1
|
Gürünlüoğlu K, Dündar M, Unver T, Akpınar N, Gokce IK, Gürünlüoğlu S, Demircan M, Koc A. Global gene expression profiling in congenital diaphragmatic hernia (CDH) patients. Funct Integr Genomics 2022; 22:359-369. [PMID: 35260975 DOI: 10.1007/s10142-022-00837-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/03/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is an anomaly characterized by a defect in the diaphragm, leading to the passage of intra-abdominal organs into the thoracic cavity. Herein, the presented work analyzes the global gene expression profiles in nine CDH and one healthy newborn. All of the patients had left posterolateral (Bochdalek) diaphragmatic hernia, operated via an abdominal approach, and stomach and bowels in the thorax cavity. Some patients also had additional anomalies. A total of 560 differentially regulated genes were measured. Among them, 11 genes showed significant changes in expression associated with lung tissue, vascular structure development, and vitamin A metabolism, which are typical ontologies related to CDH etiology. Among them, SLC25A24 and RAB3IL1 are involved in angiogenesis, HIF1A and FOXC2-AS1 are related with the alveolus, MAGI2-AS3 is associated with the diaphragm, LHX4 and DHH are linked with the lung, and BRINP1, FZD9, WNT4, and BLOC1S1-RDH5 are involved in retinol. Besides, the expression levels of some previously claimed genes with CDH etiology also showed diverse expression patterns in different patients. All these indicated that CDH is a complex, multigenic anomaly, requiring holistic approaches for its elucidation.
Collapse
Affiliation(s)
- Kubilay Gürünlüoğlu
- Department of Pediatric Surgery, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Muhammed Dündar
- Department of Medical Genetics, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Turgay Unver
- Ficus Biotechnology Ostim OSB Mah, Inonu University, 100. Yıl Blv. No:55 Yenimahalle, Malatya, Turkey
| | - Necmettin Akpınar
- Department of Pediatric Surgery, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Ismail Kürşad Gokce
- Department of Pediatrics and Division of Neonatology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Semra Gürünlüoğlu
- Department of Pathology, Malatya Education and Research Hospital, Malatya, Turkey
| | - Mehmet Demircan
- Department of Pediatric Surgery, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Ahmet Koc
- Department of Medical Genetics, Faculty of Medicine, Inonu University, Malatya, Turkey.
| |
Collapse
|
2
|
Hedgehog Signaling Pathway Orchestrates Human Lung Branching Morphogenesis. Int J Mol Sci 2022; 23:ijms23095265. [PMID: 35563656 PMCID: PMC9100880 DOI: 10.3390/ijms23095265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023] Open
Abstract
The Hedgehog (HH) signaling pathway plays an essential role in mouse lung development. We hypothesize that the HH pathway is necessary for branching during human lung development and is impaired in pulmonary hypoplasia. Single-cell, bulk RNA-sequencing data, and human fetal lung tissues were analyzed to determine the spatiotemporal localization of HH pathway actors. Distal human lung segments were cultured in an air-liquid interface and treated with an SHH inhibitor (5E1) to determine the effect of HH inhibition on human lung branching, epithelial-mesenchymal markers, and associated signaling pathways in vitro. Our results showed an early and regulated expression of HH pathway components during human lung development. Inhibiting HH signaling caused a reduction in branching during development and dysregulated epithelial (SOX2, SOX9) and mesenchymal (ACTA2) progenitor markers. FGF and Wnt pathways were also disrupted upon HH inhibition. Finally, we demonstrated that HH signaling elements were downregulated in lung tissues of patients with a congenital diaphragmatic hernia (CDH). In this study, we show for the first time that HH signaling inhibition alters important genes and proteins required for proper branching of the human developing lung. Understanding the role of the HH pathway on human lung development could lead to the identification of novel therapeutic targets for childhood pulmonary diseases.
Collapse
|
3
|
Kunisaki SM, Jiang G, Biancotti JC, Ho KKY, Dye BR, Liu AP, Spence JR. Human induced pluripotent stem cell-derived lung organoids in an ex vivo model of the congenital diaphragmatic hernia fetal lung. Stem Cells Transl Med 2020; 10:98-114. [PMID: 32949227 PMCID: PMC7780804 DOI: 10.1002/sctm.20-0199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/03/2020] [Accepted: 08/09/2020] [Indexed: 01/06/2023] Open
Abstract
Three‐dimensional lung organoids (LOs) derived from pluripotent stem cells have the potential to enhance our understanding of disease mechanisms and to enable novel therapeutic approaches in neonates with pulmonary disorders. We established a reproducible ex vivo model of lung development using transgene‐free human induced pluripotent stem cells generated from fetuses and infants with Bochdalek congenital diaphragmatic hernia (CDH), a polygenic disorder associated with fetal lung compression and pulmonary hypoplasia at birth. Molecular and cellular comparisons of CDH LOs revealed impaired generation of NKX2.1+ progenitors, type II alveolar epithelial cells, and PDGFRα+ myofibroblasts. We then subjected these LOs to disease relevant mechanical cues through ex vivo compression and observed significant changes in genes associated with pulmonary progenitors, alveolar epithelial cells, and mesenchymal fibroblasts. Collectively, these data suggest both primary cell‐intrinsic and secondary mechanical causes of CDH lung hypoplasia and support the use of this stem cell‐based approach for disease modeling in CDH.
Collapse
Affiliation(s)
- Shaun M Kunisaki
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Guihua Jiang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Juan C Biancotti
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kenneth K Y Ho
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Briana R Dye
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Montalva L, Antounians L, Zani A. Pulmonary hypertension secondary to congenital diaphragmatic hernia: factors and pathways involved in pulmonary vascular remodeling. Pediatr Res 2019; 85:754-768. [PMID: 30780153 DOI: 10.1038/s41390-019-0345-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/10/2019] [Indexed: 02/06/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a severe birth defect that is characterized by pulmonary hypoplasia and pulmonary hypertension (PHTN). PHTN secondary to CDH is a result of vascular remodeling, a structural alteration in the pulmonary vessel wall that occurs in the fetus. Factors involved in vascular remodeling have been reported in several studies, but their interactions remain unclear. To help understand PHTN pathophysiology and design novel preventative and treatment strategies, we have conducted a systematic review of the literature and comprehensively analyzed all factors and pathways involved in the pathogenesis of pulmonary vascular remodeling secondary to CDH in the nitrofen model. Moreover, we have linked the dysregulated factors with pathways involved in human CDH. Of the 358 full-text articles screened, 75 studies reported factors that play a critical role in vascular remodeling secondary to CDH. Overall, the impairment of epithelial homeostasis present in pulmonary hypoplasia results in altered signaling to endothelial cells, leading to endothelial dysfunction. This causes an impairment of the crosstalk between endothelial cells and pulmonary artery smooth muscle cells, resulting in increased smooth muscle cell proliferation, resistance to apoptosis, and vasoconstriction, which clinically translate into PHTN.
Collapse
Affiliation(s)
- Louise Montalva
- Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Lina Antounians
- Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Augusto Zani
- Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada. .,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
5
|
Assessment of the nitrofen model of congenital diaphragmatic hernia and of the dysregulated factors involved in pulmonary hypoplasia. Pediatr Surg Int 2019; 35:41-61. [PMID: 30386897 DOI: 10.1007/s00383-018-4375-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE To study pulmonary hypoplasia (PH) associated with congenital diaphragmatic hernia (CDH), investigators have been employing a fetal rat model based on nitrofen administration to dams. Herein, we aimed to: (1) investigate the validity of the model, and (2) synthesize the main biological pathways implicated in the development of PH associated with CDH. METHODS Using a defined strategy, we conducted a systematic review of the literature searching for studies reporting the incidence of CDH or factors involved in PH development. We also searched for PH factor interactions, relevance to lung development and to human PH. RESULTS Of 335 full-text articles, 116 reported the incidence of CDH after nitrofen exposure or dysregulated factors in the lungs of nitrofen-exposed rat fetuses. CDH incidence: 54% (27-85%) fetuses developed a diaphragmatic defect, whereas the whole litter had PH in varying degrees. Downregulated signaling pathways included FGF/FGFR, BMP/BMPR, Sonic Hedgehog and retinoid acid signaling pathway, resulting in a delay in early epithelial differentiation, immature distal epithelium and dysfunctional mesenchyme. CONCLUSIONS The nitrofen model effectively reproduces PH as it disrupts pathways that are critical for lung branching morphogenesis and alveolar differentiation. The low CDH rate confirms that PH is an associated phenomenon rather than the result of mechanical compression alone.
