1
|
Brookins E, Serrano SE, Hyder Z, Yacu GS, Finer G, Thomson BR. Non-endothelial expression of endomucin in the mouse and human choroid. Exp Eye Res 2024; 247:110054. [PMID: 39153592 PMCID: PMC11440475 DOI: 10.1016/j.exer.2024.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Endomucin (EMCN) is a 261 amino acid transmembrane glycoprotein that is highly expressed by venous and capillary endothelial cells where it plays a role in VEGF-mediated angiogenesis and regulation of immune cell recruitment. However, it is better known as a histological marker, where it has become widespread due to the commercial availability of high-quality antibodies that work under a wide range of conditions and in many tissues. The specificity of EMCN staining has been well-validated in retinal vessels, but while it has been used extensively as a marker in other tissues of the eye, including the choroid, the pattern of expression has not been described in detail. Here, in addition to endothelial expression in the choriocapillaris and deeper vascular layers, we characterize a population of EMCN-positive perivascular cells in the mouse choroid that did not co-localize with cells expressing other endothelial markers such as PECAM1 or PODXL. To confirm that these cells represented a new population of EMCN-expressing stromal cells, we then performed single cell RNA sequencing in choroids from adult wild-type mice. Analysis of this new dataset confirmed that, in addition to endothelial cells, Emcn mRNA expression was present in choroidal pericytes and a subset of fibroblasts, but not vascular smooth muscle cells. Besides Emcn, no known endothelial gene expression was detected in these cell populations, confirming that they did not represent endothelial-stromal doublets, a common technical artifact in single cell RNA seq datasets. Instead, choroidal Emcn-expressing fibroblasts exhibited high levels of chemokine and interferon signaling genes, while Emcn-negative fibroblasts were enriched in genes encoding extracellular matrix proteins. Emcn expressing fibroblasts were also detected in published datasets from mouse brain and human choroid, suggesting that stromal Emcn expression was not unique to the choroid and was evolutionarily conserved. Together, these findings highlight unique fibroblast and pericyte populations in the choroid and provide new context for the role of EMCN in the eye.
Collapse
Affiliation(s)
- Elysse Brookins
- Department of Ophthalmology and Feinberg Cardiovascular and Renal Research Inst. Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sophia E Serrano
- Department of Ophthalmology and Feinberg Cardiovascular and Renal Research Inst. Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zain Hyder
- Department of Ophthalmology and Feinberg Cardiovascular and Renal Research Inst. Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - George S Yacu
- Lurie Children's Hospital Department of Nephrology and Stanley Manne Children's Research Inst., Chicago, IL, USA
| | - Gal Finer
- Lurie Children's Hospital Department of Nephrology and Stanley Manne Children's Research Inst., Chicago, IL, USA
| | - Benjamin R Thomson
- Department of Ophthalmology and Feinberg Cardiovascular and Renal Research Inst. Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
2
|
Li X, Lv Q, Liu P, Han G, Yu S. Understanding of Endomucin: a Multifaceted Glycoprotein Functionality in Vascular Inflammatory-Related Diseases, Bone Diseases and Cancers. Adv Biol (Weinh) 2024; 8:e2400061. [PMID: 38955667 DOI: 10.1002/adbi.202400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Endomucin (MUC14), encoded by EMCN gene, is an O-glycosylated transmembrane mucin that is mainly found in venous endothelial cells (ECs) and highly expressed in type H vessels of bone tissue. Its main biological functions include promoting endothelial generation and migration through the vascular endothelial growth factor (VEGF) signaling pathway and inhibiting the adhesion of inflammatory cells to ECs. In addition, it induces angiogenesis and promotes bone formation. Due to the excellent functions of Endomucin in the above aspects, it provides a new research target for the treatment of vascular inflammatory-related diseases and bone diseases. Based on the current understanding of its function, the research of Endomucin mainly focuses on the above two diseases. As it is known, the progression of cancer is closely related to angiogenesis. Endomucin recently is found to be differentially expressed in a variety of tumors and correlated with survival rate. The biological role of Endomucin in cancer is opaque. This article introduces the research progress of Endomucin in vascular inflammatory-related diseases and bone diseases, discusses its application value and prospect in the treatment, and collects the latest research situation of Endomucin in tumors, to provide meaningful evidence for expanding the research field of Endomucin.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Qing Lv
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Guiping Han
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Heilongjiang Mental Hospital, Harbin, 150036, China
| |
Collapse
|
3
|
Hu Z, Cano I, Lei F, Liu J, Ramos RB, Gordon H, Paschalis EI, Saint-Geniez M, Ng YSE, D'Amore PA. Deletion of the endothelial glycocalyx component endomucin leads to impaired glomerular structure and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603749. [PMID: 39071302 PMCID: PMC11275787 DOI: 10.1101/2024.07.16.603749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Endomucin (EMCN), an endothelial-specific glycocalyx component, was found to be highly expressed by the endothelium of the renal glomerulus. We reported an anti-inflammatory role of EMCN and its involvement in the regulation of vascular endothelial growth factor (VEGF) activity through modulating VEGF receptor 2 (VEGFR2) endocytosis. The goal of this study is to investigate the phenotypic and functional effects of EMCN deficiency using the first global EMCN knockout mouse model. Methods Global EMCN knockout mice were generated by crossing EMCN-floxed mice with ROSA26-Cre mice. Flow cytometry was employed to analyze infiltrating myeloid cells in the kidneys. The ultrastructure of the glomerular filtration barrier was examined by transmission electron microscopy, while urinary albumin, creatinine, and total protein levels were analyzed from freshly collected urine samples. Expression and localization of EMCN, EGFP, CD45, CD31, CD34, podocin, albumin, and α-smooth muscle actin were examined by immunohistochemistry. Mice were weighed regularly, and their systemic blood pressure was measured using a non-invasive tail-cuff system. Glomerular endothelial cells and podocytes were isolated by fluorescence-activated cell sorting for RNA-seq. Transcriptional profiles were analyzed to identify differentially expressed genes in both endothelium and podocytes, followed by gene ontology analysis of up- and down-regulated genes. Protein levels of EMCN, albumin, and podocin were quantified by Western blot. Results EMCN -/- mice were viable with no gross anatomical defects in kidneys. The EMCN -/- mice exhibited increased infiltration of CD45 + cells, with an increased proportion of Ly6G high Ly6C high myeloid cells and higher VCAM-1 expression. EMCN -/- mice displayed albuminuria with increased albumin in the Bowman's space compared to the EMCN +/+ littermates. Glomeruli in EMCN -/- mice revealed fused and effaced podocyte foot processes and disorganized endothelial fenestrations. We found no significant difference in blood pressure between EMCN knockout mice and their wild-type littermates. RNA-seq of glomerular endothelial cells revealed downregulation of cell-cell adhesion and MAPK/ERK pathways, along with glycocalyx and extracellular matrix remodeling. In podocytes, we observed reduced VEGF signaling and alterations in cytoskeletal organization. Notably, there was a significant decrease in both mRNA and protein levels of podocin, a key component of the slit diaphragm. Conclusion Our study demonstrates a critical role of the endothelial marker EMCN in supporting normal glomerular filtration barrier structure and function by maintaining glomerular endothelial tight junction and homeostasis and podocyte function through endothelial-podocyte crosstalk.
Collapse
|
4
|
Lin Y, Gahn J, Banerjee K, Dobreva G, Singhal M, Dubrac A, Ola R. Role of endothelial PDGFB in arterio-venous malformations pathogenesis. Angiogenesis 2024; 27:193-209. [PMID: 38070064 PMCID: PMC11021264 DOI: 10.1007/s10456-023-09900-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/05/2023] [Indexed: 04/17/2024]
Abstract
Arterial-venous malformations (AVMs) are direct connections between arteries and veins without an intervening capillary bed. Either familial inherited or sporadically occurring, localized pericytes (PCs) drop is among the AVMs' hallmarks. Whether impaired PC coverage triggers AVMs or it is a secondary event is unclear. Here we evaluated the role of the master regulator of PC recruitment, Platelet derived growth factor B (PDGFB) in AVM pathogenesis. Using tamoxifen-inducible deletion of Pdgfb in endothelial cells (ECs), we show that disruption of EC Pdgfb-mediated PC recruitment and maintenance leads to capillary enlargement and organotypic AVM-like structures. These vascular lesions contain non-proliferative hyperplastic, hypertrophic and miss-oriented capillary ECs with an altered capillary EC fate identity. Mechanistically, we propose that PDGFB maintains capillary EC size and caliber to limit hemodynamic changes, thus restricting expression of Krüppel like factor 4 and activation of Bone morphogenic protein, Transforming growth factor β and NOTCH signaling in ECs. Furthermore, our study emphasizes that inducing or activating PDGFB signaling may be a viable therapeutic approach for treating vascular malformations.
Collapse
Affiliation(s)
- Yanzhu Lin
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Gahn
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kuheli Banerjee
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Mahak Singhal
- Laboratory of AngioRhythms, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montreal, QC, H3T 1C5, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Roxana Ola
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
5
|
Brookins E, Serrano SE, Yacu GS, Finer G, Thomson BR. Non-endothelial expression of Endomucin in the mouse and human choroid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584133. [PMID: 38559191 PMCID: PMC10979916 DOI: 10.1101/2024.03.08.584133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Endomucin (EMCN) is a 261 AA transmembrane glycoprotein that is highly expressed by venous and capillary endothelial cells where it plays a role in VEGF-mediated angiogenesis and regulation of immune cell recruitment. However, it is better known as a histological marker, where it has become widespread due to the commercial availability of high-quality antibodies that work under a wide range of conditions and in many tissues. The specificity of EMCN staining has been well-validated in retinal vessels, but while it has been used extensively as a marker in other tissues of the eye, including the choroid, the pattern of expression has not been described in detail. Here, in addition to endothelial expression in the choriocapillaris and deeper vascular layers, we characterize a population of EMCN-positive perivascular cells in the mouse choroid that did not co-localize with cells expressing other endothelial markers such as PECAM1 or PODXL. To confirm that these cells represented a new population of EMCN-expressing stromal cells, we then performed single cell RNA sequencing in choroids from adult wild-type mice. Analysis of this new dataset confirmed that, in addition to endothelial cells, Emcn mRNA expression was present in choroidal pericytes and a subset of fibroblasts, but not vascular smooth muscle cells. Besides Emcn , no known endothelial gene expression was detected in these cell populations, confirming that they did not represent endothelial-stromal doublets, a common technical artifact in single cell RNA seq datasets. Instead, choroidal Emcn -expressing fibroblasts exhibited high levels of chemokine and interferon signaling genes, while Emcn -negative fibroblasts were enriched in genes encoding extracellular matrix proteins. Emcn expressing fibroblasts were also detected in published datasets from mouse brain and human choroid, suggesting that stromal Emcn expression was not unique to the choroid and was evolutionarily conserved. Together, these findings highlight unique fibroblast and pericyte populations in the choroid and provide new context for the role of EMCN in angiogenesis and immune cell recruitment.
