1
|
Arai T, Inoue Y, Akasaka K, Masunaga A, Fujita M, Yamaguchi E, Saigusa M, Murakami K, Kurahara Y, Tsuyuguchi K, Suzuki T, Miyazaki Y, Bando M, Suda T. Severity and prognosis of COVID-19 complicated by autoimmune pulmonary alveolar proteinosis. Respir Investig 2025; 63:20-26. [PMID: 39615320 DOI: 10.1016/j.resinv.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/30/2024] [Accepted: 11/21/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND The prognosis of patients with coronavirus disease 2019 (COVID-19) was poor although its survival rate has been improved after the occurrence of the Omicron strain. Autoimmune pulmonary alveolar proteinosis (APAP), a lung disease caused by macrophage dysfunction induced by anti-granulocyte-macrophage colony-stimulating factor (GM-CSF)-neutralizing autoantibodies, is characterized by the deposition of proteinaceous material in the alveolar spaces. The clinical course of COVID-19 in patients with APAP remains unclear and this study aimed to clarify it. METHODS The data of 23 patients with APAP, who were diagnosed with COVID-19 between January 2020 and May 2023 and collected through a nationwide questionnaire surveillance system, were retrospectively reviewed. RESULTS Based on the epidemiological frequency at disease onset, suspected strains of severe acute respiratory syndrome coronavirus 2 were Omicron (n = 18) and non-Omicron (n = 5). Fifteen patients were vaccinated. Six and three patients received anti-viral drugs and corticosteroids, respectively. One patient in the third trimester of pregnancy died despite treatment in the intensive care unit. Six patients were complicated by pneumonia and/or required supplemental oxygen. These patients were suspected to have non-Omicron strains (p = 0.087). Vaccination status showed a significant association with suspected Omicron strains. The radiological findings in four patients and shortness of breath improved in two of the four patients after COVID-19. CONCLUSIONS The severity and prognosis of the patients were not worse than those predicted based on the results of a previous study. The transition from a non-Omicron strain to an Omicron strain and the vaccination status may have affected these results.
Collapse
Affiliation(s)
- Toru Arai
- Clinical Research Center, NHO Kinki Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan.
| | - Yoshikazu Inoue
- Clinical Research Center, NHO Kinki Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Keiichi Akasaka
- Department of Respiratory Medicine, Saitama Red Cross Hospital, 1-5 Shintoshin, Chuo-ku, Saitama City, Saitama, 330-8553, Japan
| | - Aiko Masunaga
- Department of Respiratory Medicine, Kumamoto University Hospital, 1-1-1 Honjyo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan
| | - Masaki Fujita
- Department of Respiratory Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka City, Fukuoka, 814-0180, Japan
| | - Etsuo Yamaguchi
- Department of Respiratory Medicine and Allergology, Aichi Medical University, Karimata 1-1, Yazako, Nagakute City, Aichi, 480-1195, Japan
| | - Mika Saigusa
- Department of Respiratory Medicine, Shizuoka General Hospital, 4-27-1, Kita Ando, Aoi-ku, Shizuoka City, Shizuoka, 420-8527, Japan
| | - Koji Murakami
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai City, Miyagi, 980-8574, Japan
| | - Yu Kurahara
- Department of Infectious Diseases, NHO Kinki Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Kazunari Tsuyuguchi
- Department of Infectious Diseases, NHO Kinki Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Takuji Suzuki
- Department of Respirology, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
| | - Yasunari Miyazaki
- Institute of Science Tokyo, Department of Respiratory Medicine, Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masashi Bando
- Division of Pulmonary Medicine, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-2-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-2111, Japan
| |
Collapse
|
2
|
Thomson RM, Loebinger MR, Burke AJ, Morgan LC, Waterer GW, Ganslandt C. OPTIMA: An Open-Label, Noncomparative Pilot Trial of Inhaled Molgramostim in Pulmonary Nontuberculous Mycobacterial Infection. Ann Am Thorac Soc 2024; 21:568-576. [PMID: 37948736 DOI: 10.1513/annalsats.202306-532oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023] Open
Abstract
Rationale: Inhaled granulocyte-macrophage colony-stimulating factor (GM-CSF) has been proposed as a potential immunomodulatory treatment for nontuberculous mycobacterial (NTM) infection.Objectives: This open-label, noncomparative pilot trial investigated the efficacy and safety of inhaled GM-CSF (molgramostim nebulizer solution) in patients with predominantly treatment-refractory pulmonary NTM infection (Mycobacterium avium complex [MAC] and M. abscessus [MABS]), either in combination with ongoing guideline-based therapy (GBT) or as monotherapy in patients who had stopped GBT because of lack of efficacy or intolerability.Methods: Thirty-two adult patients with refractory NTM infection (MAC, n = 24; MABS, n = 8) were recruited into two cohorts: those with (n = 16) and without (n = 16) ongoing GBT. Nebulized molgramostim 300 μg/d was administered over 48 weeks. Sputum cultures and smears and clinical assessments (6-min-walk distance, symptom scores, Quality of Life-Bronchiectasis Questionnaire score, and body weight) were collected every 4 weeks during treatment and 12 weeks after the end of treatment. The primary endpoint was sputum culture conversion, defined as three consecutive monthly negative cultures during the treatment period.Results: Eight patients (25%) achieved culture conversion on treatment (seven [29.2%] patients with MAC infection, one [12.5%] patient with MABS infection); in four patients, this was durable after the end of treatment. Of the 24 patients with MAC infection, an additional 4 patients had a partial response, converting from smear positive at baseline to smear negative at the end of treatment, and time to positivity in liquid culture media increased. Two of these patients sustained negative cultures from the end of treatment. Other clinical endpoints were unchanged. Serious adverse events were mainly pulmonary exacerbations or worsening NTM infection. Three deaths, not treatment related, were reported.Conclusions: In this population of patients with severe NTM disease, molgramostim was safe and well tolerated. Sputum culture conversion rates for patients with MAC infection (29.2%) were greater than reported for similar refractory MAC cohorts managed with GBT alone. Less benefit was seen for MABS infection. No serious safety concerns were identified. Further evaluation in a larger cohort is warranted.Clinical trial registered with www.clinicaltrials.gov (NCT03421743).
Collapse
Affiliation(s)
- Rachel M Thomson
- School of Clinical Medicine, University of Queensland, Brisbane, Queensland, Australia
- Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, Queensland, Australia
- The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Michael R Loebinger
- National Heart and Lung Institute, Imperial College and Royal Brompton Hospital, London, United Kingdom
| | - Andrew J Burke
- School of Clinical Medicine, University of Queensland, Brisbane, Queensland, Australia
- The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Lucy C Morgan
- Concord Repatriation Hospital, Sydney, New South Wales, Australia
| | - Grant W Waterer
- East Metropolitan Health Service, Royal Perth Bentley Group, University of Western Australia, Perth, Western Australia, Australia; and
| | | |
Collapse
|
3
|
McCormick TS, Hejal RB, Leal LO, Ghannoum MA. GM-CSF: Orchestrating the Pulmonary Response to Infection. Front Pharmacol 2022; 12:735443. [PMID: 35111042 PMCID: PMC8803133 DOI: 10.3389/fphar.2021.735443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
This review summarizes the structure and function of the alveolar unit, comprised of alveolar macrophage and epithelial cell types that work in tandem to respond to infection. Granulocyte-macrophage colony-stimulating factor (GM-CSF) helps to maintain the alveolar epithelium and pulmonary immune system under physiological conditions and plays a critical role in restoring homeostasis under pathologic conditions, including infection. Given the emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and global spread of coronavirus disease 2019 (COVID-19), with subsequent acute respiratory distress syndrome, understanding basic lung physiology in infectious diseases is especially warranted. This review summarizes clinical and preclinical data for GM-CSF in respiratory infections, and the rationale for sargramostim (yeast-derived recombinant human [rhu] GM-CSF) as adjunctive treatment for COVID-19 and other pulmonary infectious diseases.
Collapse
Affiliation(s)
- Thomas S. McCormick
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
| | - Rana B. Hejal
- Medical Intensive Care Unit, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Pulmonary and Critical Care Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Luis O. Leal
- Partner Therapeutics, Lexington, MA, United States
| | - Mahmoud A. Ghannoum
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
- University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
4
|
Abstract
Acute respiratory distress syndrome is a heterogenous syndrome with many etiologies for which there are no definitive pharmacologic treatments, despite decades of research. We explore some adjunctive pharmacologic therapies, including neuromuscular blockade, corticosteroids, and inhaled pulmonary vasodilators. Additionally, we explore some investigative therapies, including Vitamin C, beta-agonists, statins, mesenchymal stromal cells, and granulocyte-macrophage colony stimulating factor. We do discuss the potential role of steroids in acute respiratory distress syndrome with severe acute respiratory syndrome coronavirus 2 as a trigger. The standard of care, however, remains supportive care.
Collapse
Affiliation(s)
- Nida Qadir
- David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Room 43-229 CHS, Los Angeles, CA 90095, USA.
| | - Steven Y Chang
- David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Room 43-229 CHS, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Can biomarkers be used to predict bronchopulmonary dysplasia? J Pediatr (Rio J) 2021; 97:253-255. [PMID: 33183652 PMCID: PMC9432051 DOI: 10.1016/j.jped.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Booz GW, Altara R, Eid AH, Wehbe Z, Fares S, Zaraket H, Habeichi NJ, Zouein FA. Macrophage responses associated with COVID-19: A pharmacological perspective. Eur J Pharmacol 2020; 887:173547. [PMID: 32919938 PMCID: PMC7483085 DOI: 10.1016/j.ejphar.2020.173547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
Abstract
COVID-19 has caused worldwide death and economic destruction. The pandemic is the result of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has demonstrated high rates of infectivity leading to great morbidity and mortality in vulnerable populations. At present, scientists are exploring various approaches to curb this pandemic and alleviate its health consequences, while racing to develop a vaccine. A particularly insidious aspect of COVID-19 is the delayed overactivation of the body's immune system that is manifested as the cytokine storm. This unbridled production of pro-inflammatory cytokines and chemokines can directly or indirectly cause massive organ damage and failure. Systemic vascular endothelial inflammation and thrombocytopenia are potential consequences as well. In the case of COVID-19, the cytokine storm often fits the pattern of the macrophage activation syndrome with lymphocytopenia. The basis for the imbalance between the innate and adaptive immune systems is not clearly defined, but highlights the effect of SARS-CoV-2 on macrophages. Here we discuss the potential underlying basis for the impact of SARS-CoV-2 on macrophages, both direct and indirect, and potential therapeutic targets. These include granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 6 (IL-6), interferons, and CXCL10 (IP-10). Various biopharmaceuticals are being repurposed to target the cytokine storm in COVID-19 patients. In addition, we discuss the rationale for activating the macrophage alpha 7 nicotinic receptors as a therapeutic target. A better understanding of the molecular consequences of SARS-CoV-2 infection of macrophages could lead to novel and more effective treatments for COVID-19.