Collapse
|
6
|
Takahashi T, Friedmacher F, Zimmer J, Puri P. Expression of dispatched RND transporter family member 1 is decreased in the diaphragmatic and pulmonary mesenchyme of nitrofen-induced congenital diaphragmatic hernia. Pediatr Surg Int 2019; 35:35-40. [PMID: 30382378 DOI: 10.1007/s00383-018-4374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2018] [Indexed: 12/01/2022]
Abstract
PURPOSE Congenital diaphragmatic hernia (CDH) and associated pulmonary hypoplasia (PH) are thought to be caused by a malformation of the diaphragmatic and pulmonary mesenchyme. Dispatched RND transporter family member 1 (Disp-1) encodes a transmembrane protein that regulates the release of cholesterol and palmitoyl, which is critical for normal diaphragmatic and airway development. Disp-1 is strongly expressed in mesenchymal compartments of fetal diaphragms and lungs. Recently, Disp-1 mutations have been identified in patients with CDH. We hypothesized that diaphragmatic and pulmonary Disp-1 expression is decreased in the nitrofen-induced CDH model. METHODS Time-mated rats received nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms and lungs were microdissected on selected endpoints D13, D15 and D18; and divided into control and nitrofen-exposed specimens (n = 12 per sample, time-point and experimental group). Diaphragmatic and pulmonary Disp-1 expression was evaluated by qRT-PCR. Immunofluorescence double staining for Disp-1 was combined with diaphragmatic and pulmonary mesenchymal markers Wt-1 and Sox-9 to localize protein expression in fetal diaphragms and lungs. RESULTS Relative mRNA levels of Disp-1 were significantly decreased in pleuroperitoneal folds/primordial lungs on D13 (0.18 ± 0.08 vs. 0.46 ± 0.41; p < 0.05/1.06 ± 0.27 vs. 1.34 ± 0.79; p < 0.05), developing diaphragms/lungs on D15 (0.18 ± 0.06 vs. 0.44 ± 0.23; p < 0.05/0.73 ± 0.36 vs. 1.16 ± 0.27; p < 0.05) and fully muscularized diaphragms/differentiated lungs on D18 (0.22 ± 0.18 vs. 0.32 ± 0.23; p < 0.05/0.56 ± 0.16 vs. 0.77 ± 0.14; p < 0.05) of nitrofen-exposed fetuses compared to controls. Confocal laser scanning microscopy demonstrated markedly diminished Disp-1 immunofluorescence predominately in the diaphragmatic and pulmonary mesenchyme of nitrofen-exposed fetuses on D13, D15 and D18, associated with a clear reduction of proliferating mesenchymal cells. CONCLUSIONS Decreased Disp-1 expression during diaphragmatic development and lung branching morphogenesis may interrupt mesenchymal cell proliferation, thus leading to diaphragmatic defects and PH in the nitrofen-induced CDH model.
Collapse
Affiliation(s)
- Toshiaki Takahashi
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Florian Friedmacher
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.,Department of Pediatric Surgery, The Royal London Hospital, London, UK
| | - Julia Zimmer
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland. .,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
7
|
Deng M, Li J, Gan Y, Chen Y, Chen P. Changes in the number of CD31 -CD45 -Sca-1 + cells and Shh signaling pathway involvement in the lungs of mice with emphysema and relevant effects of acute adenovirus infection. Int J Chron Obstruct Pulmon Dis 2017; 12:861-872. [PMID: 28352167 PMCID: PMC5359003 DOI: 10.2147/copd.s129871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background COPD is a leading cause of mortality worldwide, and cigarette smoke is a pivotal risk factor. Adenovirus is a common cause of acute exacerbations of COPD and expedites COPD progression. Lung stem/progenitor cells play an important role in the development of COPD, while the relevant mechanism remains elusive. Here, we investigated the number of lung CD31−CD45−Sca-1+ cells and sonic hedgehog (Shh) signaling pathway expression levels in cigarette smoke extract (CSE)-induced emphysema mice, as well as the relevant effects of acute adenovirus infection (AAI). Materials and methods BALB/c mice were treated with CSE by intraperitoneal injection and/or adenovirus endotracheal instillation at different time points for 28 days. Lung function, lung histomorphology, CD31−CD45−Sca-1+ cell count, and expression levels of major components in the Shh signaling pathway in the lungs were measured. Results CSE intraperitoneal injection and adenovirus endotracheal instillation successfully induced emphysema and AAI in mice, respectively. In the lungs of emphysema mice, both the number of CD31−CD45−Sca-1+ cells and expression levels of Shh signaling pathway molecules were reduced. However, AAI increased the number of inhibited CD31−CD45−Sca-1+ cells and activated the suppression of the Shh signaling pathway. Conclusion Both CD31−CD45−Sca-1+ cell numbers and Shh signaling pathway expression levels were downregulated in the lungs of emphysema mice induced by CSE intraperitoneal injection, which likely contributes to the pathogenesis of emphysema. Additionally, these inhibited lung CD31−CD45−Sca-1+ cells and Shh signaling pathway molecules were upregulated during AAI, indicating that they play a protective role in the epithelial repair process after AAI injury.
Collapse
Affiliation(s)
- Minhua Deng
- Respiratory Medicine Department, PLA Rocket Force General Hospital, Beijing; Respiratory Medicine Department
| | | | - Ye Gan
- Rehabilitation Department, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | | | | |
Collapse
|
8
|
Zimmer J, Takahashi T, Hofmann AD, Puri P. Downregulation of Forkhead box F1 gene expression in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia. Pediatr Surg Int 2016; 32:1121-1126. [PMID: 27663689 DOI: 10.1007/s00383-016-3967-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2016] [Indexed: 01/05/2023]
Abstract
PURPOSE High mortality and morbidity in infants born with congenital diaphragmatic hernia (CDH) are attributed to pulmonary hypoplasia and pulmonary hypertension (PH). Forkhead box (Fox) transcription factors are known to be crucial for cell proliferation and homeostasis. FoxF1 is essential for lung morphogenesis, vascular development, and endothelial proliferation. Mutations in FoxF1 and also the Fox family member FoxC2 have been identified in neonates with PH. In human and experimental models of arterial PH, the Fox protein FoxO1 was found to be downregulated. We hypothesized that Fox expression is altered in the lungs of the nitrofen-induced CDH rat model and investigated the expression of FoxF1, FoxC2, and FoxO1. METHODS Following ethical approval (Rec 913b), time-pregnant Sprague-Dawley rats received nitrofen or vehicle on gestational day (D9). Fetuses were sacrificed on D21, inspected for CDH and divided into CDH (n = 11) and control group (n = 11). Gene expression of FoxF1, FoxC2, and FoxO1 was evaluated with qRT-PCR. Detected alterations of mRNA levels were subsequently assessed on the protein level by performing western blot analysis and laser scanning confocal microscopy. RESULTS The relative mRNA level of FoxF1 was significantly downregulated in CDH lungs compared to controls (FoxF1 CDH 1.047 ± 0.108, FoxF1 Ctrl 1.419 ± 0.01, p = 0.014). Relative mRNA levels of FoxC2 and FoxO1 were not found to be altered between the experimental groups (FoxC2 CDH 30.74 ± 8.925, FoxC2 Ctrl 27.408 ± 7.487, p = 0.776; FoxO1 CDH 0.011 ± 0.002, FoxO1 Ctrl 0.011 ± 0.001, p = 0.809). On the protein level, western blotting demonstrated a reduced pulmonary protein expression of FoxF1 in CDH lungs. Confocal microscopy showed a markedly diminished expression of FoxF1 in the pulmonary vasculature of CDH lungs compared to controls. CONCLUSION Our study demonstrates a strikingly reduced expression of FoxF1 in the pulmonary vasculature of nitrofen-induced CDH. Altered FoxF1 gene expression during embryogenesis may participate in vascular maldevelopment resulting in PH in this animal model.
