R, Hashimoto T, Takizawa T, Takeuchi K, Yamashita Y, Ota J, Choi YL, Wada T, Koinuma K, Yamamoto K, Ikeda U, Shimada K, Mano H. DNA microarray analysis of in vivo progression mechanism of heart failure. Biochem Biophys Res Commun 2003; 307:771-7. [PMID: 12878176 DOI: 10.1016/s0006-291x(03)01252-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dahl salt-sensitive rats are genetically hypersensitive to sodium intake. When fed a high sodium diet, they develop systemic hypertension, followed by cardiac hypertrophy and finally heart failure within a few months. Therefore, Dahl rats represent a good model with which to study how heart failure is developed in vivo. By using DNA microarray, we here monitored the transcriptome of >8000 genes in the left ventricular muscles of Dahl rats during the course of cardiovascular damage. Expression of the atrial natriuretic peptide gene was, for instance, induced in myocytes by sodium overload and further enhanced even at the heart failure stage. Interestingly, expression of the gene for the D-binding protein, an apoptotic-related transcriptional factor, became decreased upon the transition to heart failure. To our best knowledge, this is the first report to describe the transcriptome of cardiac myocytes during the disease progression of heart failure.
Collapse
Affiliation(s)
- Shuichi Ueno
- Division of Functional Genomics, Jichi Medical School, 3311-1 Yakushiji, Kawachi-gun, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pak Y, Pham N, Rotin D. Direct binding of the beta1 adrenergic receptor to the cyclic AMP-dependent guanine nucleotide exchange factor CNrasGEF leads to Ras activation. Mol Cell Biol 2002; 22:7942-52. [PMID: 12391161 PMCID: PMC134719 DOI: 10.1128/mcb.22.22.7942-7952.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) can indirectly activate Ras primarily through the betagamma subunits of G proteins, which recruit c-Src, phosphatidylinositol 3-kinase, and Grb2-SOS. However, a direct interaction between a Ras activator (guanine nucleotide exchange factor [GEF]) and GPCRs that leads to Ras activation has never been demonstrated. We report here a novel mechanism for a direct GPCR-mediated Ras activation. The beta1 adrenergic receptor (beta1-AR) binds to the PDZ domain of the cyclic AMP (cAMP)-dependent Ras exchange factor, CNrasGEF, via its C-terminal SkV motif. In cells heterologously expressing beta1-AR and CNrasGEF, Ras is activated by the beta1-AR agonist isoproterenol, and this activation is abolished in beta1-AR mutants that cannot bind CNrasGEF or in CNrasGEF mutants lacking the catalytic CDC25 domain or cAMP-binding domain. Moreover, the activation is transduced via Gsalpha and not via Gbetagamma. In contrast to beta1-AR, the beta2-AR neither binds CNrasGEF nor activates Ras via CNrasGEF after agonist stimulation. These results suggest a model whereby the physical interaction between the beta1-AR and CNrasGEF facilitates the transduction of Gsalpha-induced cAMP signal into the activation of Ras. The present study provides the first demonstration of direct physical association between a Ras activator and a GPCR, leading to agonist-induced Ras activation
Collapse
MESH Headings
- Animals
- Cell Line
- Cyclic AMP/metabolism
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Green Fluorescent Proteins
- Guanine Nucleotide Exchange Factors/metabolism
- Humans
- Ligands
- Luminescent Proteins/metabolism
- Models, Biological
- Nerve Tissue Proteins
- Protein Binding
- Protein Structure, Tertiary
- Protein Subunits
- Rats
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Swine
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Youngshil Pak
- Program in Cell Biology, The Hospital for Sick Children, and Biochemistry Department, University of Toronto, Toronto, M5G 1X8 Ontario, Canada
| | | | | |
Collapse
|
33
|
