1
|
Reis LFCD, Cerdeira CD, Silva LCC, Ramos ABSB, Silva JEC, Castro AP, Ventura RR, Souza RLM, Marques MJ, Novaes RD. Dietary glycemic and energy load differentially modulates Schistosoma mansoni-induced granulomatous inflammation and response to antiparasitic chemotherapy. Acta Trop 2024; 252:107141. [PMID: 38342286 DOI: 10.1016/j.actatropica.2024.107141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/09/2023] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
The impact of diet composition and energy content on schistosomiasis evolution and treatment efficacy is still controversial. This study compared the impact of sucrose-rich diet and intermittent fasting on Schistosoma mansoni infection and praziquantel (PZQ)-based chemotherapy response in mice. BALB/c mice were infected with S. mansoni and followed for 15 weeks. The animals were randomized into nine groups receiving high glycemic load (high-sucrose diet - HSD), low caloric load (standard chow alternate-day fasting - ADF), and standard chow ad libitum (AL). Eight weeks after S. mansoni infection, these groups remained untreated or were treated with PZQ (300 mg/kg/day) for 3 days. Our results indicated that parasite load (S. mansoni eggs and parasite DNA levels), granulomatous inflammation (granulomas number and size), and liver microstructural damage (reduction in hepatocytes number, increase in nucleus-cytoplasm ratio, connective stroma expansion and fibrosis) were increased in ADF-treated animals. These animals also showed decreased eggs retention, granulomatous inflammation and collagen accumulation in the small intestine. Conversely, HSD diet and PZQ treatment attenuated all these parameters and stimulated hepatic regenerative response. PZQ also stimulated fibrosis resolution in HSD-treated mice, effect that was limited ADF-exposed mice. Our findings indicate that dietary glycemic and energy load can modulate schistosomiasis progression and the severity of hepatic and intestinal granulomatous inflammation in untreated and PZQ-treated mice. Thus, lower intestinal eggs retention may potentially be linked to worsening liver disease in ADF, while attenuation of hepatic and intestinal granulomatous inflammation is consistent with reduced parasite load in HSD- and PZQ-treated animals.
Collapse
Affiliation(s)
- Luis F C Dos Reis
- Instituto d e Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil
| | - Cláudio D Cerdeira
- Departamento de Bioquímica, Universidade Federal de Alfenas, Alfenas, Minas Gerais, 37130-001, Brazil
| | - Laís C C Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas Minas Gerais, 37130-001, Brazil
| | - Amanda B S B Ramos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas Minas Gerais, 37130-001, Brazil
| | - José Edson C Silva
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil
| | - Aline P Castro
- Instituto d e Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil
| | - Renato R Ventura
- Instituto d e Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil
| | - Raquel L M Souza
- Instituto d e Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil
| | - Marcos J Marques
- Instituto d e Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas Minas Gerais, 37130-001, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil
| | - Rômulo D Novaes
- Instituto d e Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil.
| |
Collapse
|
2
|
Donath H, Wölke S, Knop V, Heß U, Duecker RP, Trischler J, Poynard T, Schubert R, Zielen S. Liver Assessment in Patients with Ataxia-Telangiectasia: Transient Elastography Detects Early Stages of Steatosis and Fibrosis. Can J Gastroenterol Hepatol 2023; 2023:2877350. [PMID: 36941982 PMCID: PMC10024628 DOI: 10.1155/2023/2877350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 03/13/2023] Open
Abstract
Background Ataxia-telangiectasia (A-T) is a rare autosomal-recessive multisystem disorder characterized by pronounced cerebellar ataxia, telangiectasia, cancer predisposition, and altered body composition. Liver diseases with steatosis, fibrosis, and hepatocellular carcinoma are frequent findings in older patients but sensitive noninvasive diagnostic tools are lacking. Objectives To determine the sensitivity of transient elastography (TE) as a screening tool for early hepatic tissue changes and serum biomarkers for liver disease. Methods Thirty-one A-T patients aged 2 to 25 years were examined prospectively from 2016-2018 by TE. In addition, we evaluated the diagnostic performance of liver biomarkers for steatosis and necroinflammatory activity (SteatoTest and ActiTest, Biopredictive, Paris) compared to TE. For calculation and comparison, patients were divided into two groups (<12, >12 years of age). Results TE revealed steatosis in 2/21 (10%) younger patients compared to 9/10 (90%) older patients. Fibrosis was present in 3/10 (30%) older patients as assessed by TE. We found a significant correlation of steatosis with SteatoTest, alpha-fetoprotein (AFP), HbA1c, and triglycerides. Liver stiffness correlated significantly with SteatoTest, ActiTest, HbA1c, and triglycerides. Conclusion Liver disease is a common finding in older A-T patients. TE is an objective measure to detect early stages of steatosis and fibrosis. SteatoTest and ActiTest are a good diagnostic assessment for steatosis and necroinflammatory activity in patients with A-T and confirmed the TE results.
Collapse
Affiliation(s)
- H. Donath
- 1Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - S. Wölke
- 1Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - V. Knop
- 2Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - U. Heß
- 1Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - R. P. Duecker
- 1Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - J. Trischler
- 1Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - T. Poynard
- 3Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Hepatology Department, Frankfurt, Germany
| | - R. Schubert
- 1Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - S. Zielen
- 1Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
3
|
Di Carmine S, Scott MM, McLean MH, McSorley HJ. The role of interleukin-33 in organ fibrosis. DISCOVERY IMMUNOLOGY 2022; 1:kyac006. [PMID: 38566909 PMCID: PMC10917208 DOI: 10.1093/discim/kyac006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/06/2022] [Accepted: 09/22/2022] [Indexed: 04/04/2024]
Abstract
Interleukin (IL)-33 is highly expressed in the nucleus of cells present at barrier sites and signals via the ST2 receptor. IL-33 signalling via ST2 is essential for return to tissue homeostasis after acute inflammation, promoting fibrinogenesis and wound healing at injury sites. However, this wound-healing response becomes aberrant during chronic or sustained inflammation, leading to transforming growth factor beta (TGF-β) release, excessive extracellular matrix deposition, and fibrosis. This review addresses the role of the IL-33 pathway in fibrotic diseases of the lung, liver, gastrointestinal tract, skin, kidney and heart. In the lung and liver, IL-33 release leads to the activation of pro-fibrotic TGF-β, and in these sites, IL-33 has clear pro-fibrotic roles. In the gastrointestinal tract, skin, and kidney, the role of IL-33 is more complex, being both pro-fibrotic and tissue protective. Finally, in the heart, IL-33 serves cardioprotective functions by favouring tissue healing and preventing cardiomyocyte death. Altogether, this review indicates the presence of an unclear and delicate balance between resolving and pro-fibrotic capabilities of IL-33, which has a central role in the modulation of type 2 inflammation and fibrosis in response to tissue injury.
Collapse
Affiliation(s)
- Samuele Di Carmine
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, UK
| | - Molly M Scott
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Mairi H McLean
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, UK
| |
Collapse
|
4
|
Chen X, Zhu S, Chen SY, Wang JN, Sun LJ, Tao SM, Li XF, Li HD, Sun YY, Xu CH, Suo XG, Ji ML, Huang C, Meng XM, Li J. miR-301a-3p promotes hepatic stellate cells activation and liver fibrogenesis via regulating PTEN/PDGFR-β. Int Immunopharmacol 2022; 110:109034. [PMID: 35834952 DOI: 10.1016/j.intimp.2022.109034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 12/20/2022]
Abstract
Hepatic fibrosis is an essential pathology of multiple chronicliverdiseases. The aim of this study was to investigate the role of miR-301a-3p in hepatic fibrosis. We found that miR-301a-3p was upregulated in hepatic fibrosis patients and in culture-activated human hepatic stellate cells (HSCs). Interestingly, miR-301a-3p expression was increased in hepatic fibrosis progression mice while decreased in hepatic fibrosis recovery mice, indicating that miR-301a-3p may participate in the hepatic fibrosis pathology. Functionally, the effects of miR-301a-3p both on hepatic fibrosis progression and regression were assessed in vivo. Inhibiting miR-301a-3p amelioratedmouse liver fibrogenesis and collagen deposition and suppressed HSC activation and fibrogenic factor expression. Whereas, in hepatic fibrosis regression, upregulating miR-301a-3p impaired mouse hepatic fibrosis recovery by inducing HSC activation and triggering inflammation. Consistently, gain-of-function and loss-of-function analysis of miR-301a-3p were performed to evaluate its effects on human HSCs LX-2 cell. We found that suppressing miR-301a-3p inhibited LX-2 cell activation and proliferation, and induced LX-2 cell apoptosis, accompaniedby decreased fibrotic mediators expression. Collectively, these findings suggest miR-301a-3p drives liver fibrogenesis and HSC activation in hepatic fibrosis. Mechanistically, we demonstrated miR-301a-3p binds directly to phosphatase and tensin homolog (PTEN) by luciferase reporter analysis, pull-down, and RIP assay. Indicating that miR-301a-3p plays a critical rolein promotingliverfibrogenesis viamodulating the PTEN/platelet derived growth factor β (PDGFR-β) pathway. In conclusion, our findings demonstrate that miR-301a-3p expression is closely correlated with hepatic fibrosis pathology, and that enhancing miR-301a-3p maintains the HSC profibrogenic phenotype, triggers inflammatoryresponses, promotes fibrogenic factor production, and further exacerbates liver fibrogenesis. These findings suggest that miR-301a-3p may serve as a promising diagnostic and prognosis biomarker for hepatic fibrosis treatment.
Collapse
Affiliation(s)
- Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Si-Yu Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Li-Jiao Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Shan-Min Tao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Feng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Ying-Yin Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Chuan-Hui Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xiao-Guo Suo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Ming-Lu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
5
|
Mukherjee P, Fukuda S, Lukmanto D, Yamashita T, Okada K, Makita S, Abd El-Sadek I, Miyazawa A, Zhu L, Morishita R, Lichtenegger A, Oshika T, Yasuno Y. Label-free metabolic imaging of non-alcoholic-fatty-liver-disease (NAFLD) liver by volumetric dynamic optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:4071-4086. [PMID: 35991915 PMCID: PMC9352293 DOI: 10.1364/boe.461433] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 05/30/2023]
Abstract
Label-free metabolic imaging of non-alcoholic fatty liver disease (NAFLD) mouse liver is demonstrated ex vivo by dynamic optical coherence tomography (OCT). The NAFLD mouse is a methionine choline-deficient (MCD)-diet model, and two mice fed the MCD diet for 1 and 2 weeks are involved in addition to a normal-diet mouse. The dynamic OCT is based on repeating raster scan and logarithmic intensity variance (LIV) analysis that enables volumetric metabolic imaging with a standard-speed (50,000 A-lines/s) OCT system. Metabolic domains associated with lipid droplet accumulation and inflammation are clearly visualized three-dimensionally. Particularly, the normal-diet liver exhibits highly metabolic vessel-like structures of peri-vascular hepatic zones. The 1-week MCD-diet liver shows ring-shaped highly metabolic structures formed with lipid droplets. The 2-week MCD-diet liver exhibits fragmented vessel-like structures associated with inflammation. These results imply that volumetric LIV imaging is useful for visualizing and assessing NAFLD abnormalities.