Collapse
Affiliation(s)
- J Zimmer
- National Children's Research Centre, Our Lady's Children's Hospital, Gate 5, Crumlin, Dublin, Ireland
| | - T Takahashi
- National Children's Research Centre, Our Lady's Children's Hospital, Gate 5, Crumlin, Dublin, Ireland
| | - A D Hofmann
- National Children's Research Centre, Our Lady's Children's Hospital, Gate 5, Crumlin, Dublin, Ireland.,Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Gate 5, Crumlin, Dublin, Ireland. .,School of Medicine and Medical Science and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
9
|
Stark Z, Behrsin J, Burgess T, Ritchie A, Yeung A, Tan TY, Brown NJ, Savarirayan R, Patel N. SNP microarray abnormalities in a cohort of 28 infants with congenital diaphragmatic hernia. Am J Med Genet A 2015; 167A:2319-26. [DOI: 10.1002/ajmg.a.37177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 05/10/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Zornitza Stark
- VictorianClinicalGenetics Service and Murdoch Children Institute; Melbourne Australia
| | - Joanna Behrsin
- Newborn Intensive Care Unit; Royal Children's Hospital; Melbourne Australia
| | - Trent Burgess
- VictorianClinicalGenetics Service and Murdoch Children Institute; Melbourne Australia
- University of Melbourne Department of Paediatrics; Melbourne Australia
| | - Anna Ritchie
- VictorianClinicalGenetics Service and Murdoch Children Institute; Melbourne Australia
| | - Alison Yeung
- VictorianClinicalGenetics Service and Murdoch Children Institute; Melbourne Australia
| | - Tiong Y. Tan
- VictorianClinicalGenetics Service and Murdoch Children Institute; Melbourne Australia
- University of Melbourne Department of Paediatrics; Melbourne Australia
| | - Natasha J. Brown
- VictorianClinicalGenetics Service and Murdoch Children Institute; Melbourne Australia
- University of Melbourne Department of Paediatrics; Melbourne Australia
| | - Ravi Savarirayan
- VictorianClinicalGenetics Service and Murdoch Children Institute; Melbourne Australia
- University of Melbourne Department of Paediatrics; Melbourne Australia
| | - Neil Patel
- Newborn Intensive Care Unit; Royal Children's Hospital; Melbourne Australia
| |
Collapse
|
10
|
Takahashi T, Friedmacher F, Takahashi H, Hofmann AD, Puri P. Kif7 expression is decreased in the diaphragmatic and pulmonary mesenchyme of nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 2015; 50:904-7. [PMID: 25921351 DOI: 10.1016/j.jpedsurg.2015.03.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/10/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE Developmental mutations that inhibit diaphragmatic and pulmonary mesenchyme formation have been shown to cause congenital diaphragmatic hernia (CDH) and pulmonary hypoplasia (PH). Kinesin family member 7 (Kif7) plays a crucial role in diaphragmatic and pulmonary morphogenesis by controlling proliferation of mesenchymal cells. Loss of Kif7 has been reported to result in diaphragmatic defects and PH. We hypothesized that diaphragmatic and pulmonary Kif7 expression is decreased in the nitrofen-induced CDH model. METHODS Timed-pregnant rats were exposed to either nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms and lungs were microdissected on D13, D15, and D18, and divided into control and nitrofen-exposed specimens. Gene expression levels of Kif7 were analyzed by qPCR. Immunohistochemical staining was performed to evaluate Kif7 protein expression. RESULTS Relative mRNA expression of Kif7 was significantly reduced in pleuroperitoneal folds (D13), developing diaphragms and lungs (D15), and fully muscularized diaphragms and differentiated lungs (D18) of nitrofen-exposed fetuses compared to controls. Immunoreactivity/immunofluorescence of Kif7 was markedly decreased in diaphragmatic and pulmonary mesenchyme of nitrofen-exposed fetuses on D13, D15, and D18 compared to controls. CONCLUSION Decreased Kif7 expression during diaphragmatic development may interfere with mesenchymal cell proliferation, leading to defective pleuroperitoneal folds, and resulting in diaphragmatic defects and associated PH in the nitrofen-induced CDH model.
Collapse
Affiliation(s)
- Toshiaki Takahashi
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Florian Friedmacher
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Hiromizu Takahashi
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | | | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
A Triad of Congenital Diaphragmatic Hernia, Meckel's Diverticulum, and Heterotopic Pancreas. Case Rep Pediatr 2014; 2014:725945. [PMID: 24804135 PMCID: PMC3996881 DOI: 10.1155/2014/725945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/06/2014] [Indexed: 11/26/2022] Open
Abstract
Congenital diaphragmatic hernia is a common developmental anomaly encountered by paediatric surgeons. It is known to be associated with extradiaphragmatic malformations, which include cardiac, renal, genital, and chromosomal abnormalities. Herein, we report a newborn born with concurrent congenital diaphragmatic hernia, Meckel's diverticulum, and heterotopic pancreatic tissue. This is the first case report of such a triad with description of possible mechanisms of the development.
Collapse
|
12
|
Haroon J, Chamberlain RS. An evidence-based review of the current treatment of congenital diaphragmatic hernia. Clin Pediatr (Phila) 2013; 52:115-24. [PMID: 23378478 DOI: 10.1177/0009922812472249] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Congenital diaphragmatic hernia is a rare but severe condition affecting 1 in 2000 to 3000 newborns with a survival rate of 67%. Although regular antenatal screening allows prenatal diagnosis in many cases, traditionally treatment has been based on postnatal surgical repair. Recent literature has pointed out the survival benefits of initial stabilization and the use of gentle ventilation strategies prior to definitive treatment, shifting the trend from immediate to delayed surgical repair. Advances in fetal intervention have allowed the introduction of fetal endoscopic tracheal occlusion as a method to hasten lung development before birth in order to minimize postnatal morbidity. Despite appropriate treatment, the long-term outcomes of these patients are plagued with numerous complications, associated with the primary pathology and also aggressive therapeutic measures. International centers of excellence have recently come together in an effort to standardize the care of such patients in hopes of maximizing their outcomes.
Collapse
Affiliation(s)
- Junaid Haroon
- Saint Barnabas Medical Center, Livingston, NJ 07039, USA
| | | |
Collapse
|
13
|
Van Loenhout RB, De Krijger RR, Van de Ven CP, Van der Horst IWJM, Beurskens LWJE, Tibboel D, Keijzer R. Postmortem biopsy to obtain lung tissue in congenital diaphragmatic hernia. Neonatology 2013; 103:213-7. [PMID: 23328121 DOI: 10.1159/000345921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 11/08/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND The accrual of human tissues from autopsies for diagnostic and translational research has decreased significantly over the last decades. OBJECTIVES The objective of this study was to evaluate our experience with lung biopsy through a minithoracotomy as an alternative for obtaining postmortem tissue when full autopsy is refused in congenital diaphragmatic hernia (CDH) patients. METHODS Within 2 h of death we routinely asked parents for permission to perform an autopsy. Starting in 2001, parents who refused autopsy were asked permission for a postmortem lung biopsy. Pathology autopsy and biopsy reports were compared to clinical records. RESULTS Between 2001 and 2009, 46 patients died from CDH. Permission for autopsy was granted in 5 patients (11%). Of the remaining 41 patients, the parents of 15 (33%) agreed to postmortem lung biopsy. In all cases, additional findings were reported from the autopsy or biopsy, without changing the originally reported cause of death. In 1 case, we isolated fibroblasts from the lung biopsy using standardized cell culture techniques. Parents were able to take their child home with a minimal delay following biopsy. CONCLUSIONS Parents refusing a full autopsy frequently agree to postmortem organ biopsy. This approach should therefore be considered as a valuable alternative, when permission for full autopsy is declined, for obtaining human tissues for both diagnostic and research purposes and is potentially applicable to other anomalies.
