1
|
Hill DJ, Hill TG. Maternal diet during pregnancy and adaptive changes in the maternal and fetal pancreas have implications for future metabolic health. Front Endocrinol (Lausanne) 2024; 15:1456629. [PMID: 39377073 PMCID: PMC11456468 DOI: 10.3389/fendo.2024.1456629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Fetal and neonatal development is a critical period for the establishment of the future metabolic health and disease risk of an individual. Both maternal undernutrition and overnutrition can result in abnormal fetal organ development resulting in inappropriate birth size, child and adult obesity, and increased risk of Type 2 diabetes and cardiovascular diseases. Inappropriate adaptive changes to the maternal pancreas, placental function, and the development of the fetal pancreas in response to nutritional stress during pregnancy are major contributors to a risk trajectory in the offspring. This interconnected maternal-placental-fetal metabolic axis is driven by endocrine signals in response to the availability of nutritional metabolites and can result in cellular stress and premature aging in fetal tissues and the inappropriate expression of key genes involved in metabolic control as a result of long-lasting epigenetic changes. Such changes result is insufficient pancreatic beta-cell mass and function, reduced insulin sensitivity in target tissues such as liver and white adipose and altered development of hypothalamic satiety centres and in basal glucocorticoid levels. Whilst interventions in the obese mother such as dieting and increased exercise, or treatment with insulin or metformin in mothers who develop gestational diabetes, can improve metabolic control and reduce the risk of a large-for-gestational age infant, their effectiveness in changing the adverse metabolic trajectory in the child is as yet unclear.
Collapse
Affiliation(s)
- David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON, Canada
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON, Canada
| | - Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Dawid M, Pich K, Mlyczyńska E, Respekta-Długosz N, Wachowska D, Greggio A, Szkraba O, Kurowska P, Rak A. Adipokines in pregnancy. Adv Clin Chem 2024; 121:172-269. [PMID: 38797542 DOI: 10.1016/bs.acc.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.
Collapse
Affiliation(s)
- Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta-Długosz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Dominka Wachowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Aleksandra Greggio
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Oliwia Szkraba
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
3
|
Khorami-Sarvestani S, Vanaki N, Shojaeian S, Zarnani K, Stensballe A, Jeddi-Tehrani M, Zarnani AH. Placenta: an old organ with new functions. Front Immunol 2024; 15:1385762. [PMID: 38707901 PMCID: PMC11066266 DOI: 10.3389/fimmu.2024.1385762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, School of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Kayhan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Deshpande SSS, Bera P, Khambata K, Balasinor NH. Paternal obesity induces epigenetic aberrations and gene expression changes in placenta and fetus. Mol Reprod Dev 2023; 90:109-126. [PMID: 36541371 DOI: 10.1002/mrd.23660] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 09/15/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022]
Abstract
Paternal epigenome regulates placental and fetal growth. However, the effect of paternal obesity on placenta and its subsequent effect on the fetus via sperm remains unknown. We previously discovered abnormal methylation of imprinted genes involved in placental and fetal development in the spermatozoa of obese rats. In the present study, elaborate epigenetic characterization of sperm, placenta, and fetus was performed. For 16 weeks, male rats were fed either control or a high-fat diet. Following mating studies, sperm, placenta, and fetal tissue were collected. Significant changes were observed in placental weights, morphology, and cell populations. Methylation status of imprinted genes-Igf2, Peg3, Cdkn1c, and Gnas in spermatozoa, correlated with their expression in the placenta and fetus. Placental DNA methylating enzymes and 5-methylCytosine levels increased. Furthermore, in spermatozoa, DNA methylation of a few genes involved in pathways associated with placental endocrine function-gonadotropin-releasing hormone, prolactin, estrogen, and vascular endothelial growth factor, correlated with their expression in placenta and fetus. Changes in histone-modifying enzymes were also observed in the placenta. Histone marks H3K4me3, H3K9me3, and H4ac were downregulated, while H3K27me3 and H3ac were upregulated in placentas derived from obese male rats. This study shows that obesity-related changes in sperm methylome translate into abnormal expression in the F1-placenta fathered by the obese male, presumably affecting placental and fetal development.
Collapse
Affiliation(s)
- Sharvari S S Deshpande
- Neuroendocrinology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, India.,Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Priyanka Bera
- Gamete Immunobiology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Kushaan Khambata
- Gamete Immunobiology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Nafisa H Balasinor
- Neuroendocrinology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, India
| |
Collapse
|
5
|
Modelling Female Physiology from Head to Toe: Impact of Sex Hormones, Menstrual Cycle, and Pregnancy. J Theor Biol 2022; 540:111074. [DOI: 10.1016/j.jtbi.2022.111074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022]
|
6
|
Stern C, Schwarz S, Moser G, Cvitic S, Jantscher-Krenn E, Gauster M, Hiden U. Placental Endocrine Activity: Adaptation and Disruption of Maternal Glucose Metabolism in Pregnancy and the Influence of Fetal Sex. Int J Mol Sci 2021; 22:ijms222312722. [PMID: 34884524 PMCID: PMC8657775 DOI: 10.3390/ijms222312722] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
The placenta is an endocrine fetal organ, which secretes a plethora of steroid- and proteo-hormones, metabolic proteins, growth factors, and cytokines in order to adapt maternal physiology to pregnancy. Central to the growth of the fetus is the supply with nutrients, foremost with glucose. Therefore, during pregnancy, maternal insulin resistance arises, which elevates maternal blood glucose levels, and consequently ensures an adequate glucose supply for the developing fetus. At the same time, maternal β-cell mass and function increase to compensate for the higher insulin demand. These adaptations are also regulated by the endocrine function of the placenta. Excessive insulin resistance or the inability to increase insulin production accordingly disrupts physiological modulation of pregnancy mediated glucose metabolism and may cause maternal gestational diabetes (GDM). A growing body of evidence suggests that this adaptation of maternal glucose metabolism differs between pregnancies carrying a girl vs. pregnancies carrying a boy. Moreover, the risk of developing GDM differs depending on the sex of the fetus. Sex differences in placenta derived hormones and bioactive proteins, which adapt and modulate maternal glucose metabolism, are likely to contribute to this sexual dimorphism. This review provides an overview on the adaptation and maladaptation of maternal glucose metabolism by placenta-derived factors, and highlights sex differences in this regulatory network.
Collapse
Affiliation(s)
- Christina Stern
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (C.S.); (S.S.); (E.J.-K.)
| | - Sarah Schwarz
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (C.S.); (S.S.); (E.J.-K.)
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria;
| | - Silvija Cvitic
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Evelyn Jantscher-Krenn
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (C.S.); (S.S.); (E.J.-K.)
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria;
- Correspondence: (M.G.); (U.H.); Tel.: +43-316385-71896 (M.G.); +43-136385-17837 (U.H.)
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (C.S.); (S.S.); (E.J.-K.)
- Correspondence: (M.G.); (U.H.); Tel.: +43-316385-71896 (M.G.); +43-136385-17837 (U.H.)
| |
Collapse
|
7
|
Narvaez-Sanchez R, Calderón JC, Vega G, Trillos MC, Ospina S. Skeletal muscle as a protagonist in the pregnancy metabolic syndrome. Med Hypotheses 2019; 126:26-37. [PMID: 31010495 DOI: 10.1016/j.mehy.2019.02.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/12/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
Abstract
The pregnant woman normally shows clinical manifestations similar to a metabolic syndrome (MS), due to her metabolic and hemodynamic adaptations in order to share nutrients with the child. If those adjustments are surpassed, a kind of pregnancy MS (PregMS) could appear, characterized by excessive insulin resistance and vascular maladaptation. Skeletal muscle (SKM) must be a protagonist in the PregMS: SKM strength and mass have been associated inversely with MS incidence in non-pregnant patients, and in pregnant women muscular activity modulates metabolic and vascular adaptations that favor better outcomes. Of note, a sedentary lifestyle affects exactly in the other way. Those effects may be explained not only by the old paradigm of SKM being a great energy consumer and store, but because it is an endocrine organ whose chronic activity or deconditioning correspondingly releases myokines modulating insulin sensitivity and cardiovascular adaptation, by direct or indirect mechanisms not well understood. In this document, we present evidence to support the concept of a PregMS and hypothesize on the role of the SKM mass, fiber types composition and myokines in its pathophysiology. Also, we discuss some exercise interventions in pregnancy as a way to test our hypotheses.