Collapse
Affiliation(s)
- Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinichi Fukuda
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Advanced Vision Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Donny Lukmanto
- Department of Advanced Vision Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toshiharu Yamashita
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kosuke Okada
- Division of Medical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Physics, Faculty of Science, Damietta University, 34517 New Damietta City, Damietta, Egypt
| | | | - Lida Zhu
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rion Morishita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Antonia Lichtenegger
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Tetsuro Oshika
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Hasani Jusufi A, Trajkovska M, Popova-Jovanovska R, Calovska-Ivanova V, Ramadani A, Andreevski V. The Role and Significance of Non-invasive Methods, with a Particular Focus on Shear Wave Elastography in Hepatic Fibrosis Staging. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Shear Wave Elastography (SWE) represents a new, non-invasive method, used in the diagnosis of diffuse liver diseases. The method has been widely used instead of liver biopsy - an invasive procedure with potential major risk complications. Compared to liver biopsy, SWE provides an examination of larger areas of the liver, thus providing better staging of hepatic fibrosis.
30 patients were included in the study on basis of previous clinical, biochemical, and ultrasound findings indicating a presence of a chronic liver lesion. Patients were divided into three groups: 6 patients with steatosis, 13 patients with viral hepatitis, and 11 patients with liver cirrhosis. Liver damage biochemical markers, serum markers of liver fibrosis, and SWE were determined in all patients. Statistical analysis revealed a positive correlation between SWE results, and the values of biochemical markers of the hepatic lesion, as well as serum markers of liver fibrosis.
Collapse
|
7
|
Bae J, Kim JE, Perumalsamy H, Park S, Kim Y, Jun DW, Yoon TH. Mass Cytometry Study on Hepatic Fibrosis and Its Drug-Induced Recovery Using Mouse Peripheral Blood Mononuclear Cells. Front Immunol 2022; 13:814030. [PMID: 35222390 PMCID: PMC8863676 DOI: 10.3389/fimmu.2022.814030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/03/2022] [Indexed: 01/10/2023] Open
Abstract
The number of patients with liver diseases has increased significantly with the progress of global industrialization. Hepatic fibrosis, one of the most common liver diseases diagnosed in many developed countries, occurs in response to chronic liver injury and is primarily driven by the development of inflammation. Earlier immunological studies have been focused on the importance of the innate immune response in the pathophysiology of steatohepatitis and fibrosis, but recently, it has also been reported that adaptive immunity, particularly B cells, plays an essential role in hepatic inflammation and fibrosis. However, despite recent data showing the importance of adaptive immunity, relatively little is known about the role of B cells in the pathogenesis of steatohepatitis fibrosis. In this study, a single-cell-based, high-dimensional mass cytometric investigation of the peripheral blood mononuclear cells collected from mice belonging to three groups [normal chow (NC), thioacetamide (TAA), and 11beta-HSD inhibitor drug] was conducted to further understand the pathogenesis of liver fibrosis through reliable noninvasive biomarkers. Firstly, major immune cell types and their population changes were qualitatively analyzed using UMAP dimensionality reduction and two-dimensional visualization technique combined with a conventional manual gating strategy. The population of B cells displayed a twofold increase in the TAA group compared to that in the NC group, which was recovered slightly after treatment with the 11beta-HSD inhibitor drug. In contrast, the populations of NK cells, effector CD4+ T cells, and memory CD8+ T cells were significantly reduced in the TAA group compared with those in the NC group. Further identification and quantification of the major immune cell types and their subsets were conducted based on automated clustering approaches [PhenoGraph (PG) and FlowSOM]. The B-cell subset corresponding to PhenoGraph cluster PG#2 (CD62LhighCD44highLy6chigh B cells) and PG#3 (CD62LhighCD44highLy6clow B cell) appears to play a major role in both the development of hepatic fibrosis and recovery via treatment, whereas PG#1 (CD62LlowCD44highLy6clow B cell) seems to play a dominant role in the development of hepatic fibrosis. These findings provide insights into the roles of cellular subsets of B cells during the progression of, and recovery from, hepatic fibrosis.
Collapse
Affiliation(s)
- Jiwon Bae
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Ji Eun Kim
- Department of Internal Medicine, Hanyang University Hospital, Seoul, South Korea
| | - Haribalan Perumalsamy
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, South Korea
| | - Sehee Park
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Yun Kim
- Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul, South Korea.,Department of Clinical Pharmacology and Therapeutics, Hanyang University Hospital, Seoul, South Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University Hospital, Seoul, South Korea.,Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul, South Korea.,Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Convergence of Basic Science, Hanyang University, Seoul, South Korea.,Institute of Next Generation Material Design, Hanyang University, Seoul, South Korea.,Yoon Idea Lab. Co. Ltd, Seoul, South Korea
| |
Collapse
|
8
|
Friedman SL, Pinzani M. Hepatic fibrosis 2022: Unmet needs and a blueprint for the future. Hepatology 2022; 75:473-488. [PMID: 34923653 DOI: 10.1002/hep.32285] [Citation(s) in RCA: 205] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Steady progress over four decades toward understanding the pathogenesis and clinical consequences of hepatic fibrosis has led to the expectation of effective antifibrotic drugs, yet none has been approved. Thus, an assessment of the field is timely, to clarify priorities and accelerate progress. Here, we highlight the successes to date but, more importantly, identify gaps and unmet needs, both experimentally and clinically. These include the need to better define cell-cell interactions and etiology-specific elements of fibrogenesis and their link to disease-specific drivers of portal hypertension. Success in treating viral hepatitis has revealed the remarkable capacity of the liver to degrade scar in reversing fibrosis, yet we know little of the mechanisms underlying this response. Thus, there is an exigent need to clarify the cellular and molecular mechanisms of fibrosis regression in order for therapeutics to mimic the liver's endogenous capacity. Better refined and more predictive in vitro and animal models will hasten drug development. From a clinical perspective, current diagnostics are improving but not always biologically plausible or sufficiently accurate to supplant biopsy. More urgently, digital pathology methods that leverage machine learning and artificial intelligence must be validated in order to capture more prognostic information from liver biopsies and better quantify the response to therapies. For more refined treatment of NASH, orthogonal approaches that integrate genetic, clinical, and pathological data sets may yield treatments for specific subphenotypes of the disease. Collectively, these and other advances will strengthen and streamline clinical trials and better link histologic responses to clinical outcomes.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver DiseasesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Massimo Pinzani
- Institute for Liver and Digestive HealthUniversity College LondonLondonUK
| |
Collapse
|
9
|
Proteomic Analysis of Human Serum for Patients at Different Pathological Stages of Hepatic Fibrosis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3580090. [PMID: 34877354 PMCID: PMC8645358 DOI: 10.1155/2021/3580090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022]
Abstract
Background Hepatic fibrosis is a severe liver disease that has threatened human health for a long time. In order to undergo timely and adequate therapy, it is important for patients to obtain an accurate diagnosis of fibrosis. Laboratory inspection methods have been efficient in distinguishing between advanced hepatic fibrosis stages (F3, F4), but the identification of early stages of fibrosis has not been achieved. The development of proteomics may provide us with a new direction to identify the stages of fibrosis. Methods We established serum proteomic maps for patients with hepatic fibrosis at different stages and identified differential expression of proteins between fibrosis stages through ultra-high-performance liquid chromatography tandem mass spectrometry proteomic analysis. Results From the proteomic profiles of the serum of patients with different stages of liver fibrosis, a total of 1,338 proteins were identified. Among three early fibrosis stages (control, F1, and F2), 55 differential proteins were identified, but no proteins simultaneously exhibited differential expression between control, F1, and F2. Differential proteins were detected in the comparison between different fibrosis stages. Significant differences were found between advanced fibrosis stages (F2-vs.-F3 and F3-vs.-F4) through a series of statistical analysis, including hierarchical clustering, Gene Ontology (GO) functional annotation, Kyoto Encyclopedia of Genes and Genomes pathway, and protein-protein interaction network analysis. The differential proteins identified by GO annotation were associated with biological processes (mainly platelet degranulation and cell adhesion), molecular functions, and cellular components. Conclusions All potential biomarkers identified between the stages of fibrosis could be key points in determining the fibrosis staging. The differences between early stages may provide a useful reference in addressing the challenge of early fibrosis staging.
Collapse
|
10
|
Sulfatase-2 Regulates Liver Fibrosis through the TGF-β Signaling Pathway. Cancers (Basel) 2021; 13:cancers13215279. [PMID: 34771445 PMCID: PMC8582359 DOI: 10.3390/cancers13215279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/07/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023] Open
Abstract
Transforming growth factor-β (TGF-β) activates hepatic stellate cells (HSCs), which drive liver fibrosis via the production and deposition of extracellular matrix (ECM). We aimed to elucidate the mechanistic role of sulfatase-2 (SULF2) in liver fibrosis. To this end, we induced liver fibrosis in wild-type (WT) and SULF2 knockout (Sulf2-KO) mice (6-8 weeks-old) via bile duct ligation (BDL), intraperitoneal injection of carbon tetrachloride (CCl4) or thioacetamide (TAA). The levels of fibrosis in the liver sections were assessed via Sirius red and Masson's trichrome staining, immunohistochemistry and immunoblotting for α-smooth muscle actin (α-SMA) and hydroxyproline. To evaluate the interaction between TGF-β and SULF2, we transfected human HSCs with scrambled control shRNA and shRNA constructs targeting SULF2 and measured α-SMA expression following treatment with TGF-β1 ligand. We show here that knockout of SULF2 significantly decreases collagen content, as well as bands of bridging fibrosis, as demonstrated by Sirius red, Masson's trichrome and α-SMA staining after BDL, CCl4 and TAA injection in Sulf2-KO versus WT mice. In all three models of liver fibrosis, we observed significantly lower levels of hydroxyproline in the Sulf2-KO mice compared to the WT mice. HSCs with reduced levels of SULF2 failed to significantly express α-SMA and collagen type I following treatment with TGF-β1. Furthermore, SULF2 co-localizes with TGFBR3 and the in vitro knockdown of SULF2 in HSCs decreases the release of TGF-β1 from TGFBR3. Together, these data suggest that SULF2 regulates liver fibrosis via the TGF-β signaling pathway. Pharmacologic inhibition of SULF2 may represent a novel therapeutic approach to improve liver fibrosis.