Collapse
Affiliation(s)
- R B Van Loenhout
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
El-Zaatari M, Daignault S, Tessier A, Kelsey G, Travnikar LA, Cantu EF, Lee J, Plonka CM, Simeone DM, Anderson MA, Merchant JL. Plasma Shh levels reduced in pancreatic cancer patients. Pancreas 2012; 41:1019-28. [PMID: 22513293 PMCID: PMC3404255 DOI: 10.1097/mpa.0b013e31824a0eeb] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Normally, sonic hedgehog (Shh) is expressed in the pancreas during fetal development and transiently after tissue injury. Although pancreatic cancers express Shh, it is not known if the protein is secreted into the blood and whether its plasma levels change with pancreatic transformation. The goal of this study was to develop an enzyme-linked immunosorbent assay to detect human Shh in blood and determine its levels in subjects with and without pancreatic cancer. METHODS A human Shh enzyme-linked immunosorbent assay was developed, and plasma Shh levels were measured in blood samples from healthy subjects and patients with pancreatitis or pancreatic cancer. The biological activity of plasma Shh was tested using NIH-3T3 cells. RESULTS The mean levels of Shh in human blood were lower in patients with pancreatitis and pancreatic cancer than in healthy subjects. Hematopoietic cells did not express Shh, suggesting that Shh is secreted into the bloodstream. Plasma fractions enriched with Shh did not induce Gli-1 messenger RNA, suggesting that the protein was not biologically active. CONCLUSIONS Shh is secreted from tissues and organs into the circulation, but its activity is blocked by plasma proteins. Reduced plasma levels were found in pancreatic cancer patients, but alone were not sufficient to predict pancreatic cancer.
Collapse
Affiliation(s)
- Mohamad El-Zaatari
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | | | - Art Tessier
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Gail Kelsey
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Lisa A. Travnikar
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Esperanza F. Cantu
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Jamie Lee
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Caitlyn M. Plonka
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | | | - Michelle A. Anderson
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Juanita L. Merchant
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI,Correspondence: Juanita L. Merchant, M.D., Ph.D., 109 Zina Pitcher Place, BSRB, Rm. 2051, Ann Arbor, MI 48109-2200, Phone: (734) 647-2944, Fax: (734) 736-4686,
| |
Collapse
|
15
|
Sluiter I, Reiss I, Kraemer U, Krijger RD, Tibboel D, Rottier RJ. Vascular abnormalities in human newborns with pulmonary hypertension. Expert Rev Respir Med 2011; 5:245-56. [PMID: 21510734 DOI: 10.1586/ers.11.8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pulmonary vascular disease embodies all congenital or acquired pathologies that affect the pulmonary vasculature. One of them is pulmonary hypertension of the newborn (PHN), which is clinically characterized by a persistent high pulmonary vascular resistance postnatally and an abnormal vascular response. Morphologically, the vascular walls of the small pulmonary arteries become thickened, leading to increased resistance of these vessels and thus a worsening of gas exchange. PHN occurs as a primary disease or in association with abnormal lung development, for example as in congenital diaphragmatic hernia, and is a critical determinant of morbidity and mortality. Here we review the current knowledge about vascular abnormalities in PHN and discuss the vascular abnormalities in different conditions associated with pulmonary hypertension in human newborns in relation to recent findings from molecular biology.
Collapse
Affiliation(s)
- Ilona Sluiter
- Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center-Sophia, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Martínez L, Aras-López R, Lancha S, Vallejo-Cremades MT, Pederiva F, XiaoMei L, Tovar JA. Abnormal development of the enteric nervous system in rat embryos and fetuses with congenital diaphragmatic hernia. Pediatr Surg Int 2011; 27:165-73. [PMID: 21069350 DOI: 10.1007/s00383-010-2788-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND/AIM Esophageal dilatation, gastroesophageal reflux, and intestinal obstruction have been demonstrated in CDH survivors. Abnormal esophageal and intestinal innervations were recently found in rats and babies with this disease. Our aim was to further characterize these malformations in embryos and fetal rats exposed to nitrofen. METHODS Pregnant rats received either 100 mg nitrofen or vehicle on E9.5. Fetuses were recovered at E15, E18, and E21. Sections of esophagus and small bowel were histochemically stained with acetylcholinesterase (AChE) and immunostained for PGP9.5. PGP9.5 gen protein were measured on E21 and PGP9.5 mRNA on E15, E18 and E21. Comparisons between groups were made with non-parametrics tests. RESULTS Histochemistry and immunohistochemistry showed deficient innervation in all anatomical areas studied at E15, E18, and E21, and WB confirmed this decrease in E21 fetuses. PGP9.5 messenger was decreased in nitrofen-exposed animals on E18 (esophagus) or E15 (small bowel), and increased on E21 in the esophagus and E18 in small bowel. CONCLUSIONS Development of the enteric nervous system of the esophagus, stomach, and small bowel is deficient in rat embryos and fetuses exposed to nitrofen. These anomalies could account in part for the long-term gastrointestinal morbidity observed in CDH survivors.
Collapse
Affiliation(s)
- Leopoldo Martínez
- Department of Pediatric Surgery, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
17
|
Kantarci S, Ackerman KG, Russell MN, Longoni M, Sougnez C, Noonan KM, Hatchwell E, Zhang X, Vanmarcke RP, Anyane-Yeboa K, Dickman P, Wilson J, Donahoe PK, Pober BR. Characterization of the chromosome 1q41q42.12 region, and the candidate gene DISP1, in patients with CDH. Am J Med Genet A 2010; 152A:2493-504. [PMID: 20799323 PMCID: PMC3797530 DOI: 10.1002/ajmg.a.33618] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cytogenetic and molecular cytogenetic studies demonstrate association between congenital diaphragmatic hernia (CDH) and chromosome 1q41q42 deletions. In this study, we screened a large CDH cohort (N=179) for microdeletions in this interval by the multiplex ligation-dependent probe amplification (MLPA) technique, and also sequenced two candidate genes located therein, dispatched 1 (DISP1) and homo sapiens H2.0-like homeobox (HLX). MLPA analysis verified deletions of this region in two cases, an unreported patient with a 46,XY,del(1)(q41q42.13) karyotype and a previously reported patient with a Fryns syndrome phenotype [Kantarci et al., 2006]. HLX sequencing showed a novel but maternally inherited single nucleotide variant (c.27C>G) in a patient with isolated CDH, while DISP1 sequencing revealed a mosaic de novo heterozygous substitution (c.4412C>G; p.Ala1471Gly) in a male with a left-sided Bochdalek hernia plus multiple other anomalies. Pyrosequencing demonstrated the mutant allele was present in 43%, 12%, and 4.5% of the patient's lymphoblastoid, peripheral blood lymphocytes, and saliva cells, respectively. We examined Disp1 expression at day E11.5 of mouse diaphragm formation and confirmed its presence in the pleuroperitoneal fold, as well as the nearby lung which also expresses Sonic hedgehog (Shh). Our report describes the first de novo DISP1 point mutation in a patient with complex CDH. Combining this finding with Disp1 embryonic mouse diaphragm and lung tissue expression, as well as previously reported human chromosome 1q41q42 aberrations in patients with CDH, suggests that DISP1 may warrant further consideration as a CDH candidate gene.
Collapse
Affiliation(s)
- Sibel Kantarci
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Kate G Ackerman
- Departments of Pediatrics (KGA & XZ) and Biomedical Genetics (KGA), University of Rochester, Rochester, NY
| | - Meaghan N Russell
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA
| | - Mauro Longoni
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - Kristin M Noonan
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA
| | - Eli Hatchwell
- Department of Pathology, Stony Brook University, Stony Brook, NY
| | - Xiaoyun Zhang
- Departments of Pediatrics (KGA & XZ) and Biomedical Genetics (KGA), University of Rochester, Rochester, NY
| | | | - Kwame Anyane-Yeboa
- Department of Genetics, Columbia University Medical Center, New York, NY
| | - Paul Dickman
- Department of Pathology, Phoenix Children’s Hospital, Phoenix, AZ
| | - Jay Wilson
- Department of Surgery, Children’s Hospital Boston, Boston, MA
- Harvard Medical School, Boston, MA
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Barbara R Pober
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA
- Department of Surgery, Children’s Hospital Boston, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Abstract
Congenital diaphragmatic hernia (CDH) is a congenital anomaly consisting of a posterolateral defect in the diaphragm also known as a Bochdalek hernia. It occurs in 1 in 2000 to 3000 newborns and is associated with a variable degree of pulmonary hypoplasia (PH) and persistent pulmonary hypertension (PPH). Despite remarkable advances in neonatal resuscitation and intensive care and the new postnatal treatment strategies, many newborns with CDH continue to have high rates of mortality and morbidity as the result of severe respiratory failure secondary to PH and PPH. The pathogenesis of CDH and associated PH and PPH is poorly understood. Herein, we aim to review diaphragm and pulmonary development and correlate this to the abnormalities found in CDH.