Collapse
|
6
|
Sabo AR, Winfree S, El-Achkar TM. Defining protein expression in the kidney at large scale: from antibody validation to cytometry analysis. Am J Physiol Renal Physiol 2023; 324:F135-F137. [PMID: 36454700 PMCID: PMC9844971 DOI: 10.1152/ajprenal.00262.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Angela R Sabo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Indianapolis Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Seth Winfree
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Tarek M El-Achkar
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Indianapolis Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
7
|
Orlich MM, Diéguez-Hurtado R, Muehlfriedel R, Sothilingam V, Wolburg H, Oender CE, Woelffing P, Betsholtz C, Gaengel K, Seeliger M, Adams RH, Nordheim A. Mural Cell SRF Controls Pericyte Migration, Vessel Patterning and Blood Flow. Circ Res 2022; 131:308-327. [PMID: 35862101 PMCID: PMC9348820 DOI: 10.1161/circresaha.122.321109] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pericytes and vascular smooth muscle cells, collectively known as mural cells, are recruited through PDGFB (platelet-derived growth factor B)-PDGFRB (platelet-derived growth factor receptor beta) signaling. MCs are essential for vascular integrity, and their loss has been associated with numerous diseases. Most of this knowledge is based on studies in which MCs are insufficiently recruited or fully absent upon inducible ablation. In contrast, little is known about the physiological consequences that result from impairment of specific MC functions. Here, we characterize the role of the transcription factor SRF (serum response factor) in MCs and study its function in developmental and pathological contexts.
Collapse
Affiliation(s)
- Michael M. Orlich
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Germany (M.M.O., C.E.O., P.W., A.N.)
- International Max Planck Research School (IMPRS) “From Molecules to Organisms,” Tuebingen, Germany (M.M.O., A.N.)
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.M.O., C.B., K.G.)
- Now with Rudbeck Laboratory C11, Dag Hammarskjölds Väg 20, 751 85 Uppsala, Sweden (M.M.O.)
| | - Rodrigo Diéguez-Hurtado
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Muenster, Germany (R.D.-H., R.H.A.)
- Faculty of Medicine, University of Muenster, Muenster, Germany (R.D.-H., R.H.A.)
| | - Regine Muehlfriedel
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinic Tuebingen (UKT), Germany. (R.M., V.S., M.S.)
| | - Vithiyanjali Sothilingam
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinic Tuebingen (UKT), Germany. (R.M., V.S., M.S.)
| | - Hartwig Wolburg
- Department of General Pathology and Pathological Anatomy, Institute of Pathology and Neuropathology, University Clinic Tuebingen (UKT), Germany. (H.W.)
| | - Cansu Ebru Oender
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Germany (M.M.O., C.E.O., P.W., A.N.)
| | - Pascal Woelffing
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Germany (M.M.O., C.E.O., P.W., A.N.)
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.M.O., C.B., K.G.)
| | - Konstantin Gaengel
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.M.O., C.B., K.G.)
| | - Mathias Seeliger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinic Tuebingen (UKT), Germany. (R.M., V.S., M.S.)
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Muenster, Germany (R.D.-H., R.H.A.)
- Faculty of Medicine, University of Muenster, Muenster, Germany (R.D.-H., R.H.A.)
| | - Alfred Nordheim
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Germany (M.M.O., C.E.O., P.W., A.N.)
- International Max Planck Research School (IMPRS) “From Molecules to Organisms,” Tuebingen, Germany (M.M.O., A.N.)
| |
Collapse
|
8
|
Maruoka H, Hasegawa T, Yoshino H, Abe M, Haraguchi-Kitakamae M, Yamamoto T, Hongo H, Nakanishi K, Nasoori A, Nakajima Y, Omaki M, Sato Y, Luiz de Fraitas PH, Li M. Immunolocalization of endomucin-reactive blood vessels and α-smooth muscle actin-positive cells in murine nasal conchae. J Oral Biosci 2022; 64:337-345. [PMID: 35589073 DOI: 10.1016/j.job.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Recently, the biological functions of endomucin-positive blood vessels and closely associated αSMA-positive cells in long bones have been highlighted. The surrounding tissues of the flat bones, such as nasal bones covered with mucosa and lamina propria, are different from those of the long bones, indicating the different distributions of endomucin-positive blood vessels and αSMA-reactive cells in nasal bones. This study demonstrates the immunolocalization of endomucin-reactive blood vessels and αSMA-positive cells in the nasal conchae of 3- and 7-week-old mice. METHODS The nasal conchae of 3-week-old and 7-week-old male C57BL/6J mice were used for immunoreaction of endomucin, CD34, PDGFbb, TRAP, and c-kit. RESULTS While we identified abundant endomucin-reactive blood vessels in the lamina propria neighboring the bone, not all were positive for endomucin. More CD34-reactive cells and small blood vessels were observed in the nasal conchae of 3-week-old mice than in those of 7-week-old mice. Some αSMA-positive cells in the nasal conchae surrounded the blood vessels, indicating vascular smooth muscle cells, while other αSMA-immunopositive fibroblastic cells were detected throughout the lamina propria. αSMA-positive cells did not co-localize with C-kit-immunoreactivity, thereby indicating that the αSMA-positive cells may be myofibroblasts rather than undifferentiated mesenchymal cells. CONCLUSIONS Unlike long bones, nasal conchae contain endomucin-positive as well as endomucin-negative blood vessels and exhibit numerous αSMA-positive fibroblastic cells throughout the lamina propria neighboring the bone. Apparently, the distribution patterns of endomucin-positive blood vessels and αSMA-positive cells in nasal conchae are different from those in long bones.
Collapse
Affiliation(s)
| | | | | | - Miki Abe
- Developmental Biology of Hard Tissue
| | - Mai Haraguchi-Kitakamae
- Developmental Biology of Hard Tissue; Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue; Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo, Japan
| | | | | | | | | | | | - Yoshiaki Sato
- Orthodontics, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, The School of Stomatology, Shandong University, Jinan, China
| |
Collapse
|
9
|
Maruoka H, Zhao S, Yoshino H, Abe M, Yamamoto T, Hongo H, Haraguchi-Kitakamae M, Nasoori A, Ishizu H, Nakajima Y, Omaki M, Shimizu T, Iwasaki N, Luiz de Freitas PH, Li M, Hasegawa T. Histochemical examination of blood vessels in murine femora with intermittent PTH administration. J Oral Biosci 2022; 64:329-336. [DOI: 10.1016/j.job.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
|
10
|
Molema G, Zijlstra JG, van Meurs M, Kamps JAAM. Renal microvascular endothelial cell responses in sepsis-induced acute kidney injury. Nat Rev Nephrol 2022; 18:95-112. [PMID: 34667283 DOI: 10.1038/s41581-021-00489-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 12/29/2022]
Abstract
Microvascular endothelial cells in the kidney have been a neglected cell type in sepsis-induced acute kidney injury (sepsis-AKI) research; yet, they offer tremendous potential as pharmacological targets. As endothelial cells in distinct cortical microvascular segments are highly heterogeneous, this Review focuses on endothelial cells in their anatomical niche. In animal models of sepsis-AKI, reduced glomerular blood flow has been attributed to inhibition of endothelial nitric oxide synthase activation in arterioles and glomeruli, whereas decreased cortex peritubular capillary perfusion is associated with epithelial redox stress. Elevated systemic levels of vascular endothelial growth factor, reduced levels of circulating sphingosine 1-phosphate and loss of components of the glycocalyx from glomerular endothelial cells lead to increased microvascular permeability. Although coagulation disbalance occurs in all microvascular segments, the molecules involved differ between segments. Induction of the expression of adhesion molecules and leukocyte recruitment also occurs in a heterogeneous manner. Evidence of similar endothelial cell responses has been found in kidney and blood samples from patients with sepsis. Comprehensive studies are needed to investigate the relationships between segment-specific changes in the microvasculature and kidney function loss in sepsis-AKI. The application of omics technologies to kidney tissues from animals and patients will be key in identifying these relationships and in developing novel therapeutics for sepsis.
Collapse
Affiliation(s)
- Grietje Molema
- Dept. Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Jan G Zijlstra
- Dept. Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matijs van Meurs
- Dept. Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Dept. Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan A A M Kamps
- Dept. Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Abe S, Murashima A, Kimura E, Ema M, Hitomi J. Early development of the pulmonary vascular system: An anatomical and histochemical reinvestigation of the pulmonary venous return development in mice. Acta Histochem 2022; 124:151840. [PMID: 35042002 DOI: 10.1016/j.acthis.2021.151840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/01/2022]
Abstract
Pulmonary venous return development establishes the fetal circulation and is critical for the formation of pulmonary circulation independent of systemic circulation at birth. Anomalous returns lead to inappropriate drainage of blood flow, sometimes resulting in neonatal cyanosis and cardiac failure. While many classical studies have discussed the anatomical features of the pulmonary venous system development, the cellular dynamics of the endothelia based on the molecular marker expression remain unknown. In the present study, we examined the expression of several endothelial markers during early pulmonary vascular system development of murine embryos. We show that Endomucin and CD31 are expressed early in endothelial cells of the splanchnic plexus, which is the precursor of the pulmonary vascular system. Three-dimensional analyses of the expression patterns revealed the spatiotemporal modification of the venous returns to systemic venous systems or sinoatrial canal during the formation of the pulmonary plexus. We herein report the results of spatiotemporal analyses of the early pulmonary venous system development with histochemistry as well as a delineation of the anatomical features of the tentative drainage pathways.
Collapse
Affiliation(s)
- Shizuka Abe
- Department of Anatomy, School of Medicine, Iwate Medical University, Iwate 0283694, Japan.
| | - Aki Murashima
- Department of Anatomy, School of Medicine, Iwate Medical University, Iwate 0283694, Japan.
| | - Eiji Kimura
- Department of Anatomy, School of Medicine, Iwate Medical University, Iwate 0283694, Japan
| | - Masatsugu Ema
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga 5202192, Japan
| | - Jiro Hitomi
- Department of Anatomy, School of Medicine, Iwate Medical University, Iwate 0283694, Japan
| |
Collapse
|
12
|
Schilling K, Zhai Y, Zhou Z, Zhou B, Brown E, Zhang X. High-resolution imaging of the osteogenic and angiogenic interface at the site of murine cranial bone defect repair via multiphoton microscopy. eLife 2022; 11:83146. [PMID: 36326085 PMCID: PMC9678361 DOI: 10.7554/elife.83146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022] Open
Abstract
The spatiotemporal blood vessel formation and specification at the osteogenic and angiogenic interface of murine cranial bone defect repair were examined utilizing a high-resolution multiphoton-based imaging platform in conjunction with advanced optical techniques that allow interrogation of the oxygen microenvironment and cellular energy metabolism in living animals. Our study demonstrates the dynamic changes of vessel types, that is, arterial, venous, and capillary vessel networks at the superior and dura periosteum of cranial bone defect, suggesting a differential coupling of the vessel type with osteoblast expansion and bone tissue deposition/remodeling during repair. Employing transgenic reporter mouse models that label distinct types of vessels at the site of repair, we further show that oxygen distributions in capillary vessels at the healing site are heterogeneous as well as time- and location-dependent. The endothelial cells coupling to osteoblasts prefer glycolysis and are less sensitive to microenvironmental oxygen changes than osteoblasts. In comparison, osteoblasts utilize relatively more OxPhos and potentially consume more oxygen at the site of repair. Taken together, our study highlights the dynamics and functional significance of blood vessel types at the site of defect repair, opening up opportunities for further delineating the oxygen and metabolic microenvironment at the interface of bone tissue regeneration.