Collapse
|
11
|
Abstract
Cirrhosis is the fifth leading cause of death in adults. Advanced cirrhosis can cause significant portal hypertension (PH), which is responsible for many of the complications observed in patients with cirrhosis, such as varices. If portal pressure exceeds a certain threshold, the patient is at risk of developing life-threatening bleeding from varices. Variceal bleeding has a high incidence among patients with liver cirrhosis and carries a high risk of mortality and morbidity. The management of variceal bleeding is complex, often requiring a multidisciplinary approach involving pharmacological, endoscopic, and radiologic interventions. In terms of management, three stages can be considered: primary prophylaxis, active bleeding, and secondary prophylaxis. The main goal of primary and secondary prophylaxis is to prevent variceal bleeding. However, active variceal bleeding is a medical emergency that requires swift intervention to stop the bleeding and achieve durable hemostasis. We describe the pathophysiology of cirrhosis and PH to contextualize the formation of gastric and esophageal varices. We also discuss the currently available treatments and compare how they fare in each stage of clinical management, with a special focus on drugs that can prevent bleeding or assist in achieving hemostasis.
Collapse
|
12
|
Yang YR, Bu FT, Yang Y, Li H, Huang C, Meng XM, Zhang L, Lv XW, Li J. LEFTY2 alleviates hepatic stellate cell activation and liver fibrosis by regulating the TGF-β1/Smad3 pathway. Mol Immunol 2020; 126:31-39. [PMID: 32745796 DOI: 10.1016/j.molimm.2020.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/23/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Activated hepatic stellate cells (HSCs) are the major cell type involved in the deposition of extracellular matrix (ECM) during the development of hepatic fibrosis. In this study, we revealed that left-right determination factor 2 (LEFTY2), one of the proteins belonging to the transforming growth factor-β (TGF-β) protein superfamily, was remarkedly decreased in human hepatic fibrosis tissues and in a carbon tetrachloride (CCl4)-induced liver fibrosis mouse model. In addition, TGF-β1 treatment markedly reduced the level of LEFTY2 in HSCs. Importantly, overexpression of LEFTY2 suppressed the activation and proliferation of HSCs. LEFTY2 inhibited the expression of TGF-β1-induced fibrosis-associated genes (α-SMA and COL1a1) in human (LX-2) and rat (HSC-T6) HSC cell lines in vitro. Mechanistically, we demonstrated, for the first time, the role of LEFTY2 in inhibiting TGF-β1/Smad3 signaling, suggesting that there is a mutual antagonism between LEFTY2 and TGF-β1/Smad3 signaling during liver fibrosis. Similarly, we observed that LEFTY2 has a negative effect on its downstream genes, including c-MYC, CDK4, and cyclin D1, in liver fibrosis. Collectively, our data strongly indicated that LEFTY2 plays an important role in controlling the proliferation and activation of HSCs in the progression of liver fibrosis and this could be a potential therapeutic target for its treatment.
Collapse
Affiliation(s)
- Ya-Ru Yang
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Clinical Pharmacology, Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China
| | - Fang-Tian Bu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yang Yang
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hao Li
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiong-Wen Lv
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
13
|
Chen X, Li HD, Bu FT, Li XF, Chen Y, Zhu S, Wang JN, Chen SY, Sun YY, Pan XY, Yin NN, Xu JJ, Huang C, Li J. Circular RNA circFBXW4 suppresses hepatic fibrosis via targeting the miR-18b-3p/FBXW7 axis. Theranostics 2020; 10:4851-4870. [PMID: 32308754 PMCID: PMC7163456 DOI: 10.7150/thno.42423] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Rationale: Circular RNAs (circRNAs) are a new form of noncoding RNAs that play crucial roles in various pathological processes. However, the expression profile and function of circRNAs in hepatic fibrosis (HF) remain largely unknown. In this study, we show a novel circFBXW4 mediates HF via targeting the miR-18b-3p/FBXW7 axis. Methods: We investigated the expression profile of circRNAs, microRNAs and mRNAs in hepatic stellate cells (HSCs) from HF progression and regression mice by circRNAs-seq and microarray analysis. We found a significantly dysregulated circFBXW4 in HF. Loss-of-function and gain-of-function analysis of circFBXW4 were performed to assess the role of circFBXW4 in HF. Furthermore, we confirmed that circFBXW4 directly binds to miR-18b-3p by luciferase reporter assay, RNA pull down and fluorescence in situ hybridization analysis. Results: We found that circFBXW4 downregulated in liver fibrogenesis. Enforcing the expression of circFBXW4 inhibited HSCs activation, proliferation and induced apoptosis, attenuated mouse liver fibrogenesis injury and showed anti-inflammation effect. Mechanistically, circFBXW4 directly targeted to miR-18b-3p to regulate the expression of FBXW7 in HF. Conclusions: circFBXW4 may act as a suppressor of HSCs activation and HF through the circFBXW4/miR-18b-3p/FBXW7 axis. Our findings identify that circFBXW4 serves as a potential biomarker for HF therapy.
Collapse
Affiliation(s)
- Xin Chen
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Hai-Di Li
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Fang-Tian Bu
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Xiao-Feng Li
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Yu Chen
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Sai Zhu
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Jia-Nan Wang
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Si-Yu Chen
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Ying-Yin Sun
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xue-Yin Pan
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Na-Na Yin
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Jie-Jie Xu
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
14
|
Neuman MG, Seitz HK, French SW, Malnick S, Tsukamoto H, Cohen LB, Hoffman P, Tabakoff B, Fasullo M, Nagy LE, Tuma PL, Schnabl B, Mueller S, Groebner JL, Barbara FA, Yue J, Nikko A, Alejandro M, Brittany T, Edward V, Harrall K, Saba L, Mihai O. Alcoholic-Hepatitis, Links to Brain and Microbiome: Mechanisms, Clinical and Experimental Research. Biomedicines 2020; 8:E63. [PMID: 32197424 PMCID: PMC7148515 DOI: 10.3390/biomedicines8030063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
The following review article presents clinical and experimental features of alcohol-induced liver disease (ALD). Basic aspects of alcohol metabolism leading to the development of liver hepatotoxicity are discussed. ALD includes fatty liver, acute alcoholic hepatitis with or without liver failure, alcoholic steatohepatitis (ASH) leading to fibrosis and cirrhosis, and hepatocellular cancer (HCC). ALD is fully attributable to alcohol consumption. However, only 10-20% of heavy drinkers (persons consuming more than 40 g of ethanol/day) develop clinical ALD. Moreover, there is a link between behaviour and environmental factors that determine the amount of alcohol misuse and their liver disease. The range of clinical presentation varies from reversible alcoholic hepatic steatosis to cirrhosis, hepatic failure, and hepatocellular carcinoma. We aimed to (1) describe the clinico-pathology of ALD, (2) examine the role of immune responses in the development of alcoholic hepatitis (ASH), (3) propose diagnostic markers of ASH, (4) analyze the experimental models of ALD, (5) study the role of alcohol in changing the microbiota, and (6) articulate how findings in the liver and/or intestine influence the brain (and/or vice versa) on ASH; (7) identify pathways in alcohol-induced organ damage and (8) to target new innovative experimental concepts modeling the experimental approaches. The present review includes evidence recognizing the key toxic role of alcohol in ALD severity. Cytochrome p450 CYP2E1 activation may change the severity of ASH. The microbiota is a key element in immune responses, being an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. Alcohol consumption changes the intestinal microbiota and influences liver steatosis and liver inflammation. Knowing how to exploit the microbiome to modulate the immune system might lead to a new form of personalized medicine in ALF and ASH.
Collapse
Affiliation(s)
- Manuela G. Neuman
- In Vitro Drug Safety and Biotechnology, Toronto, ON M5G 1L5, Canada;
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L5, Canada
| | - Helmut Karl Seitz
- Department of Medicine, Centre of Alcohol Research, University of Heidelberg, Salem Medical Centre, 337374 Heidelberg, Germany; (H.K.S.); (S.M.)
| | - Samuel W. French
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Stephen Malnick
- Department Internal Medicine C, Kaplan Medical Centre and Hebrew University of Jerusalem, Rehovot 76100, Israel;
| | - Heidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089-5311, USA;
- Department of Veterans; Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Lawrence B. Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON M4N 3M5, Canada;
| | - Paula Hoffman
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Boris Tabakoff
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Michael Fasullo
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12205, USA;
| | - Laura E. Nagy
- Departments of Pathobiology and Gastroenterology, Center for Liver Disease Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Pamela L. Tuma
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (P.L.T.); (J.L.G.)
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Sebastian Mueller
- Department of Medicine, Centre of Alcohol Research, University of Heidelberg, Salem Medical Centre, 337374 Heidelberg, Germany; (H.K.S.); (S.M.)
| | - Jennifer L. Groebner
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (P.L.T.); (J.L.G.)
| | - French A. Barbara
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Jia Yue
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Afifiyan Nikko
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Mendoza Alejandro
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Tillman Brittany
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Vitocruz Edward
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Kylie Harrall
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Laura Saba
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Opris Mihai
- In Vitro Drug Safety and Biotechnology, Toronto, ON M5G 1L5, Canada;
- Department Family Medicine Clinic CAR, 010164 Bucharest, Romania
| |
Collapse
|
15
|
Roach KM, Bradding P. Ca 2+ signalling in fibroblasts and the therapeutic potential of K Ca3.1 channel blockers in fibrotic diseases. Br J Pharmacol 2020; 177:1003-1024. [PMID: 31758702 DOI: 10.1111/bph.14939] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
The role of Ca2+ signalling in fibroblasts is of great interest in fibrosis-related diseases. Intracellular free Ca2+ ([Ca2+ ]i ) is a ubiquitous secondary messenger, regulating a number of cellular functions such as secretion, metabolism, differentiation, proliferation and contraction. The intermediate conductance Ca2+ -activated K+ channel KCa 3.1 is pivotal in Ca2+ signalling and plays a central role in fibroblast processes including cell activation, migration and proliferation through the regulation of cell membrane potential. Evidence from a number of approaches demonstrates that KCa 3.1 plays an important role in the development of many fibrotic diseases, including idiopathic pulmonary, renal tubulointerstitial fibrosis and cardiovascular disease. The KCa 3.1 selective blocker senicapoc was well tolerated in clinical trials for sickle cell disease, raising the possibility of rapid translation to the clinic for people suffering from pathological fibrosis. This review after analysing all the data, concludes that targeting KCa 3.1 should be a high priority for human fibrotic disease.