Collapse
Affiliation(s)
| | - Raffaele Altara
- Department of Pathology, School of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA; Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway; KG Jebsen Center for Cardiac Research, Oslo, Norway
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon; College of Medicine, Qatar University, Doha, Qatar
| | - Zena Wehbe
- Department of Biology, Faculty of Medicine, American University of Beirut, Beirut Lebanon
| | - Souha Fares
- Hariri School of Nursing, American University of Beirut, Beirut, Lebanon
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology & Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Center for Infectious Disease Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nada J Habeichi
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon; INSERM Department of Signaling and Cardiovascular Pathophysiology-UMR-S1180, University Paris-Saclay, Châtenay-Malabry, France
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon.
| |
Collapse
|
7
|
Lang FM, Lee KMC, Teijaro JR, Becher B, Hamilton JA. GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nat Rev Immunol 2020; 20:507-514. [PMID: 32576980 PMCID: PMC7309428 DOI: 10.1038/s41577-020-0357-7] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Therapeutics against coronavirus disease 2019 (COVID-19) are urgently needed. Granulocyte–macrophage colony-stimulating factor (GM-CSF), a myelopoietic growth factor and pro-inflammatory cytokine, plays a critical role in alveolar macrophage homeostasis, lung inflammation and immunological disease. Both administration and inhibition of GM-CSF are currently being therapeutically tested in COVID-19 clinical trials. This Perspective discusses the pleiotropic biology of GM-CSF and the scientific merits behind these contrasting approaches. Recombinant granulocyte–macrophage colony-stimulating factor (GM-CSF) as well as antibodies targeted at GM-CSF or its receptor are being tested in clinical trials for coronavirus disease 2019 (COVID-19). This Perspective introduces the pleiotropic functions of GM-CSF and explores the rationale behind these different approaches.
Collapse
Affiliation(s)
| | - Kevin M-C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - John R Teijaro
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia. .,Australian Institute for Musculoskeletal Science, The University of Melbourne and Western Health, St Albans, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Nemunaitis J, Stanbery L, Senzer N. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection: let the virus be its own demise. Future Virol 2020. [PMCID: PMC7249572 DOI: 10.2217/fvl-2020-0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There has been a collaborative global effort to construct novel therapeutic and prophylactic approaches to SARS-CoV-2 management. Although vaccine development is crucial, acute management of newly infected patients, especially those with severe acute respiratory distress syndrome, is a priority. Herein we describe the rationale and potential of repurposing a dual plasmid, Vigil (pbi-shRNAfurin-GM-CSF), now in Phase III cancer trials, for the treatment of and, in certain circumstances, enhancement of the immune response to SARS-CoV-2.
Collapse
|
9
|
In Brief. Curr Probl Surg 2020. [DOI: 10.1016/j.cpsurg.2020.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Abstract
Acute respiratory distress syndrome is characterized by dyspnea at presentation, tachypnea on physical examination, findings of bilateral infiltration in chest radiography, refractory hypoxia, and high mortality. Although the main treatment approach is to address the underlying disease, there are also pharmacological and nonpharmacological options for supportive treatment. There is currently no pharmacological agent with proven efficacy in this syndrome, and many drugs are being studied for this purpose. One of these is the endothelin receptor antagonist bosentan.
Collapse
Affiliation(s)
- Omer Araz
- Department of Pulmonary Disease, Ataturk University School of Medicine, Erzurum, Turkey
| |
Collapse
|
11
|
Mowery NT, Terzian WTH, Nelson AC. Acute lung injury. Curr Probl Surg 2020; 57:100777. [PMID: 32505224 DOI: 10.1016/j.cpsurg.2020.100777] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/24/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Nathan T Mowery
- Associate Professor of Surgery, Wake Forest Medical Center, Winston-Salem, NC.
| | | | - Adam C Nelson
- Acute Care Surgery Fellow, Wake Forest Medical Center, Winston-Salem, NC
| |
Collapse
|
12
|
Pfeffer PE, Lu H, Mann EH, Chen YH, Ho TR, Cousins DJ, Corrigan C, Kelly FJ, Mudway IS, Hawrylowicz CM. Effects of vitamin D on inflammatory and oxidative stress responses of human bronchial epithelial cells exposed to particulate matter. PLoS One 2018; 13:e0200040. [PMID: 30157189 PMCID: PMC6114286 DOI: 10.1371/journal.pone.0200040] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Particulate matter (PM) pollutant exposure, which induces oxidative stress and inflammation, and vitamin D insufficiency, which compromises immune regulation, are detrimental in asthma. OBJECTIVES Mechanistic cell culture experiments were undertaken to ascertain whether vitamin D abrogates PM-induced inflammatory responses of human bronchial epithelial cells (HBECs) through enhancement of antioxidant pathways. METHODS Transcriptome analysis, PCR and ELISA were undertaken to delineate markers of inflammation and oxidative stress; with comparison of expression in primary HBECs from healthy and asthmatic donors cultured with reference urban PM in the presence/absence of vitamin D. RESULTS Transcriptome analysis identified over 500 genes significantly perturbed by PM-stimulation, including multiple pro-inflammatory cytokines. Vitamin D altered expression of a subset of these PM-induced genes, including suppressing IL6. Addition of vitamin D suppressed PM-stimulated IL-6 production, although to significantly greater extent in healthy versus asthmatic donor cultures. Vitamin D also differentially affected PM-stimulated GM-CSF, with suppression in healthy HBECs and enhancement in asthmatic cultures. Vitamin D increased HBEC expression of the antioxidant pathway gene G6PD, increased the ratio of reduced to oxidised glutathione, and in PM-stimulated cultures decreased the formation of 8-isoprostane. Pre-treatment with vitamin D decreased CXCL8 and further decreased IL-6 production in PM-stimulated cultures, an effect abrogated by inhibition of G6PD with DHEA, supporting a role for this pathway in the anti-inflammatory actions of vitamin D. CONCLUSIONS In a study using HBECs from 18 donors, vitamin D enhanced HBEC antioxidant responses and modulated the immune response to PM, suggesting that vitamin D may protect the airways from pathological pollution-induced inflammation.
Collapse
Affiliation(s)
- Paul E. Pfeffer
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, Guy’s Hospital, London, United Kingdom
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Haw Lu
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Elizabeth H. Mann
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Yin-Huai Chen
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Tzer-Ren Ho
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, Guy’s Hospital, London, United Kingdom
| | - David J. Cousins
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, Guy’s Hospital, London, United Kingdom
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester and NIHR Leicester Biomedical Research Centre–Respiratory, Glenfield Hospital, Leicester, United Kingdom
| | - Chris Corrigan
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Frank J. Kelly
- MRC-PHE Centre for Environment and Health and NIHR HPRU in Health Impact of Environmental Hazards, King’s College London, Franklin Wilkins Building, London, United Kingdom
| | - Ian S. Mudway
- MRC-PHE Centre for Environment and Health and NIHR HPRU in Health Impact of Environmental Hazards, King’s College London, Franklin Wilkins Building, London, United Kingdom
| | - Catherine M. Hawrylowicz
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, Guy’s Hospital, London, United Kingdom
| |
Collapse
|
13
|
Wohlrab P, Kraft F, Tretter V, Ullrich R, Markstaller K, Klein KU. Recent advances in understanding acute respiratory distress syndrome. F1000Res 2018; 7. [PMID: 29568488 PMCID: PMC5840611 DOI: 10.12688/f1000research.11148.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 12/17/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by acute diffuse lung injury, which results in increased pulmonary vascular permeability and loss of aerated lung tissue. This causes bilateral opacity consistent with pulmonary edema, hypoxemia, increased venous admixture, and decreased lung compliance such that patients with ARDS need supportive care in the intensive care unit to maintain oxygenation and prevent adverse outcomes. Recently, advances in understanding the underlying pathophysiology of ARDS led to new approaches in managing these patients. In this review, we want to focus on recent scientific evidence in the field of ARDS research and discuss promising new developments in the treatment of this disease.
Collapse
Affiliation(s)
- Peter Wohlrab
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Felix Kraft
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Verena Tretter
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Roman Ullrich
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Klaus Markstaller
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Klaus Ulrich Klein
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
14
|
Rösler B, Herold S. Lung epithelial GM-CSF improves host defense function and epithelial repair in influenza virus pneumonia-a new therapeutic strategy? Mol Cell Pediatr 2016; 3:29. [PMID: 27480877 PMCID: PMC4969252 DOI: 10.1186/s40348-016-0055-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/15/2016] [Indexed: 01/05/2023] Open
Abstract
Influenza viruses (IVs) circulate seasonally and are a common cause of respiratory infections in pediatric and adult patients. Additionally, recurrent pandemics cause massive morbidity and mortality worldwide. Infection may result in rapid progressive viral pneumonia with fatal outcome. Since accurate treatment strategies are still missing, research refocuses attention to lung pathology and cellular crosstalk to develop new therapeutic options. Alveolar epithelial cells (AECs) play an important role in orchestrating the pulmonary antiviral host response. After IV infection they release a cascade of immune mediators, one of which is granulocyte and macrophage colony-stimulating factor (GM-CSF). GM-CSF is known to promote differentiation, activation and mobilization of myeloid cells. In the lung, GM-CSF drives immune functions of alveolar macrophages and dendritic cells (DCs) and also improves epithelial repair processes through direct interaction with AECs. During IV infection, AEC-derived GM-CSF shows a lung-protective effect that is also present after local GM-CSF application. This mini-review provides an overview on GM-CSF-modulated immune responses to IV pneumonia and its therapeutic potential in severe IV pneumonia.