Collapse
Affiliation(s)
- Raul Narvaez-Sanchez
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia; Red iberoamericana de trastornos vasculares y del embarazo, RIVATREM, Colombia.
| | - Juan C Calderón
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia. http://www.udea.edu.co/physis
| | - Gloria Vega
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia. http://www.udea.edu.co/physis
| | - Maria Camila Trillos
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia. http://www.udea.edu.co/physis
| | - Sara Ospina
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia. http://www.udea.edu.co/physis
| |
Collapse
|
8
|
Michelsen TM, Henriksen T, Reinhold D, Powell TL, Jansson T. The human placental proteome secreted into the maternal and fetal circulations in normal pregnancy based on 4-vessel sampling. FASEB J 2018; 33:2944-2956. [PMID: 30335547 DOI: 10.1096/fj.201801193r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We sought to identify proteins secreted by the human placenta into the maternal and fetal circulations. Blood samples from the maternal radial artery and uterine vein and umbilical artery and vein were obtained during cesarean section in 35 healthy women with term pregnancy. Slow off-rate modified aptamer (SOMA) protein-binding technology was used to quantify 1310 known proteins. The uteroplacental and umbilical venoarterial concentration differences were calculated. Thirty-four proteins were significantly secreted by the placenta into the maternal circulation, including placental growth factor, growth/differentiation factor 15, and matrix metalloproteinase 12. There were 341 proteins significantly secreted by the placenta into the fetal circulation. Only 7 proteins were secreted into both the fetal and maternal circulations, suggesting a distinct directionality in placental protein release. We examined changes across gestation in the proteins found to be significantly secreted by the placenta into the maternal circulation using serial blood samples from healthy women. Among the 34 proteins secreted into the maternal circulation, 8 changed significantly across gestation. The identified profiles of secreted placental proteins will allow us to identify novel minimally invasive biomarkers for human placental function across gestation and discover previously unknown proteins secreted by the human placenta that regulate maternal physiology and fetal development.-Michelsen, T. M., Henriksen, T., Reinhold, D., Powell, T. L., Jansson, T. The human placental proteome secreted into the maternal and fetal circulations in normal pregnancy based on 4-vessel sampling.
Collapse
Affiliation(s)
- Trond M Michelsen
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Division of Obstetrics and Gynecology, Department of Obstetrics Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Tore Henriksen
- Division of Obstetrics and Gynecology, Department of Obstetrics Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | | | - Theresa L Powell
- Division of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
9
|
Placental control of metabolic adaptations in the mother for an optimal pregnancy outcome. What goes wrong in gestational diabetes? Placenta 2018; 69:162-168. [DOI: 10.1016/j.placenta.2018.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
|
10
|
Velegrakis A, Sfakiotaki M, Sifakis S. Human placental growth hormone in normal and abnormal fetal growth. Biomed Rep 2017; 7:115-122. [PMID: 28804622 PMCID: PMC5526045 DOI: 10.3892/br.2017.930] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/31/2017] [Indexed: 01/05/2023] Open
Abstract
Human placental growth hormone (PGH), encoded by the growth hormone (GH) variant gene on chromosome 17, is expressed in the syncytiotrophoblast and extravillous cytotrophoblast layers of the human placenta. Its maternal serum levels increase throughout pregnancy, and gradually replaces the pulsatile secreted pituitary GH. PGH is also detectable in cord blood and in the amniotic fluid. This placental-origin hormone stimulates glyconeogenesis, lipolysis and anabolism in maternal organs, and influences fetal growth, placental development and maternal adaptation to pregnancy. The majority of these actions are performed indirectly by regulating maternal insulin-like growth factor-I levels, while the extravillous trophoblast involvement indicates a direct effect on placental development, as it stimulates trophoblast invasiveness and function via a potential combination of autocrine and paracrine mechanisms. The current review focuses on the role of PGH in fetal growth. In addition, the association of PGH alterations in maternal circulation and placental expression in pregnancy complications associated with abnormal fetal growth is briefly reviewed.
Collapse
Affiliation(s)
- Alexandros Velegrakis
- Department of Obstetrics and Gynecology, Venizelion General Hospital, Heraklion 71409, Greece
| | - Maria Sfakiotaki
- Department of Endocrinology, University Hospital of Heraklion, Heraklion 71201, Greece
| | - Stavros Sifakis
- Department of Obstetrics and Gynecology, University Hospital of Heraklion, Heraklion 71201, Greece
| |
Collapse
|
11
|
Abucham J, Bronstein MD, Dias ML. MANAGEMENT OF ENDOCRINE DISEASE: Acromegaly and pregnancy: a contemporary review. Eur J Endocrinol 2017; 177:R1-R12. [PMID: 28292926 DOI: 10.1530/eje-16-1059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/24/2017] [Accepted: 03/09/2017] [Indexed: 12/16/2022]
Abstract
Although fertility is frequently impaired in women with acromegaly, pregnancy is apparently becoming more common due to improvement in acromegaly treatment as well as in fertility therapy. As a result, several studies on pregnancy in patients with acromegaly have been published in recent years adding new and relevant information to the preexisting literature. Also, new GH assays with selective specificities and the knowledge of the expression of the various GH genes have allowed a better understanding of somatotrophic axis function during pregnancy. In this review, we show that pregnancy in women with acromegaly is generally safe, usually with tumoral and hormonal stability. Although the paucity of data limits evidence-based recommendations for preconception counseling and pregnancy surveillance, controlling tumor size and hormonal activity before pregnancy is highly recommended to ensure better outcomes, and surgical control should be attempted when feasible. Treatment interruption at pregnancy confirmation has also proven to be safe, as drugs are not formally allowed to be used during pregnancy. Drug exposure (somatostatin analogs) during early or whole pregnancy might increase the chance of a lower birth weight. Aggressive disease is uncommon and may urge individual decisions such as surgery or drug treatment during pregnancy or lactation.
Collapse
Affiliation(s)
- Julio Abucham
- Neuroendocrinology UnitEscola Paulista de Medicina da Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcello D Bronstein
- Division of Endocrinology and MetabolismNeuroendocrinology Unit, University of São Paulo, São Paulo, Brazil
| | - Monike L Dias
- Endocrinology UnitUniversidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
12
|
Liao S, Vickers MH, Taylor RS, Jones B, Fraser M, McCowan LME, Baker PN, Perry JK. Human placental growth hormone is increased in maternal serum at 20 weeks of gestation in pregnancies with large-for-gestational-age babies. Growth Factors 2016; 34:203-209. [PMID: 28122472 DOI: 10.1080/08977194.2016.1273223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To investigate the relationship between maternal serum concentrations of placental growth hormone (GH-V), insulin-like growth factor (IGF)-1 and 2, IGF binding proteins (IGFBP)-1 and 3 and birth weight in appropriate-for-gestational-age (AGA), large-for-gestational-age (LGA) and small-for-gestational-age (SGA) cases in a nested case-control study. Maternal serum samples were selected from the Screening for Pregnancy Endpoints (SCOPE) biobank in Auckland, New Zealand. Serum hormone concentrations were determined by ELISA. We found that maternal serum GH-V concentrations at 20 weeks of gestation in LGA pregnancies were significantly higher than in AGA and SGA pregnancies. Maternal GH-V concentrations were positively correlated to birth weights and customized birth weight centiles, while IGFBP-1 concentrations were inversely related to birth weights and customized birth weight centiles. Our findings suggest that maternal serum GH-V and IGFBP-1 concentrations at 20 weeks' gestation are associated with fetal growth.
Collapse
Affiliation(s)
- Shutan Liao
- a Liggins Institute, University of Auckland , Auckland , New Zealand
- b Gravida: National Centre for Growth and Development , Auckland , New Zealand
- c The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Mark H Vickers
- a Liggins Institute, University of Auckland , Auckland , New Zealand
- b Gravida: National Centre for Growth and Development , Auckland , New Zealand
| | - Rennae S Taylor
- d Department of Obstetrics and Gynaecology , University of Auckland , Auckland , New Zealand
| | - Beatrix Jones
- e Institute of Natural and Mathematical Sciences, Massey University , Auckland , New Zealand
| | - Mhoyra Fraser
- f Department of Physiology , University of Auckland , Auckland , New Zealand , and
| | - Lesley M E McCowan
- d Department of Obstetrics and Gynaecology , University of Auckland , Auckland , New Zealand
| | - Philip N Baker
- a Liggins Institute, University of Auckland , Auckland , New Zealand
- b Gravida: National Centre for Growth and Development , Auckland , New Zealand
- g College of Medicine, Biological Sciences and Psychology, University of Leicester , Leicester , UK
| | - Jo K Perry
- a Liggins Institute, University of Auckland , Auckland , New Zealand
- b Gravida: National Centre for Growth and Development , Auckland , New Zealand
| |
Collapse
|
13
|
Liao S, Vickers MH, Evans A, Stanley JL, Baker PN, Perry JK. Comparison of pulsatile vs. continuous administration of human placental growth hormone in female C57BL/6J mice. Endocrine 2016; 54:169-181. [PMID: 27515803 DOI: 10.1007/s12020-016-1060-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 07/12/2016] [Indexed: 01/14/2023]
Abstract
Exogenous growth hormone has different actions depending on the method of administration. However, the effects of different modes of administration of the placental variant of growth hormone on growth, body composition and glucose metabolism have not been investigated. In this study, we examined the effect of pulsatile vs. continuous administration of recombinant variant of growth hormone in a normal mouse model. Female C57BL/6J mice were randomized to receive vehicle or variant of growth hormone (2 or 5 mg/kg per day) by daily subcutaneous injection (pulsatile) or osmotic pump for 6 days. Pulsatile treatment with 2 and 5 mg/kg per day significantly increased body weight. There was also an increase in liver, kidney and spleen weight via pulsatile treatment, whereas continuous treatment did not affect body weight or organ size. Pulsatile treatment with 5 mg/kg per day significantly increased fasting plasma insulin concentration, whereas with continuous treatment, fasting insulin concentration was not significantly different from the vehicle-treated control. However, a dose-dependent increase in fasting insulin concentration and decrease in insulin sensitivity, as assessed by HOMA, was observed with both modes of treatment. At 5 mg/kg per day, hepatic growth hormone receptor expression was increased compared to vehicle-treated animals, by both modes of administration. Pulsatile variant of growth hormone did not alter the plasma insulin-like growth factor-1 concentration, whereas a slight decrease was observed with continuous variant of growth hormone treatment. Neither pulsatile nor continuous treatment affected hepatic insulin-like growth factor-1 mRNA expression. Our findings suggest that pulsatile variant of growth hormone treatment was more effective in stimulating growth but caused marked hyperinsulinemia in mice.