Collapse
Affiliation(s)
- Katy M Roach
- Institute for Lung Health, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Peter Bradding
- Institute for Lung Health, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
16
|
Pan XY, Yang Y, Meng HW, Li HD, Chen X, Huang HM, Bu FT, Yu HX, Wang Q, Huang C, Meng XM, Li J. DNA Methylation of PTGIS Enhances Hepatic Stellate Cells Activation and Liver Fibrogenesis. Front Pharmacol 2018; 9:553. [PMID: 29892223 PMCID: PMC5985735 DOI: 10.3389/fphar.2018.00553] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022] Open
Abstract
The activation of hepatic stellate cells (HSCs) is a central event in the progression of liver fibrosis. Multiple studies proved that DNA methylation might accelerate HSCs activation. However, the specific pathogenesis of liver fibrosis remains not fully addressed. Our laboratory performed Genome methylation screening to find out the methylated gene in mice with liver fibrosis. The pilot experiments showed that the promoter of prostacyclin synthase (PTGIS) gene was hypermethylated in CCl4-induced liver fibrosis mouse model. Moreover, the down-regulated PTGIS expression can be restored by DNMTs-RNAi and 5-aza-2-deoxycytidine (5-azadC), an inhibitor of DNA methyltransferase (DNMTs). Methylation-specific PCR (MSP) showed that the methylation status of PTGIS in HSC-T6 cells cultures with TGF-β1 (10 ng/mL) was elevated compared with control group. Chromatin immunoprecipitation (ChIP) assay indicated that PTGIS methylation was mainly induced by DNMT1 and DNMT3b. We further investigated the function of PTGIS in liver fibrosis by Recombinant Hepatic-adeno-associated virus (rAAV8)-PTGIS overexpression. The data indicated that overexpression of PTGIS in mouse liver accompanied by elevated apoptosis-related proteins expression in primary HSCs. Conversely, PTGIS silencing mediated by RNAi enhanced the expression of α-SMA and COL1a1 in vitro. Those results illustrated that adding PTGIS expression inhibits the activation of HSCs and alleviates liver fibrosis. Therefore, our study unveils the role of PTGIS in HSCs activation, which may provide a possible explanation for CCl4-mediated liver fibrosis.
Collapse
Affiliation(s)
- Xue-Yin Pan
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory of Immune Medicine, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yang Yang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory of Immune Medicine, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hong-Wu Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory of Immune Medicine, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hai-di Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory of Immune Medicine, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xin Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory of Immune Medicine, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hui-Min Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory of Immune Medicine, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Fang-Tian Bu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory of Immune Medicine, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hai-Xia Yu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory of Immune Medicine, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Qin Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory of Immune Medicine, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory of Immune Medicine, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory of Immune Medicine, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory of Immune Medicine, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Sood V, Lal BB, Rastogi A, Khanna R, Rawat D, Alam S. Regression of fibrosis in pediatric liver diseases. Indian J Gastroenterol 2018; 37:266-270. [PMID: 29744756 DOI: 10.1007/s12664-018-0847-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/25/2018] [Indexed: 02/04/2023]
Abstract
The concept of irreversibility of cirrhosis has been challenged in the recent past with literature in this regard, albeit still scarce, now being accumulated across all age groups, etiologies, and geographical regions. This small series of nine pediatric cases elegantly recapitulates the concept of regression of hepatic fibrosis/cirrhosis and paves way for further detailed studies to enable development of therapeutic anti-fibrotic modalities in future.
Collapse
Affiliation(s)
- Vikrant Sood
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, 110 070, India.
| | - Bikrant Bihari Lal
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, 110 070, India
| | - Archana Rastogi
- Department of Pathology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, 110 070, India
| | - Rajeev Khanna
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, 110 070, India
| | - Dinesh Rawat
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, 110 070, India
| | - Seema Alam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, 110 070, India
| |
Collapse
|
18
|
Abdulkhaleq LA, Assi MA, Abdullah R, Zamri-Saad M, Taufiq-Yap YH, Hezmee MNM. The crucial roles of inflammatory mediators in inflammation: A review. Vet World 2018; 11:627-635. [PMID: 29915501 PMCID: PMC5993766 DOI: 10.14202/vetworld.2018.627-635] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
The inflammatory response is a crucial aspect of the tissues' responses to deleterious inflammogens. This complex response involves leukocytes cells such as macrophages, neutrophils, and lymphocytes, also known as inflammatory cells. In response to the inflammatory process, these cells release specialized substances which include vasoactive amines and peptides, eicosanoids, proinflammatory cytokines, and acute-phase proteins, which mediate the inflammatory process by preventing further tissue damage and ultimately resulting in healing and restoration of tissue function. This review discusses the role of the inflammatory cells as well as their by-products in the mediation of inflammatory process. A brief insight into the role of natural anti-inflammatory agents is also discussed. The significance of this study is to explore further and understand the potential mechanism of inflammatory processes to take full advantage of vast and advanced anti-inflammatory therapies. This review aimed to reemphasize the importance on the knowledge of inflammatory processes with the addition of newest and current issues pertaining to this phenomenon.
Collapse
Affiliation(s)
- L. A. Abdulkhaleq
- Department of Pathology and Poultry Diseases, Faculty of Veterinary Medicine, Baghdad University, Baghdad, Iraq
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| | - M. A. Assi
- Department of Community Health, College of Health and Medical Techniques, Al-Furat Al-Awsat Technical University, Iraq
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| | - Rasedee Abdullah
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| | - M. Zamri-Saad
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| | - Y. H. Taufiq-Yap
- Department of Chemistry, Faculty of Sains, Universiti Putra Malaysia, Malaysia
| | - M. N. M. Hezmee
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| |
Collapse
|
19
|
Bu FT, Chen Y, Yu HX, Chen X, Yang Y, Pan XY, Wang Q, Wu YT, Huang C, Meng XM, Li J. SENP2 alleviates CCl 4-induced liver fibrosis by promoting activated hepatic stellate cell apoptosis and reversion. Toxicol Lett 2018. [PMID: 29535048 DOI: 10.1016/j.toxlet.2018.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SUMOylation and deSUMOylation, a dynamic process, is proved to be involved in various fibrotic diseases. Here, we found SENP2, one of deSUMOylation protease family member, was decreased in CCl4-induced mice fibrotic liver tissues, primary HSCs and restored after spontaneously recovery. In addition, HSC-T6 cells with TGF-β1 treatment resulted in a significant reduction of SENP2. Ectopic expression of SENP2 hindered cells activation and proliferation induced by TGF-β1 while knockdown of SENP2 showed an opposite effect. Importantly, SENP2 promoted apoptosis of HSC-T6 cells activated by TGF-β1. Furthermore, restoration of SENP2 was observed in inactivated HSCs after adipogenic differentiation mixture (MDI) treatment. Inadequate SENP2 inhibited the reversion of HSC-T6 cells, featured as aberrant expressions of α-SMA and col1a1, two markers of liver fibrosis. It has been reported SENP2 was a suppressant regulator of Wnt/β-catenin signal pathway. Similarly, we found SENP2 has a negative effect on β-catenin as well as its downstream genes C-myc and CyclinD1 in liver fibrosis. Collectively, our data indicated SENP2 may be involved in HSCs apoptosis and reversion in liver fibrosis.
Collapse
Affiliation(s)
- Fang-Tian Bu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yu Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hai-Xia Yu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xin Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yang Yang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xue-Yin Pan
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Qin Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yu-Ting Wu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China.
| |
Collapse
|
20
|
Koppula S, Yum MJ, Kim JS, Shin GM, Chae YJ, Yoon T, Chun CS, Lee JD, Song M. Anti-fibrotic effects of Orostachys japonicus A. Berger (Crassulaceae) on hepatic stellate cells and thioacetamide-induced fibrosis in rats. Nutr Res Pract 2017; 11:470-478. [PMID: 29209457 PMCID: PMC5712497 DOI: 10.4162/nrp.2017.11.6.470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/10/2017] [Accepted: 07/31/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND/OBJECTIVE Orostachys japonicus A. Berger (Crassulaceae) has been used in traditional herbal medicines in Korea and other Asian countries to treat various diseases, including liver disorders. In the present study, the anti-fibrotic effects of O. japonicus extract (OJE) in cellular and experimental hepatofibrotic rat models were investigated. MATERIALS/METHODS An in vitro hepatic stellate cells (HSCs) system was used to estimate cell viability, cell cycle and apoptosis by MTT assay, flow cytometry, and Annexin V-FITC/PI staining techniques, respectively. In addition, thioacetamide (TAA)-induced liver fibrosis was established in Sprague Dawley rats. Briefly, animals were divided into five groups (n = 8): Control, TAA, OJE 10 (TAA with OJE 10 mg/kg), OJE 100 (TAA with OJE 100 mg/kg) and silymarin (TAA with Silymarin 50 mg/kg). Fibrosis was induced by treatment with TAA (200 mg/kg, i.p.) twice per week for 13 weeks, while OJE and silymarin were administered orally two times per week from week 7 to 13. The fibrotic related gene expression serum biomarkers glutathione and hydroxyproline were estimated by RT-PCR and spectrophotometry, respectively, using commercial kits. RESULTS OJE (0.5 and 0.1 mg/mL) and silymarin (0.05 mg/mL) treatment significantly (P < 0.01 and P < 0.001) induced apoptosis (16.95% and 27.48% for OJE and 25.87% for silymarin, respectively) in HSC-T6 cells when compared with the control group (9.09%). Further, rat primary HSCs showed changes in morphology in response to OJE 0.1 mg/mL treatment. In in vivo studies, OJE (10 and 100 mg/kg) treatment significantly ameliorated TAA-induced alterations in levels of serum biomarkers, fibrotic related gene expression, glutathione, and hydroxyproline (P < 0.05-P < 0.001) and rescued the histopathological changes. CONCLUSIONS OJE can be developed as a potential agent for the treatment of hepatofibrosis.