Ballard-Croft C, Maass DL, Sikes P, White J, Horton J. Activation of stress-responsive pathways by the sympathetic nervous system in burn trauma. Shock 2002; 18:38-45. [PMID: 12095132 DOI: 10.1097/00024382-200207000-00008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have shown previously that bum trauma activates the stress responsive proteins, p38 mitogen-activated protein kinase (MAPK), c-jun NH2-terminal kinase (JNK), and NF-kappaB, and we have shown further that p38 MAPK is an important mediator of cardiomyocyte TNF-alpha secretion and cardiac dysfunction in burn trauma. Since burn trauma causes a rise in circulating catecholamine levels, we hypothesized that this increased sympathetic activity may function as an upstream activator of the p38 MARK pathway in burn trauma. This study determined whether the alpha1-adrenergic receptor ligand phenylephrine could mimic burn trauma activation of p38 MAPK, JNK, and NF-kappaB nuclear translocation; and the effect of the alpha1-adrenergic receptor antagonist prazosin on either phenylephrine or burn-mediated activation of the stress response pathway was examined. Sprague Dawley rats were divided into seven groups: Group 1, controls; Group 2, phenylephrine-treated (2 microg/kg, i.v.) control rats; Group 3, phenylephrine-treated plus prazosin-treated (1 mg/kg, i.v.) control rats; additional rats were given burn over 40% total body surface area (TBSA) and received vehicle (1 mL of 2% sucrose, p.o.) plus fluid resuscitation (Group 4), while in Group 5, burn rats were given prazosin (1 mg/kg, p.o.) plus fluid resuscitation. In Groups 6 and 7, sham-burned rats were given either vehicle (1 mL of 2% sucrose, p.o.) or prazosin (1 mg/kg, p.o.) to provide appropriate controls. Administration of phenylephrine to rats caused a significant activation of cardiac p38 MAPK/JNK activities (Western blot) and cardiac NF-kappaB nuclear translocation (electrophoretic mobility shift assay, EMSA). Prazosin blocked phenylephrine mediated changes in p38 MAPK/JNK activities. Burn trauma activated cardiac p38 MAPK/JNK and NF-kappaB, increased TNF-alpha secretion by cardiomyocytes, and impaired cardiac function. Prazosin treatment in burns interrupted the burn-mediated signaling cascade, decreasing TNF-alpha secretion by cardiomyocytes and preventing post-burn cardiac contractile dysfunction. Thus, burn trauma-related sympathetic activity likely activates the stress-responsive cascade, which regulates myocardial TNF-alpha transcription/translation and culminates in cardiac contraction and relaxation defects.
Collapse
Affiliation(s)
- Cherry Ballard-Croft
- University of Texas Southwestern Medical Center, Department of Surgery, Dallas 75390-9160, USA
| | | | | | | | | |
Collapse
|
34
|
Simko F. Physiologic and pathologic myocardial hypertrophy--physiologic and pathologic regression of hypertrophy? Med Hypotheses 2002; 58:11-4. [PMID: 11863392 DOI: 10.1054/mehy.2001.1399] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hypertrophy of the left ventricle is an adaptive phenomenon of ambiguous biological value. It enables improvement of the heart performance without substantial enhancement of energetic demands. On the other hand, pathologic left ventricular hypertrophy (LVH) is characterized by increased fibrosis, diminished coronary flow reserve and protein remodeling, resulting in increased cardiovascular morbidity and mortality. Achievement of LVH regression is thus considered a principal therapeutic aim. However, the reversal of LVH is a very complex process in which both hemodynamic and non-hemodynamic alterations participate. Reversal of LVH does not mean the re-expression of the original genotype and normalization of myocardial structure and function. It does not guarantee that the heart will be normal in all aspects. Regression of hypertrophy induced by different therapeutic means may exhibit different properties and patterns, with variable biological implications. Physiologic growth stimulators seem to induce LVH without prognostically undesirable alterations. It is a challenge to determine which approach to treatment of hemodynamic overload and concomitant LVH is optimal.