Collapse
Affiliation(s)
- Richard Keijzer
- Department of Pediatric Surgery, Erasmusmc-Sophia, Rotterdam, The Netherlands
| | | |
Collapse
|
19
|
Burgos CM, Uggla AR, Fagerström-Billai F, Eklöf AC, Frenckner B, Nord M. Gene expression analysis in hypoplastic lungs in the nitrofen model of congenital diaphragmatic hernia. J Pediatr Surg 2010; 45:1445-54. [PMID: 20638522 DOI: 10.1016/j.jpedsurg.2009.09.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/25/2009] [Accepted: 09/25/2009] [Indexed: 11/19/2022]
Abstract
BACKGROUND Pulmonary hypoplasia and persistent pulmonary hypertension are the main causes of mortality and morbidity in newborns with congenital diaphragmatic hernia (CDH). Nitrofen is well known to induce CDH and lung hypoplasia in a rat model, but the mechanism remains unknown. To increase the understanding of the underlying pathogenesis of CDH, we performed a global gene expression analysis using microarray technology. METHODS Pregnant rats were given 100 mg nitrofen on gestational day 9.5 to create CDH. On day 21, fetuses after nitrofen administration and control fetuses were removed; and lungs were harvested. Global gene expression analysis was performed using Affymetrix Platform and the RAE 230 set arrays. For validation of microarray data, we performed real-time polymerase chain reaction and Western blot analysis. RESULTS Significantly decreased genes after nitrofen administration included several growth factors and growth factors receptors involved in lung development, transcription factors, water and ion channels, and genes involved in angiogenesis and extracellular matrix. These results could be confirmed with real-time polymerase chain reaction and protein expression studies. CONCLUSIONS The pathogenesis of lung hypoplasia and CDH in the nitrofen model includes alteration at a molecular level of several pathways involved in lung development. The complexity of the nitrofen mechanism of action reminds of human CDH; and the picture is consistent with lung hypoplasia and vascular disease, both important contributors to the high mortality and morbidity in CDH. Increased understanding of the molecular mechanisms that control lung growth may be the key to develop novel therapeutic techniques to stimulate pre- and postnatal lung growth.
Collapse
Affiliation(s)
- Carmen Mesas Burgos
- Department of Woman and Child Health, Division for Peadiatric Surgery, Karolinska Institutet Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
20
|
Grushka JR, Al-Abbad S, Baird R, Puligandla P, Kaplan F, Laberge JM. The effect of in vitro tracheal occlusion on branching morphogenesis in fetal lung explants from the rat nitrofen model of congenital diaphragmatic hernia. J Pediatr Surg 2010; 45:943-7. [PMID: 20438932 DOI: 10.1016/j.jpedsurg.2010.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/02/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND/PURPOSE Fetal tracheal occlusion (TO) has been investigated as a treatment option for lung hypoplasia secondary to congenital diaphragmatic hernia. Tracheal occlusion has been shown to accelerate lung growth, but its effect on bronchial branching is unknown. In this study, we characterize the effects of in vitro TO on bronchial branch development in fetal lung explants derived from the nitrofen rat model of congenital diaphragmatic hernia. METHODS Rat dams were gavaged nitrofen on gestational day 9.5, and fetal lungs were harvested for explant culture on gestational day 14 (term, 22 days). Four experimental groups were investigated, with TO performed ex vivo using cautery: control, control + TO, nitrofen, and nitrofen + TO. Explants were incubated for 72 hours. Representative photographs were taken at 0, 24, 48, and 72 hours from the time of culture, and the number of distal branches was counted for each explant. The Student t test was used to compare distal branch measurements. RESULTS A minimum of 12 fetal lung explants were cultured for each group. By 24 hours, all explants undergoing TO had more branch iterations than explants that did not. Moreover, TO in nitrofen-exposed explants increased bronchial branching to control levels by 24 hours in culture. CONCLUSION Our results suggest that TO at day 14 increases branching in normal and nitrofen-exposed lung explants. In addition, TO increases airway branching in nitrofen-exposed explants to control levels suggesting that early TO reverses the lung hypoplasia seen in this model.
Collapse
Affiliation(s)
- Jeremy R Grushka
- Division of Pediatric Surgery, The Montreal Children's Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Boucherat O, Franco-Montoya ML, Delacourt C, Martinovic J, Masse V, Elie C, Thébaud B, Benachi A, Bourbon JR. Defective angiogenesis in hypoplastic human fetal lungs correlates with nitric oxide synthase deficiency that occurs despite enhanced angiopoietin-2 and VEGF. Am J Physiol Lung Cell Mol Physiol 2010; 298:L849-56. [PMID: 20348277 DOI: 10.1152/ajplung.00333.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Lung hypoplasia (LH) is a life-threatening congenital abnormality with various causes. It involves vascular bed underdevelopment with abnormal arterial muscularization leading to pulmonary hypertension. Because underlying molecular changes are imperfectly known and sometimes controversial, we determined key factors of angiogenesis along intrauterine development, focusing at the angiopoietin (ANG)/Tie-2 system. Lung specimens from medical terminations of pregnancy (9-37 wk) were used, including LH due to congenital diaphragmatic hernia (CDH) or other causes, and nonpulmonary disease samples were used as controls. ELISA determination indicated little ANG-1 change during pregnancy and no effect of LH, whereas Tie-2 declined similarly between 9 and 37 wk in LH and controls. By contrast, ANG-2 markedly increased in LH from 24 wk, whereas it remained stable in controls. Because VEGF increased also, this was interpreted as an attempt to overcome vascular underdevelopment. Hypothesizing that its inefficiency might be due to impaired downstream mechanism, endothelial nitric oxide synthase (eNOS) was determined by semiquantitative Western blot and found to be reduced by approximately 75%, mostly in the instance of CDH. In conclusion, angiogenesis remains defective in hypoplastic lungs despite reactive enhancement of VEGF and ANG-2 production, which could be due, at least in part, to insufficient eNOS expression.
Collapse
Affiliation(s)
- Olivier Boucherat
- Institut Mondor de Recherche Biomédicale, Institut National de Santé et de Recherche Médicale Unité 955, Créteil, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bragina O, Njunkova N, Sergejeva S, Järvekülg L, Kogerman P. Sonic Hedgehog pathway activity in prostate cancer. Oncol Lett 2010; 1:319-325. [PMID: 22966302 DOI: 10.3892/ol_00000057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 01/08/2010] [Indexed: 01/03/2023] Open
Abstract
Abnormal activation of the Sonic hedgehog (Shh) signaling pathway has been demonstrated in a number of human tumors, including prostate cancer. The study aimed to assess the activity of Shh pathway components (Shh, Gli1, Gli2 and Gli3), as well as the proliferation markers FoxA1 and Notch1 during cancer progression in the transgenic adenocarcinoma of the mouse prostate (TRAMP). We evaluated changes in respective proteins by immunohistochemistry at three time points (12, 17 and 21 weeks of age) in the tissue of TRAMP and C57Bl/6 mice. Moreover, the expression of mRNA of these proteins was assessed. The present study shows a significant age-dependent increase in the number of Shh, Gli1, Gli3 and FoxA1-positive prostate cells and a decrease in Gli2-positive cells in TRAMP. The study also supports the hypothesis that the development of prostate cancer and its metastasis is associated with activation of the Shh signaling pathway.
Collapse
Affiliation(s)
- Olga Bragina
- Department of Oncology, Institute of Clinical Medicine, Technomedicum, Tallinn University of Technology, Tallinn, Estonia
| | | | | | | | | |
Collapse
|
23
|
Bresson E, Seaborn T, Côté M, Cormier G, Provost PR, Piedboeuf B, Tremblay Y. Gene expression profile of androgen modulated genes in the murine fetal developing lung. Reprod Biol Endocrinol 2010; 8:2. [PMID: 20064212 PMCID: PMC2822783 DOI: 10.1186/1477-7827-8-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/08/2010] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Accumulating evidences suggest that sex affects lung development. Indeed, a higher incidence of respiratory distress syndrome is observed in male compared to female preterm neonates at comparable developmental stage and experimental studies demonstrated an androgen-related delay in male lung maturation. However, the precise mechanisms underlying these deleterious effects of androgens in lung maturation are only partially understood. METHODS To build up a better understanding of the effect of androgens on lung development, we analyzed by microarrays the expression of genes showing a sexual difference and those modulated by androgens. Lungs of murine fetuses resulting from a timely mating window of 1 hour were studied at gestational day 17 (GD17) and GD18, corresponding to the period of surge of surfactant production. Using injections of the antiandrogen flutamide to pregnant mice, we hunted for genes in fetal lungs which are transcriptionally modulated by androgens. RESULTS Results revealed that 1844 genes were expressed with a sexual difference at GD17 and 833 at GD18. Many genes were significantly modulated by flutamide: 1597 at GD17 and 1775 at GD18. Datasets were analyzed by using in silico tools for reconstruction of cellular pathways. Between GD17 and GD18, male lungs showed an intensive transcriptional activity of proliferative pathways along with the onset of lung differentiation. Among the genes showing a sex difference or an antiandrogen modulation of their expression, we specifically identified androgen receptor interacting genes, surfactant related genes in particularly those involved in the pathway leading to phospholipid synthesis, and several genes of lung development regulator pathways. Among these latter, some genes related to Shh, FGF, TGF-beta, BMP, and Wnt signaling are modulated by sex and/or antiandrogen treatment. CONCLUSION Our results show clearly that there is a real delay in lung maturation between male and female in this period, the latter pursuing already lung maturation while the proper is not yet fully engaged in the differentiation processes at GD17. In addition, this study provides a list of genes which are under the control of androgens within the lung at the moment of surge of surfactant production in murine fetal lung.