Collapse
Affiliation(s)
- Barbara Rösler
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstrasse 4, 80337, Munich, Germany. .,Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany.
| | - Susanne Herold
- Department of Internal Medicine II, Section for Infectious Diseases, University Hospital Giessen and Marburg, Klinikstr. 33, Giessen, 35392, Germany.,Universities Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Department of Internal Medicine II, Section for Infectious Diseases, Universities Giessen and Marburg Lung Center (UGMLC), Klinikstr. 33, 35392, Giessen, Germany
| |
Collapse
|
15
|
Overgaard CE, Schlingmann B, Dorsainvil White S, Ward C, Fan X, Swarnakar S, Brown LAS, Guidot DM, Koval M. The relative balance of GM-CSF and TGF-β1 regulates lung epithelial barrier function. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1212-23. [PMID: 25888574 DOI: 10.1152/ajplung.00042.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/09/2015] [Indexed: 11/22/2022] Open
Abstract
Lung barrier dysfunction is a cardinal feature of the acute respiratory distress syndrome (ARDS). Alcohol abuse, which increases the risk of ARDS two- to fourfold, induces transforming growth factor (TGF)-β1, which increases epithelial permeability and impairs granulocyte/macrophage colony-stimulating factor (GM-CSF)-dependent barrier integrity in experimental models. We hypothesized that the relative balance of GM-CSF and TGF-β1 signaling regulates lung epithelial barrier function. GM-CSF and TGF-β1 were tested separately and simultaneously for their effects on lung epithelial cell barrier function in vitro. TGF-β1 alone caused an ∼ 25% decrease in transepithelial resistance (TER), increased paracellular flux, and was associated with projections perpendicular to tight junctions ("spikes") containing claudin-18 that colocalized with F-actin. In contrast, GM-CSF treatment induced an ∼ 20% increase in TER, decreased paracellular flux, and showed decreased colocalization of spike-associated claudin-18 with F-actin. When simultaneously administered to lung epithelial cells, GM-CSF antagonized the effects of TGF-β1 on epithelial barrier function in cultured cells. Given this, GM-CSF and TGF-β1 levels were measured in bronchoalveolar lavage (BAL) fluid from patients with ventilator-associated pneumonia and correlated with markers for pulmonary edema and patient outcome. In patient BAL fluid, protein markers of lung barrier dysfunction, serum α2-macroglobulin, and IgM levels were increased at lower ratios of GM-CSF/TGF-β1. Critically, patients who survived had significantly higher GM-CSF/TGF-β1 ratios than nonsurviving patients. This study provides experimental and clinical evidence that the relative balance between GM-CSF and TGF-β1 signaling is a key regulator of lung epithelial barrier function. The GM-CSF/TGF-β1 ratio in BAL fluid may provide a concentration-independent biomarker that can predict patient outcomes in ARDS.
Collapse
Affiliation(s)
- Christian E Overgaard
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia; Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia
| | - Barbara Schlingmann
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - StevenClaude Dorsainvil White
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Christina Ward
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia; Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia
| | - Xian Fan
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia; Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Snehasikta Swarnakar
- Drug Development Diagnostics and Biotechnology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Lou Ann S Brown
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia; Division of Neonatology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - David M Guidot
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia; Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia; Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia; Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia; Department of Cell Biology, Emory University, Atlanta, Georgia;
| |
Collapse
|
16
|
Brown SM, Grissom CK, Rondina MT, Hoidal JR, Scholand MB, Wolff RK, Morris AH, Paine R. Polymorphisms in key pulmonary inflammatory pathways and the development of acute respiratory distress syndrome. Exp Lung Res 2015; 41:155-62. [PMID: 25513711 PMCID: PMC4406221 DOI: 10.3109/01902148.2014.983281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE/AIM Acute Respiratory Distress Syndrome (ARDS) is an important clinical and public health problem. Why some at-risk individuals develop ARDS and others do not is unclear but may be related to differences in inflammatory and cell signaling systems. The Receptor for Advanced Glycation Endproducts (RAGE) and Granulocyte-Monocyte Stimulating Factor (GM-CSF) pathways have recently been implicated in pulmonary pathophysiology; whether genetic variation within these pathways contributes to ARDS risk or outcome is unknown. MATERIALS AND METHODS We studied 842 patients from three centers in Utah and 14 non-Utah ARDS Network centers. We studied patients at risk for ARDS and patients with ARDS to determine whether Single Nucleotide Polymorphisms (SNPs) in the RAGE and GM-CSF pathways were associated with development of ARDS. We studied 29 SNPs in 5 genes within the two pathways and controlled for age, sepsis as ARDS risk factor, and severity of illness, while targeting a false discovery rate of ≤ 5%. In a secondary analysis we evaluated associations with mortality. RESULTS Of 842 patients, 690 had ARDS, and 152 were at-risk. Sepsis was the risk factor for ARDS in 250 (30%) patients. When controlling for age, APACHE III score, sepsis as risk factor, and multiple comparisons, no SNPs were significantly associated with ARDS. In a secondary analysis, only rs743564 in CSF2 approached significance with regard to mortality (OR 2.17, unadjusted p = 0.005, adjusted p = 0.15). CONCLUSIONS Candidate SNPs within 5 genes in the RAGE and GM-CSF pathways were not significantly associated with development of ARDS in this multi-centric cohort.
Collapse
Affiliation(s)
- Samuel M Brown
- 1Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sturrock A, Baker JA, Mir-Kasimov M, Paine R. Contrasting effects of hyperoxia on GM-CSF gene transcription in alveolar epithelial cells and T cells. Physiol Rep 2015; 3:3/3/e12324. [PMID: 25747588 PMCID: PMC4393158 DOI: 10.14814/phy2.12324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Granulocyte/macrophage colony-stimulating factor (GM-CSF) is critically important for normal pulmonary innate immunity and for functional maturation of alveolar macrophages. Alveolar epithelial cells (AEC) are a major source of GM-CSF in the lung and express this growth factor constitutively, whereas most other cells, including T cells, express GM-CSF following inflammatory stimulation. AEC expression of GM-CSF is suppressed by oxidative stress, at least in part through induction of microRNA leading to increased mRNA turnover. In this report, we compare and contrast the effect of hyperoxia on transcriptional aspects of gene regulation of GM-CSF in lung epithelia and T cells of human and mouse origin. Similar to primary murine AEC, human H820 cells that express multiple characteristics of normal alveolar epithelial cells express GM-CSF constitutively, with decreased expression and increased mRNA turnover following exposure to hyperoxia. In contrast, hyperoxia induces augmented GM-CSF expression in human and murine activated T cells, in association with enhanced GM-CSF mRNA stability. Alveolar epithelial cells demonstrate constitutive transcription, with the proximal promoter in an open configuration in normoxia, without change in hyperoxia. Conversely, in both human and murine T cells, hyperoxia increased GM-CSF gene transcription. The proximal promoter was in a closed configuration in unstimulated T cells but became accessible upon activation and still more accessible in activated T cells exposed to hyperoxia. These fundamental differences in molecular regulation of GM-CSF expression highlight the distinctive niche of alveolar epithelial cell expression of GM-CSF and offer insights into the biology of GM-CSF in the setting of acute lung injury.
Collapse
Affiliation(s)
- Anne Sturrock
- Department of Veterans, Affairs Medical Center, Salt Lake City, Utah, USA Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jessica A Baker
- Department of Veterans, Affairs Medical Center, Salt Lake City, Utah, USA Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mustafa Mir-Kasimov
- Department of Veterans, Affairs Medical Center, Salt Lake City, Utah, USA Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Robert Paine
- Department of Veterans, Affairs Medical Center, Salt Lake City, Utah, USA Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
18
|
Aggarwal NR, King LS, D'Alessio FR. Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol 2014; 306:L709-25. [PMID: 24508730 PMCID: PMC3989724 DOI: 10.1152/ajplung.00341.2013] [Citation(s) in RCA: 441] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/05/2014] [Indexed: 12/14/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating disease with distinct pathological stages. Fundamental to ARDS is the acute onset of lung inflammation as a part of the body's immune response to a variety of local and systemic stimuli. In patients surviving the inflammatory and subsequent fibroproliferative stages, transition from injury to resolution and recovery is an active process dependent on a series of highly coordinated events regulated by the immune system. Experimental animal models of acute lung injury (ALI) reproduce key components of the injury and resolution phases of human ARDS and provide a methodology to explore mechanisms and potential new therapies. Macrophages are essential to innate immunity and host defense, playing a featured role in the lung and alveolar space. Key aspects of their biological response, including differentiation, phenotype, function, and cellular interactions, are determined in large part by the presence, severity, and chronicity of local inflammation. Studies support the importance of macrophages to initiate and maintain the inflammatory response, as well as a determinant of resolution of lung inflammation and repair. We will discuss distinct roles for lung macrophages during early inflammatory and late resolution phases of ARDS using experimental animal models. In addition, each section will highlight human studies that relate to the diverse role of macrophages in initiation and resolution of ALI and ARDS.
Collapse
Affiliation(s)
- Neil R Aggarwal
- Johns Hopkins Univ. School of Medicine, Pulmonary and Critical Care Medicine, Johns Hopkins Asthma & Allergy Center, Rm. 4B.68, 5501 Hopkins Bayview Circle, Baltimore, MD 21224.
| | | | | |
Collapse
|
19
|
Boyle AJ, McNamee JJ, McAuley DF. Biological therapies in the acute respiratory distress syndrome. Expert Opin Biol Ther 2014; 14:969-81. [PMID: 24702248 DOI: 10.1517/14712598.2014.905536] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The acute respiratory distress syndrome (ARDS) is characterised by life-threatening respiratory failure requiring mechanical ventilation, and multiple organ failure. It has a mortality of up to 30 - 45% and causes a long-term reduction in quality of life for survivors, with only approximately 50% of survivors able to return to work 12 months after hospital discharge. AREAS COVERED In this review we discuss the complex pathophysiology of ARDS, describe the mechanistic pathways implicated in the development of ARDS and how these are currently being targeted with novel biological therapies. These include therapies targeted against inflammatory cytokines, mechanisms mediating increased alveolar permeability and disordered coagulation, as well as the potential of growth factors, gene therapy and mesenchymal stem cells. EXPERT OPINION Although understanding of the pathophysiology of ARDS has improved, to date there are no effective pharmacological interventions that target a specific mechanism, with the only potentially effective therapies to date aiming to limit ventilator-associated lung injury. However, we believe that through this improved mechanistic insight and better clinical trial design, there is cautious optimism for the future of biological therapies in ARDS, and expect current and future biological compounds to provide treatment options to clinicians managing this devastating condition.
Collapse
Affiliation(s)
- Andrew James Boyle
- Queen's University Belfast, Centre for Infection and Immunity , Belfast , UK
| | | | | |
Collapse
|
20
|
van Nieuwenhuijze AE, Coghill E, Gray D, Prato S, Metcalf D, Alexander WS, Wicks IP. Transgenic Expression of GM-CSF in T Cells Causes Disseminated Histiocytosis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:184-99. [DOI: 10.1016/j.ajpath.2013.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 02/04/2023]
|
21
|
Sturrock A, Mir-Kasimov M, Baker J, Rowley J, Paine R. Key role of microRNA in the regulation of granulocyte macrophage colony-stimulating factor expression in murine alveolar epithelial cells during oxidative stress. J Biol Chem 2013; 289:4095-105. [PMID: 24371146 DOI: 10.1074/jbc.m113.535922] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
GM-CSF is an endogenous pulmonary cytokine produced by normal alveolar epithelial cells (AEC) that is a key defender of the alveolar space. AEC GM-CSF expression is suppressed by oxidative stress through alternations in mRNA turnover, an effect that is reversed by treatment with recombinant GM-CSF. We hypothesized that specific microRNA (miRNA) would play a key role in AEC GM-CSF regulation. A genome-wide miRNA microarray identified 19 candidate miRNA altered in primary AEC during oxidative stress with reversal by treatment with GM-CSF. Three of these miRNA (miR 133a, miR 133a*, and miR 133b) are also predicted to bind the GM-CSF 3'-untranslated region (UTR). PCR for the mature miRNA confirmed induction during oxidative stress that was reversed by treatment with GM-CSF. Experiments using a GM-CSF 3'-UTR reporter construct demonstrated that miR133a and miR133b effects on GM-CSF expression are through interactions with the GM-CSF 3'-UTR. Using lentiviral transduction of specific mimics and inhibitors in primary murine AEC, we determined that miR133a and miR133b suppress GM-CSF expression and that their inhibition both reverses oxidant-induced suppression of GM-CSF expression and increases basal expression of GM-CSF in cells in normoxia. In contrast, these miRNAs are not active in regulation of GM-CSF expression in murine EL4 T cells. Thus, members of the miR133 family play key roles in regulation of GM-CSF expression through effects on mRNA turnover in AEC during oxidative stress. Increased understanding of GM-CSF gene regulation may provide novel miRNA-based interventions to augment pulmonary innate immune defense in lung injury.