Collapse
Affiliation(s)
- Shutan Liao
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Angharad Evans
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Joanna L Stanley
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Philip N Baker
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand.
- Gravida: National Centre for Growth and Development, Auckland, New Zealand.
| |
Collapse
|
14
|
Liao S, Vickers MH, Stanley JL, Ponnampalam AP, Baker PN, Perry JK. The Placental Variant of Human Growth Hormone Reduces Maternal Insulin Sensitivity in a Dose-Dependent Manner in C57BL/6J Mice. Endocrinology 2016; 157:1175-86. [PMID: 26671184 DOI: 10.1210/en.2015-1718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human placental GH variant (GH-V) is secreted continuously from the syncytiotrophoblast layer of the placenta during pregnancy and is thought to play a key role in the maternal adaptation to pregnancy. Maternal GH-V concentrations are closely related to fetal growth in humans. GH-V has also been proposed as a potential candidate to mediate insulin resistance observed later in pregnancy. To determine the effect of maternal GH-V administration on maternal and fetal growth and metabolic outcomes during pregnancy, we examined the dose-response relationship for GH-V administration in a mouse model of normal pregnancy. Pregnant C57BL/6J mice were randomized to receive vehicle or GH-V (0.25, 1, 2, or 5 mg/kg · d) by osmotic pump from gestational days 12.5 to 18.5. Fetal linear growth was slightly reduced in the 5 mg/kg dose compared with vehicle and the 0.25 mg/kg groups, respectively, whereas placental weight was not affected. GH-V treatment did not affect maternal body weights or food intake. However, treatment with 5 mg/kg · d significantly increased maternal fasting plasma insulin concentrations with impaired insulin sensitivity observed at day 18.5 as assessed by homeostasis model assessment. At 5 mg/kg · d, there was also an increase in maternal hepatic GH receptor/binding protein (Ghr/Ghbp) and IGF binding protein 3 (Igfbp3) mRNA levels, but GH-V did not alter maternal plasma IGF-1 concentrations or hepatic Igf-1 mRNA expression. Our findings suggest that at higher doses, GH-V treatment can cause hyperinsulinemia and is a likely mediator of the insulin resistance associated with late pregnancy.
Collapse
Affiliation(s)
- Shutan Liao
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Mark H Vickers
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Joanna L Stanley
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Anna P Ponnampalam
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Philip N Baker
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Jo K Perry
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| |
Collapse
|
15
|
Formaldehyde Crosses the Human Placenta and Affects Human Trophoblast Differentiation and Hormonal Functions. PLoS One 2015; 10:e0133506. [PMID: 26186596 PMCID: PMC4506020 DOI: 10.1371/journal.pone.0133506] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/29/2015] [Indexed: 11/19/2022] Open
Abstract
The chorionic villus of the human placenta is the source of specific endocrine functions and nutrient exchanges. These activities are ensured by the syncytiotrophobast (ST), which bathes in maternal blood. The ST arises and regenerates throughout pregnancy by fusion of underlying cytotrophoblasts (CT). Any anomaly of ST formation or regeneration can affect pregnancy outcome and fetal growth. Because of its direct interaction with maternal blood, the ST is sensitive to drugs, pollutants and xenohormones. Ex vivo assays of perfused cotyledon show that formaldehyde, a common pollutant present in furniture, paint and plastics, can accumulate in the human placenta and cross to the fetal compartment. By means of RT-qPCR, immunoblot and immunocytochemistry experiments, we demonstrate in vitro that formaldehyde exerts endocrine toxicity on human trophoblasts, including a decrease in the production of protein hormones of pregnancy. In addition, formaldehyde exposure triggered human trophoblast fusion by upregulating syncitin-1 receptor expression (ASC-type amino-acid transporter 2: ASCT2). Moreover, we show that formaldehyde-exposed trophoblasts present an altered redox status associated with oxidative stress, and an increase in ASCT2 expression intended to compensate for this stress. Finally, we demonstrate that the adverse effects of formaldehyde on trophoblast differentiation and fusion are reversed by N-acetyl-L-cysteine (Nac), an antioxidant.
Collapse
|
16
|
Menkhorst E, Koga K, Van Sinderen M, Dimitriadis E. Galectin-7 serum levels are altered prior to the onset of pre-eclampsia. Placenta 2014; 35:281-5. [DOI: 10.1016/j.placenta.2014.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 12/17/2022]
|
17
|
Huang Q, Chen H, Li J, Oliver M, Ma X, Byck D, Gao Y, Jiang SW. Epigenetic and non-epigenetic regulation of syncytin-1 expression in human placenta and cancer tissues. Cell Signal 2014; 26:648-56. [PMID: 24216608 DOI: 10.1016/j.cellsig.2013.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/01/2013] [Indexed: 02/05/2023]
Abstract
Syncytin-1 is a human endogenous retroviral envelope gene (HERVW1) product specifically expressed in placental trophoblasts. By mediating the formation of syncytiotrophoblasts through cell-cell fusion, syncytin-1 plays a critical role for the placental barrier, endocrine and exchange functions. During pregnancy, syncytin-1 expression is dynamically regulated by various pathophysiological factors and pathways. This review summarizes and examines published data on epigenetic and non-epigenetic regulation of syncytin-1 gene expression, with a focus on the changes of syncytin-1 DNA methylation and expression in placental trophoblasts under preeclamptic and hypoxic conditions. The functions of syncytiotrophoblasts, the fusogenic and non-fusogenic activities of syncytin-1, and aberrant activation of syncytin-1 expression in cancer cells are also discussed. New findings on the epigenetic regulation of syncytin-1 in placentas from monozygotic/dichorionic discordant twins are analyzed. The close correlation among changes of DNMTs expression, syncytin-1 gene methylation, and syncytin-1 mRNA levels, in placentas associated with discordant fetal growth indicated a dynamic nature of syncytin-1 regulation.
Collapse
Affiliation(s)
- Qiang Huang
- The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, China; Department of Biological Science, Mercer University School of Medicine, Savannah, GA 31404, USA
| | - Haibin Chen
- Department of Department of Histology and Embryology, Shantou University Medical College, Guandong, China
| | - Jinping Li
- Department of Biological Science, Mercer University School of Medicine, Savannah, GA 31404, USA; Department of Obstetrics and Gynecology, Mayo Medical College, Mayo Clinic and Mayo Foundation, 55902, USA
| | - Matthew Oliver
- Department of Obstetrics and Gynecology, Memorial Health University Medical Center, Savannah, GA 31404, USA
| | - Xiaoling Ma
- Department of Biological Science, Mercer University School of Medicine, Savannah, GA 31404, USA
| | - David Byck
- Department of Obstetrics and Gynecology, Memorial Health University Medical Center, Savannah, GA 31404, USA
| | - Ya Gao
- The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, China.
| | - Shi-Wen Jiang
- Department of Biological Science, Mercer University School of Medicine, Savannah, GA 31404, USA; Department of Obstetrics and Gynecology, Mayo Medical College, Mayo Clinic and Mayo Foundation, 55902, USA; Department of Obstetrics and Gynecology, Memorial Health University Medical Center, Savannah, GA 31404, USA.
| |
Collapse
|
18
|
Timasheva Y, Putku M, Kivi R, Kožich V, Männik J, Laan M. Developmental programming of growth: genetic variant in GH2 gene encoding placental growth hormone contributes to adult height determination. Placenta 2013; 34:995-1001. [PMID: 24035309 PMCID: PMC3820034 DOI: 10.1016/j.placenta.2013.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Given the physiological role of placental growth hormone (PGH) during intrauterine development and growth, genetic variation in the coding Growth hormone 2 (GH2) gene may modulate developmental programming of adult stature. Two major GH2 variants were described worldwide, determined by single polymorphism (rs2006123; c.171 + 50C > A). We sought to study whether GH2 variants may contribute to adult anthropometric measurements. METHODS Genotyping of GH2 SNP rs2006123 by RFLP, testing its genetic association with adult height and Body Mass Index (BMI) by linear regression analysis, and combining the results of three individual study samples in meta-analysis. STUDY SAMPLES HYPEST (Estonia), n = 1464 (506 men/958 women), CADCZ (Czech), n = 871 (518/353); UFA (Bashkortostan), n = 954 (655/299); meta-analysis, n = 3289 (1679/1610). RESULTS Meta-analysis across HYPEST, CADCZ and UFA samples (n = 3289) resulted in significant association of GH2 rs2006123 with height (recessive model: AA-homozygote effect: beta (SE) = 1.26 (0.46), P = 5.90 × 10⁻³; additive model: A-allele effect: beta (SE) = 0.45 (0.18), P = 1.40 × 10⁻²). Among men (n = 1679), the association of the A-allele with taller stature remained significant after multiple-testing correction (additive effect: beta = 0.86 (0.28), P = 1.83 × 10⁻³). No association was detected with BMI. Notably, rs2006123 was in strong LD (r² ≥ 0.87) with SNPs significantly associated with height (rs2665838, rs7209435, rs11658329) and mapped near GH2 in three independent meta-analyses of GWA studies. CONCLUSIONS This is the first study demonstrating a link between a placental gene variant and programming of growth potential in adulthood. The detected association between PGH encoding GH2 and adult height promotes further research on the role of placental genes in prenatal programming of human metabolism.