Collapse
Affiliation(s)
- F Simko
- Department of Pathophysiology, Faculty of Medicine, Bratislava, Slovak Republic.
| |
Collapse
|
35
|
Rapacciuolo A, Esposito G, Caron K, Mao L, Thomas SA, Rockman HA. Important role of endogenous norepinephrine and epinephrine in the development of in vivo pressure-overload cardiac hypertrophy. J Am Coll Cardiol 2001; 38:876-82. [PMID: 11527648 DOI: 10.1016/s0735-1097(01)01433-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES We sought to define the role of norepinephrine and epinephrine in the development of cardiac hypertrophy and to determine whether the absence of circulating catecholamines alters the activation of downstream myocardial signaling pathways. BACKGROUND Cardiac hypertrophy is associated with elevated plasma catecholamine levels and an increase in cardiac morbidity and mortality. Although considerable evidence suggests that G-protein-coupled receptors are involved in the hypertrophic response, it remains controversial whether catecholamines are required for the development of in vivo cardiac hypertrophy. METHODS We performed transverse aortic constriction (TAC) in dopamine beta-hydroxylase knockout mice (Dbh(-/-), genetically altered mice that are completely devoid of endogenous norepinephrine and epinephrine) and littermate control mice. After induction of cardiac hypertrophy, the mitogen-activated protein kinase (MAPK) signaling pathways were measured in pressure-overloaded/wild-type and Dbh(-/-) hearts. RESULTS Compared with the control animals, cardiac hypertrophy was significantly blunted in Dbh(-/-) mice, which was not associated with altered cardiac function, as assessed by transthoracic echocardiography in conscious mice. The extracellularly regulated kinase (ERK 1/2), c-jun-NH(2)-terminal kinase (JNK) and p38 MAPK pathways were all activated by two- to threefold after TAC in the control animals. In contrast, induction of the three pathways (ERK 1/2, JNK and p38) was completely abolished in Dbh(-/-) mice. CONCLUSIONS These data demonstrate a nearly complete requirement of endogenous norepinephrine and epinephrine for the induction of in vivo pressure-overload cardiac hypertrophy and for the activation of hypertrophic signaling pathways.
Collapse
Affiliation(s)
- A Rapacciuolo
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
36
|
Effect of μ-opiate receptor agonist tetrapeptide A10 on DNA synthesis and protein content in the myocardium of albino rats. Bull Exp Biol Med 2000. [DOI: 10.1007/bf02682026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Bazan A, Van de Velde E, de Paepe B, Fraeyman N. Properties of the ventricular adrenergic signal transduction system during ontogeny of spontaneous hypertension in rats. J Cardiovasc Pharmacol 2000; 35:653-63. [PMID: 10774798 DOI: 10.1097/00005344-200004000-00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to characterize adrenergic receptors and associated G proteins in ventricles of spontaneously hypertensive rats (SHRs) at different stages of development. The beta- and alpha1-adrenoceptor densities and subtype distribution, and beta-adrenoceptor-G protein coupling were studied by radioligand binding, and levels of G(Salpha), G(ialpha), and G(q/11alpha) protein species were determined by Western blotting in SHRs and Wistar-Kyoto (WKY) control rats aged 3.5 weeks, 3 months, and 8 months. In 3.5-week-old SHRs, both the beta-adrenoceptor density and the percentage of agonist high-affinity binding sites were higher than in age-matched WKY rats. The beta1/beta2-subtype distribution, the alpha1-adrenoceptor density, and the alpha1B/alpha1A-subtype distribution were similar in rats of both strains at all ages. Although essentially no differences in G(salpha) levels between SHRs and WKY rats were detected, higher G(ialpha) and lower Gq/1alpha concentrations were found in 3.5-week-old SHRs. In 3-month-old SHRs, increased levels of Gq/11alpha proteins were observed. In 8-month-old SHRs, none of the parameters was different from those of controls. We conclude that the differences in properties of the adrenergic signal transduction system between SHRs and WKY rats are exclusively observable before and at the onset of the overt hypertension. Moreover, the hypertensive genotype apparently affects G proteins more readily than adrenoceptors.
Collapse
Affiliation(s)
- A Bazan
- Ghent University, Medical School, Heymans Institute of Pharmacology, Belgium
| | | | | | | |
Collapse
|