Collapse
Affiliation(s)
- Kevin Schilling
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States,Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Yuankn Zhai
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States
| | - Zhuang Zhou
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States
| | - Bin Zhou
- Shanghai Institutes for Biological SciencesShanghaiChina
| | - Edward Brown
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States
| |
Collapse
|
13
|
Spatiotemporal blood vessel specification at the osteogenesis and angiogenesis interface of biomimetic nanofiber-enabled bone tissue engineering. Biomaterials 2021; 276:121041. [PMID: 34343857 DOI: 10.1016/j.biomaterials.2021.121041] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/09/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022]
Abstract
While extensive research has demonstrated an interdependent role of osteogenesis and angiogenesis in bone tissue engineering, little is known about how functional blood vessel networks are organized to initiate and facilitate bone tissue regeneration. Building upon the success of a biomimetic composite nanofibrous construct capable of supporting donor progenitor cell-dependent regeneration, we examined the angiogenic response and spatiotemporal blood vessel specification at the osteogenesis and angiogenesis interface of cranial bone defect repair utilizing high resolution multiphoton laser scanning microscopy (MPLSM) in conjunction with intravital imaging. We demonstrate here that the regenerative vasculature can be specified as arterial and venous capillary vessels based upon endothelial surface markers of CD31 and Endomucin (EMCN), with CD31+EMCN- vessels exhibiting higher flowrate and higher oxygen tension (pO2) than CD31+EMCN+ vessels. The donor osteoblast clusters are uniquely coupled to the sprouting CD31+EMCN+ vessels connecting to CD31+EMCN- vessels. Further analyses reveal differential vascular response and vessel type distribution in healing and non-healing defects, associated with changes of gene sets that control sprouting and morphogenesis of blood vessels. Collectively, our study highlights the key role of spatiotemporal vessel type distribution in bone tissue engineering, offering new insights for devising more effective vascularization strategies for bone tissue engineering.
Collapse
|
14
|
Mori Y, Ajay AK, Chang JH, Mou S, Zhao H, Kishi S, Li J, Brooks CR, Xiao S, Woo HM, Sabbisetti VS, Palmer SC, Galichon P, Li L, Henderson JM, Kuchroo VK, Hawkins J, Ichimura T, Bonventre JV. KIM-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease. Cell Metab 2021; 33:1042-1061.e7. [PMID: 33951465 PMCID: PMC8132466 DOI: 10.1016/j.cmet.2021.04.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/03/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022]
Abstract
Tubulointerstitial abnormalities are predictive of the progression of diabetic kidney disease (DKD), and their targeting may be an effective means for prevention. Proximal tubular (PT) expression of kidney injury molecule (KIM)-1, as well as blood and urinary levels, are increased early in human diabetes and can predict the rate of disease progression. Here, we report that KIM-1 mediates PT uptake of palmitic acid (PA)-bound albumin, leading to enhanced tubule injury with DNA damage, PT cell-cycle arrest, interstitial inflammation and fibrosis, and secondary glomerulosclerosis. Such injury can be ameliorated by genetic ablation of the KIM-1 mucin domain in a high-fat-fed streptozotocin mouse model of DKD. We also identified TW-37 as a small molecule inhibitor of KIM-1-mediated PA-albumin uptake and showed in vivo in a kidney injury model in mice that it ameliorates renal inflammation and fibrosis. Together, our findings support KIM-1 as a new therapeutic target for DKD.
Collapse
Affiliation(s)
- Yutaro Mori
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Amrendra K Ajay
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jae-Hyung Chang
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shan Mou
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Renal Division, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Huiping Zhao
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Nephrology, Peking University People's Hospital, Beijing 100044, China
| | - Seiji Kishi
- Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima 770-8503, Japan
| | - Jiahua Li
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Craig R Brooks
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sheng Xiao
- Center for Neurologic Disease, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Celsius Therapeutics, Cambridge, MA 02139, USA
| | - Heung-Myong Woo
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; School of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Venkata S Sabbisetti
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suetonia C Palmer
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pierre Galichon
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Li Li
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joel M Henderson
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Vijay K Kuchroo
- Center for Neurologic Disease, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julie Hawkins
- Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT 06877, USA
| | - Takaharu Ichimura
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph V Bonventre
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Zhang G, Yang X, Gao R. Research progress on the structure and function of endomucin. Animal Model Exp Med 2020; 3:325-329. [PMID: 33532708 PMCID: PMC7824966 DOI: 10.1002/ame2.12142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
Endomucin is a type I integral membrane glycoprotein, which is expressed in venous and capillary endothelial cells. It consists of 261 amino acids with an extracellular domain that is highly O-glycosylated at serine and threonine residues and has several potential N-glycosylation sites. Endomucin plays an important role in biological processes such as cell interaction, molecular cell signaling, angiogenesis and cell migration, and in recent years it has also been identified as an anti-adhesion molecule and a marker of endothelial cells. While it has been shown to be involved in a number of physiological and pathological mechanisms, many of its functions remain unknown, and further study is needed. This article reviews research progress on the function of endomucin to date, in order to provide guidance for future studies.
Collapse
Affiliation(s)
- Guoxin Zhang
- Key Laboratory of Human Disease Comparative Medicine (National Health and Family Planning Commission)Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical Collage (PUMC)BeijingPR China
| | - Xingjiu Yang
- Key Laboratory of Human Disease Comparative Medicine (National Health and Family Planning Commission)Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical Collage (PUMC)BeijingPR China
| | - Ran Gao
- Key Laboratory of Human Disease Comparative Medicine (National Health and Family Planning Commission)Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical Collage (PUMC)BeijingPR China
| |
Collapse
|
16
|
Pawlak JB, Caron KM. Lymphatic Programing and Specialization in Hybrid Vessels. Front Physiol 2020; 11:114. [PMID: 32153423 PMCID: PMC7044189 DOI: 10.3389/fphys.2020.00114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
Building on a large body of existing blood vascular research, advances in lymphatic research have helped kindle broader investigations into vascular diversity and endothelial plasticity. While the endothelium of blood and lymphatic vessels can be distinguished by a variety of molecular markers, the endothelia of uniquely diverse vascular beds can possess distinctly heterogeneous or hybrid expression patterns. These expression patterns can then provide further insight on the development of these vessels and how they perform their specialized function. In this review we examine five highly specialized hybrid vessel beds that adopt partial lymphatic programing for their specialized vascular functions: the high endothelial venules of secondary lymphoid organs, the liver sinusoid, the Schlemm’s canal of the eye, the renal ascending vasa recta, and the remodeled placental spiral artery. We summarize the morphology and endothelial expression pattern of these vessels, compare them to each other, and interrogate their specialized functions within the broader blood and lymphatic vascular systems.
Collapse
Affiliation(s)
- John B Pawlak
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
17
|
Corliss BA, Mathews C, Doty R, Rohde G, Peirce SM. Methods to label, image, and analyze the complex structural architectures of microvascular networks. Microcirculation 2019; 26:e12520. [PMID: 30548558 PMCID: PMC6561846 DOI: 10.1111/micc.12520] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/31/2018] [Accepted: 11/26/2018] [Indexed: 12/30/2022]
Abstract
Microvascular networks play key roles in oxygen transport and nutrient delivery to meet the varied and dynamic metabolic needs of different tissues throughout the body, and their spatial architectures of interconnected blood vessel segments are highly complex. Moreover, functional adaptations of the microcirculation enabled by structural adaptations in microvascular network architecture are required for development, wound healing, and often invoked in disease conditions, including the top eight causes of death in the Unites States. Effective characterization of microvascular network architectures is not only limited by the available techniques to visualize microvessels but also reliant on the available quantitative metrics that accurately delineate between spatial patterns in altered networks. In this review, we survey models used for studying the microvasculature, methods to label and image microvessels, and the metrics and software packages used to quantify microvascular networks. These programs have provided researchers with invaluable tools, yet we estimate that they have collectively attained low adoption rates, possibly due to limitations with basic validation, segmentation performance, and nonstandard sets of quantification metrics. To address these existing constraints, we discuss opportunities to improve effectiveness, rigor, and reproducibility of microvascular network quantification to better serve the current and future needs of microvascular research.
Collapse
Affiliation(s)
- Bruce A. Corliss
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Corbin Mathews
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Richard Doty
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Gustavo Rohde
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Shayn M. Peirce
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| |
Collapse
|
18
|
LeBlanc ME, Saez-Torres KL, Cano I, Hu Z, Saint-Geniez M, Ng YS, D'Amore PA. Glycocalyx regulation of vascular endothelial growth factor receptor 2 activity. FASEB J 2019; 33:9362-9373. [PMID: 31141406 DOI: 10.1096/fj.201900011r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously shown that knockdown of endomucin (EMCN), an integral membrane glycocalyx glycoprotein, prevents VEGF-induced proliferation, migration, and tube formation in vitro and angiogenesis in vivo. In the endothelium, VEGF mediates most of its angiogenic effects through VEGF receptor 2 (VEGFR2). To understand the role of EMCN, we examined the effect of EMCN depletion on VEGFR2 endocytosis and activation. Results showed that although VEGF stimulation promoted VEGFR2 internalization in control endothelial cells (ECs), loss of EMCN prevented VEGFR2 endocytosis. Cell surface analysis revealed a decrease in VEGFR2 following VEGF stimulation in control but not siRNA directed against EMCN-transfected ECs. EMCN depletion resulted in heightened phosphorylation following VEGF stimulation with an increase in total VEGFR2 protein. These results indicate that EMCN modulates VEGFR2 endocytosis and activity and point to EMCN as a potential therapeutic target.-LeBlanc, M. E., Saez-Torres, K. L., Cano, I., Hu, Z., Saint-Geniez, M., Ng, Y.-S., D'Amore, P. A. Glycocalyx regulation of vascular endothelial growth factor receptor 2 activity.
Collapse
Affiliation(s)
- Michelle E LeBlanc
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kahira L Saez-Torres
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Issahy Cano
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Magali Saint-Geniez
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yin-Shan Ng
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Ivetic A, Hoskins Green HL, Hart SJ. L-selectin: A Major Regulator of Leukocyte Adhesion, Migration and Signaling. Front Immunol 2019; 10:1068. [PMID: 31139190 PMCID: PMC6527602 DOI: 10.3389/fimmu.2019.01068] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
L-selectin (CD62L) is a type-I transmembrane glycoprotein and cell adhesion molecule that is expressed on most circulating leukocytes. Since its identification in 1983, L-selectin has been extensively characterized as a tethering/rolling receptor. There is now mounting evidence in the literature to suggest that L-selectin plays a role in regulating monocyte protrusion during transendothelial migration (TEM). The N-terminal calcium-dependent (C-type) lectin domain of L-selectin interacts with numerous glycans, including sialyl Lewis X (sLex) for tethering/rolling and proteoglycans for TEM. Although the signals downstream of L-selectin-dependent adhesion are poorly understood, they will invariably involve the short 17 amino acid cytoplasmic tail. In this review we will detail the expression of L-selectin in different immune cell subsets, and its influence on cell behavior. We will list some of the diverse glycans known to support L-selectin-dependent adhesion, within luminal and abluminal regions of the vessel wall. We will describe how each domain within L-selectin contributes to adhesion, migration and signal transduction. A significant focus on the L-selectin cytoplasmic tail and its proposed contribution to signaling via the ezrin-radixin-moesin (ERM) family of proteins will be outlined. Finally, we will discuss how ectodomain shedding of L-selectin during monocyte TEM is essential for the establishment of front-back cell polarity, bestowing emigrated cells the capacity to chemotax toward sites of damage.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| | - Hannah Louise Hoskins Green
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| | - Samuel James Hart
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| |
Collapse
|
20
|
Human adult HSCs can be discriminated from lineage-committed HPCs by the expression of endomucin. Blood Adv 2019; 2:1628-1632. [PMID: 29986855 DOI: 10.1182/bloodadvances.2018015743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/18/2018] [Indexed: 12/30/2022] Open
Abstract
Key Points
EMCN is a novel marker of human HSCs. EMCN is a more specific marker of HSCs than CD34 as it can discriminate HSCs from lineage-committed HPCs.