Collapse
Affiliation(s)
- Y. Timasheva
- Human Molecular Genetics Group, Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, Tartu 51010, Estonia
- Institute of Biochemistry and Genetics, Ufa Scientific Centre of Russian Academy of Sciences, Ufa, Russia
| | - M. Putku
- Human Molecular Genetics Group, Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, Tartu 51010, Estonia
| | - R. Kivi
- Human Molecular Genetics Group, Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, Tartu 51010, Estonia
| | - V. Kožich
- Institute of Inherited Metabolic Diseases, Charles University – First Faculty of Medicine, Prague, Czech Republic
| | - J. Männik
- Human Molecular Genetics Group, Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, Tartu 51010, Estonia
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - M. Laan
- Human Molecular Genetics Group, Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, Tartu 51010, Estonia
| |
Collapse
|
19
|
Mandujano A, Thomas A, Huston Presley L, Amini SB, Hauguel de Mouzon S, Catalano PM. Does the dawn phenomenon have clinical relevance in normal pregnancy? Am J Obstet Gynecol 2013; 209:116.e1-5. [PMID: 23583837 DOI: 10.1016/j.ajog.2013.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 02/24/2013] [Accepted: 04/02/2013] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The dawn phenomenon is a transient rise in blood glucose between 4 and 6 am that is attributed to the pulsatile release of pituitary growth hormone (GH). In pregnancy, GH is suppressed by placental GH. Hence, we hypothesize that there is no evidence for the dawn phenomenon in late pregnancy in healthy women. STUDY DESIGN Twenty glucose-tolerant women with singleton gestations between 28 weeks and 36 weeks 6 days' gestation were recruited. The women were admitted overnight to the Clinical Research Unit and had continuous glucose monitoring. Insulin and GH were measured at 2-hour intervals from 8 pm to 8 am. GH was grouped into times 1A (8-10 pm), 2A (12-2 am), and 3A (4-8 am) for changes over time. Further analysis was performed with time 1B (8 pm to 2 am) and 2B (4-8 am). Insulin was measured between 4 and 8 am. RESULTS Plasma glucose decreased over time (P < .001). There were no significant changes in GH among times 1A, 2A, and 3A (P = .45) or times 1B and 2B (P = .12). Insulin concentrations increased after meals, but there were no changes from 4 am (8.5 ± 1.4 μU/mL) through 8 am (8.6 ± 1.1 μU/mL; P = .98). CONCLUSION Glucose and insulin concentrations show no increase from 4-8 am; although there is variability in GH, there is no evidence for the dawn phenomenon in late pregnancy in healthy women.
Collapse
|
20
|
Vakili H, Jin Y, Menticoglou S, Cattini PA. CCAAT-enhancer-binding protein β (C/EBPβ) and downstream human placental growth hormone genes are targets for dysregulation in pregnancies complicated by maternal obesity. J Biol Chem 2013; 288:22849-61. [PMID: 23782703 DOI: 10.1074/jbc.m113.474999] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human chorionic somatomammotropin (CS) and placental growth hormone variant (GH-V) act as metabolic adaptors in response to maternal insulin resistance, which occurs in "normal" pregnancy. Maternal obesity can exacerbate this "resistance," suggesting that CS, GH-V, or transcription factors that regulate their production might be targets. The human CS genes, hCS-A and hCS-B, flank the GH-V gene. A significant decrease in pre-term placental CS/GH-V RNA levels was observed in transgenic mice containing the CS/GH-V genes in a model of high fat diet (HFD)-induced maternal obesity. Similarly, a decrease in CS/GH-V RNA levels was detected in term placentas from obese (body mass index (BMI) ≥ 35 kg/m(2)) versus lean (BMI 20-25 kg/m(2)) women. A specific decrease in transcription factor CCAAT-enhancer-binding protein β (C/EBPβ) RNA levels was also seen with obesity; C/EBPβ is required for mouse placenta development and is expressed, like CS and GH-V, in syncytiotrophoblasts. Binding of C/EBPβ to the CS gene downstream enhancer regions, which by virtue of their position distally flank the GH-V gene, was reduced in placenta chromatin from mice on a HFD and in obese women; a corresponding decrease in RNA polymerase II associated with CS/GH-V promoters was also observed. Detection of decreased endogenous CS/GH-V RNA levels in human placental tumor cells treated with C/EBPβ siRNA is consistent with a direct effect. These data provide evidence for CS/GH-V dysregulation in acute HFD-induced obesity in mouse pregnancy and chronic obesity in human pregnancy and implicate C/EBPβ, a factor associated with CS regulation and placental development.
Collapse
Affiliation(s)
- Hana Vakili
- Department of Physiology, Division of Endocrinology and Metabolic Disease, University of Manitoba, Winnipeg R3E 0J9, Canada
| | | | | | | |
Collapse
|
21
|
Kayemba-Kay's S, Peters C, Geary MPP, Hill NR, Mathews DR, Hindmarsh PC. Maternal hyperinsulinism and glycaemic status in the first trimester of pregnancy are associated with the development of pregnancy-induced hypertension and gestational diabetes. Eur J Endocrinol 2013; 168:413-8. [PMID: 23243013 DOI: 10.1530/eje-12-0609] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To evaluate the relationships across a range of glucose and insulin measures at 12 weeks of gestation with the development of pregnancy-induced hypertension (PIH), gestational diabetes mellitus (GDM) and birth size. MATERIALS AND METHODS Prospective study of pregnant women booking before 15th week of gestation. At the first antenatal visit, standard measures of height, weight, blood pressure (BP) and social status were recorded, and blood sample was drawn for measurements of fasting glucose and plasma insulin. Oral glucose tolerance test with 75 g glucose load was performed after overnight fast. Odds ratios (ORs) with 95% CI were calculated to determine the risk of developing PIH or GDM depending on quartiles of blood glucose or tertiles of plasma insulin levels. RESULTS One thousand six hundred and fifty pregnant women were included in the study. Of them, 1484 delivered a live infant of whom 70 were preterm, 166 did not complete the study, 155 mothers developed PIH (10.4%), 18 were diagnosed with GDM (1.2%) and four had both PIH and GDM. At 12 weeks of gestation, women who became hypertensive were heavier (P<0.001), with higher BMI (P<0.001) than controls. Both systolic (P<0.001) and diastolic BPs (P<0.001) were already higher in women who developed PIH. Fasting insulin concentrations were higher in PIH group (P<0.002). Fasting glucose level >6.8 mmol/l was associated with the likelihood of delivering a macrosomic baby (OR 3.1 (95% CI: 1.21-8.0); P=0.02); the effect was heightened in multiparous mothers (OR 4.0 (95% CI: 1.4-11.1); P=0.01). Fasting plasma insulin had, however, no effect on size at birth in this study. CONCLUSIONS Our data suggest that women who develop PIH may be metabolically challenged at early stages of pregnancy with hyperinsulinism, insulin insensitivity and slightly higher BP.
Collapse
Affiliation(s)
- Simon Kayemba-Kay's
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | | | |
Collapse
|
22
|
Biomarkers of maternal diabetes and its complication in pregnancy. Reprod Toxicol 2012; 34:174-9. [PMID: 22659274 DOI: 10.1016/j.reprotox.2012.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 01/05/2023]
Abstract
There are specific biomarkers - indicators of normal and abnormal processes - in diabetic pregnancies that predict the degree of diabetic control as well as embryonic and fetal growth and development. They can be detected in maternal blood, amniotic fluid or in the cord plasma of the newborn infant. While the cord plasma levels are of little clinical relevance because they do not allow us to interfere with the outcome of pregnancy, biomarkers in maternal blood or amniotic fluid may help us to better control the outcome of diabetic pregnancies. Important biomarkers in maternal blood are fasting glucose, HbA1c and IGFs. Relevant biomarkers in amniotic fluid are insulin, erythropoietin and markers of bone formation and resorption. Cord plasma biomarkers include IGFs, leptin, adiponectin, resistin, markers of oxidative stress and of hypoxia. Whether these biomarkers can be predictors of long term outcome in infants of diabetic mothers is yet to be determined.
Collapse
|
23
|
Newbern D, Freemark M. Placental hormones and the control of maternal metabolism and fetal growth. Curr Opin Endocrinol Diabetes Obes 2011; 18:409-16. [PMID: 21986512 DOI: 10.1097/med.0b013e32834c800d] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To examine the roles of the placental and pituitary hormones in the control of maternal metabolism and fetal growth. RECENT FINDINGS In addition to promoting growth of maternal tissues, placental growth hormone (GH-V) induces maternal insulin resistance and thereby facilitates the mobilization of maternal nutrients for fetal growth. Human placental lactogen (hPL) and prolactin increase maternal food intake by induction of central leptin resistance and promote maternal beta-cell expansion and insulin production to defend against the development of gestational diabetes mellitus. The effects of the lactogens are mediated by diverse signaling pathways and are potentiated by glucose. Pathologic conditions of pregnancy are associated with dysregulation of GH-V and hPL gene expression. SUMMARY The somatogenic and lactogenic hormones of the placenta and maternal pituitary gland integrate the metabolic adaptations of pregnancy with the demands of fetal and neonatal development. Dysregulation of placental growth hormone and/or placental lactogen in pathologic conditions of pregnancy may adversely impact fetal growth and postnatal metabolic function.