Collapse
Affiliation(s)
- Sushruta Koppula
- Department of Biotechnology, College of Biomedical and Health Sciences, Konkuk University, 268 Chungwon-daero, Chungju-si, Chungbuk 27478, Korea
| | - Mun-Jeong Yum
- Department of Applied Life Science, Graduate School of Konkuk University, 268 Chungwon-daero, Chungju-si, Chungbuk 27478, Korea
- R&D center, Korean Drug Co., Ltd., Seoul 06300, Korea
| | - Jin-Seoub Kim
- Department of Applied Life Science, Graduate School of Konkuk University, 268 Chungwon-daero, Chungju-si, Chungbuk 27478, Korea
| | - Gwang-Mo Shin
- Department of Applied Life Science, Graduate School of Konkuk University, 268 Chungwon-daero, Chungju-si, Chungbuk 27478, Korea
| | - Yun-Jin Chae
- Department of Biotechnology, College of Biomedical and Health Sciences, Konkuk University, 268 Chungwon-daero, Chungju-si, Chungbuk 27478, Korea
| | - Tony Yoon
- Food One Corp., 260 Sincheoksandan 5-ro, Deoksan-myeon, Jincheon-gun, Chungbuk 27850, Korea
| | - Chi-Su Chun
- Food One Corp., 260 Sincheoksandan 5-ro, Deoksan-myeon, Jincheon-gun, Chungbuk 27850, Korea
| | - Jae-Dong Lee
- Department of Internal Medicine, School of Medicine, Konkuk University, Chungju, Chungbuk 27376, Korea
| | - MinDong Song
- Department of Biotechnology, College of Biomedical and Health Sciences, Konkuk University, 268 Chungwon-daero, Chungju-si, Chungbuk 27478, Korea
- Department of Applied Life Science, Graduate School of Konkuk University, 268 Chungwon-daero, Chungju-si, Chungbuk 27478, Korea
| |
Collapse
|
21
|
Kim JS, Koppula S, Yum MJ, Shin GM, Chae YJ, Hong SM, Lee JD, Song M. Anti-fibrotic effects of Cuscuta chinensis with in vitro hepatic stellate cells and a thioacetamide-induced experimental rat model. PHARMACEUTICAL BIOLOGY 2017; 55. [PMID: 28651481 PMCID: PMC6130704 DOI: 10.1080/13880209.2017.1340965] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
CONTEXT Cuscuta chinensis Lam. (Convolvulaceae) has been used as a traditional herbal remedy for treating liver and kidney disorders. OBJECTIVE Anti-fibrotic effects of C. chinensis extract (CCE) in cellular and experimental animal models were investigated. MATERIALS AND METHODS HSC-T6 cell viability, cell cycle and apoptosis were analysed using MTT assay, flow cytometry and Annexin V-FITC/PI staining techniques. Thioacetamide (TAA)-induced fibrosis model was established using Sprague Dawley rats (n = 10). Control, TAA, CCE 10 (TAA with CCE 10 mg/kg), CCE 100 (TAA with CCE 100 mg/kg) and silymarin (TAA with silymarin 50 mg/kg). Fibrosis was induced by TAA (200 mg/kg, i.p.) twice per week for 13 weeks. CCE and silymarin were administered orally two times per week from the 7th to 13th week. Fibrotic related gene expression (α-SMA, Col1α1 and TGF-β1) was measured by RT-PCR. Serum biomarkers, glutathione (GSH) and hydroxyproline were estimated by spectrophotometer using commercial kits. RESULTS CCE (0.05 and 0.1 mg/mL) and silymarin (0.05 mg/mL) treatment significantly (p < 0.01 and p < 0.001) induced apoptosis (11.56%, 17.52% for CCE; 16.50% for silymarin, respectively) in activated HSC-T6 cells, compared with control group (7.26%). Further, rat primary HSCs showed changes in morphology with CCE 0.1 mg/mL treatment. In in vivo studies, CCE (10 and 100 mg/kg) treatment ameliorated the TAA-induced altered levels of serum biomarkers, fibrotic related gene expression, GSH, hydroxyproline significantly (p < 0.05-0.001) and rescued the histopathological changes. CONCLUSIONS CCE can be developed as a potential agent in the treatment of hepatofibrosis.
Collapse
Affiliation(s)
- Jin Seoub Kim
- Department of Applied Life Science, Graduate School of Konkuk University, Chungju-si, South Korea
- Department of Infectious Disease, Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sushruta Koppula
- Department of Applied Life Science, Graduate School of Konkuk University, Chungju-si, South Korea
- Department of Biotechnology, College of Biomedical and Health Sciences, Konkuk University, Chungju-si, South Korea
| | - Mun Jeong Yum
- Department of Applied Life Science, Graduate School of Konkuk University, Chungju-si, South Korea
- R&D Center Korean Drug Co., Ltd, Seoul, South Korea
| | - Gwang Mo Shin
- Department of Applied Life Science, Graduate School of Konkuk University, Chungju-si, South Korea
| | - Yun Jin Chae
- Department of Applied Life Science, Graduate School of Konkuk University, Chungju-si, South Korea
| | | | - Jae Dong Lee
- Department of Internal Medicine, School of Medicine, Konkuk University, Chungju-si, South Korea
| | - MinDong Song
- Department of Applied Life Science, Graduate School of Konkuk University, Chungju-si, South Korea
- Department of Biotechnology, College of Biomedical and Health Sciences, Konkuk University, Chungju-si, South Korea
- CONTACT MinDong SongDepartment of Applied Life Science, Graduate School of Konkuk University, Chungju-si, South Korea
| |
Collapse
|
22
|
Yum MJ, Koppula S, Kim JS, Shin GM, Chae YJ, Yoon T, Chun CS, Lee JD, Song M. Protective effects of Ampelopsis brevipedunculata against in vitro hepatic stellate cells system and thioacetamide-induced liver fibrosis rat model. PHARMACEUTICAL BIOLOGY 2017; 55:1577-1585. [PMID: 28395572 PMCID: PMC6130492 DOI: 10.1080/13880209.2017.1311928] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Ampelopsis brevipedunculata Maxim (Vitaceae) is a traditional medicinal herb used for treating liver disorders. OBJECTIVE The hepatoprotective effects of A. brevipedunculata ethanol extract (ABE) was investigated in experimental models of fibrosis. MATERIALS AND METHODS Hepatic stellate cells (HSCs) system in vitro and thioacetamide (TAA)-induced liver fibrosis rat model in vivo were used. Sprague-Dawley rats were divided into five groups of eight each (control, TAA, TAA with ABE 10 mg/kg, ABE 100 mg/kg and silymarin 50 mg/kg groups, respectively). Fibrosis was induced except to the control group by TAA (200 mg/kg, i.p.) twice per week for 13 weeks. ABE and silymarin was administered orally six times per week from the 7th week to the 13th week. RESULTS In HSC-T6 cells, ABE (0.1 mg/mL) and silymarin (0.05 mg/mL) significantly (p < 0.01) induced apoptosis (12.94 ± 5.72% and 14.9 ± 3.8%, respectively) compared with control group (7.51 ± 1.26%). The expression of fibrosis related genes (TGF-β, α-SMA and Col1A1) in HSC-T6 cells were significantly (p < 0.01) downregulated in ABE-treated groups compared with control group. In in vivo studies, ABE (10 and 100 mg/kg) treatment ameliorated the altered levels of serum biomarkers significantly (p < 0.01 and p < 0.001) in TAA-induced groups. Further, ABE (10 and 100 mg/kg) significantly (p < 0.01) attenuated the altered histopathological findings, glutathione content and the accumulation of hydroxyproline. CONCLUSION These results collectively indicate that ABE can potentially be developed as a therapeutic agent in the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Mun Jeong Yum
- Department of Applied Life Science, Graduate School of Konkuk University, Chungju-si, Chungcheongbuk-do, South Korea
- R&D center Korean Drug Co., Ltd, Seoul, South Korea
| | - Sushruta Koppula
- Department of Applied Life Science, Graduate School of Konkuk University, Chungju-si, Chungcheongbuk-do, South Korea
- Department of Biotechnology, College of Biomedical and Health Sciences, Konkuk University, Chungju-si, Chungcheongbuk-do, South Korea
| | - Jin Seoub Kim
- Department of Applied Life Science, Graduate School of Konkuk University, Chungju-si, Chungcheongbuk-do, South Korea
| | - Gwang Mo Shin
- Department of Applied Life Science, Graduate School of Konkuk University, Chungju-si, Chungcheongbuk-do, South Korea
| | - Yun Jin Chae
- Department of Biotechnology, College of Biomedical and Health Sciences, Konkuk University, Chungju-si, Chungcheongbuk-do, South Korea
| | - Tony Yoon
- Food One Corp, Deoksan-myeon Jincheon-gun, Chungcheongbuk-do, Korea
| | - Chi Su Chun
- Food One Corp, Deoksan-myeon Jincheon-gun, Chungcheongbuk-do, Korea
| | - Jae Dong Lee
- Department of Internal medicine, School of Medicine, Konkuk University, Chungju, Chungbuk, South Korea
| | - MinDong Song
- Department of Applied Life Science, Graduate School of Konkuk University, Chungju-si, Chungcheongbuk-do, South Korea
- Department of Biotechnology, College of Biomedical and Health Sciences, Konkuk University, Chungju-si, Chungcheongbuk-do, South Korea
| |
Collapse
|
23
|
吴 兰, 刘 文. 肝纤维化逆转机制的研究进展及治疗概况. Shijie Huaren Xiaohua Zazhi 2017; 25:2123-2132. [DOI: 10.11569/wcjd.v25.i23.2123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
肝纤维化是肝脏对慢性损伤的一种修复反应, 多是持续性肝脏损伤或纤维化刺激因子刺激产生的共有病理改变, 是一项严重的全球性健康难题. 近年来临床研究发现, 由病毒性肝炎造成肝纤维化或肝硬化的患者, 在成功接受病毒性肝炎治疗后, 其肝纤维化甚至肝硬化发生了逆转现象. 因此研究和了解肝纤维化逆转的机制有利于发现新的针对肝纤维化的治疗靶向. 本文就近年来有关肝纤维化逆转机制的研究以及治疗概况作一综述, 以期为肝纤维化的研究提供帮助.
Collapse
|
24
|
Wu Y, Bu F, Yu H, Li W, Huang C, Meng X, Zhang L, Ma T, Li J. Methylation of Septin9 mediated by DNMT3a enhances hepatic stellate cells activation and liver fibrogenesis. Toxicol Appl Pharmacol 2016; 315:35-49. [PMID: 27939986 DOI: 10.1016/j.taap.2016.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 02/06/2023]
Abstract
Liver fibrosis, resulting from chronic and persistent injury to the liver, is a worldwide health problem. Advanced liver fibrosis results in cirrhosis, liver failure and even hepatocellular cancer (HCC), often eventually requiring liver transplantation, poses a huge health burden on the global community. However, the specific pathogenesis of liver fibrosis remains not fully understood. Numerous basic and clinical studies have provided evidence that epigenetic modifications, especially DNA methylation, might contribute to the activation of hepatic stellate cells (HSCs), the pivotal cell type responsible for the fibrous scar in liver. Here, reduced representation bisulfite sequencing (RRBS) and bisulfite pyrosequencing PCR (BSP) analysis identified hypermethylation status of Septin9 (Sept9) gene in liver fibrogenesis. Sept9 protein was dramatically decreased in livers of CCl4-treated mice and immortalized HSC-T6 cells exposed to TGF-β1. Nevertheless, the suppression of Sept9 could be blocked by DNMT3a-siRNA and DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-azadC). Overexpressed Sept9 attenuated TGF-β1-induced expression of myofibroblast markers α-SMA and Col1a1, accompanied by up-regulation of cell apoptosis-related proteins. Conversely, RNAi-mediated silencing of Sept9 enhanced accumulation of extracellular matrix. These observations suggested that Sept9 contributed to alleviate liver fibrosis might partially through promoting activated HSCs apoptosis and this anti-fibrogenesis effect might be blocked by DNMT-3a mediated methylation of Sept9. Therefore, pharmacological agents that inhibit Sept9 methylation and increase its expression could be considered as valuable treatments for liver fibrosis.