Collapse
|
21
|
Lai TH, Chang FW, Lin JJ, Ling QD. Gene expression of human endometrial L-selectin ligand in relation to the phases of the natural menstrual cycle. Sci Rep 2018; 8:1443. [PMID: 29362381 PMCID: PMC5780486 DOI: 10.1038/s41598-018-19911-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023] Open
Abstract
This study investigates peptide components of L-selectin ligand (LSL) and their gene expressions in human endometrium during the natural menstrual cycle. We recruited 41 endometrial samples from reproductive-aged women with leiomyoma and undergoing hysterectomy and 11 endometrial samples from menopausal women as controls. Immunohistochemistry revealed strong MECA-79 expression from the early through the mid-secretory phase and low expression in menopausal endometrium. Five peptide components of LSL were detected in reproductive and menopausal endometrium by one-step quantitative RT-PCR: podocalyxin, endomucin, nepmucin, GlyCAM-1, and CD34. Endomucin differed significantly between the proliferative and early-secretory phases. CHST2 and CHST4 genes (which are involved in the generation of LSL epitopes) were expressed without significant differences among phases. The gene expression of progesterone receptor decreased from the proliferative to the late-secretory phase, and the difference was significant. However, estrogen receptor α expression showed stability among phases. The significant expression of endomucin between the proliferative and early-secretory phases might play a vital role in endometrial receptivity. Further studies are needed to investigate the factors that regulate the expression of endomucin and other LSL peptide components in different phases of the menstrual cycle.
Collapse
Affiliation(s)
- Tsung-Hsuan Lai
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, 10693, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
- Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan City, 32001, Taiwan
| | - Fung-Wei Chang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Jun-Jie Lin
- Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan City, 32001, Taiwan
- Cathay Medical Research Institute, Cathay General Hospital, New Taipei City, 22174, Taiwan
| | - Qing-Dong Ling
- Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan City, 32001, Taiwan.
- Cathay Medical Research Institute, Cathay General Hospital, New Taipei City, 22174, Taiwan.
| |
Collapse
|
22
|
Park-Windhol C, Ng YS, Yang J, Primo V, Saint-Geniez M, D'Amore PA. Endomucin inhibits VEGF-induced endothelial cell migration, growth, and morphogenesis by modulating VEGFR2 signaling. Sci Rep 2017; 7:17138. [PMID: 29215001 PMCID: PMC5719432 DOI: 10.1038/s41598-017-16852-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 11/19/2017] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is central to both normal and pathologic processes. Endothelial cells (ECs) express O-glycoproteins that are believed to play important roles in vascular development and stability. Endomucin-1 (EMCN) is a type I O-glycosylated, sialic-rich glycoprotein, specifically expressed by venous and capillary endothelium. Evidence has pointed to a potential role for EMCN in angiogenesis but it had not been directly investigated. In this study, we examined the role of EMCN in angiogenesis by modulating EMCN levels both in vivo and in vitro. Reduction of EMCN in vivo led to the impairment of angiogenesis during normal retinal development in vivo. To determine the cellular basis of this inhibition, gain- and loss-of-function studies were performed in human retinal EC (HREC) in vitro by EMCN over-expression using adenovirus or EMCN gene knockdown by siRNA. We show that EMCN knockdown reduced migration, inhibited cell growth without compromising cell survival, and suppressed tube morphogenesis of ECs, whereas over-expression of EMCN led to increased migration, proliferation and tube formation. Furthermore, knockdown of EMCN suppressed VEGF-induced signaling as measured by decreased phospho-VEGFR2, phospho-ERK1/2 and phospho-p38-MAPK levels. These results suggest a novel role for EMCN as a potent regulator of angiogenesis and point to its potential as a new therapeutic target for angiogenesis-related diseases.
Collapse
Affiliation(s)
- Cindy Park-Windhol
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yin Shan Ng
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jinling Yang
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Vincent Primo
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Magali Saint-Geniez
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Patricia A D'Amore
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Gonzalez-Meljem JM, Haston S, Carreno G, Apps JR, Pozzi S, Stache C, Kaushal G, Virasami A, Panousopoulos L, Mousavy-Gharavy SN, Guerrero A, Rashid M, Jani N, Goding CR, Jacques TS, Adams DJ, Gil J, Andoniadou CL, Martinez-Barbera JP. Stem cell senescence drives age-attenuated induction of pituitary tumours in mouse models of paediatric craniopharyngioma. Nat Commun 2017; 8:1819. [PMID: 29180744 PMCID: PMC5703905 DOI: 10.1038/s41467-017-01992-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/31/2017] [Indexed: 01/07/2023] Open
Abstract
Senescent cells may promote tumour progression through the activation of a senescence-associated secretory phenotype (SASP), whether these cells are capable of initiating tumourigenesis in vivo is not known. Expression of oncogenic β-catenin in Sox2+ young adult pituitary stem cells leads to formation of clusters of stem cells and induction of tumours resembling human adamantinomatous craniopharyngioma (ACP), derived from Sox2- cells in a paracrine manner. Here, we uncover the mechanisms underlying this paracrine tumourigenesis. We show that expression of oncogenic β-catenin in Hesx1+ embryonic precursors also results in stem cell clusters and paracrine tumours. We reveal that human and mouse clusters are analogous and share a common signature of senescence and SASP. Finally, we show that mice with reduced senescence and SASP responses exhibit decreased tumour-inducing potential. Together, we provide evidence that senescence and a stem cell-associated SASP drive cell transformation and tumour initiation in vivo in an age-dependent fashion.
Collapse
Affiliation(s)
- Jose Mario Gonzalez-Meljem
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, WC1N 1EH, UK.,Basic Research Department, Instituto Nacional de Geriatría, Anillo Periférico 2767, Magdalena Contreras, 10200, Mexico City, Mexico
| | - Scott Haston
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Gabriela Carreno
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - John R Apps
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Sara Pozzi
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Christina Stache
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Grace Kaushal
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Alex Virasami
- Department of Histopathology, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Leonidas Panousopoulos
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Seyedeh Neda Mousavy-Gharavy
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Ana Guerrero
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Mamunur Rashid
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, USA
| | - Nital Jani
- GOSgene, Genetics and Genomic Medicine, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Oxford University, Old Road Campus, Headington, Oxford, OX3 7DQ, UK
| | - Thomas S Jacques
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, WC1N 1EH, UK.,Department of Histopathology, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, USA
| | - Jesus Gil
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Cynthia L Andoniadou
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, Floor 27 Tower Wing, London, SE1 9RT, UK.,Department of Internal Medicine III, Technische Universität Dresden, Fetscherstaße 74, 01307, Dresden, Germany
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, WC1N 1EH, UK.
| |
Collapse
|
24
|
Morizane R, Bonventre JV. Generation of nephron progenitor cells and kidney organoids from human pluripotent stem cells. Nat Protoc 2016; 12:195-207. [PMID: 28005067 DOI: 10.1038/nprot.2016.170] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A variety of protocols have been developed that demonstrate the capability to differentiate human pluripotent stem cells (hPSCs) into kidney structures. Our goal was to develop a high-efficiency protocol to generate nephron progenitor cells (NPCs) and kidney organoids to facilitate applications for tissue engineering, disease modeling and chemical screening. Here, we describe a detailed protocol resulting in high-efficiency production (80-90%) of NPCs from hPSCs within 9 d of differentiation. Kidney organoids were generated from NPCs within 12 d with high reproducibility using 96-well plates suitable for chemical screening. The protocol requires skills for culturing hPSCs and careful attention to morphological changes indicative of differentiation. This kidney organoid system provides a platform for studies of human kidney development, modeling of kidney diseases, nephrotoxicity and kidney regeneration. The system provides a model for in vitro study of kidney intracellular and intercompartmental interactions using differentiated human cells in an appropriate nephron and stromal context.
Collapse
Affiliation(s)
- Ryuji Morizane
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Joseph V Bonventre
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
25
|
Gene-expression profiling of different arms of lymphatic vasculature identifies candidates for manipulation of cell traffic. Proc Natl Acad Sci U S A 2016; 113:10643-8. [PMID: 27601677 DOI: 10.1073/pnas.1602357113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Afferent lymphatic vessels bring antigens and diverse populations of leukocytes to draining lymph nodes, whereas efferent lymphatics allow only lymphocytes and antigens to leave the nodes. Despite the fundamental importance of afferent vs. efferent lymphatics in immune response and cancer spread, the molecular characteristics of these different arms of the lymphatic vasculature are largely unknown. The objective of this work was to explore molecular differences behind the distinct functions of afferent and efferent lymphatic vessels, and find possible molecules mediating lymphocyte traffic. We used laser-capture microdissection and cell sorting to isolate lymphatic endothelial cells (LECs) from the subcapsular sinus (SS, afferent) and lymphatic sinus (LS, efferent) for transcriptional analyses. The results reveal marked differences between afferent and efferent LECs and identify molecules on lymphatic vessels. Further characterizations of Siglec-1 (CD169) and macrophage scavenger receptor 1 (MSR1/CD204), show that they are discriminatively expressed on lymphatic endothelium of the SS but not on lymphatic vasculature of the LS. In contrast, endomucin (EMCN) is present on the LS endothelium and not on lymphatic endothelium of the SS. Moreover, both murine and human MSR1 on lymphatic endothelium of the SS bind lymphocytes and in in vivo studies MSR1 regulates entrance of lymphocytes from the SS to the lymph node parenchyma. In conclusion, this paper reports surprisingly distinct molecular profiles for afferent and efferent lymphatics and a function for MSR1. These results may open avenues to explore some of the now-identified molecules as targets to manipulate the function of lymphatic vessels.
Collapse
|
26
|
Heindl LM, Kaser-Eichberger A, Schlereth SL, Bock F, Regenfuss B, Reitsamer HA, McMenamin P, Lutty GA, Maruyama K, Chen L, Dana R, Kerjaschki D, Alitalo K, De Stefano ME, Junghans BM, Schroedl F, Cursiefen C. Sufficient Evidence for Lymphatics in the Developing and Adult Human Choroid? Invest Ophthalmol Vis Sci 2016; 56:6709-10. [PMID: 26588256 DOI: 10.1167/iovs.15-17686] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Ludwig M Heindl
- Department of Ophthalmology University of Cologne, Cologne, Germany
| | | | | | - Felix Bock
- Department of Ophthalmology University of Cologne, Cologne, Germany
| | - Birgit Regenfuss
- Department of Ophthalmology University of Cologne, Cologne, Germany
| | - Herbert A Reitsamer
- Department of Ophthalmology, Paracelsus Medical University, Salzburg, Austria
| | - Paul McMenamin
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Gerard A Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States
| | - Kazuichi Maruyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Lu Chen
- Center for Eye Disease & Development, Program in Vision Science and School of Optometry, University of California at Berkeley, Berkeley, California, United States
| | - Reza Dana
- Massachusetts Eye and Ear Infirmary and Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States
| | | | - Kari Alitalo
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | - Maria Egle De Stefano
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Barbara M Junghans
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Falk Schroedl
- Department of Ophthalmology, Paracelsus Medical University, Salzburg, Austria; 12Department of Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Claus Cursiefen
- Department of Ophthalmology University of Cologne, Cologne, Germany
| |
Collapse
|
27
|
Gao S, Jakobs TC. Mice Homozygous for a Deletion in the Glaucoma Susceptibility Locus INK4 Show Increased Vulnerability of Retinal Ganglion Cells to Elevated Intraocular Pressure. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:985-1005. [PMID: 26883755 DOI: 10.1016/j.ajpath.2015.11.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/30/2015] [Accepted: 11/17/2015] [Indexed: 12/13/2022]
Abstract
A genomic region located on chromosome 9p21 is associated with primary open-angle glaucoma and normal tension glaucoma in genome-wide association studies. The genomic region contains the gene for a long noncoding RNA called CDKN2B-AS, two genes that code for cyclin-dependent kinase inhibitors 2A and 2B (CDKN2A/p16(INK4A) and CDKN2B/p15(INK4B)) and an additional protein (p14(ARF)). We used a transgenic mouse model in which 70 kb of murine chromosome 4, syntenic to human chromosome 9p21, are deleted to study whether this deletion leads to a discernible phenotype in ocular structures implicated in glaucoma. Homozygous mice of this strain were previously reported to show persistent hyperplastic primary vitreous. Fundus photography and optical coherence tomography confirmed that finding but showed no abnormalities for heterozygous mice. Optokinetic response, eletroretinogram, and histology indicated that the heterozygous and mutant retinas were normal functionally and morphologically, whereas glial cells were activated in the retina and optic nerve head of mutant eyes. In quantitative PCR, CDKN2B expression was reduced by approximately 50% in the heterozygous mice and by 90% in the homozygous mice, which suggested that the CDKN2B knock down had no deleterious consequences for the retina under normal conditions. However, compared with wild-type and heterozygous animals, the homozygous mice are more vulnerable to retinal ganglion cell loss in response to elevated intraocular pressure.