Collapse
Affiliation(s)
- Anne Sturrock
- From the Department of Veterans Affairs Medical Center, Salt Lake City, Utah 84148 and
| | | | | | | | | |
Collapse
|
22
|
Arai T, Inoue Y, Sugimoto C, Inoue Y, Nakao K, Takeuchi N, Matsumuro A, Hirose M, Nakata K, Hayashi S. CYFRA 21-1 as a disease severity marker for autoimmune pulmonary alveolar proteinosis. Respirology 2013; 19:246-252. [PMID: 24251830 DOI: 10.1111/resp.12210] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 05/17/2012] [Accepted: 08/28/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE Serum markers, including Krebs von den Lungen (KL-6), surfactant protein (SP)-D, SP-A and carcinoembryonic antigen (CEA), are reported to reflect autoimmune pulmonary alveolar proteinosis (APAP) disease severity. We evaluated serum CYFRA21-1 levels as a marker of APAP. METHODS In addition to KL-6, SP-D and CEA, we prospectively measured serum CYFRA 21-1 levels in 48 patients with APAP, consecutively diagnosed between 2002 and 2010. Diagnostic usefulness of CYFRA 21-1 was determined from 68 patients with interstitial lung diseases by receiver operator characteristic curve analysis. We evaluated the association between these serum markers and other disease severity markers, including pulmonary function parameters, alveolar-arterial oxygen gradient, British Medical Research Council score reflecting shortness of breath, and disease severity score. CYFRA 21-1 localization in the lung was examined by immunohistochemistry. RESULTS Receiver operator characteristic curve demonstrated that CYFRA 21-1 effectively identified APAP. Serum CYFRA 21-1 levels at diagnosis were significantly associated with the measured disease severity parameters. Following whole lung lavage (n = 10) and granulocyte-macrophage colony-stimulating factor (GM-CSF) inhalation (n = 20), serum CYFRA 21-1 levels were significantly decreased. Responders (n = 11) to GM-CSF inhalation revealed significantly higher serum CYFRA 21-1 levels than non-responders (n = 9). Serum CYFRA 21-1 appeared to be a significant predictor of effectiveness of GM-CSF based on regression analysis. Immunohistochemistry showed that CYFRA 21-1 was localized on hyperplastic alveolar type II cells and lipoproteinaceous substances in alveoli. CONCLUSIONS Serum CYFRA 21-1 is a sensitive and useful serum marker for diagnosis and evaluation of disease severity of APAP, and may predict the response to GM-CSF inhalation.
Collapse
Affiliation(s)
- Toru Arai
- Department of Respiratory Medicine, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan.,Department of Diffuse Lung Diseases and Respiratory Failure, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Yoshikazu Inoue
- Department of Diffuse Lung Diseases and Respiratory Failure, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Chikatoshi Sugimoto
- Division of Clinical Trial, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Yasushi Inoue
- Department of Internal Medicine, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Keiko Nakao
- Department of Internal Medicine, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Naoko Takeuchi
- Department of Internal Medicine, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Akiko Matsumuro
- Department of Diffuse Lung Diseases and Respiratory Failure, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Masaki Hirose
- Department of Diffuse Lung Diseases and Respiratory Failure, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Koh Nakata
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Seiji Hayashi
- Department of Internal Medicine, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| |
Collapse
|
23
|
GM-CSF as a therapeutic target in inflammatory diseases. Mol Immunol 2013; 56:675-82. [PMID: 23933508 DOI: 10.1016/j.molimm.2013.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/29/2013] [Accepted: 05/04/2013] [Indexed: 11/22/2022]
Abstract
GM-CSF is a well-known haemopoietic growth factor that is used in the clinic to correct neutropaenia, usually as a result of chemotherapy. GM-CSF also has many pro-inflammatory functions and recent data implicates GM-CSF as a key factor in Th17 driven autoimmune inflammatory conditions. In this review we summarize the findings that have led to the development of GM-CSF antagonists for the treatment of autoimmune diseases like rheumatoid arthritis (RA) and discuss some results of recent clinical trials of these agents.
Collapse
|
24
|
Unkel B, Hoegner K, Clausen BE, Lewe-Schlosser P, Bodner J, Gattenloehner S, Janßen H, Seeger W, Lohmeyer J, Herold S. Alveolar epithelial cells orchestrate DC function in murine viral pneumonia. J Clin Invest 2012; 122:3652-64. [PMID: 22996662 DOI: 10.1172/jci62139] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 07/19/2012] [Indexed: 12/23/2022] Open
Abstract
Influenza viruses (IVs) cause pneumonia in humans with progression to lung failure. Pulmonary DCs are key players in the antiviral immune response, which is crucial to restore alveolar barrier function. The mechanisms of expansion and activation of pulmonary DC populations in lung infection remain widely elusive. Using mouse BM chimeric and cell-specific depletion approaches, we demonstrated that alveolar epithelial cell (AEC) GM-CSF mediates recovery from IV-induced injury by affecting lung DC function. Epithelial GM-CSF induced the recruitment of CD11b+ and monocyte-derived DCs. GM-CSF was also required for the presence of CD103+ DCs in the lung parenchyma at baseline and for their sufficient activation and migration to the draining mediastinal lymph nodes (MLNs) during IV infection. These activated CD103+ DCs were indispensable for sufficient clearance of IVs by CD8+ T cells and for recovery from IV-induced lung injury. Moreover, GM-CSF applied intratracheally activated CD103+ DCs, inducing increased migration to MLNs, enhanced viral clearance, and attenuated lung injury. Together, our data reveal that GM-CSF-dependent cross-talk between IV-infected AECs and CD103+ DCs is crucial for effective viral clearance and recovery from injury, which has potential implications for GM-CSF treatment in severe IV pneumonia.
Collapse
Affiliation(s)
- Barbara Unkel
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center, Giessen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mir-Kasimov M, Sturrock A, McManus M, Paine R. Effect of alveolar epithelial cell plasticity on the regulation of GM-CSF expression. Am J Physiol Lung Cell Mol Physiol 2012; 302:L504-11. [DOI: 10.1152/ajplung.00303.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Local pulmonary expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) is critically important for defense of the pulmonary alveolar space. It is required for surfactant homeostasis and pulmonary innate immune responses and is protective against lung injury and aberrant repair. Alveolar epithelial cells (AEC) are a major source of GM-CSF; however, the control of homeostatic expression of GM-CSF is incompletely characterized. Increasing evidence suggests considerable plasticity of expression of AEC phenotypic characteristics. We tested the hypothesis that this plasticity extends to regulation of expression of GM-CSF using 1) MLE-12 cells (a commonly used murine cell line expressing some features of normal type II AEC, 2) primary murine AEC incubated under standard conditions [resulting in rapid spreading and loss of surfactant protein C (SP-C) expression with induction of the putative type I cell marker (T1α)], or 3) primary murine AEC on a hyaluronic acid/collagen matrix in defined medium, resulting in preservation of SP-C expression. AEC in standard cultures constitutively express abundant GM-CSF, with further induction in response to IL-1β but little response to TNF-α. In contrast, primary cells cultured to preserve SP-C expression and MLE-12 cells both express little GM-CSF constitutively, with significant induction in response to TNF-α and limited response to IL-1β. We conclude that constitutive and cytokine-induced expression of GM-CSF by AEC varies in concert with other cellular phenotypic characteristics. These changes may have important implications both for the maintenance of normal pulmonary homeostasis and for the process of repair following lung injury.
Collapse
Affiliation(s)
- Mustafa Mir-Kasimov
- Department of Veterans Affairs Medical Center; and Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Anne Sturrock
- Department of Veterans Affairs Medical Center; and Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael McManus
- Department of Veterans Affairs Medical Center; and Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Robert Paine
- Department of Veterans Affairs Medical Center; and Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
26
|
Quinton LJ. GM-CSF: a double dose of protection during pneumonia. Am J Physiol Lung Cell Mol Physiol 2012; 302:L445-6. [DOI: 10.1152/ajplung.00022.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Lee J. Quinton
- Boston University School of Medicine, The Pulmonary Center, Boston, Massachusetts
| |
Collapse
|
27
|
A randomized trial of recombinant human granulocyte-macrophage colony stimulating factor for patients with acute lung injury. Crit Care Med 2012; 40:90-7. [PMID: 21926600 DOI: 10.1097/ccm.0b013e31822d7bf0] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Despite recent advances in critical care and ventilator management, acute lung injury and acute respiratory distress syndrome continue to cause significant morbidity and mortality. Granulocyte-macrophage colony stimulating factor may be beneficial for patients with acute respiratory distress syndrome. OBJECTIVES To determine whether intravenous infusion of granulocyte-macrophage colony stimulating factor would improve clinical outcomes for patients with acute lung injury/acute respiratory distress syndrome. DESIGN A randomized, double-blind, placebo-controlled clinical trial of human recombinant granulocyte-macrophage colony stimulating factor vs. placebo. The primary outcome was days alive and breathing without mechanical ventilatory support within the first 28 days after randomization. Secondary outcomes included mortality and organ failure-free days. SETTING Medical and surgical intensive care units at three academic medical centers. PATIENTS One hundred thirty individuals with acute lung injury of at least 3 days duration were enrolled, out of a planned cohort of 200 subjects. INTERVENTIONS Patients were randomized to receive human recombinant granulocyte-macrophage colony stimulating factor (64 subjects, 250 μg/M) or placebo (66 subjects) by intravenous infusion daily for 14 days. Patients received mechanical ventilation using a lung-protective protocol. MEASUREMENTS AND MAIN RESULTS There was no difference in ventilator-free days between groups (10.7 ± 10.3 days placebo vs. 10.8 ± 10.5 days granulocyte-macrophage colony stimulating factor, p = .82). Differences in 28-day mortality (23% in placebo vs. 17% in patients receiving granulocyte-macrophage colony stimulating factor (p = .31) and organ failure-free days (12.8 ± 11.3 days placebo vs. 15.7 ± 11.9 days granulocyte-macrophage colony stimulating factor, p = .16) were not statistically significant. There were similar numbers of serious adverse events in each group. CONCLUSIONS In a randomized phase II trial, granulocyte-macrophage colony stimulating factor treatment did not increase the number of ventilator-free days in patients with acute lung injury/acute respiratory distress syndrome. A larger trial would be required to determine whether treatment with granulocyte-macrophage colony stimulating factor might alter important clinical outcomes, such as mortality or multiorgan failure. (ClinicalTrials.gov number, NCT00201409 [ClinicalTrials.gov]).