Collapse
Affiliation(s)
- Dorothee Newbern
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
24
|
Power ML, Schulkin J. Maternal obesity, metabolic disease, and allostatic load. Physiol Behav 2011; 106:22-8. [PMID: 21939681 DOI: 10.1016/j.physbeh.2011.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 11/30/2022]
Abstract
Maternal obesity is a risk factor for many metabolic diseases for the mother, both during gestation and post partum, and for the child in later life. Obesity and pregnancy both result in altered physiological states, significantly different from the state of the non-obese, non-reproductive adult female. The concept of allostasis may be more appropriate for understanding the physiology of both pregnancy and obesity. In pregnancy these altered physiological states are adaptive, in both the evolutionary and physiological senses of the word. Obesity, however, represents a state outside of the adaptive evolutionary experience of our species. In both cases the altered physiological state derives at least in part from signals from an active endocrine organ. In obesity this is adipose tissue, and in pregnancy it is the placenta. The signaling molecules from adipose tissue and placenta all have multiple functions and can affect multiple organ systems. Placenta acts as a central regulator of metabolism for both the maternal and fetal compartments, in essence acting as a "third brain" during pregnancy. Both adipose tissue and placenta express many proinflammatory cytokines; obesity and pregnancy are states of low-grade inflammation. Both obesity and pregnancy are also states of insulin resistance, and maternal obesity is associated with fetal insulin resistance. We argue that obesity during pregnancy leads to sustained and inappropriate activation of normally adaptive regulatory circuits due in part to competing and conflicting signaling from adipose tissue and placenta. This results in allostatic load, leading to the eventual break down of regulatory mechanisms. The result is impaired metabolic function of the mother, and altered development of metabolic systems and potentially altered neural appetite circuits for the offspring.
Collapse
Affiliation(s)
- Michael L Power
- Department of Research, American College of Obstetricians and Gynecologists, 409 12th St SW, Washington, DC 20024, United States.
| | | |
Collapse
|
25
|
Petronella N, Drouin G. Gene conversions in the growth hormone gene family of primates: stronger homogenizing effects in the Hominidae lineage. Genomics 2011; 98:173-81. [PMID: 21683133 DOI: 10.1016/j.ygeno.2011.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 11/25/2022]
Abstract
In humans, the growth hormone/chorionic somatomammotropin gene family is composed of five highly similar genes. We characterized the gene conversions that occurred between the growth hormone genes of 11 primate species. We detected 48 conversions using GENECONV and others were only detected using phylogenetic analyses. Gene conversions were detected in all species analyzed, their average size (±standard deviation) is 197.8±230.4 nucleotides, the size of the conversions is correlated with sequence similarity and converted regions are significantly more GC-rich than non-converted regions. Gene conversions have a stronger homogenizing effect in Hominidae genes than in other primate species. They are also less frequent in conserved gene regions and towards functionally important genes. This suggests that the high degree of sequence similarity observed between the growth hormone genes of primate species is a consequence of frequent gene conversions in gene regions which are under little selective constraints.
Collapse
Affiliation(s)
- Nicholas Petronella
- Département de biologie et Centre de recherche avancée en génomique environnementale, Université d'Ottawa, Ottawa, Ontario, Canada, K1N 6N5
| | | |
Collapse
|
26
|
Abstract
Pituitary tumors, usually adenomas, account for about 10-15% of all intracranial tumors. Their treatment, which includes surgery, medicine or radiotherapy, either isolated or in combination, aims to halt tumor growth or achieve tumor shrinkage, as well as control hormone hypersecretion or ensure hormone replacement. Such approaches have made pregnancy possible for women with pituitary adenomas. Medical therapy with dopamine agonists is the treatment of choice for most patients with prolactinomas, with surgery reserved for individuals resistant to drugs. On the other hand, surgery before conception is indicated as a first-line approach in patients with acromegaly, Cushing disease or clinically nonfunctioning pituitary macroadenomas. In these patient populations, medical therapy with somatostatin analogues (acromegaly) or drugs that target the adrenal glands, such as metyrapone and ketoconazole (Cushing disease), should be reserved for those in whom surgery is unsuccessful or contraindicated.
Collapse
Affiliation(s)
- Marcello D Bronstein
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clinicas, University of São Paulo Medical School, Avenida 9 de Julho 3858, 01406-100 São Paulo, SP, Brazil.
| | | | | |
Collapse
|
27
|
Sagazio A, Shohreh R, Salvatori R. Effects of GH deficiency and GH replacement on inter-male aggressiveness in mice. Growth Horm IGF Res 2011; 21:76-80. [PMID: 21277816 DOI: 10.1016/j.ghir.2011.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 12/29/2010] [Accepted: 01/11/2011] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Growth hormone (GH) has been suggested to influence aggressive behavior in several species, but no data are presently available in GH-deficient (GHD) animals. The aim of this study was to elucidate the effects of GHD on aggressive behavior in a mouse model of isolated GHD due to removal of the GHRH gene (GHRH knock out, GHRHKO), and to evaluate the effects of GH replacement. DESIGN We studied two groups of adult male mice: Ten GH-sufficient animals heterozygous for GHRHKO allele (HTZ), and 30 GHRHKO animals. Behavior was measured by scoring several aggression parameters after isolation, when the animal was challenged against an intruder both in neutral and home cage. Animals were then re-studied after the GHRHKO mice were left untreated (control, Ctrl), or were treated for 2 weeks with daily subcutaneous recombinant GH or with vehicle (Veh). Blood samples were collected before and after GH or Veh treatment, and assayed for serum IGF-I and testosterone. RESULTS The GHRHKO mice showed significantly reduced aggressiveness compared to HTZ animals. GH (but not Veh) administration normalized isolation-induced aggressive behavior in GHRHKO mice, despite lack of full serum IGF-I normalization. No difference was noted in serum testosterone levels among all groups at any of the time points. CONCLUSIONS These findings show that GHD reduces aggressive behavior in GHRHKO mice, that GH replacement normalizes aggressiveness, and that this behavior change is not related to an increase in serum testosterone.
Collapse
Affiliation(s)
- Alessia Sagazio
- Department of Medicine, Division of Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
28
|
Koster MPHW, Heetkamp KM, Pennings JLA, de Vries A, Visser GHA, Schielen PCJI. Down syndrome screening: imagining the screening test of the future. Expert Rev Mol Diagn 2010; 10:445-57. [PMID: 20465499 DOI: 10.1586/erm.10.32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Prenatal screening for Down syndrome (DS) is performed by risk calculation based on biochemical and biometric parameters. This way, approximately 75-85% of all DS cases can be detected. A way to improve detection rates is to search for new screening markers. Since the majority of biomarkers used in current DS screening are predominantly produced by the placenta, and the presence of an extra chromosome (as in DS) complicates placental development and function, it is plausible to assume that new potential screening markers may also originate from the placenta. Any alterations in these markers can be attributed to abnormal placental development and function. This article focuses on normal early placental development and function compared with that in DS pregnancies. Using this knowledge, we reason towards candidate biomarkers that may be useful in screening for DS.
Collapse
Affiliation(s)
- M P H Wendy Koster
- National Institute for Public Health and the Environment (RIVM), PO Box 1, NL-3720BA Bilthoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
29
|
Männik J, Vaas P, Rull K, Teesalu P, Rebane T, Laan M. Differential expression profile of growth hormone/chorionic somatomammotropin genes in placenta of small- and large-for-gestational-age newborns. J Clin Endocrinol Metab 2010; 95:2433-42. [PMID: 20233782 PMCID: PMC2869554 DOI: 10.1210/jc.2010-0023] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 02/18/2010] [Indexed: 11/19/2022]
Abstract
CONTEXT The human growth hormone/chorionic somatomammotropin (hGH/CSH) locus at 17q22-24, consisting of one pituitary-expressed postnatal (GH1) and four placenta-expressed genes (GH2, CSH1, CSH2, and CSHL1), is implicated in regulation of postnatal and intrauterine growth. A positive correlation has been reported between the offspring's birth weight and serum placental GH (coded by GH2) and placental lactogen (coded by CSH1, CSH2) levels in pregnant women. OBJECTIVE The objective of the study was the investigation of the hypothesis that the mRNA expression profile of placental hGH/CSH genes contributes to the determination of birth weight. DESIGN AND SUBJECTS We developed a sensitive, fluorescent-labeled semiquantitative RT-PCR assay coupled with gene-specific restriction analysis, capable of distinguishing alternative splice-products of individual placental hGH/CSH genes and quantification of their relative expression levels. The detailed profile of alternative transcripts of GH2, CSH1, CSH2, and CSHL1 genes in placenta from uncomplicated term pregnancies of the REPROMETA sample collection was addressed in association with the birth weight of newborns, grouped as appropriate for gestational age (AGA; n = 23), small for gestational age (SGA; n = 15), and large for gestational age (LGA; n = 34). RESULTS The majority of pregnancies with SGA newborn showed down-regulation of the entire hGH/CSH cluster in placenta, whereas in the case of LGA, the expression of CSH1-1, CSH2-1, and CSHL1-4 mRNA transcripts in placenta was significantly increased compared with AGA newborns (P < 0.0001, P = 0.009, P = 0.002, respectively). CONCLUSION The expression profile of placental hGH/CSH genes in placenta is altered in pregnancies accompanied by SGA and LGA compared with AGA newborns, and thus, it may directly affect the circulating fetal and maternal placental GH and placental lactogen levels.