Collapse
Affiliation(s)
- Shan Gao
- Department of Ophthalmology, The First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Tatjana C Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
28
|
Zahr A, Alcaide P, Yang J, Jones A, Gregory M, dela Paz NG, Patel-Hett S, Nevers T, Koirala A, Luscinskas FW, Saint-Geniez M, Ksander B, D'Amore PA, Argüeso P. Endomucin prevents leukocyte-endothelial cell adhesion and has a critical role under resting and inflammatory conditions. Nat Commun 2016; 7:10363. [PMID: 26831939 PMCID: PMC4740757 DOI: 10.1038/ncomms10363] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 12/03/2015] [Indexed: 12/30/2022] Open
Abstract
Endomucin is a membrane-bound glycoprotein expressed luminally by endothelial cells that line postcapillary venules, a primary site of leukocyte recruitment during inflammation. Here we show that endomucin abrogation on quiescent endothelial cells enables neutrophils to adhere firmly, via LFA-1-mediated binding to ICAM-1 constitutively expressed by endothelial cells. Moreover, TNF-α stimulation downregulates cell surface expression of endomucin concurrent with increased expression of adhesion molecules. Adenovirus-mediated expression of endomucin under inflammatory conditions prevents neutrophil adhesion in vitro and reduces the infiltration of CD45+ and NIMP-R14+ cells in vivo. These results indicate that endomucin prevents leukocyte contact with adhesion molecules in non-inflamed tissues and that downregulation of endomucin is critical to facilitate adhesion of leukocytes into inflamed tissues. Endomucin is expressed by endothelial cells that line postcapillary venules—the site of leukocyte recruitment during inflammation. Zahr et al. show that endomucin is an anti-adhesive molecule that is downregulated by the cytokine TNF-a and thereby helps in the transition from a quiescent to a pro-adhesive inflamed endothelium.
Collapse
Affiliation(s)
- Alisar Zahr
- Schepens Eye Research Institute/Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts 02114, USA
| | - Pilar Alcaide
- Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Jinling Yang
- Schepens Eye Research Institute/Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts 02114, USA
| | - Alexander Jones
- Schepens Eye Research Institute/Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts 02114, USA
| | - Meredith Gregory
- Schepens Eye Research Institute/Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts 02114, USA
| | - Nathaniel G dela Paz
- Schepens Eye Research Institute/Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts 02114, USA
| | - Sunita Patel-Hett
- Schepens Eye Research Institute/Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts 02114, USA
| | - Tania Nevers
- Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Adarsha Koirala
- Schepens Eye Research Institute/Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts 02114, USA
| | - Francis W Luscinskas
- Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Magali Saint-Geniez
- Schepens Eye Research Institute/Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts 02114, USA
| | - Bruce Ksander
- Schepens Eye Research Institute/Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts 02114, USA
| | - Patricia A D'Amore
- Schepens Eye Research Institute/Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts 02114, USA.,Department of Pathology, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Pablo Argüeso
- Schepens Eye Research Institute/Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
29
|
Kizhatil K, Ryan M, Marchant JK, Henrich S, John SWM. Schlemm's canal is a unique vessel with a combination of blood vascular and lymphatic phenotypes that forms by a novel developmental process. PLoS Biol 2014; 12:e1001912. [PMID: 25051267 PMCID: PMC4106723 DOI: 10.1371/journal.pbio.1001912] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/12/2014] [Indexed: 01/04/2023] Open
Abstract
A draining vessel in the eye arises via a novel hybrid process of vascular development and is important for understanding ocular fluid homeostasis and glaucoma. Schlemm's canal (SC) plays central roles in ocular physiology. These roles depend on the molecular phenotypes of SC endothelial cells (SECs). Both the specific phenotype of SECs and development of SC remain poorly defined. To allow a modern and extensive analysis of SC and its origins, we developed a new whole-mount procedure to visualize its development in the context of surrounding tissues. We then applied genetic lineage tracing, specific-fluorescent reporter genes, immunofluorescence, high-resolution confocal microscopy, and three-dimensional (3D) rendering to study SC. Using these techniques, we show that SECs have a unique phenotype that is a blend of both blood and lymphatic endothelial cell phenotypes. By analyzing whole mounts of postnatal mouse eyes progressively to adulthood, we show that SC develops from blood vessels through a newly discovered process that we name “canalogenesis.” Functional inhibition of KDR (VEGFR2), a critical receptor in initiating angiogenesis, shows that this receptor is required during canalogenesis. Unlike angiogenesis and similar to stages of vasculogenesis, during canalogenesis tip cells divide and form branched chains prior to vessel formation. Differing from both angiogenesis and vasculogenesis, during canalogenesis SECs express Prox1, a master regulator of lymphangiogenesis and lymphatic phenotypes. Thus, SC development resembles a blend of vascular developmental programs. These advances define SC as a unique vessel with a combination of blood vascular and lymphatic phenotypes. They are important for dissecting its functions that are essential for ocular health and normal vision. Schlemm's canal serves as a drainage tube for fluid from the anterior chamber of the eye and is directly relevant to glaucoma, a disease that causes vision loss in over 70 million people. Aqueous humor enters the canal and then drains into connected veins. Molecular understanding of the development of Schlemm's canal and its drainage functions has remained limited. We provide a detailed characterization of Schlemm's canal development, and in so doing discover a novel process of vascular development that we name “canalogenesis.” We show that although the process requires a functional KDR receptor, which is also critical in blood vessel development, the endothelial cells of Schlemm's canal have a unique hybrid molecular phenotype, expressing proteins that are characteristic of both blood and lymphatic vessels. Of note, the expression of Prox1, a master regulator of lymphatic fate, and other lymphatic proteins are largely restricted to specialized cells of the inner wall of Schlemm's canal through which the aqueous humor passes as it exits the eye. Thus, Prox1 and other lymphatic proteins may be critical for the functional specialization of these cells for aqueous humor drainage. Schlemm's canal is thus a unique vessel with a combination of blood vascular and lymphatic characteristics.
Collapse
Affiliation(s)
- Krishnakumar Kizhatil
- The Howard Hughes Medical Institute, and The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Margaret Ryan
- The Howard Hughes Medical Institute, and The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jeffrey K. Marchant
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Stephen Henrich
- The Howard Hughes Medical Institute, and The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Simon W. M. John
- The Howard Hughes Medical Institute, and The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Department of Ophthalmology and Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
30
|
Clarkin CE, Gerstenfeld LC. VEGF and bone cell signalling: an essential vessel for communication? Cell Biochem Funct 2012; 31:1-11. [PMID: 23129289 DOI: 10.1002/cbf.2911] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/31/2012] [Accepted: 09/10/2012] [Indexed: 01/17/2023]
Abstract
Vascular endothelial growth factor (VEGF) is an endothelial cell survival factor and is required for effective coupling of angiogenesis and osteogenesis. Although central to bone homeostasis, repair and the pathobiology that affect these processes, the precise mechanisms coupling endothelial cell function within bone formation and remodelling remain unclarified. This review will (i) focus on the potential directionality of VEGF signalling in adult bone by identifying the predominant source of VEGF within the bone microenvironment, (ii) will summarize current VEGF receptor expression studies by bone cells and (iii) will provide evidence for a role for VEGF signalling during postnatal repair and osteoporosis. A means of understanding the directionality of VEGF signalling in adult bone would allow us to most effectively target angiogenic pathways in diseases characterized by changes in bone remodelling rates and enhance bone repair when compromised.
Collapse
Affiliation(s)
- Claire E Clarkin
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | | |
Collapse
|
31
|
Kasprzak A, Surdacka A, Tomczak M, Konkol M. Role of high endothelial postcapillary venules and selected adhesion molecules in periodontal diseases: a review. J Periodontal Res 2012; 48:1-21. [PMID: 22582923 DOI: 10.1111/j.1600-0765.2012.01492.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Periodontitis is accompanied by the proliferation of small blood vessels in the gingival lamina propria. Specialized postcapillary venules, termed periodontal high endothelial-like venules, are also present, and demonstrate morphological and functional traits similar to those of high endothelial venules (HEVs) in lymphatic organs. The suggested role of HEVs in the pathogenesis of chronic periodontitis involves participation in leukocyte transendothelial migration and therefore proinflammatory effects appear. Recent observations suggest that chronic periodontitis is an independent risk factor for systemic vascular disease and may result in stimulation of the synthesis of acute phase protein by cytokines released by periodontal high endothelial cells (HECs). However, tissue expression of HEV-linked adhesion molecules has not been evaluated in the gingiva of patients with chronic periodontitis. This is significant in relation to potential therapy targeting expression of the adhesion molecules. In this review, current knowledge of HEV structure and the related expression of four surface adhesion molecules of HECs [CD34, platelet endothelial cell adhesion molecule 1, endoglin and intercellular adhesion molecule 1 (ICAM-1)], involved in the key steps of the adhesion cascade in periodontal diseases, are discussed. Most studies on the expression of adhesion molecules in the development and progression of periodontal diseases pertain to ICAM-1 (CD54). Studies by the authors demonstrated quantitatively similar expression of three of four selected surface markers in gingival HEVs of patients with chronic periodontitis and in HEVs of reactive lymph nodes, confirming morphological and functional similarity of HEVs in pathologically altered tissues with those in lymphoid tissues.
Collapse
Affiliation(s)
- A Kasprzak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland.
| | | | | | | |
Collapse
|
32
|
dela Paz NG, Walshe TE, Leach LL, Saint-Geniez M, D'Amore PA. Role of shear-stress-induced VEGF expression in endothelial cell survival. J Cell Sci 2012; 125:831-43. [PMID: 22399811 DOI: 10.1242/jcs.084301] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a crucial role in developmental and pathological angiogenesis. Expression of VEGF in quiescent adult tissue suggests a potential role in the maintenance of mature blood vessels. We demonstrate, using a Vegf-lacZ reporter mouse model, that VEGF is expressed by arterial but not by venous or capillary endothelial cells (ECs) in vivo. Using an in vitro model, we show that arterial shear stress of human umbilical vein ECs (HUVECs) decreases apoptosis and increases VEGF expression, which is mediated by the induction of Krüppel-like factor 2 (KLF2). Additionally, shear stress stimulates the expression of VEGF receptor 2 (VEGFR2) and is associated with its activation. Knockdown of VEGF in shear stressed HUVECs blocks the protective effect of shear stress, resulting in EC apoptosis equivalent to that in control ECs cultured under static conditions. Similarly, treatment of ECs subjected to arterial shear stress with the VEGF receptor tyrosine kinase inhibitor SU1498, or VEGFR2 neutralizing antiserum, led to increased apoptosis, demonstrating that the mechanoprotection from increased shear is mediated by VEGFR2. Taken together, these studies suggest that arterial flow induces VEGF-VEGFR2 autocrine-juxtacrine signaling, which is a previously unidentified mechanism for vascular EC survival in adult arterial blood vessels.