Collapse
Affiliation(s)
- Yuting Wu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China.
| | - Fangtian Bu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Haixia Yu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Wanxia Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Xiaoming Meng
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Lei Zhang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Taotao Ma
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
25
|
Chen PJ, Cai SP, Yang Y, Li WX, Huang C, Meng XM, Li J. PTP1B confers liver fibrosis by regulating the activation of hepatic stellate cells. Toxicol Appl Pharmacol 2016; 292:8-18. [DOI: 10.1016/j.taap.2015.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 01/21/2023]
|
26
|
Darwish SF, El-Bakly WM, El-Naga RN, Awad AS, El-Demerdash E. Antifibrotic mechanism of deferoxamine in concanavalin A induced-liver fibrosis: Impact on interferon therapy. Biochem Pharmacol 2015; 98:231-42. [PMID: 26358138 DOI: 10.1016/j.bcp.2015.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/02/2015] [Indexed: 02/07/2023]
Abstract
Iron-overload is a well-known factor of hepatotoxicity and liver fibrosis, which found to be a common finding among hepatitis C virus patients and related to interferon resistance. We aimed to elucidate the potential antifibrotic effect of deferoxamine; the main iron chelator, and its additional usefulness to interferon-based therapy in concanavalin A-induced immunological model of liver fibrosis. Rats were treated with deferoxamine and/or pegylated interferon-α for 6 weeks. Hepatotoxicity indices, oxidative stress, inflammatory and liver fibrosis markers were assessed. Concanavalin A induced a significant increase in hepatotoxicity indices and lipid peroxidation accompanied with a significant depletion of total antioxidant capacity, glutathione level and superoxide dismutase activity. Besides, it increased CD4(+) T-cells content and the downstream inflammatory cascades, including NF-κB, TNF-α, iNOS, COX-2, IL-6 and IFN-γ. Furthermore, α-SMA, TGF-β1 and hydroxyproline were increased markedly, which confirmed by histopathology. Treatment with either deferoxamine or pegylated interferon-α alone reduced liver fibrosis markers significantly and improved liver histology. However, some of the hepatotoxicity indices and oxidative stress markers did not improve upon pegylated interferon-α treatment alone, besides the remarkable increase in IL-6. Combination therapy of deferoxamine with pegylated interferon-α further improved all previous markers, ameliorated IL-6 elevation, as well as increased hepcidin expression. In conclusion, our study provides evidences for the potent antifibrotic effects of deferoxamine and the underlying mechanisms that involved attenuating oxidative stress and subsequent inflammatory cascade, as well as the production of profibrogenic factors. Addition of deferoxamine to interferon regimen for HCV patients may offer a promising adjuvant modality to enhance therapeutic response.
Collapse
Affiliation(s)
- Samar F Darwish
- Central Administration of Pharmaceutical Affairs, Cairo, Egypt
| | - Wesam M El-Bakly
- Pharmacology & Therapeutic Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reem N El-Naga
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Azza S Awad
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
27
|
|
28
|
Abstract
Hepatic stellate cells are resident perisinusoidal cells distributed throughout the liver, with a remarkable range of functions in normal and injured liver. Derived embryologically from septum transversum mesenchyme, their precursors include submesothelial cells that invade the liver parenchyma from the hepatic capsule. In normal adult liver, their most characteristic feature is the presence of cytoplasmic perinuclear droplets that are laden with retinyl (vitamin A) esters. Normal stellate cells display several patterns of intermediate filaments expression (e.g., desmin, vimentin, and/or glial fibrillary acidic protein) suggesting that there are subpopulations within this parental cell type. In the normal liver, stellate cells participate in retinoid storage, vasoregulation through endothelial cell interactions, extracellular matrix homeostasis, drug detoxification, immunotolerance, and possibly the preservation of hepatocyte mass through secretion of mitogens including hepatocyte growth factor. During liver injury, stellate cells activate into alpha smooth muscle actin-expressing contractile myofibroblasts, which contribute to vascular distortion and increased vascular resistance, thereby promoting portal hypertension. Other features of stellate cell activation include mitogen-mediated proliferation, increased fibrogenesis driven by connective tissue growth factor, and transforming growth factor beta 1, amplified inflammation and immunoregulation, and altered matrix degradation. Evolving areas of interest in stellate cell biology seek to understand mechanisms of their clearance during fibrosis resolution by either apoptosis, senescence, or reversion, and their contribution to hepatic stem cell amplification, regeneration, and hepatocellular cancer.
Collapse
Affiliation(s)
- Juan E Puche
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, New York
| | | | | |
Collapse
|
29
|
LI XIA, HE CAN, WU WANGYANG, HUANG HUAN, LI WEIZU, YIN YANYAN. Anti-fibrotic effects of Acremoniumterricola milleretal mycelium on immunological hepatic fibrosis in rats. Mol Med Rep 2014; 10:3327-33. [DOI: 10.3892/mmr.2014.2604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 07/23/2014] [Indexed: 11/05/2022] Open
|
30
|
Chilakamarthi U, Kandhadi J, Gunda S, Thatipalli AR, Kumar Jerald M, Lingamallu G, Reddy RC, Chaudhuri A, Pande G. Synthesis and functional characterization of a fluorescent peptide probe for non invasive imaging of collagen in live tissues. Exp Cell Res 2014; 327:91-101. [PMID: 24907653 DOI: 10.1016/j.yexcr.2014.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 05/05/2014] [Accepted: 05/10/2014] [Indexed: 11/18/2022]
Abstract
Targeted molecular imaging to detect changes in the structural and functional organization of tissues, at the molecular level, is a promising approach for effective and early diagnosis of diseases. Quantitative and qualitative changes in type I collagen, which is a major component in the extra cellular matrix (ECM) of skin and other vital organs like lung, liver, heart and kidneys, are often associated with the pathophysiology of these organs. We have synthesized a fluorescent probe that comprises collagelin, a specific collagen binding peptide, coupled to fluorescent porphyrin that can effectively detect abnormal deposition of collagen in live tissues by emitting fluorescence in the near infra red (NIR) region. In this report we have presented the methodology for coupling of 5-(4-carboxy phenyl)-10, 15, 20-triphenyl porphyrin (C-TPP) to the N-terminal of collagelin or to another mutant peptide (used as a control). We have evaluated the efficacy of these fluorescent peptides to detect collagen deposition in live normal and abnormal tissues. Our results strongly suggest that porphyrin-tagged collagelin can be used as an effective probe for the non invasive in vivo detection of tissue fibrosis, especially in the liver.
Collapse
Affiliation(s)
| | - Jaipal Kandhadi
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Srinivas Gunda
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | | - Mahesh Kumar Jerald
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Giribabu Lingamallu
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Rakesh C Reddy
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Arabinda Chaudhuri
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Gopal Pande
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
31
|
Mak KM, Chen LL, Lee TF. Codistribution of collagen type IV and laminin in liver fibrosis of elderly cadavers: immunohistochemical marker of perisinusoidal basement membrane formation. Anat Rec (Hoboken) 2013; 296:953-64. [PMID: 23596149 DOI: 10.1002/ar.22694] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 02/23/2013] [Indexed: 12/20/2022]
Abstract
Liver sinusoids are lined by a fenestrated endothelium that lacks a basement membrane. Formation of perisinusoidal basement membranes beneath the endothelium is an integral feature of capillarization of sinusoids that is a significant pathology found in advanced fibrosis. Liver fibrosis is prevalent in elderly cadavers; however, basement membrane formation in these liver samples has yet to be studied. Collagen type IV and laminin are major basement membrane proteins and their codistribution around sinusoids provides an immunohistochemical marker of basement membrane formation. Here, we examined the intralobular sites of perisinusoidal basement membrane formation in elderly cadaveric livers having various stages of fibrosis. Collagen IV and laminin codistributed in basement membranes of portal and septal ductular and vascular structures, providing a positive control. In the parenchyma, collagen IV immunostaining of sinusoids was panlobular in all stages of fibrosis, and the stain was continuous along the sinusoids. In contrast, laminin was not detected in livers, showing minimal fibrotic change. It was rarely seen in perisinusoidal/pericellular fibrosis, but frequently in septa formation, bridging fibrosis, and cirrhosis. The laminin stain was patchy, occurring principally in sinusoids of periportal and periseptal areas, less commonly in mid-lobular and rarely in centrilobular areas. Consecutive sections revealed that laminin codistributed with collagen IV in these sinusoidal locations, thus marking the sites of perisinusoidal basement membrane formation in aged fibrotic livers. This development is presumably related to aging of the liver and exacerbated by liver injury caused by advanced liver fibrosis, possibly resulting in sinusoidal capillarization.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education, Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | | | | |
Collapse
|
32
|
Srichairatanakool S, Pangjit K, Phisalaphong C, Fucharoen S. Evaluation of a novel oral iron chelator 1-(N-acetyl-6-aminohexyl)-3-hydroxypyridin-4-one (CM1) for treatment of iron overload in mice. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.42023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Vidal-Vanaclocha F. Architectural and Functional Aspects of the Liver with Implications for Cancer Metastasis. LIVER METASTASIS: BIOLOGY AND CLINICAL MANAGEMENT 2011. [DOI: 10.1007/978-94-007-0292-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Abstract
UNLABELLED Portal fibroblasts are an important yet often overlooked nonparenchymal cell population in the liver. They are distinct from hepatic stellate cells, yet like stellate cells differentiate in the setting of chronic injury to fibrogenic myofibroblasts, playing an important role in collagen production in the fibrotic liver. Portal fibroblasts (PFs) are located adjacent to bile duct epithelia and thus play a particularly significant role in biliary fibrosis. New data suggest that they may also have key functions independent of fibrogenesis. This review addresses the definition and characteristics of PFs as well as their signaling pathways, interactions with the biliary epithelium, and contributions to liver pathobiology. CONCLUSION PFs are an important and multifunctional nonparenchymal cell population in need of further study.
Collapse
Affiliation(s)
- Jonathan A. Dranoff
- Department of Medicine (Digestive Diseases), Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520
| | - Rebecca G. Wells
- Department of Medicine (Gastroenterology), The University of Pennsylvania School of Medicine, 415 Curie Blvd., Philadelphia, PA, 19104
| |
Collapse
|
35
|
Abstract
D. Montgomery Bissell briefly describes the way he came to a career in academic medicine, how he found mentors, initial projects, and finally a focus on matrix biology and hepatic fibrosis. He draws some lessons from the experience, which should have relevance for physician-scientist trainees, those considering that path, anyone with responsibility for training the next generation, institutional leaders, and the National Institutes of Health.