Collapse
Affiliation(s)
- Jaana Männik
- Institute of Molecular and Cell Biology, University of Tartu, Riia Street 23, 51010 Tartu, Estonia.
| | | | | | | | | | | |
Collapse
|
30
|
Rieck S, Kaestner KH. Expansion of beta-cell mass in response to pregnancy. Trends Endocrinol Metab 2010; 21:151-8. [PMID: 20015659 PMCID: PMC3627215 DOI: 10.1016/j.tem.2009.11.001] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 12/22/2022]
Abstract
Inadequate beta-cell mass can lead to insulin insufficiency and diabetes. During times of prolonged metabolic demand for insulin, the endocrine pancreas can respond by increasing beta-cell mass, both by increasing cell size and by changing the balance between beta-cell proliferation and apoptosis. In this paper, we review recent advances in our understanding of the mechanisms that control the adaptive expansion of beta-cell mass, focusing on the islet's response to pregnancy, a physiological state of insulin resistance. Functional characterization of factors controlling both beta-cell proliferation and survival might not only lead to the development of successful therapeutic strategies to enhance the response of the beta-cell to increased metabolic loads, but also improve islet transplantation regimens.
Collapse
Affiliation(s)
- Sebastian Rieck
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
31
|
Imran SA, Pelkey M, Clarke DB, Clayton D, Trainer P, Ezzat S. Spuriously Elevated Serum IGF-1 in Adult Individuals with Delayed Puberty: A Diagnostic Pitfall. Int J Endocrinol 2010; 2010:370692. [PMID: 20862389 PMCID: PMC2939391 DOI: 10.1155/2010/370692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 06/09/2010] [Accepted: 08/09/2010] [Indexed: 11/17/2022] Open
Abstract
Serum insulin-like growth factor-1 (IGF-1) is a sensitive marker of growth hormone (GH) activity. The levels of IGF-1 vary widely, peaking during puberty and declining with advancing age. During adolescence, serum IGF-1 levels tend to correlate better with pubertal stage rather than chronological age. Here we discuss two cases of delayed puberty, both in their 20s, who presented with high serum IGF-1 but no clinical or biochemical evidence of hypersomatotropism as confirmed by appropriate GH response to an oral glucose challenge. Both individuals achieved full pubertal status with testosterone replacement therapy and their serum IGF-1 levels settled into normal age-specific range. We suggest that in chronologically adult individuals with delayed puberty, serum IGF-1 should not be interpreted on the basis of age-specific normal values but rather on their pubertal status. Furthermore, in the absence of another cause of elevated IGF-1, the expectation is that IGF-1 levels will decline towards age-normative ranges following androgen replacement therapy.
Collapse
Affiliation(s)
- Syed Ali Imran
- Division of Endocrinology & Metabolism, Dalhousie University, Halifax, NS, Canada B3H 3J5
- Divisions of Endocrinology & Metabolism & Neurosurgery, Halifax Neuropituitary Program, 7th Floor N, VG Site, 1278 Tower Road, Halifax, NS, Canada B3H 2Y9
- *Syed Ali Imran:
| | - Michael Pelkey
- Division of Endocrinology & Metabolism, Dalhousie University, Halifax, NS, Canada B3H 3J5
| | - David B. Clarke
- Division of Endocrinology & Metabolism, Dalhousie University, Halifax, NS, Canada B3H 3J5
- Divisions of Endocrinology & Metabolism & Neurosurgery, Halifax Neuropituitary Program, 7th Floor N, VG Site, 1278 Tower Road, Halifax, NS, Canada B3H 2Y9
| | - Dale Clayton
- Division of Endocrinology & Metabolism, Dalhousie University, Halifax, NS, Canada B3H 3J5
| | - Peter Trainer
- Division of Endocrinology, The University of Manchester, Manchester M13 9PL, UK
| | - Shereen Ezzat
- Division of Endocrinology, University of Toronto, Toronto, ON, Canada M5S 1A1
| |
Collapse
|
32
|
Sedman L, Padhukasahasram B, Kelgo P, Laan M. Complex signatures of locus-specific selective pressures and gene conversion on Human Growth Hormone/Chorionic Somatomammotropin genes. Hum Mutat 2008; 29:1181-93. [PMID: 18473352 PMCID: PMC2599906 DOI: 10.1002/humu.20767] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reduced birth weight and slow neonatal growth are risks correlated with the development of common diseases in adulthood. The Human Growth Hormone/Chorionic Somatomammotropin (hGH/CSH) gene cluster (48 kb) at 17q22-24, consisting of one pituitary-expressed postnatal (GH1) and four placental genes (GH2, CSH1, CSH2, and CSHL1) may contribute to common variation in intrauterine and infant growth, and also to the regulation of feto-maternal and adult glucose metabolism. In contrast to GH1, there are limited genetic data on the hGH/CSH genes expressed in utero. We report the first survey of sequence variation encompassing all five hGH/CSH genes. Resequencing identified 113 SNPs/indels (ss86217675-ss86217787 in dbSNP) including 66 novel variants, and revealed remarkable differences in diversity patterns among the homologous duplicated genes as well as between the study populations of European (Estonians), Asian (Han Chinese), and African (Mandenkalu) ancestries. A dominant feature of the hGH/CSH region is hyperactive gene conversion, with the rate exceeding tens to hundreds of times the rate of reciprocal crossing-over and resulting in near absence of linkage disequilibrium. The initiation of gene conversion seems to be uniformly distributed because the data do not predict any recombination hotspots. Signatures of different selective constraints acting on each gene indicate functional specification of the hGH/CSH genes. Most strikingly, the GH2 coding for placental growth hormone shows strong intercontinental diversification (F(ST)=0.41-0.91; p<10(-6)) indicative of balancing selection, whereas the flanking CSH1 exhibits low population differentiation (F(ST)=0.03-0.09), low diversity (non-Africans, pi=8-9 x 10(-5); Africans, pi=8.2 x 10(-4)), and one dominant haplotype worldwide, consistent with purifying selection. The results imply that the success of an association study targeted to duplicated genes may be enhanced by prior resequencing of the study population in order to determine polymorphism distribution and relevant tag-SNPs.
Collapse
Affiliation(s)
- Laura Sedman
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | | | | |
Collapse
|
33
|
Abstract
Metabolism of steroids and drugs in rodents is sexually differentiated. The reason for this turned out to be the sexually differentiated growth hormone (GH) secretory pattern regulating the expression of a number of hepatic cytochrome P-450 genes. Although not fully resolved, it is clear that several signaling pathways and transcription factors are involved in mediating the effects of GH. It may be argued that such a well-controlled physiological system should have an important biological role and we speculate that the demands of a robust hepatic steroid metabolism during pregnancy has led to the development of this sexually differentiated hypothalamo-pituitary-liver axis.
Collapse
Affiliation(s)
- Agneta Mode
- Department of Medical Nutrition, Karolinska Institute, Novum, Huddinge, Sweden.
| | | |
Collapse
|
34
|
Stenqvist AC, Chen T, Hedlund M, Dimova T, Nagaeva O, Kjellberg L, Innala E, Mincheva-Nilsson L. ORIGINAL ARTICLE: An Efficient Optimized Method for Isolation of Villous Trophoblast Cells from Human Early Pregnancy Placenta Suitable for Functional and Molecular Studies. Am J Reprod Immunol 2008; 60:33-42. [DOI: 10.1111/j.1600-0897.2008.00588.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
35
|
Zeck W, Widberg C, Maylin E, Desoye G, Lang U, McIntyre D, Prins J, Russell A. Regulation of placental growth hormone secretion in a human trophoblast model--the effects of hormones and adipokines. Pediatr Res 2008; 63:353-7. [PMID: 18356738 DOI: 10.1203/01.pdr.0000304935.19183.07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Placental growth hormone (PGH) is secreted from the human placental syncytiotrophoblast into the maternal circulation. PGH levels in pregnant women correlate with the birth weight of their offspring. We hypothesized that metabolic regulators may alter PGH secretion. BeWo cells as human trophoblast models were treated for 24, 48, and 72 h with insulin, insulin-like growth factor (IGF)-1, cortisol, ghrelin, leptin and visfatin. Cyclic-adenosinmonophosphate treatment served as positive control. PGH concentrations in culture media were measured. Insulin reduced (p < 0.008; analysis of variance) PGH secretion from BeWo cells after 72 h. No effect was found when treating cells with IGF-1. Cortisol reduced PGH secretion after 48 h (p < 0.00118; analysis of variance) and 72 h (p < 0.015). Leptin and ghrelin both suppressed (p < 0.027 and p < 0.017, paired t test) whereas visfatin increased (p < 0.014, paired t test) PGH secretion at 72 h. Cyclic adenosinmonophosphate increased (p < 0.003) PGH secretion at 72 h. Our results indicate that in vitro PGH secretion by BeWo cells is regulated by hormonal factors and adipokines. We speculate on the existence of a maternal-placental regulatory loop, in which elevated insulin and leptin levels might down-regulate PGH secretion.