Collapse
Affiliation(s)
- Nathaniel G dela Paz
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute/Massachusett Eye and Ear, 20 Staniford Street, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
33
|
Zuercher J, Fritzsche M, Feil S, Mohn L, Berger W. Norrin stimulates cell proliferation in the superficial retinal vascular plexus and is pivotal for the recruitment of mural cells. Hum Mol Genet 2012; 21:2619-30. [PMID: 22394677 DOI: 10.1093/hmg/dds087] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in Norrin, the ligand of a receptor complex consisting of FZD4, LRP5 and TSPAN12, cause severe developmental blood vessel defects in the retina and progressive loss of the vascular system in the inner ear, which lead to congenital blindness and progressive hearing loss, respectively. We now examined molecular pathways involved in developmental retinal angiogenesis in a mouse model for Norrie disease. Comparison of morphometric parameters of the superficial retinal vascular plexus (SRVP), including the number of filopodia, vascular density and number of branch points together with inhibition of Notch signaling by using DAPT, suggest no direct link between Norrin and Notch signaling during formation of the SRVP. We noticed extensive vessel crossing within the SRVP, which might be a loss of Wnt- and MAP kinase-characteristic feature. In addition, endomucin was identified as a marker for central filopodia, which were aligned in a thorn-like fashion at P9 in Norrin knockout (Ndp(y/-)) mice. We also observed elevated mural cell coverage in the SRVP of Ndp(y/-) mice and explain it by an altered expression of PDGFβ and its receptor (PDGFRβ). In vivo cell proliferation assays revealed a reduced proliferation rate of isolectin B4-positive cells in the SRVP from Ndp(y/-) mice at postnatal day 6 and a decreased mitogenic activity of mutant compared with the wild-type Norrin. Our results suggest that the delayed outgrowth of the SRVP and decreased angiogenic sprouting in Ndp(y/-) mice are direct effects of the reduced proliferation of endothelial cells from the SRVP.
Collapse
Affiliation(s)
- Jurian Zuercher
- Institute of Medical Molecular Genetics, University of Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Epigenetically coordinated GATA2 binding is necessary for endothelium-specific endomucin expression. EMBO J 2011; 30:2582-95. [PMID: 21666600 DOI: 10.1038/emboj.2011.173] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 05/01/2011] [Indexed: 11/08/2022] Open
Abstract
GATA2 is well recognized as a key transcription factor and regulator of cell-type specificity and differentiation. Here, we carried out comparative chromatin immunoprecipitation with comprehensive sequencing (ChIP-seq) to determine genome-wide occupancy of GATA2 in endothelial cells and erythroids, and compared the occupancy to the respective gene expression profile in each cell type. Although GATA2 was commonly expressed in both cell types, different GATA2 bindings and distinct cell-specific gene expressions were observed. By using the ChIP-seq with epigenetic histone modifications and chromatin conformation capture assays; we elucidated the mechanistic regulation of endothelial-specific GATA2-mediated endomucin gene expression, that was regulated by the endothelial-specific chromatin loop with a GATA2-associated distal enhancer and core promoter. Knockdown of endomucin markedly attenuated endothelial cell growth, migration and tube formation. Moreover, abrogation of GATA2 in endothelium demonstrated not only a reduction of endothelial-specific markers, but also induction of mesenchymal transition promoting gene expression. Our findings provide new insights into the correlation of endothelial-expressed GATA2 binding, epigenetic modification, and the determination of endothelial cell specificity.
Collapse
|
35
|
NISHIMOTO KAZUMASA, IKARI KATSUNORI, KANEKO HIROTAKA, TSUKAHARA SO, KOCHI YUTA, YAMAMOTO KAZUHIKO, NAKAMURA YUSUKE, TOYAMA YOSHIAKI, TANIGUCHI ATSUO, YAMANAKA HISASHI, MOMOHARA SHIGEKI. Association ofEMCNwith Susceptibility to Rheumatoid Arthritis in a Japanese Population. J Rheumatol 2010; 38:221-8. [DOI: 10.3899/jrheum.100263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Objective.Endomucin, an endothelial-specific sialomucin, is thought to facilitate “lymphocyte homing” to synovial tissues, resulting in the major histopathologies of rheumatoid arthritis (RA). We examined the association between RA susceptibility and the gene coding endomucin,EMCN.Methods.Association studies were conducted with 2 DNA sample sets (initial set of 1504 patients, 752 controls; and validation set, 1113 patients, 940 controls) using 6 tag single-nucleotide polymorphisms (SNP) from the Japanese HapMap database. Immunohistochemistry for the expression of endomucin was conducted with synovial tissues from 4 patients with RA during total knee arthroplasty. Electromobility shift assays were performed for the functional study of identified polymorphisms.Results.Within the initial sample set, the strongest evidence of an association with RA susceptibility was SNP rs3775369 (OR 1.20, p = 0.0075). While the subsequent replication study did not initially confirm the observed significant association (OR 1.13, p = 0.062), an in-depth stratified analysis revealed significant association in patients testing positive to anti-cyclic citrullinated peptide (anti-CCP) antibody in the replication data set (OR 1.15, p = 0.044). Investigating 2 sample sets, significant associations were detected in overall and stratified samples with anti-CCP antibody status (OR 1.17, p = 0.0015). Positive staining for endomucin was detected in all patients. The allele associated with RA susceptibility had a higher binding affinity for HEK298-derived nuclear factors compared to the nonsusceptible allelic variant of rs3775369.Conclusion.A significant association betweenEMCNand RA susceptibility was detected in our Japanese study population. TheEMCNallele conferring RA susceptibility may also contribute to the pathogenesis of RA.
Collapse
|
36
|
Leppänen A, Parviainen V, Ahola-Iivarinen E, Kalkkinen N, Cummings RD. Human L-selectin preferentially binds synthetic glycosulfopeptides modeled after endoglycan and containing tyrosine sulfate residues and sialyl Lewis x in core 2 O-glycans. Glycobiology 2010; 20:1170-85. [PMID: 20507883 DOI: 10.1093/glycob/cwq083] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Endoglycan is a mucin-like glycoprotein expressed by endothelial cells and some leukocytes and is recognized by L-selectin, a C-type lectin important in leukocyte trafficking and extravasation during inflammation. Here, we show that recombinant L-selectin and human T lymphocytes expressing L-selectin bind to synthetic glycosulfopeptides (GSPs). These synthetic glycosulfopeptides contain 37 amino acid residues modeled after the N-terminus of human endoglycan and contain one or two tyrosine sulfates (TyrSO(3)) along with a nearby core-2-based Thr-linked O-glycan with sialyl Lewis x (C2-SLe(x)). TyrSO(3) at position Y118 was more critical for binding than at Y97. C2-SLe(x) at T124 was required for L-selectin recognition. Interestingly, under similar conditions, neither L-selectin nor T lymphocytes showed appreciable binding to the sulfated carbohydrate epitope 6-sulfo-SLe(x). P-selectin also bound to endoglycan-based GSPs but with lower affinity than toward GSPs modeled after PSGL-1, the physiological ligand for P- and L-selectin that is expressed on leukocytes. These results demonstrate that TyrSO(3) residues in association with a C2-SLe(x) moiety within endoglycan and PSGL-1 are preferentially recognized by L-selectin.
Collapse
Affiliation(s)
- Anne Leppänen
- Department of Biological Sciences, Division of Biochemistry, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
37
|
Glycoforms of human endothelial CD34 that bind L-selectin carry sulfated sialyl Lewis x capped O- and N-glycans. Blood 2009; 114:733-41. [PMID: 19359410 DOI: 10.1182/blood-2009-03-210237] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Endothelial sialomucin CD34 functions as an L-selectin ligand mediating lymphocyte extravasation only when properly glycosylated to express a sulfated carbohydrate epitope, 6-sulfo sialyl Lewis x (6-sulfo SLe(x)). It is thought that multivalent 6-sulfo SLe(x) expression promotes high-affinity binding to L-selectin by enhancing avidity. However, the reported low amount of 6-sulfo SLe(x) in total human CD34 is inconsistent with this model and prompted us to re-evaluate CD34 glycosylation. We separated CD34 into 2 glycoforms, the L-selectin-binding and nonbinding glycoforms, L-B-CD34 and L-NB-CD34, respectively, and analyzed released O- and N-glycans from both forms. L-B-CD34 is relatively minor compared with L-NB-CD34 and represented less than 10% of total tonsillar CD34. MECA-79, a mAb to sulfated core-1 O-glycans, bound exclusively to L-B-CD34 and this form contained all sulfated and fucosylated O-glycans. 6-Sulfo SLe(x) epitopes occur on core-2 and extended core-1 O-glycans with approximately 20% of total L-B-CD34 O-glycans expressing 6-sulfo SLe(x). N-glycans containing potential 6-sulfo SLe(x) epitopes were also present in L-B-CD34, but their removal did not abolish binding to L-selectin. Thus, a minor glycoform of CD34 carries relatively abundant 6-sulfo SLe(x) epitopes on O-glycans that are important for its recognition by L-selectin.
Collapse
|
38
|
Langenkamp E, Molema G. Microvascular endothelial cell heterogeneity: general concepts and pharmacological consequences for anti-angiogenic therapy of cancer. Cell Tissue Res 2008; 335:205-22. [DOI: 10.1007/s00441-008-0642-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 05/09/2008] [Indexed: 12/01/2022]
|
39
|
Abstract
Leukocyte rolling is an important step for the successful recruitment of leukocytes into tissue and occurs predominantly in inflamed microvessels and in high endothelial venules of secondary lymphoid organs. Leukocyte rolling is mediated by a group of C-type lectins, termed selectins. Three different selectins have been identified - P-, E- and L-selectin - which recognize and bind to crucial carbohydrate determinants on selectin ligands. Among selectin ligands, P-selectin glycoprotein ligand-1 is the main inflammatory selectin ligand, showing binding to all three selectins under in vivo conditions. Functional relevant selectin ligands expressed on high endothelial venules of lymphoid tissue are less clearly defined at the protein level. However, high endothelial venule-expressed selectin ligands were instrumental in uncovering the crucial role of post-translational modifications for selectin ligand activity. Several glycosyltransferases, such as core 2 beta1,6-N-acetylglucosaminyltransferase-I, beta1,4-galactosyltransferases, alpha1,3-fucosyltransferases and alpha2,3-sialyltransferases have been described to participate in the synthesis of core 2 decorated O-glycan structures carrying the tetrasaccharide sialyl Lewis X, a carbohydrate determinant on selectin ligands with binding activity to all three selectins. In addition, modifications, such as carbohydrate or tyrosine sulfation, were also found to contribute to the synthesis of functional selectin ligands.