Collapse
|
28
|
Standiford LR, Standiford TJ, Newstead MJ, Zeng X, Ballinger MN, Kovach MA, Reka AK, Bhan U. TLR4-dependent GM-CSF protects against lung injury in Gram-negative bacterial pneumonia. Am J Physiol Lung Cell Mol Physiol 2011; 302:L447-54. [PMID: 22160309 DOI: 10.1152/ajplung.00415.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptors (TLRs) are required for protective host defense against bacterial pathogens. However, the role of TLRs in regulating lung injury during Gram-negative bacterial pneumonia has not been thoroughly investigated. In this study, experiments were performed to evaluate the role of TLR4 in pulmonary responses against Klebsiella pneumoniae (Kp). Compared with wild-type (WT) (Balb/c) mice, mice with defective TLR4 signaling (TLR4(lps-d) mice) had substantially higher lung bacterial colony-forming units after intratracheal challenge with Kp, which was associated with considerably greater lung permeability and lung cell death. Reduced expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) mRNA and protein was noted in lungs and bronchoalveolar lavage fluid of TLR4 mutant mice postintratracheal Kp compared with WT mice, and primary alveolar epithelial cells (AEC) harvested from TLR4(lps-d) mice produced significantly less GM-CSF in vitro in response to heat-killed Kp compared with WT AEC. TLR4(lps-d) AEC underwent significantly more apoptosis in response to heat-killed Kp in vitro, and treatment with GM-CSF protected these cells from apoptosis in response to Kp. Finally, intratracheal administration of GM-CSF in TLR4(lps-d) mice significantly decreased albumin leak, lung cell apoptosis, and bacteremia in Kp-infected mice. Based on these observations, we conclude that TLR4 plays a protective role on lung epithelium during Gram-negative bacterial pneumonia, an effect that is partially mediated by GM-CSF.
Collapse
Affiliation(s)
- Louis R Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sturrock A, Seedahmed E, Mir-Kasimov M, Boltax J, McManus ML, Paine R. GM-CSF provides autocrine protection for murine alveolar epithelial cells from oxidant-induced mitochondrial injury. Am J Physiol Lung Cell Mol Physiol 2011; 302:L343-51. [PMID: 22140071 DOI: 10.1152/ajplung.00276.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Exposure of mice to hyperoxia induces alveolar epithelial cell (AEC) injury, acute lung injury and death. Overexpression of granulocyte-macrophage colony-stimulating factor (GM-CSF) in the lung protects against these effects, although the mechanisms are not yet clear. Hyperoxia induces cellular injury via effects on mitochondrial integrity, associated with induction of proapoptotic members of the Bcl-2 family. We hypothesized that GM-CSF protects AEC through effects on mitochondrial integrity. MLE-12 cells (a murine type II cell line) and primary murine type II AEC were subjected to oxidative stress by exposure to 80% oxygen and by exposure to H(2)O(2). Exposure to H(2)O(2) induced cytochrome c release and decreased mitochondrial reductase activity in MLE-12 cells. Incubation with GM-CSF significantly attenuated these effects. Protection induced by GM-CSF was associated with Akt activation. GM-CSF treatment also resulted in increased expression of the antiapoptotic Bcl-2 family member, Mcl-1. Primary murine AEC were significantly more tolerant of oxidative stress than MLE-12 cells. In contrast to MLE-12 cells, primary AEC expressed significant GM-CSF at baseline and demonstrated constitutive activation of Akt and increased baseline expression of Mcl-1. Treatment with exogenous GM-CSF further increased Akt activation and Mcl-1 expression in primary AEC. Conversely, suppression of AEC GM-CSF expression by use of GM-CSF-specific small interfering RNA resulted in decreased tolerance of oxidative stress, Furthermore, silencing of Mcl-1 prevented GM-CSF-induced protection. We conclude that GM-CSF protects alveolar epithelial cells against oxidative stress-induced mitochondrial injury via the Akt pathway and its downstream components, including Mcl-1. Epithelial cell-derived GM-CSF may contribute to intrinsic defense mechanisms limiting lung injury.
Collapse
Affiliation(s)
- Anne Sturrock
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Univ. of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | | | |
Collapse
|
30
|
Herold S, Mayer K, Lohmeyer J. Acute lung injury: how macrophages orchestrate resolution of inflammation and tissue repair. Front Immunol 2011; 2:65. [PMID: 22566854 PMCID: PMC3342347 DOI: 10.3389/fimmu.2011.00065] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/08/2011] [Indexed: 12/24/2022] Open
Abstract
Lung macrophages are long living cells with broad differentiation potential, which reside in the lung interstitium and alveoli or are organ-recruited upon inflammatory stimuli. A role of resident and recruited macrophages in initiating and maintaining pulmonary inflammation in lung infection or injury has been convincingly demonstrated. More recent reports suggest that lung macrophages are main orchestrators of termination and resolution of inflammation. They are also initiators of parenchymal repair processes that are essential for return to homeostasis with normal gas exchange. In this review we will discuss cellular cross-talk mechanisms and molecular pathways of macrophage plasticity which define their role in inflammation resolution and in initiation of lung barrier repair following lung injury.
Collapse
Affiliation(s)
- Susanne Herold
- Department of Internal Medicine II, University of Giessen Lung Center Giessen, Germany.
| | | | | |
Collapse
|
31
|
Li JH, Xu M, Xie XY, Fan QX, Mu DG, Zhang Y, Cao FL, Wang YX, Zhao PT, Zhang B, Jin FG, Li ZC. Tanshinone IIA suppresses lung injury and apoptosis, and modulates protein kinase B and extracellular signal-regulated protein kinase pathways in rats challenged with seawater exposure. Clin Exp Pharmacol Physiol 2011; 38:269-77. [PMID: 21314841 DOI: 10.1111/j.1440-1681.2011.05498.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1. Tanshinone IIA (TIIA) is one of the main active components of the Chinese herb, Danshen. In the present study, we investigated the role of apoptosis in seawater exposure-induced acute lung injury (ALI), and explored the effects of TIIA on lung injury, apoptosis, and protein kinase B (Akt) and extracellular signal-regulated protein kinase (ERK) pathways in seawater-challenged rats. The rats were randomly divided into four groups: (i) naive group, no drug was given; (ii) TIIA control group, TIIA (50 mg/kg) was given intraperitoneally; (iii) seawater (SW) group, seawater (4 mL/kg) was given; and (iv) TIIA/SW group, TIIA (50 mg/kg) was injected intraperitoneally 10 min after seawater instillation. 2. The results showed that TIIA treatment significantly improved seawater exposure-induced lung histopathological changes, alleviated the decrease in PaO(2) , and reduced lung oedema, vascular leakage and cell infiltration. As shown by terminal deoxynucleotidyl transferase-mediated nick end labelling (TUNEL) assay, seawater exposure induced apoptosis in lung tissue cells. Furthermore, seawater exposure also changed apoptosis-related factors Bcl-2 and caspase-3, and caused a reduction in the activation of Akt and ERK1/2 pathways. Furthermore, TIIA treatment decreased the number of apoptotic cells, reversed changes in Bcl-2 and caspase-3, and upregulated the activation of Akt and ERK1/2 in seawater-challenged rats. 3. In conclusion, the data suggest that apoptosis might play an important role in seawater exposure-induced lung injury and that TIIA could significantly attenuate the severity of ALI and apoptosis in seawater-challenged rats, which is possibly through modulation of Akt and ERK1/2 pathways.
Collapse
Affiliation(s)
- Jia-Huan Li
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Huang FF, Barnes PF, Feng Y, Donis R, Chroneos ZC, Idell S, Allen T, Perez DR, Whitsett JA, Dunussi-Joannopoulos K, Shams H. GM-CSF in the lung protects against lethal influenza infection. Am J Respir Crit Care Med 2011; 184:259-68. [PMID: 21474645 DOI: 10.1164/rccm.201012-2036oc] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Alveolar macrophages contribute to host defenses against influenza in animal models. Enhancing alveolar macrophage function may contribute to protection against influenza. OBJECTIVES To determine if increased expression of granulocyte/macrophage colony-stimulating factor (GM-CSF) in the lung increases resistance to influenza. METHODS Wild-type mice and transgenic mice that expressed GM-CSF in the lung were infected with influenza virus, and lung pathology, weight loss, and mortality were measured. We also administered GM-CSF to the lungs of wild-type mice that were infected with influenza virus. MEASUREMENTS AND MAIN RESULTS Wild-type mice all died after infection with different strains of influenza virus, but all transgenic mice expressing GM-CSF in the lungs survived. The latter also had greatly reduced weight loss and lung injury, and showed histologic evidence of a rapid host inflammatory response that controlled infection. The resistance of transgenic mice to influenza was abrogated by elimination of alveolar phagocytes, but not by depletion of T cells, B cells, or neutrophils. Transgenic mice had far more alveolar macrophages than did wild-type mice, and they were more resistant to influenza-induced apoptosis. Delivery of intranasal GM-CSF to wild-type mice also conferred resistance to influenza. CONCLUSIONS GM-CSF confers resistance to influenza by enhancing innate immune mechanisms that depend on alveolar macrophages. Pulmonary delivery of this cytokine has the potential to reduce the morbidity and mortality due to influenza virus.
Collapse
Affiliation(s)
- Fang-Fang Huang
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center at Tyler, Texas, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bosma KJ, Taneja R, Lewis JF. Pharmacotherapy for prevention and treatment of acute respiratory distress syndrome: current and experimental approaches. Drugs 2010; 70:1255-82. [PMID: 20568833 PMCID: PMC7100688 DOI: 10.2165/10898570-000000000-00000] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The acute respiratory distress syndrome (ARDS) arises from direct and indirect injury to the lungs and results in a life-threatening form of respiratory failure in a heterogeneous, critically ill patient population. Critical care technologies used to support patients with ARDS, including strategies for mechanical ventilation, have resulted in improved outcomes in the last decade. However, there is still a need for effective pharmacotherapies to treat ARDS, as mortality rates remain high. To date, no single pharmacotherapy has proven effective in decreasing mortality in adult patients with ARDS, although exogenous surfactant replacement has been shown to reduce mortality in the paediatric population with ARDS from direct causes. Several promising therapies are currently being investigated in preclinical and clinical trials for treatment of ARDS in its acute and subacute, exudative phases. These include exogenous surfactant therapy, β2-adrenergic receptor agonists, antioxidants, immunomodulating agents and HMG-CoA reductase inhibitors (statins). Recent research has also focused on prevention of acute lung injury and acute respiratory distress in patients at risk. Drugs such as captopril, rosiglitazone and incyclinide (COL-3), a tetracycline derivative, have shown promising results in animal models, but have not yet been tested clinically. Further research is needed to discover therapies to treat ARDS in its late, fibroproliferative phase. Given the vast number of negative clinical trials to date, it is unlikely that a single pharmacotherapy will effectively treat all patients with ARDS from differing causes. Future randomized controlled trials should target specific, more homogeneous subgroups of patients for single or combination therapy.