Collapse
Affiliation(s)
- Willibald Zeck
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Steiermark, 8036, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Mittal P, Hassan SS, Espinoza J, Kusanovic JP, Edwin S, Gotsch F, Erez O, Than NG, Mazaki-Tovi S, Romero R. The effect of gestational age and labor on placental growth hormone in amniotic fluid. Growth Horm IGF Res 2008; 18:174-179. [PMID: 17910928 PMCID: PMC2756214 DOI: 10.1016/j.ghir.2007.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 08/13/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Placental growth hormone (PGH) is produced by trophoblast. This hormone becomes detectable in maternal serum during the first trimester of pregnancy. Its concentration increases as term approaches and becomes undetectable within one hour of delivery. PGH has important biological properties, including somatogenic (growth promotion), lactogenic, and lipolytic activity. Recently, PGH has been detected in amniotic fluid (AF) of midtrimester pregnancies. The purpose of this study was to determine whether PGH concentrations in AF change with advancing gestational age and in labor at term. DESIGN AF was assayed for PGH concentrations in samples obtained from patients undergoing genetic amniocentesis between 14 and 18 weeks of gestation (n=67), normal patients at term not in labor (n=24), and pregnant women at term in labor (n=51). PGH concentrations were determined by ELISA. Non-parametric statistics were used for analysis. RESULTS (1) PGH was detected in all AF samples; (2) patients in the midtrimester had a higher median concentration of PGH in AF than those at term (midtrimester: median: 3140.5 pg/ml; range: 1124.2-13886.5 vs. term: median: 2021.1pg/ml; range: 181.6-8640.8; p<0.01); (3) there was no difference in the median concentration of PGH between women at term, not in labor, and those in labor (term not in labor: median: 2113.4pg/ml; range: 449.3-8640.8 vs. term in labor: median: 2004.1pg/ml; range: 181.6-8531.5; p=0.73). CONCLUSIONS (1) PGH is detectable in AF at both mid- and third trimesters; (2) the median AF concentration of PGH is significantly lower at term when compared to the second trimester; (3) labor at term is not associated with changes in the AF concentration of PGH. The role of this unique placental hormone now found in the fetal compartment requires further investigation.
Collapse
Affiliation(s)
- P Mittal
- Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mittal P, Espinoza J, Hassan SS, Kusanovic JP, Edwin SS, Nien JK, Gotsch F, Than NG, Erez O, Mazaki-Tovi S, Romero R. Placental growth hormone is increased in the maternal and fetal serum of patients with preeclampsia. J Matern Fetal Neonatal Med 2008; 20:651-9. [PMID: 17701665 PMCID: PMC2276338 DOI: 10.1080/14767050701463571] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Placental growth hormone (PGH) is a pregnancy-specific protein produced by syncytiotrophoblast and extravillous cytotrophoblast. No other cells have been reported to synthesize PGH Maternal. PGH Serum concentration increases with advancing gestational age, while quickly decreasing after delivery of the placenta. The biological properties of PGH include somatogenic, lactogenic, and lipolytic functions. The purpose of this study was to determine whether the maternal serum concentrations of PGH change in women with preeclampsia (PE), women with PE who deliver a small for gestational age neonate (PE + SGA), and those with SGA alone. STUDY DESIGN This cross-sectional study included maternal serum from normal pregnant women (n = 61), patients with severe PE (n = 48), PE + SGA (n = 30), and SGA alone (n = 41). Fetal cord blood from uncomplicated pregnancies (n = 16) and PE (n = 16) was also analyzed. PGH concentrations were measured by ELISA. Non-parametric statistics were used for analysis. RESULTS (1) Women with severe PE had a median serum concentration of PGH higher than normal pregnant women (PE: median 23,076 pg/mL (3473-94 256) vs. normal pregnancy: median 12 157 pg/mL (2617-34 016); p < 0.05), pregnant women who delivered an SGA neonate (SGA: median 10 206 pg/mL (1816-34 705); p < 0.05), as well as pregnant patients with PE and SGA (PE + SGA: median 11 027 pg/mL (1232-61 702); p < 0.05). (2) No significant differences were observed in the median maternal serum concentration of PGH among pregnant women with PE and SGA, SGA alone, and normal pregnancy (p > 0.05). (3) Compared to those of the control group, the median umbilical serum concentration of PGH was significantly higher in newborns of preeclamptic women (PE: median 356.1 pg/mL (72.6-20 946), normal pregnancy: median 128.5 pg/mL (21.6-255.9); p < 0.01). (4) PGH was detected in all samples of cord blood. CONCLUSIONS (1) PE is associated with higher median concentrations of PGH in both the maternal and fetal circulation compared to normal pregnancy. (2) Patients with PE + SGA had lower maternal serum concentrations of PGH than preeclamptic patients without SGA. (3) Contrary to previous findings, PGH was detectable in the fetal circulation. The observations reported herein are novel and suggest that PGH may play a role in the mechanisms of disease in preeclampsia and fetal growth restriction.
Collapse
Affiliation(s)
- Pooja Mittal
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jimmy Espinoza
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Samuel S. Edwin
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Jyh Kae Nien
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Shali Mazaki-Tovi
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
38
|
Kimura AP, Sizova D, Handwerger S, Cooke NE, Liebhaber SA. Epigenetic activation of the human growth hormone gene cluster during placental cytotrophoblast differentiation. Mol Cell Biol 2007; 27:6555-68. [PMID: 17636034 PMCID: PMC2099626 DOI: 10.1128/mcb.00273-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hGH cluster contains a single human pituitary growth hormone gene (hGH-N) and four placenta-specific paralogs. Activation of the cluster in both tissues depends on 5' remote regulatory elements. The pituitary-specific locus control elements DNase I-hypersensitive site I (HSI) and HSII, located 14.5 kb 5' of the cluster (position -14.5), establish a continuous domain of histone acetylation that extends to and activates hGH-N in the pituitary gland. In contrast, histone modifications in placental chromatin are restricted to the more 5'-remote HSV-HSIII region (kb -28 to -32) and to the placentally expressed genes in the cluster, with minimal modification between these two regions. These data predict distinct modes of hGH cluster gene activation in the pituitary and placenta. Here we used cell culture models to track structural changes at the hGH locus through placental-gene activation. The data revealed that this process was initiated in primary cytotrophoblasts by histone H3K4 di- and trimethylation and H4 acetylation restricted to HSV and to the individual placental-gene repeat (PGR) units within the cluster. Later stages of transcriptional induction were accompanied by enhancement and extension of these modifications and by robust H3 acetylation at HSV, at HSIII, and throughout the placental-gene regions. These data suggested that elements restricted to HSIII-HSV regions and each individual PGR might be sufficient for activation of the hCS genes. This model was tested by comparing hCS transgene expression in the placentas of mouse embryos carrying a full hGH cluster to that in placentas in which the HSIII-HSV region was directly linked to the individual hCS-A PGR unit. The findings indicate that the HSIII-HSV region and the PGR units, although targeted for initial chromatin structural modifications, are insufficient to activate gene expression and that this process is dependent on additional, as-yet-unidentified chromatin determinants.
Collapse
Affiliation(s)
- Atsushi P Kimura
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
39
|
Lomenick JP, Hubert MA, Handwerger S. Transcription factor FOXF1 regulates growth hormone variant gene expression. Am J Physiol Endocrinol Metab 2006; 291:E947-51. [PMID: 16772323 DOI: 10.1152/ajpendo.00128.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Deletion analysis of the human growth hormone variant (GHV) promoter in transient transfection studies in BeWo choriocarcinoma and HepG2 cells indicated that the region extending from nt -158/+57 retained full transcriptional activity. DNase I footprint analysis of the fragment revealed a protected region at nt -82/-77, which is in a putative FOXF1/FOXF2 binding site. Supershift assays using an antiserum to human FOXF1 demonstrated that the protected region binds FOXF1. Overexpression of FOXF1 in BeWo and HepG2 cells induced the GHV promoter, whereas overexpression of FOXF2 was without effect. Mutagenesis of the FOXF1/FOXF2 site reduced basal promoter activity by 50-60% and markedly attenuated transactivation of the promoter by FOXF1. These studies indicate that FOXF1 induces GHV expression by interaction with a FOXF1/FOXF2 cis-element in the proximal promoter.
Collapse
Affiliation(s)
- Jefferson P Lomenick
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | | | | |
Collapse
|
40
|
Papadopoulou E, Sifakis S, Giahnakis E, Fragouli Y, Karkavitsas N, Koumantakis E, Kalmanti M. Increased human placental growth hormone at midtrimester pregnancies may be an index of intrauterine growth retardation related to preeclampsia. Growth Horm IGF Res 2006; 16:290-296. [PMID: 16996762 DOI: 10.1016/j.ghir.2006.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 06/10/2006] [Accepted: 06/29/2006] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate the relationship between maternal serum and amniotic fluid levels of human Placental Growth Hormone (hPGH) with the fetal intrauterine growth retardation (IUGR) related to preeclampsia. DESIGN We analyzed samples in pairs of serum and amniotic fluid retrospectively from 25 women, who manifested preeclampsia and IUGR in the late second or the third trimester of gestation. The samples were obtained at 16-22 weeks' gestation during amniocentesis for fetal karyotyping. At this time, there was no clinical or sonographic evidence of preeclampsia or IUGR, respectively. Sixty-two serum samples were used as controls which were obtained at 16-22 weeks' gestation from women with singleton, uncomplicated pregnancies, with normal outcome, and appropriate for gestational age neonatal birth weight. Forty-seven amniotic fluid samples were also used as controls which were obtained at 16-22 weeks' gestation from the women that were included in the control group who underwent an amniocentesis. hPGH levels were measured by a solid phase immunoradiometric assay. RESULTS The mean hPGH values in the serum and the amniotic fluid of the IUGR related to preeclampsia affected pregnancies were significantly higher (P<0.05) than those of the normal pregnancies at 16-22 weeks' gestation: mean+/-SD in the serum was 13.16+/-10.52 ng/ml vs. 4.39+/-2.23 ng/ml; mean+/-SD in the amniotic fluid 2.49+/-1.6 ng/ml vs. 0.82+/-0.67 ng/ml. CONCLUSION hPGH levels in maternal serum and amniotic fluid were found to be higher at 16-22 weeks' gestation in pregnancies that will be complicated subsequently by IUGR related to preeclampsia. Our findings suggest that the evaluation of the changes of hPGH levels at midtrimester should be further investigated for the possibility to provide a potential predictive index of IUGR and preeclampsia.