Collapse
Affiliation(s)
- Markus Sperandio
- University Children's Hospital Heidelberg, Division of Neonatal Medicine, University of Heidelberg, Germany.
| |
Collapse
|
40
|
Umemoto E, Tanaka T, Kanda H, Jin S, Tohya K, Otani K, Matsutani T, Matsumoto M, Ebisuno Y, Jang MH, Fukuda M, Hirata T, Miyasaka M. Nepmucin, a novel HEV sialomucin, mediates L-selectin-dependent lymphocyte rolling and promotes lymphocyte adhesion under flow. ACTA ACUST UNITED AC 2006; 203:1603-14. [PMID: 16754720 PMCID: PMC2118321 DOI: 10.1084/jem.20052543] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lymphocyte trafficking to lymph nodes (LNs) is initiated by the interaction between lymphocyte L-selectin and certain sialomucins, collectively termed peripheral node addressin (PNAd), carrying specific carbohydrates expressed by LN high endothelial venules (HEVs). Here, we identified a novel HEV-associated sialomucin, nepmucin (mucin not expressed in Peyer's patches [PPs]), that is expressed in LN HEVs but not detectable in PP HEVs at the protein level. Unlike conventional sialomucins, nepmucin contains a single V-type immunoglobulin (Ig) domain and a mucin-like domain. Using materials affinity-purified from LN lysates with soluble L-selectin, we found that two higher molecular weight species of nepmucin (75 and 95 kD) were decorated with oligosaccharides that bind L-selectin as well as an HEV-specific MECA-79 monoclonal antibody. Electron microscopic analysis showed that nepmucin accumulates in the extended luminal microvillus processes of LN HEVs. Upon appropriate glycosylation, nepmucin supported lymphocyte rolling via its mucin-like domain under physiological flow conditions. Furthermore, unlike most other sialomucins, nepmucin bound lymphocytes via its Ig domain, apparently independently of lymphocyte function–associated antigen 1 and very late antigen 4, and promoted shear-resistant lymphocyte binding in combination with intercellular adhesion molecule 1. Collectively, these results suggest that nepmucin may serve as a dual-functioning PNAd in LN HEVs, mediating both lymphocyte rolling and binding via different functional domains.
Collapse
Affiliation(s)
- Eiji Umemoto
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Matsubara A, Iwama A, Yamazaki S, Furuta C, Hirasawa R, Morita Y, Osawa M, Motohashi T, Eto K, Ema H, Kitamura T, Vestweber D, Nakauchi H. Endomucin, a CD34-like sialomucin, marks hematopoietic stem cells throughout development. ACTA ACUST UNITED AC 2005; 202:1483-92. [PMID: 16314436 PMCID: PMC2213340 DOI: 10.1084/jem.20051325] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To detect as yet unidentified cell-surface molecules specific to hematopoietic stem cells (HSCs), a modified signal sequence trap was successfully applied to mouse bone marrow (BM) CD34−c-Kit+Sca-1+Lin− (CD34−KSL) HSCs. One of the identified molecules, Endomucin, is an endothelial sialomucin closely related to CD34. High-level expression of Endomucin was confined to the BM KSL HSCs and progenitor cells, and, importantly, long-term repopulating (LTR)–HSCs were exclusively present in the Endomucin+CD34−KSL population. Notably, in the yolk sac, Endomucin expression separated multipotential hematopoietic cells from committed erythroid progenitors in the cell fraction positive for CD41, an early embryonic hematopoietic marker. Furthermore, developing HSCs in the intraembryonic aorta-gonad-mesonephros (AGM) region were highly enriched in the CD45−CD41+Endomucin+ fraction at day 10.5 of gestation (E10.5) and in the CD45+CD41+Endomucin+ fraction at E11.5. Detailed analyses of these fractions uncovered drastic changes in their BM repopulating capacities as well as in vitro cytokine responsiveness within this narrow time frame. Our findings establish Endomucin as a novel cell-surface marker for LTR-HSCs throughout development and provide a powerful tool in understanding HSC ontogeny.
Collapse
Affiliation(s)
- Azusa Matsubara
- Laboratory of Stem Cell Therapy, Center for Experimental Medicine, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang W, Agrawal N, Patel J, Edinger A, Osei E, Thut D, Powers J, Meyerson H. Diminished expression of CD19 in B-cell lymphomas. CYTOMETRY PART B-CLINICAL CYTOMETRY 2005; 63:28-35. [PMID: 15624204 DOI: 10.1002/cyto.b.20030] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND CD19 is expressed on most B-cell lymphomas; however, the frequency and types of B-cell lymphomas with low-level expression of CD19 are not well characterized. METHODS We reviewed flow cytometric histograms specifically for decreased CD19 expression on 349 cases analyzed by the Flow Cytometry Laboratory at University Hospitals of Cleveland (Cleveland, Ohio). Results of flow cytometry were correlated with the morphologic diagnosis. RESULTS Of the cases reviewed, 125 (36%) showed a visible decrease in CD19 expression compared with normal B lymphocytes. Decreased CD19 expression was noted in 79% of follicular lymphomas (27 of 34), 36% of small lymphocytic lymphomas/chronic lymphocytic leukemias (82 of 228), 31% of mantle cell lymphomas (4 of 13), 24% of diffuse large B-cell lymphomas (8 of 33), and 13% of marginal zone B-cell lymphomas/lymphoplasmacytoid lymphomas (4 of 30) and was not observed in any Burkitt lymphoma (0 of 5) or hairy cell leukemia (0 of 6). Decreased CD19 expression was significantly more frequent in follicular lymphomas than in other lymphoma subtypes (P < 0.001). No significant difference was observed in the frequency of decreased CD19 expression based on histologic grade of follicular lymphoma. CONCLUSIONS Diminished expression of CD19 expression occurs frequently in B-cell lymphomas, in particular follicular lymphoma, and may be helpful in identifying B-cell lymphoma cells in complex cell mixtures such as bone marrow specimens.
Collapse
Affiliation(s)
- Wei Yang
- University Hospitals of Cleveland and Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Pablos JL, Santiago B, Tsay D, Singer MS, Palao G, Galindo M, Rosen SD. A HEV-restricted sulfotransferase is expressed in rheumatoid arthritis synovium and is induced by lymphotoxin-alpha/beta and TNF-alpha in cultured endothelial cells. BMC Immunol 2005; 6:6. [PMID: 15752429 PMCID: PMC1079838 DOI: 10.1186/1471-2172-6-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Accepted: 03/07/2005] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The recruitment of lymphocytes to secondary lymphoid organs relies on interactions of circulating cells with high endothelial venules (HEV). HEV are exclusive to these organs under physiological conditions, but they can develop in chronically-inflamed tissues. The interaction of L-selectin on lymphocytes with sulfated glycoprotein ligands on HEV results in lymphocyte rolling, which represents the initial step in lymphocyte homing. HEV expression of GlcNAc6ST-2 (also known as HEC-GlcNAc6ST, GST-3, LSST or CHST4), an HEV-restricted sulfotransferase, is essential for the elaboration of L-selectin functional ligands as well as a critical epitope recognized by MECA-79 mAb. RESULTS We examined the expression of GlcNAc6ST-2 in relationship to the MECA-79 epitope in rheumatoid arthritis (RA) synovial vessels. Expression of GlcNAc6ST-2 was specific to RA synovial tissues as compared to osteoarthritis synovial tissues and localized to endothelial cells of HEV-like vessels and small flat-walled vessels. Double MECA-79 and GlcNAc6ST-2 staining showed colocalization of the MECA-79 epitope and GlcNAc6ST-2. We further found that both TNF-alpha and lymphotoxin-alphabeta induced GlcNAc6ST-2 mRNA and protein in cultured human umbilical vein endothelial cells. CONCLUSION These observations demonstrate that GlcNAc6ST-2 is induced in RA vessels and provide potential cytokine pathways for its induction. GlcNAc6ST-2 is a novel marker of activated vessels within RA ectopic lymphoid aggregates. This enzyme represents a potential therapeutic target for RA.
Collapse
Affiliation(s)
- José L Pablos
- Servicio de Reumatología y Unidad de Investigación, Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Begoña Santiago
- Servicio de Reumatología y Unidad de Investigación, Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Durwin Tsay
- Department of Anatomy, University of California, San Francisco, California, USA
| | - Mark S Singer
- Department of Anatomy, University of California, San Francisco, California, USA
| | - Guillermo Palao
- Servicio de Reumatología y Unidad de Investigación, Hospital 12 de Octubre, 28041 Madrid, Spain
| | - María Galindo
- Servicio de Reumatología y Unidad de Investigación, Hospital 12 de Octubre, 28041 Madrid, Spain
| | | |
Collapse
|
44
|
Abstract
Understanding the molecular basis of lymphocyte homing to lymphoid organs was originally a problem of concern only to immunologists. With the discovery of L-selectin and its ligands, interested scientists have expanded to include glycobiologists, immunopathologists, cancer biologists, and developmental biologists. Going beyond its first discovered role in homing to lymph nodes, the L-selectin system is implicated in such diverse processes as inflammatory leukocyte trafficking in both acute and chronic settings, hematogenous metastasis of carcinoma cells, effector mechanisms for inflammatory demyelination of axons, and implantation of the early mammalian embryo. This review focuses on the ligands for L-selectin that are found on vascular endothelium, leukocytes, carcinoma cells, and at various extravascular sites. The discovery of selectins and their ligands has validated the long-predicted hypothesis that carbohydrate-directed cell adhesion is relevant in eukaryotic systems. Emphasis will be given to the carbohydrate and sulfation modifications of the ligands, which enable recognition by L-selectin. The rapid "homing" of labeled cells into the lymph nodes presumably had its basis in the special affinity of small lymphocytes for the endothelium of the postcapillary venules.
Collapse
Affiliation(s)
- Steven D Rosen
- Department of Anatomy and Program in Immunology, University of California, San Francisco, San Francisco, California 94143-0452, USA.
| |
Collapse
|
45
|
Kanda H, Tanaka T, Matsumoto M, Umemoto E, Ebisuno Y, Kinoshita M, Noda M, Kannagi R, Hirata T, Murai T, Fukuda M, Miyasaka M. Endomucin, a sialomucin expressed in high endothelial venules, supports L-selectin-mediated rolling. Int Immunol 2004; 16:1265-74. [PMID: 15249540 DOI: 10.1093/intimm/dxh128] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lymphocyte homing to lymph nodes is regulated by transient but specific interactions between lymphocytes and high endothelial venules (HEVs), the initial phase of which is mainly governed by the leukocyte adhesion molecule L-selectin, which recognizes sulfated and sialylated O-linked oligosaccharides displayed on sialomucin core proteins. One of the sialomucin proteins, endomucin, is predominantly expressed in vascular endothelial cells of a variety of tissues including the HEVs of lymph nodes; however, whether it functions as a ligand for L-selectin remains to be formally proven. Here we show that the endomucin splice isoform a is predominantly expressed in PNAd+ HEVs and MAdCAM-1+ HEVs, as seen in non-HEV-type vascular endothelial cells. Using affinity purification with soluble L-selectin, we found that HEV endomucin is specifically modified with L-selectin-reactive oligosaccharides and can bind L-selectin as well as an HEV-specific mAb, MECA-79. Our results also indicated that a 90-100 kDa endomucin species is preferentially decorated with L-selectin-reactive sugar chains, whereas an 80 kDa species represents conventional forms expressed in non-HEV-type vascular endothelial cells in lymph nodes. Furthermore, a CHO cell line expressing endomucin together with a specific combination of carbohydrate-modifying enzymes [core-2 beta-1,6-N-acetylglucosaminyltransferase (C2GnT), alpha-1,3-fucosyltransferase VII (FucTVII) and L-selectin ligand sulfotransferase (LSST)] showed L-selectin-dependent rolling under flow conditions in vitro. These results suggest that when endomucin is appropriately modified by a specific set of glycosyltransferases and a sulfotransferase, it can function as a ligand for L-selectin, and that the endomucin expressed in HEVs may represent another sialomucin ligand for L-selectin.