Collapse
Affiliation(s)
- Eva Bresson
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| | - Tommy Seaborn
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
- INSERM U413/EA4310, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP), International Associated Laboratory Samuel de Champlain, University of Rouen, France
| | - Mélissa Côté
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| | - Geneviève Cormier
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| | - Pierre R Provost
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| | - Bruno Piedboeuf
- Department of Pediatrics, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Yves Tremblay
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
24
|
Doi T, Puri P. Up-regulation of Wnt5a gene expression in the nitrofen-induced hypoplastic lung. J Pediatr Surg 2009; 44:2302-6. [PMID: 20006014 DOI: 10.1016/j.jpedsurg.2009.07.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 07/31/2009] [Indexed: 01/02/2023]
Abstract
PURPOSE The pathogenesis of pulmonary hypoplasia in nitrofen-induced congenital diaphragmatic hernia (CDH) still remains unclear. Wnt signaling pathways play a critical role in lung development. Whereas canonical Wnt signaling regulates branching morphogenesis during early lung development, the noncanonical Wnt5a controls late lung morphogenesis, including patterning of distal airway and vascular tubulogenesis (alveolarization). Overexpression of Wnt5a in transgenic mice and in the chick has been reported to result in severe pulmonary hypoplasia. We designed this study to test the hypothesis that the pulmonary Wnt5a gene expression is up-regulated in late stages of lung morphogenesis in CDH. METHODS Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetal lungs were harvested on D15, D18, and D21 and divided into 3 groups: control; nitrofen without CDH, CDH(-); and nitrofen with CDH, CDH(+) (n = 8 at each time-point, respectively). Wnt5a pulmonary gene expression was analyzed by real-time reverse transcription polymerase chain reaction. Immunohistochemistry was performed to evaluate Wnt5a protein expression at each time-point. RESULTS Pulmonary relative mRNA expression levels of Wnt5a were significantly increased in CDH(-) and CDH(+) at D18 (1.61 +/- 0.92 and 1.81 +/- 1.20, respectively) and D21 (2.40 +/- 0.74* and 2.65 +/- 0.35*, respectively) compared to controls at D18 and D21 (0.90 +/- 0.17* and 1.69 +/- 0.53**, respectively) (*P < .05, **P < .001 vs control ). Strong Wnt5a immunoreactivity was seen in the distal epithelium at D18 and D21 in nitrofen-induced hypoplastic lung compared to controls. CONCLUSION Up-regulation of pulmonary Wnt5a gene expression in the late lung morphogenesis may interfere with patterning of alveolarization, causing pulmonary hypoplasia in the nitrofen-induced CDH.
Collapse
Affiliation(s)
- Takashi Doi
- The Children's Research Centre, Our Lady's Children's Hospital, Dublin 12, Ireland
| | | |
Collapse
|
25
|
Sato H, Murphy P, Hajduk P, Takayasu H, Kitagawa H, Puri P. Sonic hedgehog gene expression in nitrofen induced hypoplastic lungs in mice. Pediatr Surg Int 2009; 25:967-71. [PMID: 19690872 DOI: 10.1007/s00383-009-2452-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The pathogenesis of congenital diaphragmatic hernia (CDH) is unknown. The sonic hedgehog (Shh) cascade is crucial for the patterning of the early respiratory system in mice. Optical Projection Tomography (OPT) is a new tool for 3D imaging small biological specimens that enables us to visualise both the anatomy of developing organs and gene expression localised in the context of normal or abnormal anatomy. We visualised Shh gene expression patterns in the nitrofen treated and control mouse lung buds at early stages of lung development. MATERIALS AND METHODS Time-mated CD1 female mice (n = 5) received oral administration of 100 mg of the herbicide 2,4-dichlorophenyl-p-nitrophenylether (nitrofen) (WAKO Chemical, Osaka, Japan) in 1 ml of olive oil or olive oil alone at 7 days of gestation. Embryos were harvested on gestation days 9-12, and stained following whole mount in situ hybridisation with labelled RNA probes to detect Shh transcripts at each stage. Embryos were scanned by OPT to obtain 3D representations of gene expression domains in the context of the changing morphology of the embryo. RESULTS OPT analysis of Shh transcript distribution clearly revealed gene expression in both groups. In treated embryos, there were no significant changes in Shh transcript distribution in lung buds in comparison with control embryos. CONCLUSION Although altered Shh expression in the hypoplastic lung has been reported in late gestation, the present study did not reveal any significant alterations in pulmonary Shh spatial transcript distribution or gene expression level during the early gestation in nitrofen CDH model. It would be of great interest in future studies to use OPT approach to investigate pulmonary expression of Shh and other regulatory genes both during early and late stages of lung development in order to provide new insights into the pathogenesis of pulmonary hypoplasia.
Collapse
Affiliation(s)
- Hideaki Sato
- Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
26
|
Klaassens M, de Klein A, Tibboel D. The etiology of congenital diaphragmatic hernia: still largely unknown? Eur J Med Genet 2009; 52:281-6. [PMID: 19464395 DOI: 10.1016/j.ejmg.2009.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 05/09/2009] [Indexed: 02/01/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a severe birth defect characterized by a defect in the diaphragm associated with pulmonary hypoplasia and postnatal pulmonary hypertension. Half of the cases present with other non-pulmonary congenital anomalies (so called non-isolated CDH) and in 5-10% of cases there is a chromosomal etiology. The clinical aspects of CDH are well documented but knowledge on the etiology of CDH is largely lacking. Worldwide many researchers have focused research efforts on CDH. Their findings have led to several hypotheses proposing roles for genetic and environmental factors. In this review we have combined these findings with our own research on the genetics of CDH in results from recent literature and propose a theory on the etiology of CDH. We also propose a protocol for the CDH patient that will help clinicians and researchers to obtain maximal success out of their collaborations that will eventually lead to unravelling the etiology of this intriguing birth defect.
Collapse
Affiliation(s)
- M Klaassens
- Department of Pediatric Surgery, Erasmus MC, Medical University Center, room Ee9.71, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | |
Collapse
|
27
|
Kantarci S, Al-Gazali L, Hill RS, Donnai D, Black GCM, Bieth E, Chassaing N, Lacombe D, Devriendt K, Teebi A, Loscertales M, Robson C, Liu T, MacLaughlin DT, Noonan KM, Russell MK, Walsh CA, Donahoe PK, Pober BR. Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai-Barrow and facio-oculo-acoustico-renal syndromes. Nat Genet 2007; 39:957-9. [PMID: 17632512 PMCID: PMC2891728 DOI: 10.1038/ng2063] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 05/24/2007] [Indexed: 11/09/2022]
Abstract
Donnai-Barrow syndrome is associated with agenesis of the corpus callosum, congenital diaphragmatic hernia, facial dysmorphology, ocular anomalies, sensorineural hearing loss and developmental delay. By studying multiplex families, we mapped this disorder to chromosome 2q23.3-31.1 and identified LRP2 mutations in six families with Donnai-Barrow syndrome and one family with facio-oculo-acoustico-renal syndrome. LRP2 encodes megalin, a multiligand uptake receptor that regulates levels of diverse circulating compounds. This work implicates a pathway with potential pharmacological therapeutic targets.