Collapse
|
36
|
Abstract
Hepatic fibrosis is a scarring process associated with an increased and altered deposition of extracellular matrix in the liver. It is caused by a variety of stimuli and if fibrosis continues unopposed, it would progress to cirrhosis which poses a significant health problem worldwide. At the cellular and molecular level, this progressive process is characterized by cellular activation of hepatic stellate cells and aberrant activity of transforming growth factor-beta with its downstream cellular mediators. Liver biopsy has been the reference test for assessment of hepatic fibrosis, but because of its limitations, noninvasive markers of liver fibrosis were developed. Liver fibrosis or cirrhosis was considered irreversible in the past but progress of research on the molecular pathogenesis of liver fibrosis has shown that hepatic cellular recovery is possible. Currently, no acceptable therapeutic strategies exist, other than removal of the fibrogenic stimulus, to treat this potentially devastating disease.
Collapse
Affiliation(s)
- Mona H Ismail
- Department of Internal Medicine, Division of Gastroenterology at King Fahad Hospital of the University, Al-Khobar, Saudi Arabia.
| | | |
Collapse
|
37
|
Svegliati-Baroni G, De Minicis S, Marzioni M. Hepatic fibrogenesis in response to chronic liver injury: novel insights on the role of cell-to-cell interaction and transition. Liver Int 2008; 28:1052-64. [PMID: 18783548 DOI: 10.1111/j.1478-3231.2008.01825.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Hepatic fibrosis represents the wound-healing response process of the liver to chronic injury, independently from aetiology. Advanced liver fibrosis results in cirrhosis that can lead to liver failure, portal hypertension and hepatocellular carcinoma. Currently, no effective therapies are available for hepatic fibrosis. After the definition of hepatic stellate cells (HSCs) as the main liver extracellular matrix-producing cells in the 1980s, the subsequent decade was dedicated to determine the role of specific cytokines and growth factors. Fibrotic progression of chronic liver diseases can be nowadays considered as a dynamic and highly integrated process of cellular response to chronic liver injury. The present review is dedicated to the novel mechanisms of cellular response to chronic liver injury leading to hepatic myofibroblasts' activation. The understanding of the cellular and molecular pathways regulating their function is crucial to counteract therapeutically the organ dysfunction caused by myofibroblasts' activation.
Collapse
Affiliation(s)
- Gianluca Svegliati-Baroni
- Department of Gastroenterology, Università Politecnica delle Marche and Ospedali Riuniti University Hospital, Ancona, Italy.
| | | | | |
Collapse
|
38
|
Iimuro Y, Brenner DA. Matrix metalloproteinase gene delivery for liver fibrosis. Pharm Res 2007; 25:249-58. [PMID: 17577645 PMCID: PMC2245995 DOI: 10.1007/s11095-007-9311-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 04/09/2007] [Indexed: 01/18/2023]
Abstract
The resolution of advanced liver fibrosis has been recently recognized to be possible, if the causative stimuli are successfully removed. However, whether complete resolution from cirrhosis, the end stage of liver fibrosis, can be achieved is still questionable. Delivery of interstitial collagenases, such as matrix metalloproteinase (MMP)-1, in the liver could be an attractive strategy to treat advanced hepatic fibrosis from the view point that the imbalance between too few interstitial collagenases and too many of their inhibitors is the main obstacle to the resolution from fibrosis. Remodeling of hepatic extracellular matrix by delivered interstitial collagenases also facilitates the disappearance of activated hepatic stellate cells, the main matrix-producing cells in the liver, and promotes the proliferation of hepatocytes. This review will focus on the impact of the gene delivery of MMPs for the treatment of advanced liver fibrosis while discussing other current therapeutic strategies for liver fibrosis, and on the need for the development of a safe and effective delivery system of MMPs.
Collapse
Affiliation(s)
- Yuji Iimuro
- First Department of Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | | |
Collapse
|
39
|
Abstract
Hepatic stellate cells (HSC) are the principal fibrogenic cell type in the liver. Progress in understanding the cellular and molecular basis for the development and progression of liver fibrosis could be possible by the development of methods to isolate HSC from rodents and human liver. Growth of stellate cells on plastic led to a phenotypic response known as activation, which paralleled closely the response of these cells to injury in vivo. Actually, much of the current knowledge of stellate cell behaviour has been gained through primary culture studies, particularly from rats. Also, different laboratories that have established hepatic stellate cell lines from rats and humans have provided a stable and unlimited source of cells that express specific functions, making them suitable for culture-based studies of hepatic fibrosis. From these in vitro models grew a large body of information characterizing stellate cell activation, cytokine signalling, intracellular pathways regulating liver fibrogenesis, production of extracellular matrix proteins and development of antifibrotic drugs.
Collapse
Affiliation(s)
- Ma Concepción Gutiérrez-Ruiz
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México, DF, México.
| | | |
Collapse
|
40
|
Lin S, Saxena NK, Ding X, Stein LL, Anania FA. Leptin increases tissue inhibitor of metalloproteinase I (TIMP-1) gene expression by a specificity protein 1/signal transducer and activator of transcription 3 mechanism. Mol Endocrinol 2006; 20:3376-88. [PMID: 16931573 PMCID: PMC2925459 DOI: 10.1210/me.2006-0177] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Leptin has properties of a profibrogenic cytokine. In liver, the activated hepatic stellate cell (HSC) is responsible for a net production of extracellular matrix. A key molecule synthesized is the tissue inhibitor of metalloproteinase I (TIMP-1), which acts to inhibit the activity of matrix metalloproteinases. The purpose of the present study was to determine how leptin, a gp130 cytokine, orchestrates the regulation of TIMP-1 gene activation and expression. Transient transfection of primary HSCs revealed that leptin significantly increased luciferase activity of a 229-bp TIMP-1 promoter construct (TIMP-1-229). An EMSA revealed that leptin enhanced specificity protein 1 (Sp1) binding. Site-directed mutagenesis for Sp1 reduced the enhancing effect of leptin on TIMP-1 transcriptional activation, and this effect was dose dependent on the number of Sp1 sites mutated. Chromatin immunoprecipitation revealed that leptin enhanced binding of Sp1; however, inhibition of signal transducer and activator of transcription (STAT) 3 phosphorylation by AG490 also blocked Sp1 phosphorylation and significantly reduced leptin-associated TIMP-1-229 promoter activity, indicating that one mechanism for leptin-increased transcriptional activity is via phosphorylation of Sp1 and subsequent promoter binding. Finally, we demonstrate that leptin also results in intranuclear pSTAT3 binding to Sp1. We propose a novel mechanism whereby leptin-mediated TIMP-1 transcription employs a Sp1/pSTAT3-dependent mechanism, one of which is a noncanonical association between Sp1 and pSTAT3. These data provide a new molecular mechanism whereby the adipocytokine leptin plays a role in complications of the metabolic syndrome.
Collapse
Affiliation(s)
- Songbai Lin
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Room 248, Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
41
|
Kruglov EA, Nathanson RA, Nguyen T, Dranoff JA. Secretion of MCP-1/CCL2 by bile duct epithelia induces myofibroblastic transdifferentiation of portal fibroblasts. Am J Physiol Gastrointest Liver Physiol 2006; 290:G765-71. [PMID: 16282363 DOI: 10.1152/ajpgi.00308.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Portal fibroblasts (PF) are fibrogenic liver cells distinct from hepatic stellate cells (HSC). Recent evidence suggests that PF may be important mediators of biliary fibrosis and cirrhosis. The cytokine monocyte chemoattractant protein-1 (MCP-1)/CCL2 is upregulated in biliary fibrosis by bile duct epithelia (BDE) and induces functional responses in HSC. Thus we hypothesized that release of MCP-1 may mediate biliary fibrosis. We report that PF express functional receptors for MCP-1 that are distinct from the receptor CCR2. MCP-1 induces proliferation, increase and redistribution of alpha-smooth muscle (alpha-SMA) expression, loss of the ectonucleotidase NTPDase2, and upregulation of alpha(1)-procollagen production in PF. BDE secretions induce alpha-SMA levels in PF, and this is inhibited by MCP-1 blocking antibody. Together, these data suggest that BDE regulate PF proliferation and myofibroblastic transdifferentiation in a paracrine fashion via release of MCP-1.
Collapse
Affiliation(s)
- Emma A Kruglov
- Section of Digestive Diseases and Yale Liver Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
42
|
Abstract
The prospect of reversing hepatic fibrosis has generated great interest now that basic science advances are being translated into promising new antifibrotic therapies. It is appropriate to recognize both the historical advances that created the framework for these successes, and the important role that Hepatology has played in disseminating them. A sense of urgency underlies this effort as the epidemics of HCV and NASH are becoming associated with advancing fibrosis. To maintain progress and minimize confusion among investigators and clinicians it is essential to standardize terms referring to fibrosis 'reversal' and 'regression.' There must also be rapid optimization of non-invasive markers of fibrosis to relieve this current bottleneck to conducting clinical trials. Progress in identifying genetic determinants of fibrosis could further refine patient selection for clinical trials and shorten their duration, as well as unearthing new directions of scientific inquiry. Realistic expectations for successful anti-fibrotic therapies reflect solid evidence of fibrosis regression in patients treated effectively for viral liver disease, as well as growing clarity in the understanding mechanisms of extracellular matrix production and degradation. The paradigms of stellate cell activation and apoptosis remain valuable frameworks for understanding pathways of hepatic fibrogenesis and fibrosis regression, respectively. Continued progress is essential in order to identify the determinants and dynamics of fibrosis reversibility, to discover additional targets for anti-fibrotic therapy, and to develop customized multi-drug regimens. These advances are sure to be captured in the next 25 years by Hepatology , and to profoundly impact the prognosis of patients with chronic liver disease.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
43
|
Abstract
Liver fibrosis is the excessive accumulation of extracellular matrix proteins including collagen that occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension and often requires liver transplantation. Our knowledge of the cellular and molecular mechanisms of liver fibrosis has greatly advanced. Activated hepatic stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major collagen-producing cells in the injured liver. These cells are activated by fibrogenic cytokines such as TGF-beta1, angiotensin II, and leptin. Reversibility of advanced liver fibrosis in patients has been recently documented, which has stimulated researchers to develop antifibrotic drugs. Emerging antifibrotic therapies are aimed at inhibiting the accumulation of fibrogenic cells and/or preventing the deposition of extracellular matrix proteins. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans is unknown. This review summarizes recent progress in the study of the pathogenesis and diagnosis of liver fibrosis and discusses current antifibrotic strategies.
Collapse
Affiliation(s)
- Ramón Bataller
- Liver Unit, Institut de Malalties Digestives i Metabòliques, Hospital Clinic, Institut d'Investigació Biomèdiques August Pi i Sunyer (IDIBAPS),Barcelona, Catalonia, Spain
| | | |
Collapse
|
44
|
Abstract
Liver fibrosis is the excessive accumulation of extracellular matrix proteins including collagen that occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension and often requires liver transplantation. Our knowledge of the cellular and molecular mechanisms of liver fibrosis has greatly advanced. Activated hepatic stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major collagen-producing cells in the injured liver. These cells are activated by fibrogenic cytokines such as TGF-beta1, angiotensin II, and leptin. Reversibility of advanced liver fibrosis in patients has been recently documented, which has stimulated researchers to develop antifibrotic drugs. Emerging antifibrotic therapies are aimed at inhibiting the accumulation of fibrogenic cells and/or preventing the deposition of extracellular matrix proteins. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans is unknown. This review summarizes recent progress in the study of the pathogenesis and diagnosis of liver fibrosis and discusses current antifibrotic strategies.