Collapse
Affiliation(s)
- Hidenobu Kanda
- Laboratory of Molecular and Cellular Recognition, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bistrup A, Tsay D, Shenoy P, Singer MS, Bangia N, Luther SA, Cyster JG, Ruddle NH, Rosen SD. Detection of a sulfotransferase (HEC-GlcNAc6ST) in high endothelial venules of lymph nodes and in high endothelial venule-like vessels within ectopic lymphoid aggregates: relationship to the MECA-79 epitope. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1635-44. [PMID: 15111310 PMCID: PMC1615668 DOI: 10.1016/s0002-9440(10)63722-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/21/2004] [Indexed: 01/13/2023]
Abstract
The interaction of L-selectin on lymphocytes with sulfated ligands on high endothelial venules (HEVs) of lymph nodes results in lymphocyte rolling and is essential for lymphocyte homing. The MECA-79 monoclonal antibody reports HEV-expressed ligands for L-selectin by recognizing a critical sulfation-dependent determinant on these ligands. HEC-GlcNAc6ST, a HEV-localized sulfotransferase, is essential for the elaboration of functional ligands within lymph nodes, as well as the generation of the MECA-79 epitope. Here, we use an antibody against murine HEC-GlcNAc6ST to study its expression in relationship to the MECA-79 epitope. In lymph nodes, the enzyme is expressed in the Golgi apparatus of high endothelial cells, in close correspondence with luminal staining by MECA-79. In lymph node HEVs of HEC-GlcNAc6ST-null mice, luminal staining by MECA-79 is almost abolished, whereas abluminal staining persists although reduced in intensity. HEV-like vessels in several examples of inflammation-associated lymphoid neogenesis, including nonobese diabetic mice, also exhibit concomitant expression of the sulfotransferase and luminal MECA-79 reactivity. The correlation extends to ectopic lymphoid aggregates within the pancreas of RIP-BLC mice, in which CXCL13 is expressed in islets. Analysis of the progeny of RIP-BLC by HEC-GlcNAc6ST-null mice establishes that the enzyme is responsible for the MECA-79 defined luminal ligands.
Collapse
Affiliation(s)
- Annette Bistrup
- Department of Anatomy, University of California, San Francisco, California 94143-0452, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
van Zante A, Gauguet JM, Bistrup A, Tsay D, von Andrian UH, Rosen SD. Lymphocyte-HEV interactions in lymph nodes of a sulfotransferase-deficient mouse. ACTA ACUST UNITED AC 2003; 198:1289-300. [PMID: 14597732 PMCID: PMC2194250 DOI: 10.1084/jem.20030057] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The interaction of L-selectin expressed on lymphocytes with sulfated sialomucin ligands such as CD34 and GlyCAM-1 on high endothelial venules (HEV) of lymph nodes results in lymphocyte rolling and is essential for lymphocyte recruitment. HEC-GlcNAc6ST-deficient mice lack an HEV-restricted sulfotransferase with selectivity for the C-6 position of N-acetylglucosamine (GlcNAc). HEC-GlcNAc6ST-/- animals exhibit faster lymphocyte rolling and reduced lymphocyte sticking in HEV, accounting for the diminished lymphocyte homing. Isolated CD34 and GlyCAM-1 from HEC-GlcNAc6ST-/- animals incorporate approximately 70% less sulfate than ligands from wild-type animals. Furthermore, these ligands exhibit a comparable reduction of the epitope recognized by MECA79, a function-blocking antibody that reacts with L-selectin ligands in a GlcNAc-6-sulfate-dependent manner. Whereas MECA79 dramatically inhibits lymphocyte rolling and homing to lymph nodes in wild-type mice, it has no effect on HEC-GlcNAc6ST-/- mice. In contrast, in vitro rolling on purified GlyCAM-1 from HEC-GlcNAc6ST-/- mice, although greatly diminished compared with that on the wild-type ligand, is inhibited by MECA79. Our results demonstrate that HEC-GlcNAc6ST contributes predominantly, but not exclusively, to the sulfation of HEV ligands for L-selectin and that alternative, non-MECA79-reactive ligands are present in the absence of HEC-GlcNAc6ST.
Collapse
Affiliation(s)
- Annemieke van Zante
- Department of Anatomy, Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
48
|
Fieger CB, Sassetti CM, Rosen SD. Endoglycan, a member of the CD34 family, functions as an L-selectin ligand through modification with tyrosine sulfation and sialyl Lewis x. J Biol Chem 2003; 278:27390-8. [PMID: 12889478 DOI: 10.1074/jbc.m304204200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During lymphocyte homing to secondary lymphoid organs and instances of inflammatory trafficking, the rolling of leukocytes on vascular endothelium is mediated by transient interactions between L-selectin on leukocytes and several carbohydrate-modified ligands on the endothelium. Most L-selectin ligands such as CD34 and podocalyxin present sulfated carbohydrate structures (6-sulfated sialyl Lewis x or 6-sulfo-sLex) as a recognition determinant within their heavily glycosylated mucin domains. We recently identified endoglycan as a new member of the CD34 family. We report here that endoglycan, like the two other members of this family (CD34 and podocalyxin) can function as a L-selectin ligand. However, endoglycan employs a different binding mechanism, interacting with L-selectin through sulfation on two tyrosine residues and O-linked sLex structures that are presented within its highly acidic amino-terminal region. Our analysis establishes striking parallels with PSGL-1, a leukocyte ligand that interacts with all three selectins, mediating leukocyte-endothelial, leukocyte-leukocyte, and platelet-leukocyte interactions. Since the distribution of endoglycan includes hematopoietic precursors and leukocyte subpopulations, in addition to endothelial cells, our findings suggest several potential settings for endoglycan-mediated adhesion events.
Collapse
Affiliation(s)
- Claudia B Fieger
- Department of Anatomy, Program in Immunology, University of California, San Francisco, California 94143-0452, USA
| | | | | |
Collapse
|
49
|
Symmans WF, Ayers M, Clark EA, Stec J, Hess KR, Sneige N, Buchholz TA, Krishnamurthy S, Ibrahim NK, Buzdar AU, Theriault RL, Rosales MFM, Thomas ES, Gwyn KM, Green MC, Syed AR, Hortobagyi GN, Pusztai L. Total RNA yield and microarray gene expression profiles from fine-needle aspiration biopsy and core-needle biopsy samples of breast carcinoma. Cancer 2003; 97:2960-71. [PMID: 12784330 DOI: 10.1002/cncr.11435] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Gene expression profiling should be applicable to needle biopsy samples if microarray technology is to become practically useful for clinical research or management of breast carcinoma. This study compared gene expression profiles derived from fine-needle aspiration biopsy (FNAB) and from core needle biopsy (CBX). METHODS Total RNA was extracted from single FNAB and CBX samples. Corresponding pairs of FNAB and CBX were analyzed for similarity of gene expression profiles using cDNA microarrays that contain 30721 human sequences. A subset of genes that distinguished CBX samples from FNAB samples was evaluated in a larger group of needle biopsy samples and in a published genomic database derived from 78 sporadic breast carcinomas with known clinical outcome. RESULTS Sixty-eight patients with newly diagnosed breast carcinoma were included in the current study. Sixty-five patients underwent FNAB (17 had both FNAB and CBX) and 3 underwent CBX only. Extracted RNA was of suitable quality for hybridization in 46 (71%) FNABs and 15 (75%) CBXs. Total RNA yield in those samples was similar for single-pass FNAB (mean = 3.6 microg and median = 2.2 microg; n = 46) and CBX (mean = 2.8 microg and median = 2.0 microg; n = 15), with 1 microg or more of total RNA in all cases. Transcriptional profiling was performed successfully in all cases when it was attempted, in a total of 50 samples (38 FNABs and 12 CBXs), including matched FNAB and CBX samples from 10 patients. There were differences in gene expression profiles in 10 matched FNAB and CBX sample pairs. Genes that were expressed differently in CBX samples, compared with FNAB samples, were recognized as being predominantly from the endothelium, fibroblasts, myofibroblasts or smooth muscle, and histiocytes. Corresponding microscopic cell counts from FNABs demonstrated means of 80% tumor cells, 15% lymphocytes, and 5% stromal cells, whereas CBXs contained 50% tumor cells, 20% lymphocytes, and 30% stromal cells. Considering that CBXs are approximately six-fold richer in nonlymphoid stromal cells than FNABs and that CBXs differentially express a set of recognized stromal genes, the authors used these biopsies to define a transcriptional profile of breast carcinoma stroma. A set of 120 genes differentially expressed in CBXs was assessed independently in a published breast carcinoma genomic database to classify breast carcinomas based on stromal gene expression. Subgroups of tumors with low or high stromal signal were identified, but there was no correlation with the development of systemic metastases within 5 years. CONCLUSIONS Both FNAB and CBX yield a similar quality and quantity of total RNA and are suitable for cDNA microarray analyses in approximately 70-75% of single-pass samples. Transcriptional profiles from FNAB and CBX of the same tumor generally are similar and are driven by the tumor cell population. The authors concluded that each technique has relative advantages. The FNABs provide transcriptional profiles that are a purer representation of the tumor cell population, whereas transcriptional profiles from CBXs include more representation from nonlymphoid stromal elements. Selection of the preferred needle biopsy sampling technique for genomic studies of breast carcinomas should depend on whether variable stromal gene expression is desirable in the samples.
Collapse
Affiliation(s)
- W Fraser Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kuhn A, Brachtendorf G, Kurth F, Sonntag M, Samulowitz U, Metze D, Vestweber D. Expression of endomucin, a novel endothelial sialomucin, in normal and diseased human skin. J Invest Dermatol 2002; 119:1388-93. [PMID: 12485444 DOI: 10.1046/j.1523-1747.2002.19647.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Endomucin is an endothelial sialomucin that was recently identified with the help of monoclonal antibodies raised against mouse endothelial cells. Cloning of human endomucin allowed us to generate monoclonal antibodies against soluble recombinant forms of human endomucin. In this study, we investigated the expression of this novel molecule in human skin under different conditions, using the monoclonal antibodies. In normal human skin, endomucin was detected for the monoclonal antibody L6H10 by immunoblotting, and immunohistologic analysis of wax-embedded sections revealed that this glycoprotein is expressed on capillaries, venules, and lymphatic vessels. Interestingly, staining of arterial endothelium was either weak or focal using the monoclonal antibodies against endomucin. In situ hybridization of normal human skin confirmed the expression pattern on the messenger RNA level obtained above. We further analyzed the expression of endomucin in skin biopsy specimens from patients with inflammatory skin diseases, such as atopic dermatitis, psoriasis, lichen planus, cutaneous lupus erythematosus, and T cell lymphoma as well as with vascular skin tumors, such as hemangioma, pyogenic granuloma, angiolipoma, Kaposi's sarcoma, and angiosarcoma. We found endomucin expressed on the endothelium of each tissue, concluding that this novel molecule is a new endothelial-specific marker in the study of normal and diseased human skin.
Collapse
MESH Headings
- Antibodies, Monoclonal
- Biomarkers
- Blotting, Western
- Dermatitis, Atopic/pathology
- Dermatitis, Atopic/physiopathology
- Gene Expression
- Granuloma, Pyogenic/pathology
- Granuloma, Pyogenic/physiopathology
- Hemangioma/pathology
- Hemangioma/physiopathology
- Hemangiosarcoma/pathology
- Hemangiosarcoma/physiopathology
- Humans
- Lichen Planus/pathology
- Lichen Planus/physiopathology
- Lupus Erythematosus, Cutaneous/pathology
- Lupus Erythematosus, Cutaneous/physiopathology
- Mucins/analysis
- Mucins/genetics
- Mucins/immunology
- Psoriasis/pathology
- Psoriasis/physiopathology
- RNA, Messenger/analysis
- Sarcoma, Kaposi/pathology
- Sarcoma, Kaposi/physiopathology
- Sialomucins
- Skin Diseases/pathology
- Skin Diseases/physiopathology
- Vascular Neoplasms/pathology
- Vascular Neoplasms/physiopathology
Collapse
Affiliation(s)
- Annegret Kuhn
- Institute of Cell Biology, ZMBE, University of Münster, Germany Department of Dermatology, University of Düsseldorf, Düsseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|