Collapse
Affiliation(s)
- Sibel Kantarci
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Simches Research Building, 185 Cambridge St., Boston, Massachusetts 02114 USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
AIM This review highlights the relevance of the neural crest (NC) as a developmental control mechanism involved in several pediatric surgical conditions and the investigative interest of following some of its known signaling pathways. METHODS The participation of the NC in facial clefts, ear defects, branchial fistulae and cysts, heart outflow tract and aortic arch anomalies, pigmentary disorders, abnormal enteric innervation, neural tumors, hemangiomas, and vascular anomalies is briefly reviewed. Then, the literature on clinical and experimental esophageal atresia-tracheoesophageal fistula (EA-TEF) and congenital diaphragmatic hernia (CDH) is reviewed for the presence of associated NC defects. Finally, some of the molecular signaling pathways involved in both conditions (sonic hedgehog, Hox genes, and retinoids) are summarized. RESULTS The association of facial, cardiovascular, thymic, parathyroid, and C-cell defects together with anomalies of extrinsic and intrinsic esophageal innervation in babies and/or animals with both EA-TEF and CDH strongly supports the hypothesis that NC is involved in the pathogenesis of these malformative clusters. On the other hand, both EA-TEF and CDH are observed in mice mutant for genes involved in the previously mentioned signaling pathways. CONCLUSIONS The investigation of NC-related molecular pathogenic pathways involved in malformative associations like EA-TEF and CDH that are induced by chromosomal anomalies, chemical teratogens, and engineered mutations is a promising way of clarifying why and how some pediatric surgical conditions occur. Pediatric surgeons should be actively involved in these investigations.
Collapse
MESH Headings
- Abnormalities, Multiple/embryology
- Abnormalities, Multiple/physiopathology
- Abnormalities, Multiple/surgery
- Blood Vessels/abnormalities
- Branchial Region/abnormalities
- Cardiovascular Abnormalities/embryology
- Cardiovascular Abnormalities/physiopathology
- Cell Lineage
- Cell Movement
- Child
- Child, Preschool
- Enteric Nervous System/abnormalities
- Esophageal Atresia/embryology
- Esophageal Atresia/physiopathology
- Esophageal Atresia/surgery
- Face/abnormalities
- Genes, Homeobox
- Hedgehog Proteins/physiology
- Hernia, Diaphragmatic/embryology
- Hernia, Diaphragmatic/physiopathology
- Hernia, Diaphragmatic/surgery
- Hernias, Diaphragmatic, Congenital
- Homeodomain Proteins/physiology
- Humans
- Infant
- Infant, Newborn
- Neoplasms/etiology
- Neural Crest/physiopathology
- Patched Receptors
- Pigmentation Disorders/etiology
- Receptors, Cell Surface/physiology
- Receptors, G-Protein-Coupled/physiology
- Receptors, Retinoic Acid/physiology
- Signal Transduction
- Smoothened Receptor
- Syndrome
- Transcription Factors/physiology
- Tretinoin/physiology
- Zinc Finger Protein GLI1
Collapse
Affiliation(s)
- Juan A Tovar
- Departamento de Cirugía Pediátrica, Hospital Universitario La Paz, 28046 Madrid, Spain.
| |
Collapse
|
29
|
van Tuyl M, Groenman F, Wang J, Kuliszewski M, Liu J, Tibboel D, Post M. Angiogenic factors stimulate tubular branching morphogenesis of sonic hedgehog-deficient lungs. Dev Biol 2007; 303:514-26. [PMID: 17187775 DOI: 10.1016/j.ydbio.2006.11.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 10/23/2006] [Accepted: 11/17/2006] [Indexed: 11/18/2022]
Abstract
Sonic Hedgehog (Shh)-deficient mice have a severe lung branching defect. Recent studies have shown that hedgehog signaling is involved in vascular development and it is possible that the diminished airway branching in Shh-deficient mice is due to abnormal pulmonary vasculature formation. Therefore, we investigated the role of Shh in pulmonary vascular development using Shh/Tie2lacZ compound mice, which exhibit endothelial cell-specific LacZ expression, and Pecam-1 immunohistochemistry. In E11.5-13.5 Shh-deficient mice, the pulmonary vascular bed is decreased, but appropriate to the decrease in airway branching. However, when E12.5 Shh-deficient lungs were cultured for 4-6 days, the vascular network deteriorated compared to wild-type lungs. The expression of vascular endothelial growth factor (Vegf) or its receptor Vegfr2 (KDR/Flk-1) was not different between E12.5-13.5 Shh-deficient and wild-type lungs. In contrast, angiopoietin-1 (Ang1), but not Ang2 or the angiopoietin receptor Tie2, mRNA expression was downregulated in E12.5-E13.5 lungs of Shh null mutants. Recombinant Ang1 alone was unable to restore in vitro branching morphogenesis in Shh-deficient lungs. Conversely, the angiogenic factor fibroblast growth factor (Fgf)-2 alone or in combination with Ang1, increased vascularization and tubular growth and branching of Shh-deficient lungs in vitro. The angiogenic factors did not overcome the reduced smooth muscle cell differentiation in the Shh null lungs. These data indicate that early vascular development, mediated by Vegf/Vegfr2 signaling proceeds normally in Shh-deficient mice, while later vascular development and stabilization of the primitive network mediated by the Ang/Tie2 signaling pathway are defective, resulting in an abnormal vascular network. Stimulation of vascularization with angiogenic factors such as Fgf2 and Ang1 partially restored tubular growth and branching in Shh-deficient lungs, suggesting that vascularization is required for branching morphogenesis.
Collapse
Affiliation(s)
- Minke van Tuyl
- Canadian Institutes of Health Research Group in Lung Development, Hospital for Sick Children Research Institute, University of Toronto, 555 University Avenue, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Boucherat O, Benachi A, Barlier-Mur AM, Franco-Montoya ML, Martinovic J, Thébaud B, Chailley-Heu B, Bourbon JR. Decreased lung fibroblast growth factor 18 and elastin in human congenital diaphragmatic hernia and animal models. Am J Respir Crit Care Med 2007; 175:1066-77. [PMID: 17303798 DOI: 10.1164/rccm.200601-050oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Lung hypoplasia in congenital diaphragmatic hernia (CDH) seems to involve impaired alveolar septation. We hypothesized that disturbed deposition of elastin and expression of fibroblast growth factor 18 (FGF18), an elastogenesis stimulus, occurs in CDH. OBJECTIVES To document FGF18 and elastin in human CDH and ovine surgical and rat nitrofen models and to use models to evaluate the benefit of treatments. METHODS Human CDH and control lungs were collected post mortem. Diaphragmatic hernia was created in sheep at 85 days; fetal lungs were collected at 139 days (term = 145 days). Pregnant rats received nitrofen at 12 days; fetal lungs were collected at 21 days (term = 22 days). Some of the sheep fetuses with hernia underwent tracheal occlusion (TO); some of the nitrofen-treated pregnant rats received vitamin A. Both treatments are known to promote lung growth. MEASUREMENTS AND MAIN RESULTS Coincidental with the onset of secondary septation, FGF18 protein increased threefold in control human lungs, which failed to occur in CDH. FGF18 labeling was found in interstitial cells of septa. Elastin staining demonstrated poor septation and markedly decreased elastin density in CDH lungs. Consistently, lung FGF18 transcripts were diminished 60 and 83% by CDH in sheep and rats, respectively, and elastin density and expression were diminished. TO and vitamin A restored FGF18 and elastin expression in sheep and rats, respectively. TO restored elastin density. CONCLUSIONS Impaired septation in CDH is associated with decreased FGF18 expression and elastic fiber deposition. Simultaneous correction of FGF18 and elastin defects by TO and vitamin A suggests that defective elastogenesis may result, at least partly, from FGF18 deficiency.