Collapse
Affiliation(s)
- E Papadopoulou
- Department of Pediatrics, University of Crete, 71201 Heraklion, Greece.
| | | | | | | | | | | | | |
Collapse
|
41
|
Mondal M, Rajkhowa C, Prakash BS. Twenty-four-hour rhythmicity of growth hormone in captive adult mithuns (Bos frontalis). BIOL RHYTHM RES 2005. [DOI: 10.1080/09291010500101884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Pidoux G, Guibourdenche J, Frendo JL, Gerbaud P, Conti M, Luton D, Muller F, Evain-Brion D. Impact of trisomy 21 on human trophoblast behaviour and hormonal function. Placenta 2004; 25 Suppl A:S79-84. [PMID: 15033312 DOI: 10.1016/j.placenta.2004.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 01/07/2004] [Accepted: 01/07/2004] [Indexed: 11/15/2022]
Abstract
Although trisomy 21 (T21) is the most frequent genetic abnormality and some maternal serum markers for this fetoplacental aneuploidy are of placental origin, little is known of its impact on placental development. We therefore studied the influence of T21 on trophoblast behaviour. Using cultured cells from 46 human T21 pregnancies, we confirmed the defective morphological and functional differentiation of the villous cytotrophoblast in this setting; indeed, villous cytotrophoblast cells aggregate normally but fuse inefficiently to form the syncytiotrophoblast. This is in part related to the abnormal oxidative status of the T21 cytotrophoblast, characterized by a gene dosage-related increase in SOD-1 (copper-zinc superoxide dismutase) expression and activity. This was associated with a significant (P < 0.01) increase in catalase activity but no significant change in glutathione peroxidase activity. On the basis of these in vitro findings and studies of large panels of maternal serum, we propose a pathophysiological explanation for trisomy 21 maternal serum markers of placental origin.
Collapse
Affiliation(s)
- G Pidoux
- INSERM U427, Faculté des Sciences Pharmaceutiques et Biologiques, 4 Avenue de l'Observatoire, 75270 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Pidoux G, Gerbaud P, Laurendeau I, Guibourdenche J, Bertin G, Vidaud M, Evain-Brion D, Frendo JL. Large Variability of Trophoblast Gene Expression Within and Between Human Normal Term Placentae. Placenta 2004; 25:469-73. [PMID: 15081642 DOI: 10.1016/j.placenta.2003.10.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2003] [Revised: 10/22/2003] [Accepted: 10/24/2003] [Indexed: 10/26/2022]
Abstract
Human placenta extracts are widely used in clinical and fundamental research, particularly to study the hormonal and exchange functions of the placenta. However, very little is known about the distribution of the main hormone mRNAs in the placenta as a whole. Total placenta extracts are heterogeneous in their cellular components, as they contain material of both fetal and maternal origin, and in their structure. Results vary greatly depending upon the location of the biopsy and the number of biopsies performed. We used real-time quantitative RT-PCR to determine whether transcripts corresponding to the main hormones secreted by the human placenta (e.g. hCG, HPL and PGH) are equally distributed within and between term placentae. We also measured cytokeratin 7 transcripts, which are specifically expressed in the trophoblast, and transcripts corresponding to nuclear receptors PPARgamma and RXRalpha. A comparison of the results obtained with 12 different samples from each of four normal term placentae revealed that the amounts of transcripts differ considerably within and between each placenta. This emphasizes the need to study large numbers of samples when looking for significant differences in gene expression.
Collapse
Affiliation(s)
- G Pidoux
- Institut National de la Santé et de la Recherche Médicale, INSERM U427, Faculté des Sciences Pharmaceutiques et Biologiques, Université René Descartes, 4, avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Torben Laursen
- Department of Pharmacology, The Bartholin Building, University of Aarhus, and Medical Department M (Endocrinology & Diabetes), Aarhus University Hospital, Kommunehospitalet, Aarhus 8000, Denmark.
| |
Collapse
|
45
|
Successful Twin Pregnancy in Panhypopituitarism Caused by Suprasellar Germinoma. Obstet Gynecol 2003. [DOI: 10.1097/00006250-200311001-00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Abstract
The placenta is a unique, autonomous and transient organ. It ensures maternal-fetal exchanges and is also involved in maternal tolerance of feto-paternal antigens. The human placenta is characterized by the major invasion of the trophoblast, which comes in contact with the maternal blood, and by the intensity and the specificity of its endocrine functions. Placental hormones are required for the establishment and maintenance of pregnancy, adaptation of the maternal organism to pregnancy, fetal growth and well being, and development of the mechanisms involved in parturition. The endocrine tissue of the placenta is the syncytiotrophoblast, which covers the chorionic villi, and arises from the fusion of the cytotrophoblasts. In this review we will summarize the particulars of human syncytiotrophoblast development and endocrine functions.
Collapse
Affiliation(s)
- Danièle Evain-Brion
- INSERM U 427, Faculté des Sciences pharmaceutiques et biologiques, 4 Avenue de l'Observatoire, 75006, Paris, France.
| | | |
Collapse
|
47
|
Xu B, Lipworth L, Wide L, Wuu J, Yu SZ, Lagiou P, Kuper H, Hankinson SE, Carlström K, Adami HO, Trichopoulos D, Hsieh CC. Maternal and gestational correlates of pregnancy prolactin and growth hormone in USA and China. Eur J Cancer Prev 2003; 12:35-42. [PMID: 12548108 DOI: 10.1097/00008469-200302000-00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The objective of this study is to determine correlates of prolactin and growth hormone levels among pregnant women in the USA and China. We studied 304 pregnant Caucasian and 335 pregnant Chinese women. Levels of prolactin and growth hormone were measured at weeks 16 and 27 of gestation, and correlated with maternal, gestational and perinatal characteristics. Both growth hormone and, to a lesser extent, prolactin were inversely associated with pregnancy weight and body mass index, history of a previous live birth and newborn size, whereas educated women had higher levels of both hormones. Growth hormone levels were lower in women who gained more weight, smoked and had nausea and vomiting during pregnancy, whereas prolactin increased with longer total gestation. We found robust associations between maternal and newborn characteristics on the one hand and prolactin and growth hormone during pregnancy on the other.
Collapse
Affiliation(s)
- B Xu
- Department of Epidemiology, School of Public Health, Fundan University (formerly Shanghai Medical University), Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tarrade A, Goffin F, Munaut C, Lai-Kuen R, Tricottet V, Foidart JM, Vidaud M, Frankenne F, Evain-Brion D. Effect of matrigel on human extravillous trophoblasts differentiation: modulation of protease pattern gene expression. Biol Reprod 2002; 67:1628-37. [PMID: 12390897 DOI: 10.1095/biolreprod.101.001925] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human placenta is characterized by extensive trophoblast invasion of the uterus. Indeed, extravillous cytotrophoblast cells invade the decidua and the upper third of uterine spiral arteries in the myometrium. This invasion is reflected in situ by the expression of specific markers. In order to study this invasion process, we have established an in vitro culture model of human extravillous trophoblast isolated from first trimester chorionic villi. The aim of this study was to investigate the effect of a composite matrix, the Matrigel required for the culture of this homogenous population of extravillous trophoblasts (EVCT), on their in vitro differentiation. The effect of Matrigel was studied on different markers characterized by immunocytochemistry and by real-time polymerase chain reaction assay of transcripts. In addition, the expression of 12 different matrix metalloproteases and their inhibitors were investigated. We show that human extravillous cytotrophoblasts acquire an invasive phenotype on Matrigel associated with a specific pattern of protease gene expression. This in vitro model will be of interest to study the cellular mechanisms involved in abnormal trophoblast invasion observed in poor placentation and preeclampsia.
Collapse
Affiliation(s)
- Anne Tarrade
- INSERM 427, Laboratoire de Microscopie Electronique, Laboratoire de Génétique Moléculaire (MV), Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hormones placentaires humaines. NUTR CLIN METAB 2002. [DOI: 10.1016/s0985-0562(02)00156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Abstract
Studies across several species, particularly the mouse, show that growth hormone (GH, somatotrophin) is an important determinant of litter size, and to a lesser extent, of birth length. GH acts at all stages of development, from ovulation through preimplantation development to the late fetus, with actions on both embryo/fetus and mother contributing to successful fetal development. The fact that these are not more obvious in vivo is likely a result of redundancy of cytokine hormone action, particularly in relation to prolactin, which shares common actions and receptor locations with GH.
Collapse
Affiliation(s)
- M J Waters
- School of Biomedical Sciences and Institute for Molecular Bioscience, University of Queensland, 4072, St Lucia, Australia.
| | | |
Collapse
|