Collapse
Affiliation(s)
- Karen J Bosma
- Department of Medicine, Division of Respirology, The University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|
34
|
Han X, Gilbert S, Groschwitz K, Hogan S, Jurickova I, Trapnell B, Samson C, Gully J. Loss of GM-CSF signalling in non-haematopoietic cells increases NSAID ileal injury. Gut 2010; 59:1066-78. [PMID: 20584783 PMCID: PMC4296557 DOI: 10.1136/gut.2009.203893] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Administration of granulocyte-macrophage colony stimulating factor (GM-CSF) relieves symptoms in Crohn's disease (CD). It has been reported that reduced GM-CSF bioactivity is associated with more aggressive ileal behaviour and that GM-CSF-null mice exhibit ileal barrier dysfunction and develop a transmural ileitis following exposure to non-steroidal anti-inflammatory drugs (NSAIDs). STAT5 signalling is central to GM-CSF action. It was therefore hypothesised that GM-CSF signalling in non-haematopoietic cells is required for ileal homeostasis. METHODS Bone marrow (BM) chimeras were generated by reconstituting irradiated GM-CSF receptor (gm-csfr) beta chain or GM-CSF (gm-csf) deficient mice with wild type BM (WTBM-->GMRKO and WTBM-->GMKO). Intestinal barrier function and the response to NSAID-induced ileal injury were examined. Expression of gm-csf, gm-csfr or stat5 in Caco-2 and HT-29 intestinal epithelial cell (IEC) lines was knocked down and the effect of GM-CSF signalling on IEC survival and proliferation was determined. RESULTS Elevated levels of GM-CSF autoantibodies in ileal CD were found to be associated with dysregulation of IEC survival and proliferation. GM-CSF receptor-deficient mice and WTBM-->GMRKO chimeras exhibited ileal hyperpermeability. NSAID exposure induced a transmural ileitis in GM-CSF receptor-deficient mice and WTBM-->GMRKO chimeras. Transplantation of wild type BM into GM-CSF-deficient mice prevented NSAID ileal injury and restored ileal barrier function. Ileal crypt IEC proliferation was reduced in WTBM-->GMRKO chimeras, while STAT5 activation in ileal IEC following NSAID exposure was abrogated in WTBM-->GMRKO chimeras. Following knock down of gm-csf, gm-csfr alpha or beta chain or stat5a/b expression in Caco-2 cells, basal proliferation was suppressed. GM-CSF normalised proliferation of Caco-2 cells exposed to NSAID, which was blocked by stat5a/b RNA interference. CONCLUSIONS Loss of GM-CSF signalling in non-haematopoietic cells increases NSAID ileal injury; furthermore, GM-CSF signalling in non-haematopoietic cells regulates ileal epithelial homeostasis via the STAT5 pathway. The therapeutic use of GM-CSF may therefore be beneficial in chronic ileitis associated with CD.
Collapse
Affiliation(s)
- Xiaonan Han
- Division of Gastroenterology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, MLC 2010, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA.
| | - Shila Gilbert
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Katherine Groschwitz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Simon Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ingrid Jurickova
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Bruce Trapnell
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Charles Samson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jonathan Gully
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
35
|
Sohn MH, Kang MJ, Matsuura H, Bhandari V, Chen NY, Lee CG, Elias JA. The chitinase-like proteins breast regression protein-39 and YKL-40 regulate hyperoxia-induced acute lung injury. Am J Respir Crit Care Med 2010; 182:918-28. [PMID: 20558631 DOI: 10.1164/rccm.200912-1793oc] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
RATIONALE Prolonged exposure to 100% O(2) causes hyperoxic acute lung injury (HALI), characterized by alveolar epithelial cell injury and death. We previously demonstrated that the murine chitinase-like protein, breast regression protein (BRP)-39 and its human homolog, YKL-40, inhibit cellular apoptosis. However, the regulation and roles of these molecules in hyperoxia have not been addressed. OBJECTIVES We hypothesized that BRP-39 and YKL-40 (also called chitinase-3-like 1) play important roles in the pathogenesis of HALI. METHODS We characterized the regulation of BRP-39 during HALI and the responses induced by hyperoxia in wild-type mice, BRP-39-null (-/-) mice, and BRP-39(-/-) mice in which YKL-40 was overexpressed in respiratory epithelium. We also compared the levels of tracheal aspirate YKL-40 in premature newborns with respiratory failure. MEASUREMENTS AND MAIN RESULTS These studies demonstrate that hyperoxia inhibits BRP-39 in vivo in the murine lung and in vitro in epithelial cells. They also demonstrate that BRP-39(-/-) mice have exaggerated permeability, protein leak, oxidation, inflammatory, chemokine, and epithelial apoptosis responses, and experience premature death in 100% O(2). Lastly, they demonstrate that YKL-40 ameliorates HALI, prolongs survival in 100% O(2), and rescues the exaggerated injury response in BRP-39(-/-) animals. In accord with these findings, the levels of tracheal aspirate YKL-40 were lower in premature infants treated with hyperoxia for respiratory failure who subsequently experienced bronchopulmonary dysplasia or death compared with those that did not experience these complications. CONCLUSIONS These studies demonstrate that hyperoxia inhibits BRP-39/YKL-40, and that BRP-39 and YKL-40 are critical regulators of oxidant injury, inflammation, and epithelial apoptosis in the murine and human lung.
Collapse
Affiliation(s)
- Myung Hyun Sohn
- Department of Pediatrics, and Institute of Allergy, Severance Biomedical Science Institute, BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Cakarova L, Marsh LM, Wilhelm J, Mayer K, Grimminger F, Seeger W, Lohmeyer J, Herold S. Macrophage tumor necrosis factor-alpha induces epithelial expression of granulocyte-macrophage colony-stimulating factor: impact on alveolar epithelial repair. Am J Respir Crit Care Med 2009; 180:521-32. [PMID: 19590023 DOI: 10.1164/rccm.200812-1837oc] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
RATIONALE Resident alveolar macrophages have been attributed a crucial role in host defense toward pulmonary infection. Their contribution to alveolar repair processes, however, remains elusive. OBJECTIVES We investigated whether activated resident alveolar macrophages contribute to alveolar epithelial repair on lipopolysaccharide (LPS) challenge in vitro and in vivo and analyzed the molecular interaction pathways involved. METHODS We evaluated macrophage-epithelial cross-talk mediators for epithelial cell proliferation in an in vitro coculture system and an in vivo model of LPS-induced acute lung injury comparing wild-type, granulocyte-macrophage colony-stimulating factor (GM-CSF)-deficient (GM(-/-)), and human SPC-GM mice (GM(-/-) mice expressing an SPC-promotor-regulated GM-CSF transgene). MEASUREMENTS AND MAIN RESULTS Using reverse transcription-polymerase chain reaction and ELISA we showed that LPS-activated alveolar macrophages stimulated alveolar epithelial cells (AEC) to express growth factors, particularly GM-CSF, in coculture. Antibody neutralization experiments revealed epithelial GM-CSF expression to be macrophage tumor necrosis factor (TNF)-alpha dependent. GM-CSF elicited proliferative signaling in AEC via autocrine stimulation. Notably, macrophage TNF-alpha induced epithelial proliferation in wild-type but not in GM-CSF-deficient AEC as shown by [(3)H]-thymidine incorporation and cell counting. Moreover, intraalveolar TNF-alpha neutralization impaired AEC proliferation in LPS-injured mice, as investigated by flow cytometric Ki-67 staining. Additionally, GM-CSF-deficient mice displayed reduced AEC proliferation and sustained alveolar barrier dysfunction on LPS treatment compared with wild-type mice. CONCLUSIONS Collectively, these findings indicate that TNF-alpha released from activated resident alveolar macrophages induces epithelial GM-CSF expression, which in turn initiates AEC proliferation and contributes to restoring alveolar barrier function.
Collapse
Affiliation(s)
- Lidija Cakarova
- University of Giessen Lung Center, Department of Internal Medicine II, Klinikstr. 36, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Reynolds PR, Schmitt RE, Kasteler SD, Sturrock A, Sanders K, Bierhaus A, Nawroth PP, Paine R, Hoidal JR. Receptors for advanced glycation end-products targeting protect against hyperoxia-induced lung injury in mice. Am J Respir Cell Mol Biol 2009; 42:545-51. [PMID: 19541845 DOI: 10.1165/rcmb.2008-0265oc] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Patients with acute lung injury almost always require supplemental oxygen during treatment; however, elevated oxygen itself is toxic. Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors predominantly localized to alveolar type I cells that influence development and cigarette smoke-induced inflammation, but studies that address the role of RAGE in acute lung injury are insufficient. In the present investigation, we test the hypothesis that RAGE signaling functions in hyperoxia-induced inflammation. RAGE-null mice exposed to hyperoxia survived 3 days longer than age-matched wild-type mice. After 4 days in hyperoxia, RAGE-null mice had less total cell infiltration into the airway, decreased total protein leak, diminished alveolar damage in hematoxylin and eosin-stained lung sections, and a lower lung wet-to-dry weight ratio. An inflammatory cytokine antibody array revealed decreased secretion of several proinflammatory molecules in lavage fluid obtained from RAGE knockout mice when compared with wild-type control animals. Real-time RT-PCR and immunoblotting revealed that hyperoxia induced RAGE expression in primary alveolar epithelial cells, and immunohistochemistry identified increased RAGE expression in the lungs of mice after exposure to hyperoxia. These data reveal that RAGE targeting leads to a diminished hyperoxia-induced pulmonary inflammatory response. Further research into the role of RAGE signaling in the lung should identify novel targets likely to be important in the therapeutic alleviation of lung injury and associated persistent inflammation.
Collapse
Affiliation(s)
- Paul R Reynolds
- Department of Internal Medicine, Pulmonary Division, University of Utah Health Sciences Center, Salt Lake City, Utah, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jones R, Capen DE, Jacobson M, Cohen KS, Scadden DT, Duda DG. VEGFR2+PDGFRbeta+ circulating precursor cells participate in capillary restoration after hyperoxia acute lung injury (HALI). J Cell Mol Med 2009; 13:3720-9. [PMID: 19426150 PMCID: PMC2832073 DOI: 10.1111/j.1582-4934.2009.00785.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The in vivo morphology and phenotype of circulating cells that spontaneously contribute to new vessel formation in adults remain unclear. Here, we use high-resolution imaging and flow cytometry to characterize the morphology and phenotype of a distinct population of circulating mononuclear cells contributing to spontaneous new vessel formation after hyperoxia acute lung injury (HALI). We identify a subpopulation of myeloid (CD11b/Mac1+) haematopoietic cells co-expressing vascular endothelial growth factor receptor 2 (VEGFR2) and platelet derived growth factor receptor beta (PDGFRβ). Moreover, we show that these CD11b+VEGFR2+PDGFRβ+ circulating precursor cells (CPCs) contribute structurally to the luminal surface of capillaries re-forming 2 weeks post-HALI. This indicates that these myeloid CPCs may function, at least transiently, as putative vascular precursors, and has important implications for capillary growth and repair in injury and in pathologies of the lung and other organs.