Collapse
Affiliation(s)
- Ramón Bataller
- Liver Unit, Institut de Malalties Digestives i Metabòliques, Hospital Clinic, Institut d'Investigació Biomèdiques August Pi i Sunyer (IDIBAPS),Barcelona, Catalonia, Spain
| | | |
Collapse
|
45
|
Abstract
Liver fibrosis is the excessive accumulation of extracellular matrix proteins including collagen that occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension and often requires liver transplantation. Our knowledge of the cellular and molecular mechanisms of liver fibrosis has greatly advanced. Activated hepatic stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major collagen-producing cells in the injured liver. These cells are activated by fibrogenic cytokines such as TGF-beta1, angiotensin II, and leptin. Reversibility of advanced liver fibrosis in patients has been recently documented, which has stimulated researchers to develop antifibrotic drugs. Emerging antifibrotic therapies are aimed at inhibiting the accumulation of fibrogenic cells and/or preventing the deposition of extracellular matrix proteins. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans is unknown. This review summarizes recent progress in the study of the pathogenesis and diagnosis of liver fibrosis and discusses current antifibrotic strategies.
Collapse
Affiliation(s)
- Ramón Bataller
- Liver Unit, Institut de Malalties Digestives i Metabòliques, Hospital Clinic, Institut d'Investigació Biomèdiques August Pi i Sunyer (IDIBAPS),Barcelona, Catalonia, Spain
| | | |
Collapse
|
46
|
Abstract
Liver fibrosis is the excessive accumulation of extracellular matrix proteins including collagen that occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension and often requires liver transplantation. Our knowledge of the cellular and molecular mechanisms of liver fibrosis has greatly advanced. Activated hepatic stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major collagen-producing cells in the injured liver. These cells are activated by fibrogenic cytokines such as TGF-beta1, angiotensin II, and leptin. Reversibility of advanced liver fibrosis in patients has been recently documented, which has stimulated researchers to develop antifibrotic drugs. Emerging antifibrotic therapies are aimed at inhibiting the accumulation of fibrogenic cells and/or preventing the deposition of extracellular matrix proteins. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans is unknown. This review summarizes recent progress in the study of the pathogenesis and diagnosis of liver fibrosis and discusses current antifibrotic strategies.
Collapse
Affiliation(s)
- Ramón Bataller
- Liver Unit, Institut de Malalties Digestives i Metabòliques, Hospital Clinic, Institut d'Investigació Biomèdiques August Pi i Sunyer (IDIBAPS),Barcelona, Catalonia, Spain
| | | |
Collapse
|
47
|
Freeman TL, Thiele GM, Klassen LW, Klassen BT, Mailliard ME. N-(methylamino)isobutyric acid inhibits proliferation of CFSC-2C hepatic stellate cells. Biochem Pharmacol 2004; 68:223-30. [PMID: 15193994 DOI: 10.1016/j.bcp.2004.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Accepted: 03/15/2004] [Indexed: 11/15/2022]
Abstract
Activation of hepatic stellate cells (HSCs) involves the induction of ECM protein synthesis and rapid cell proliferation. Thus, agents that interfere with either process could potentially mitigate the development of liver disease by reducing the synthesis of proteins associated with fibrosis or by reducing the number of activated HSC. Previously, we described that the non-metabolizable amino acid analog N-(methylamino)isobutyric acid (MeAIB) reduced hepatic collagen content of rats in a model of CCl(4)-induced liver injury, and in vitro studies using CFSC-2G cells indicated that MeAIB directly reduced collagen synthesis. However, the MeAIB-mediated reduction of hepatic collagen, in vivo, following liver injury was associated with a decrease in hepatic alpha-smooth muscle actin (alpha-SMA) which suggested that MeAIB also inhibited the activation of HSCs. Because HSC activation is inseparable from proliferation, the purpose of this study was to examine the effect of MeAIB treatment on the proliferation of HSCs in an in vitro model utilizing CFSC-2G cell cultures. In these studies, MeAIB effectively inhibited the proliferation of CFSC-2G cells by interfering with the progression of the cells through the G(1)-phase of the cell cycle which delayed entry into S-phase. MeAIB prevented the phosphorylation of p70S6 kinase (p70S6K) at Thr389 and reduced the phosphorylation at Thr421/Ser424. Because p70S6K is required for G(1)-cell cycle progression and is known to be regulated by nutrient availability, this correlates well with MeAIB interfering with the proliferation of CFSC-2G HSCs. In addition, the rate of protein synthesis was reduced by MeAIB treatment following mitogenic stimulation, which agrees with a p70S6K-mediated reduction in translation. These data are consistent with MeAIB inhibiting the proliferation of CFSC-2G cells by altering the mitogen activated pathway(s) leading to phosphorylation of p70S6K by a yet to be described mechanism.
Collapse
Affiliation(s)
- T L Freeman
- Veterans Administration Medical Center, Alcohol Study Unit, Omaha, NE, USA.
| | | | | | | | | |
Collapse
|
48
|
Freeman TL, Kharbanda KK, Tuma DJ, Mailliard ME. Inhibition of hepatic stellate cell collagen synthesis by N-(methylamino)isobutyric acid. Biochem Pharmacol 2002; 63:697-706. [PMID: 11992638 DOI: 10.1016/s0006-2952(01)00885-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The increased deposition of extracellular matrix by hepatic stellate cells following liver injury, in a process known as activation, is considered a key mechanism for increased collagen content of liver during the development of liver fibrosis. We report that N-(methylamino)isobutyric acid (MeAIB), a specific inhibitor of System A-mediated amino acid uptake, reduces the accumulation of collagen in CFSC-2G hepatic stellate cell cultures and in a rat model of liver injury and fibrosis. Rat CFSC-2G cells were cultured in 0-5mM MeAIB, and the accumulation and synthesis of collagen were measured by binding to Sirius red F3B and pulse-labeling with [3H]-proline, respectively. The effect of MeAIB on collagen accumulation in vivo was evaluated utilizing a rat model of hepatic fibrosis. MeAIB inhibited collagen accumulation in CFSC-2G cultures in a concentration-dependent manner with 5mM MeAIB reducing collagen 44.6+/-1.2% compared with the control. In CFSC-2G cultures, MeAIB selectively inhibited the incorporation of proline into cellular macromolecules by 43+/-4%, while the synthesis of proteins containing leucine was not affected. In vivo, oral administration of 160mg MeAIB/kg body weight per day to rats significantly reduced the hepatic collagen accumulation in response to 1 week of CCl(4)-induced liver injury. MeAIB reduces the accumulation of collagen in CFSC-2G hepatic stellate cell cultures and in a CCl(4)-induced rat model of liver injury and fibrosis.
Collapse
Affiliation(s)
- Thomas L Freeman
- Department of Internal Medicine, Section of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | | | | | | |
Collapse
|
49
|
Campbell S, Timms PM, Maxwell PR, Doherty EM, Rahman MZ, Lean ME, Danesh BJ. Effect of alcohol withdrawal on liver transaminase levels and markers of liver fibrosis. J Gastroenterol Hepatol 2001; 16:1254-9. [PMID: 11903744 DOI: 10.1046/j.1440-1746.2001.02620.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Acute alcohol withdrawal causes changes in hepatic blood flow and metabolism that may result in liver damage. This study aims to assess liver function tests and markers of hepatic fibrogenesis following alcohol withdrawal in alcoholics with clinically compensated liver disease. METHODS Serial liver function tests and clinical assessments were performed on 22 male alcoholics during alcohol withdrawal. Plasma tissue inhibitor of metalloproteinase 1 (TIMP1), an inhibitor of collagen degradation, and plasma amino-terminal procollagen III peptide (PIIINP), a collagen precursor molecule, were measured in these alcoholics and in 11 control subjects. RESULTS Transaminase levels did not change significantly over 7 days when all subjects were analyzed together. However, 32% of subjects showed a marked transaminase rise. These subjects did not differ from the others in baseline characteristics or short-term outcome, but had a greater benzodiazepine requirement. Only one subject consumed paracetamol (acetaminophen; 1-2 g/day). He had the largest transaminase rise. By comparing PIIINP assays, intact PIIINP concentration appears to increase following alcohol withdrawal. The TIMP1 levels were elevated in alcoholic subjects, but did not change following withdrawal. CONCLUSIONS Increasing PIIINP suggests that hepatic fibrogenesis increases, or hepatic clearance falls, during acute alcohol withdrawal. The TIMP1 elevation in these alcoholics suggests that the inhibition of collagen degradation occurs while liver disease is still compensated. The period following alcohol withdrawal may be a time of marked increased susceptibility to paracetamol. The biochemical changes we observed were not associated with adverse short-term outcome, but the cumulative effect after repeated episodes of abrupt withdrawal may be of concern.
Collapse
Affiliation(s)
- S Campbell
- Department of Gastroenterology, Stobhill Hospital, Scotland, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
50
|
Han NI, Chung KW, Ahn BM, Choi SW, Lee YS, Lee CD, Sun HS. Ultrastructural changes of hepatic stellate cells in the space of Disse in alcoholic fatty liver. Korean J Intern Med 2001; 16:160-6. [PMID: 11769574 PMCID: PMC4531722 DOI: 10.3904/kjim.2001.16.3.160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Hepatic stellate cell (HSC) has been suggested to play a role in fibrogenesis in alcoholic liver disease. We evaluate the correlation with fibrogenesis and ultrastructure of hepatic stellate cells in alcoholic fatty liver. METHODS We studied 6 patients with alcoholic fatty liver and 5 non-alcoholic fatty liver. The numbers of fat droplets in hepatic stellate cell was determined by electron microscopy. We also studied the grading of deposition of collagen fibers in the space of Disse. We were to evaluate the structure of hepatic stellate cells in the space of Disse by light and electron microscopy. RESULTS Wider distribution of fat droplets in hepatic stellate cells in alcoholic fatty liver than in normal liver. The hypertrophied endoplasmic reticulum in hepatic stellate cells is a prominent findings in alcoholic fatty liver. We observed basement membrane-like materials in patients with alcoholic fatty liver with hepatic fibrosis. CONCLUSION The results demonstrate that, in patients with alcoholic fatty liver by alcoholic liver injury, the hepatic stellate cells may play an important role in the fibrogenesis of perisinusoidal spaces in the liver.
Collapse
Affiliation(s)
- N I Han
- Department of Internal Medicine, Holy Family Hospital, College of Medicine, Catholic University of Korea, Korea
| | | | | | | | | | | | | |
Collapse
|