Collapse
Affiliation(s)
- Rosemary Jones
- Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
39
|
Kolliputi N, Waxman AB. IL-6 cytoprotection in hyperoxic acute lung injury occurs via PI3K/Akt-mediated Bax phosphorylation. Am J Physiol Lung Cell Mol Physiol 2009; 297:L6-16. [PMID: 19376889 DOI: 10.1152/ajplung.90381.2008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
IL-6 overexpression protects mice from hyperoxic acute lung injury in vivo, and treatment with IL-6 protects cells from oxidant-mediated death in vitro. The mechanisms of protection, however, are not clear. We characterized the expression, localization, and regulation of Bax, a proapoptotic member of the Bcl-2 family, in wild-type (WT) and IL-6 lung-specific transgenic (Tg(+)) mice exposed to 100% O(2) and in human umbilical vein endothelial cells (HUVEC) treated with H(2)O(2) and IL-6. In control HUVEC treated with H(2)O(2) or in WT mice exposed to 100% O(2), a marked induction of Bax translocation and dimerization was associated with increased JNK and p38 kinase activity. In contrast, specific JNK or p38 kinase inhibitors or treatment with IL-6 inhibited Bax mitochondrial translocation and apoptosis of HUVEC. IL-6 Tg(+) mice exposed to 100% O(2) exhibited enhanced phosphatidylinositol 3-kinase (PI3K)/Akt kinase and increased serine phosphorylation of Bax at Ser(184) compared with WT mice. The PI3K-specific inhibitor LY-2940002 blocked this IL-6-induced Bax phosphorylation and promoted cell death. Furthermore, IL-6 potently blocked hyperoxia- or oxidant-induced Bax insertion into mitochondrial membranes. Thus IL-6 functions in a cytoprotective manner, in part, by suppressing Bax translocation and dimerization through PI3K/Akt-mediated Bax phosphorylation.
Collapse
Affiliation(s)
- Narasaiah Kolliputi
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
40
|
Yuksel H, Yilmaz O, Baytur YB, Ozbilgin K. Prenatal administration of granulocyte-macrophage colony-stimulating factor increases mesenchymal vascular endothelial growth factor expression and maturation in fetal rat lung. Exp Lung Res 2009; 34:550-8. [PMID: 19005920 DOI: 10.1080/01902140802341736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study was to determine influence of prenatal granulocyte-macrophage colony-stimulating factor (GM-CSF) administration on lung growth, maturation, and vascular endothelial growth factor (VEGF) expression. Twenty Wistar rats received sterile saline (1 mL) or recombinant human GM-CSF (50 micro g/kg) on day 16 of pregnancy. Rats were sacrificed on days 18 and 20 of gestation. H-score for VEGF was calculated immunohistochemically. Alveolar VEGF expression on days 18 and 20 of gestation was significantly higher in the GM-CSF group (P < .01). Increase in VEGF with prenatal GM-CSF administration indicates that GM-CSF may stimulate lung growth and maturation and may be protective against lung disease due to prematurity.
Collapse
Affiliation(s)
- Hasan Yuksel
- Department of Pediatric Allergy and Pulmonology, Celal Bayar University, Manisa, Turkey.
| | | | | | | |
Collapse
|
41
|
Critical roles of inflammation and apoptosis in improved survival in a model of hyperoxia-induced acute lung injury in Pneumocystis murina-infected mice. Infect Immun 2009; 77:1053-60. [PMID: 19124601 DOI: 10.1128/iai.00967-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumocystis infections increase host susceptibility to additional insults that would be tolerated in the absence of infection, such as hyperoxia. In an in vivo model using CD4-depleted mice, we previously demonstrated that Pneumocystis murina pneumonia causes significant mortality following an otherwise nonlethal hyperoxic insult. Infected mice demonstrated increased pulmonary inflammation and alveolar epithelial cell apoptosis compared to controls. To test the mechanisms underlying these observations, we examined expression of components of the Fas-Fas ligand pathway in P. murina-infected mice exposed to hyperoxia. Hyperoxia alone increased expression of Fas on the surface of type II alveolar epithelial cells; conversely, infection with P. murina led to increased lung expression of Fas ligand. We hypothesized that inhibition of inflammatory responses or direct inhibition of alveolar epithelial cell apoptosis would improve survival in P. murina-infected mice exposed to hyperoxia. Mice were depleted of CD4(+) T cells and infected with P. murina and then were exposed to >95% oxygen for 4 days, followed by return to normoxia. Experimental groups received vehicle, dexamethasone, or granulocyte-macrophage colony-stimulating factor (GM-CSF). Compared with the vehicle-treated group, treatment with dexamethasone reduced Fas ligand expression and significantly improved survival. Similarly, treatment with GM-CSF, an agent we have shown protects alveolar epithelial cells against apoptosis, decreased Fas ligand expression and also improved survival. Our results suggest that the dual stresses of P. murina infection and hyperoxia induce lung injury via activation of the Fas-Fas ligand pathway and that corticosteroids and GM-CSF reduce mortality in P. murina-infected mice exposed to hyperoxic stress by inhibition of inflammation and apoptosis.
Collapse
|
42
|
Looney MR, Esmon CT, Matthay MA. Role of coagulation pathways and treatment with activated protein C in hyperoxic lung injury. Thorax 2008; 64:114-20. [PMID: 19008297 DOI: 10.1136/thx.2008.099135] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Activated protein C (APC) significantly decreases mortality in severe sepsis, but its role in acute lung injury from non-infectious aetiologies is unclear. The role of APC in hyperoxic acute lung injury was tested by studying the physiology of lung injury development, measurement of key coagulation proteins and treatment with murine APC (mAPC). METHODS Mice were continuously exposed to >95% oxygen and lung injury was assessed by extravascular lung water, lung vascular protein permeability and alveolar fluid clearance. Coagulation proteins were measured in bronchoalveolar lavage (BAL) fluid and plasma. Recombinant mAPC was administered in preventive and treatment strategies. RESULTS Hyperoxia produced dramatic increases in lung vascular permeability and extravascular lung water between 72 and 96 h. Lung fluid balance was also adversely affected by progressive decreases in basal and cAMP-stimulated alveolar fluid clearance. Plasma levels of APC decreased at 72 h and were 90% depleted at 96 h. There were significant increases in BAL fluid levels of thrombomodulin, thrombin-antithrombin complexes and plasminogen activator inhibitor-1 at later time points of hyperoxia. Lung thrombomodulin expression was severely decreased during late hyperoxia and plasma levels of APC were not restored by excess thrombin administration. Administration of recombinant mAPC failed to improve indices of lung injury. CONCLUSIONS Hyperoxic acute lung injury produces procoagulant changes in the lung with a decrease in plasma levels of APC due to significant endothelial dysfunction. Replacement of mAPC failed to improve lung injury.
Collapse
Affiliation(s)
- M R Looney
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143-0130, USA.
| | | | | |
Collapse
|
43
|
Murray LA, Knight DA, McAlonan L, Argentieri R, Joshi A, Shaheen F, Cunningham M, Alexopolou L, Flavell RA, Sarisky RT, Hogaboam CM. Deleterious role of TLR3 during hyperoxia-induced acute lung injury. Am J Respir Crit Care Med 2008; 178:1227-37. [PMID: 18849495 DOI: 10.1164/rccm.200807-1020oc] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RATIONALE Acute respiratory distress syndrome (ARDS) manifests clinically as a consequence of septic and/or traumatic injury in the lung. Oxygen therapy remains a major therapeutic intervention in ARDS, but this can contribute further to lung damage. Patients with ARDS are highly susceptible to viral infection and it may be due to altered Toll-like receptor (TLR) expression. OBJECTIVES To evaluate the role of TLR3 in ARDS. METHODS TLR3 expression and signaling was determined in airway epithelial cells after in vitro hyperoxia challenge. Using a murine model of hyperoxia-induced lung injury, the role of TLR3 was determined using either TLR3-gene deficient mice or a specific neutralizing antibody directed to TLR3. MEASUREMENTS AND MAIN RESULTS Increased TLR3 expression was observed in airway epithelial cells from patients with ARDS. Further, hyperoxic conditions alone were a major stimulus for increased TLR3 expression and activation in cultured human epithelial cells. Interestingly, TLR3(-/-) mice exhibited less acute lung injury, activation of apoptotic cascades, and extracellular matrix deposition after 5 days of 80% oxygen compared with wild-type (TLR3(+/+)) mice under the same conditions. Administration of a monoclonal anti-TLR3 antibody to TLR3(+/+) mice exposed to hyperoxic conditions likewise protected these mice from lung injury and inflammation. CONCLUSIONS The potential for redundancy in function as well as cross-talk between distinct TLRs may indeed contribute to whether the inflammatory cascade can be effectively disrupted once signaling has been initiated. Together, these data show that TLR3 has a major role in the development of ARDS-like pathology in the absence of a viral pathogen.
Collapse
|
44
|
Valença SDS, Kloss ML, Bezerra FS, Lanzetti M, Silva FL, Porto LC. [Effects of hyperoxia on Wistar rat lungs]. J Bras Pneumol 2008; 33:655-62. [PMID: 18200365 DOI: 10.1590/s1806-37132007000600008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 03/09/2007] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To study the effects of short-term exposure to high oxygen concentrations (hyperoxia) on Wistar rat lungs. METHODS Animals were divided into three groups exposed to hyperoxia for 10', 30' and 90' (O10', O30', O90', respectively), together with a control group (exposed to room air). The animals were sacrificed 24 h after exposure. Bronchoalveolar lavage was performed, and the lungs were removed for histological and stereological analysis. RESULTS In the O10', O30', and O90' groups, respectively and in comparison with the controls, we observed an increase in the numbers of macrophages (2169.9 +/- 118.0, 1560.5 +/- 107.0, and 1467.6 +/- 39.0 vs. 781.3 +/- 78.3) and neutrophils (396.3 +/- 35.4, 338.4 +/- 17.3, and 388.7 +/- 11.7 vs. 61.6 +/- 4.2), concomitant with an increase in oxidative damage (143.0 +/- 7.8%, 180.4 +/- 5.6%, and 235.0 +/- 13.7 vs. 100.6 +/- 1.7%). The histological and stereological analyses revealed normal alveoli and alveolar septa in the controls (83.51 +/- 1.20% and 15 +/- 1.21%), in the O10' group (81.32 +/- 0.51% and 16.64 +/- 0.70%), and in the O30' group (78.75 +/- 0.54% and 17.73 +/- 0.26%). However, in the O90' group, inflammatory cell infiltration was observed in the alveoli and alveolar septa. Red blood cells extravasated from capillaries to the alveoli (59.06 +/- 1.22%), with evidence of congestion, hemorrhage, and septal edema (35.15 +/- 0.69%). CONCLUSION Hyperoxia for 90' caused injury of the lung parenchyma, resulting in oxidative damage and inflammatory cell infiltration.
Collapse
Affiliation(s)
- Samuel Dos Santos Valença
- Departamento de Histologia e Embriologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.
| | | | | | | | | | | |
Collapse
|
45
|
Mendez MP, Morris SB, Wilcoxen S, Du M, Monroy YK, Remmer H, Murphy H, Christensen PJ, Paine R. Disparate mechanisms of sICAM-1 production in the peripheral lung: contrast between alveolar epithelial cells and pulmonary microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2008; 294:L807-14. [PMID: 18281605 DOI: 10.1152/ajplung.00398.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Membrane-associated intercellular adhesion molecule-1 (mICAM-1; CD54) is constitutively expressed on the surface of type I alveolar epithelial cells (AEC). Soluble ICAM-1 (sICAM-1) may be produced by proteolytic cleavage of mICAM-1 or by alternative splicing of ICAM-1 mRNA. In contrast to inducible expression seen in most cell types, sICAM-1 is constitutively released by type I AEC and is present in normal alveolar lining fluid. Therefore, we compared the mechanism of sICAM-1 production in primary cultures of two closely juxtaposed cells in the alveolar wall, AEC and pulmonary microvascular endothelial cells (PVEC). AEC, but not PVEC, demonstrated high-level baseline expression of sICAM-1. Stimulation of AEC with TNFalpha or LPS resulted in minimal increase in AEC sICAM-1, whereas PVEC sICAM-1 was briskly induced in response to these signals. AEC sICAM-1 shedding was significantly reduced by treatment with a serine protease inhibitor, but not by cysteine, metalloprotease, or aspartic protease inhibitors. In contrast, none of these inhibitors effected sICAM-1 expression in PVEC. RT-PCR, followed by gel analysis of total RNA, suggests that alternatively spliced fragments are present in both cell types. However, a 16-mer oligopeptide corresponding to the juxtamembrane region of mICAM-1 completely abrogated sICAM-1 shedding in AEC but reduced stimulated PVEC sICAM-1 release by only 20%. Based on these data, we conclude that the predominant mechanism of sICAM-1 production likely differs in the two cell types from opposite sides of the alveolar wall.
Collapse
Affiliation(s)
- Michael P Mendez
- Pulmonary Section , Veterans Affairs Medical Center, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Martin S, Dawidowski L, Mandalunis P, Cereceda-Balic F, Tasat DR. Characterization and biological effect of Buenos Aires urban air particles on mice lungs. ENVIRONMENTAL RESEARCH 2007; 105:340-9. [PMID: 17628521 DOI: 10.1016/j.envres.2007.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 02/26/2007] [Accepted: 04/20/2007] [Indexed: 05/16/2023]
Abstract
Exposure to increased levels of ambient air particulate matter (PM) is associated with increased cardiopulmonary morbidity and mortality. Its association with adverse health effects and the still unclear mechanisms of action are of concern worldwide. Our objective was to analyze air PM from downtown Buenos Aires (UAP-BA), and evaluate its biological impact on normal airways. We studied the inflammatory response to intranasal instillation of UAP-BA in a short-term-exposure mouse model. We analyzed UAP-BA morphology by scanning electron microscopy and characterized particle chemical composition by energy dispersive X-ray analysis and capillary gas chromatography. We evaluated lung changes by histomorphometry and histochemical methods. Regarding size, surface area and distribution, UAP-BA proved to be small spherical ultrafine particles: free, in clusters and associated to a matrix. The particles contained polycyclic aromatic hydrocarbons, polychlorinated biphenyls and almost no metal traces. Histologically, UAP-BA induced the recruitment of phagocytes, a reduction in air spaces, an increase in mucous PAS positive cells and weak incomplete elastic fiber network. Our results demonstrate that UAP-BA causes adverse biological effects on the respiratory tract generating inflammation that, in turn, may cause tissue injury or organ dysfunction and may contribute to the pathogenesis of lung diseases.
Collapse
Affiliation(s)
- Susana Martin
- School of Science and Technology, National University of General San Martín, Alem 3901, 1653 San Martín, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
47
|
Bosma KJ, Lewis JF. Emerging therapies for treatment of acute lung injury and acute respiratory distress syndrome. Expert Opin Emerg Drugs 2007; 12:461-77. [PMID: 17874973 DOI: 10.1517/14728214.12.3.461] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a life-threatening form of respiratory failure that affects a heterogeneous population of critically ill patients. Although overall mortality appears to be decreasing in recent years due to improvements in supportive care, there are presently no proven, effective pharmacological therapies to treat ARDS and prevent its associated complications. The most common cause of death in ARDS is not hypoxemia or pulmonary failure, but rather multiple organ dysfunction syndrome (MODS), suggesting that improving survival in patients with ARDS may be linked to decreasing the incidence or severity of MODS. The key to developing novel treatments depends, in part, on identifying and understanding the mechanisms by which ARDS leads to MODS, although the heterogeneity and complexity of this disorder certainly poses a challenge to investigators. Novel therapies in development for treatment of ALI/ARDS include exogenous surfactant, therapies aimed at modulating neutrophil activity, such as prostaglandin and complement inhibitors, and treatments targeting earlier resolution of ARDS, such as beta-agonists and granulocyte macrophage colony-stimulating factor. From a clinical perspective, identifying subpopulations of patients most likely to benefit from a particular therapy and recognising the appropriate stage of illness in which to initiate treatment could potentially lead to better outcomes in the short term.
Collapse
Affiliation(s)
- Karen J Bosma
- University of Western Ontario, Division of Respirology, London Health Sciences Centre, University Hospital, 339 Windermere Road, London, Ontario, N6A 5A5, Canada.
| | | |
Collapse
|
48
|
Bhandari V, Choo-Wing R, Homer RJ, Elias JA. Increased hyperoxia-induced mortality and acute lung injury in IL-13 null mice. THE JOURNAL OF IMMUNOLOGY 2007; 178:4993-5000. [PMID: 17404281 DOI: 10.4049/jimmunol.178.8.4993] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-13 is a critical effector at sites of Th2 inflammation and remodeling. As a result, anti-IL-13-based therapies are being actively developed to treat a variety of diseases and disorders. However, the beneficial effects of endogenous IL-13 in the normal and diseased lung have not been adequately defined. We hypothesized that endogenous IL-13 is an important regulator of oxidant-induced lung injury and inflammation. To test this hypothesis, we compared the effects of 100% O(2) in mice with wild-type and null IL-13 loci. In this study, we demonstrate that hyperoxia significantly augments the expression of the components of the IL-13R, IL-13Ralpha1, and IL-4Ralpha. We also demonstrate that, in the absence of IL-13, hyperoxia-induced tissue inflammation is decreased. In contrast, in the IL-13 null mice, DNA injury, cell death, caspase expression, and activation and mortality are augmented. Interestingly, the levels of the cytoprotective cytokines vascular endothelial cell growth factor, IL-6, and IL-11 were decreased in the bronchoalveolar lavage fluid. These studies demonstrate that the expression of the IL-13R is augmented and that the endogenous IL-13-IL-13R pathway contributes to the induction of inflammation and the inhibition of injury in hyperoxic acute lung injury.
Collapse
Affiliation(s)
- Vineet Bhandari
- Division of Perinatal Medicine, Yale University School of Medicine, Department of Pediatrics, Children's Hospital, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Over the past decade, advances in the ventilatory management of acute lung injury (ALI) and ARDS have improved outcomes; however, until recently the search for other therapies has been less fruitful. Recently, the Acute Respiratory Distress Syndrome Network Fluid and Catheter Treatment Trial reported that a conservative fluid management strategy, compared with a fluid liberal strategy, increased the mean (+/- SE) number of ventilator-free days in patients with ALI (14.6 +/- 0.5 vs 12.1 +/- 0.5 days, respectively; p < 0.001). In addition to this beneficial effect on outcomes, the study found that the conservative fluid strategy did not increase the incidence of renal failure or the development of shock. Other studies have demonstrated that albumin and furosemide therapy may be beneficial in hypoproteinemic patients with lung injury, though data on outcomes is still lacking. Although several pharmacologic therapies, such as corticosteroids, surfactant, and nitric oxide, have been demonstrated to be ineffective in improving outcomes, several promising new treatments are being investigated in ongoing or upcoming clinical trials. This article reviews these developments and other recent research on the optimal nonventilatory management of patients with ALI.
Collapse
Affiliation(s)
- Carolyn S Calfee
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California at San Francisco, San Francisco, CA..
| | - Michael A Matthay
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California at San Francisco, San Francisco, CA
| |
Collapse
|
50
|
Yuba T, Nagata K, Yamada T, Osugi S, Kuwahara H, Iwasaki Y, Handa O, Naito Y, Fushiki S, Yoshikawa T, Marunaka Y. A novel potent inhibitor of inducible nitric oxide synthase, ONO-1714, reduces hyperoxic lung injury in mice. Respir Med 2007; 101:793-9. [PMID: 16982182 DOI: 10.1016/j.rmed.2006.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 07/27/2006] [Accepted: 08/03/2006] [Indexed: 11/17/2022]
Abstract
STUDY OBJECTIVES High-concentration oxygen therapy is used to treat tissue hypoxia, but hyperoxia causes lung injury. Overproduction of nitric oxide by nitric oxide synthase (NOS) is thought to promote hyperoxic lung injury. The present study was conducted to examine the role of inducible nitric oxide synthase (iNOS) in hyperoxic lung injury in mice. MEASUREMENTS AND RESULTS Mice were exposed to >98% oxygen for 72 h, and ONO-1714 (0.05 mg/kg) (ONO) was subcutaneously administered to block iNOS. Hyperoxia significantly increased total cell count, protein concentration, and nitrites/nitrates in the bronchoalveolar lavage fluid and proinflammatory cytokines in the lung tissue. ONO significantly prevented the increases in all of these variables. ONO suppressed histologic evidence of lung injury. ONO markedly inhibited iNOS protein expression and nitrotyrosine production in lung homogenates. After exposure to hyperoxia, alveolar epithelial cells stained positively for 8-hydroxy-2'-deoxyguanosine, a proper marker of oxidative DNA damage by reactive oxygen species. ONO attenuated this finding. CONCLUSIONS NOS play important roles in the pathogenesis of hyperoxic lung injury. Selective iNOS inhibitors may be useful for the treatment of hyperoxic lung injury.
Collapse
Affiliation(s)
- Tatsuya Yuba
- Department of Respiratory Molecular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|