Collapse
|
31
|
Harmath A, Hajdú J, Hauzman E, Pete B, Róna Z, Papp Z. Experiences in the Perinatal Management of Congenital Diaphragmatic Hernia during the Last 15 Years in a Tertiary Referral Institute. Fetal Diagn Ther 2007; 22:209-16. [PMID: 17245104 DOI: 10.1159/000098720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 05/22/2006] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Review of cases of perinatally diagnosed congenital diaphragmatic hernias with special regard to time of diagnosis, organs herniated into the thorax, associated malformations, and outcomes. METHODS We analyzed the data of 106 cases between July 1, 1990, and June 30, 2005. The observation period was analyzed in two parts. RESULTS Prenatal ultrasound was performed in 89.6% (95/106) of the cases. 51.7% (46/89) of the pre- and postnatally verified congenital diaphragmatic hernia cases were diagnosed before the 24th week of gestation. 11% (11/100) of the hernias were identified postnatally. 71% (71/100) of the cases were associated with other malformations. The hernia was on the left side in 86% (86/100) and bilateral in 5% (5/100) of the cases. Between 1990 and 1997, the proportion of right-sided hernias was 4.3% (2/46), while during the second period it was 13% (7/54). 27.5% (14/51) of the newborns survived the perinatal period. The survival rate of the newborns delivered by caesarean section was three times higher than that of infants delivered vaginally. In the latter group, the rate of premature deliveries was considerably higher. The pregnancy was terminated in 45% (40/89) of the cases. 15% (6/40) of the terminated cases were isolated. Intrauterine or intrapartum deaths occurred in 5.6% (5/89) of the prenatally diagnosed cases. Simultaneous thoracic herniation of liver, spleen, or stomach decreased the survival rate. In these cases, the discharge rate was between 6 and 22%. CONCLUSIONS According to the analysis of 15-year data, the herniated organs, multiple malformations, as well as the mode of delivery influence the survival in a large number of cases. Early diagnosis predicts a large hernia, a higher malformation rate, and a less favourable prognosis.
Collapse
Affiliation(s)
- Agnes Harmath
- 1st Department of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Pulmonary neuroendocrine cells (PNECs) have been around for 60 years in the scientific literature, although phylogenetically they are ancient. Their traditionally ascribed functions include chemoreception and regulation of lung maturation and growth. There is recent evidence that neuroendocrine (NE) differentiation in the lung is regulated by genes and pathways that are conserved in the development of the nervous system from Drosophila to humans (such as achaete-scute homolog-1), or implicated in the carcinogenesis of the nervous or NE system (such as the retinoblastoma tumor suppressor gene). In addition, complex neural networks are in place to regulate chemosensory and other functions. Even solitary PNECs appear to be innervated. For the first time ever, we have mouse models for lung NE carcinomas, including the most common and virulent small cell lung carcinoma. Moreover, PNECs may be important for inflammatory responses, and pivotal for lung stem cell niches. These discoveries signify an exciting new era for PNECs and are likely to have therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- R Ilona Linnoila
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Masumoto K, de Rooij JD, Suita S, Rottier R, Tibboel D, de Krijger RR. The distribution of matrix metalloproteinases and tissue inhibitors of metalloproteinases in the lungs of congenital diaphragmatic hernia patients and age-matched controls. Histopathology 2006; 48:588-95. [PMID: 16623785 DOI: 10.1111/j.1365-2559.2006.02379.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS In congenital diaphragmatic hernia (CDH), the pathogenesis of abnormal pulmonary morphology is still incompletely understood. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are known to play an important role in the turnover of the extracellular matrix (ECM) during development and in remodelling of tissue. The aim of this study was to investigate differences in the expression of MMPs and TIMPs between CDH lungs and controls, against the background of the abnormal pulmonary vasculature in CDH. METHODS We studied 12 lungs of term CDH patients who died < 24 h after birth and 11 normal age-matched control lungs, by immunohistochemistry with antibodies against human MMP-1, -2, -9, TIMP-1 and -2. RESULTS There was a clear increase in the number of MMP-1-reactive capillaries and fibroblasts in CDH lungs compared with controls. In contrast, TIMP-2 reactivity in these structures was decreased in CDH lungs. The arterial endothelium and medial smooth muscle expressed MMP-2, -9 and TIMP-2 in both CDH and control lungs. In small arteries (< 100 microm in diameter), the positive surface area of MMP-2, -9 and TIMP-2 was significantly larger in CDH lungs than in controls. There was no difference in the distribution and expression of TIMP-1 between CDH lungs and normal controls. CONCLUSION The differences in staining pattern of MMPs and TIMPs between normal and CDH lungs suggest that these enzymes might play a role in the abnormal remodelling of the interstitium and the pulmonary arteries in CDH lungs. This could contribute to our understanding of the abnormal lung morphology and the occurrence of pulmonary hypertension, which forms one of the major obstacles to the successful treatment of these patients.
Collapse
Affiliation(s)
- K Masumoto
- Department of Paediatric Surgery, Erasmus MC-Sophia, Rotterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Gosche JR, Islam S, Boulanger SC. Congenital diaphragmatic hernia: searching for answers. Am J Surg 2005; 190:324-32. [PMID: 16023454 DOI: 10.1016/j.amjsurg.2005.05.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 04/15/2005] [Indexed: 12/30/2022]
Abstract
BACKGROUND Pulmonary hypoplasia and hypertension are the primary causes of morbidity and mortality in infants with congenital diaphragmatic hernia (CDH). At present, the origin of CDH and the causes of pulmonary hypoplasia and hypertension are unknown. DATA SOURCES This article reviews the available published data regarding the origin of CDH and the pathogenesis of the associated pulmonary hypertension and hypoplasia. These investigations have employed human tissues as well as two types of CDH animal models. CONCLUSIONS Investigations performed to date have not yet provided definitive answers regarding the pathogenesis of CDH. However, they have yielded many new and exciting discoveries and several opportunities for intervention. Ongoing research should open new possibilities to improve the outcome for these unfortunate babies with CDH.
Collapse
Affiliation(s)
- John R Gosche
- Division of Pediatric Surgery, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, USA.
| | | | | |
Collapse
|
35
|
Abstract
Our understanding of lung development in the past two decades has moved from an anatomical to a histological basis and, most recently, to a molecular basis. Tissue interactions specify tracheal and lung primordia formation, program branching morphogenesis of the airway epithelium and regulate epithelial differentiation. In addition, lung development is influenced by mechanical and humoral factors. The regulatory molecules involved in morphogenetic signaling include growth and transcription factors and extracellular matrix molecules. These morphogenetic signals are responsible for lung patterning and differentiation. We will provide a brief overview of molecular signaling during early respiratory formation, airway branching, pulmonary vascularization and epithelial differentiation. We will then review aberrant morphogenetic signaling in human lung abnormalities, such as tracheoesophageal fistula, congenital diaphragmatic hernia, pulmonary hyperplasia, alveolar capillary dysplasia, congenital cystic adenomatoid malformation and bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Frederick Groenman
- Program in Lung Biology Research, Hospital for Sick Children Research Institute, Department of Pediatrics, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
36
|
Abstract
Congenital Diaphragmatic Hernia (CDH) is a congenital disorder with an incidence of 1 in 2500 live births. Respiratory distress of newborns with CDH is the result of pulmonary hypoplasia and pulmonary hypertension. Hypoplastic lungs are characterized by a decreased number of airways with smaller airspaces, whereas the combination of a decreased number of vascular branches and an increased adventitia and medial thickness of the pulmonary arterial walls result in pulmonary hypertension. The appearance of the CDH lungs suggests that its complete formation is stalled during development. Understanding the basic mechanisms of lung development is mandatory to unravel the origin of CDH. Although the histological abnormalities in CDH lungs have been well described, less is known about the underlying molecular mechanisms. In this review we will discuss the current molecular and genetic background of lung formation, as well as a reflection of this knowledge towards CDH.
Collapse
Affiliation(s)
- Robbert Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | | |
Collapse
|
37
|
Li Y, Zhang H, Choi SC, Litingtung Y, Chiang C. Sonic hedgehog signaling regulates Gli3 processing, mesenchymal proliferation, and differentiation during mouse lung organogenesis. Dev Biol 2004; 270:214-31. [PMID: 15136151 DOI: 10.1016/j.ydbio.2004.03.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 03/03/2004] [Accepted: 03/08/2004] [Indexed: 01/17/2023]
Abstract
Lack of Sonic hedgehog (Shh) signaling, mediated by the Gli proteins, leads to severe pulmonary hypoplasia. However, the precise role of Gli genes in lung development is not well established. We show Shh signaling prevents Gli3 proteolysis to generate its repressor forms (Gli3R) in the developing murine lung. In Shh(-/-) or cyclopamine-treated wild-type (WT) lung, we found that Gli3R level is elevated, and this upregulation appears to contribute to defects in proliferation and differentiation observed in the Shh(-/-) mesenchyme, where Gli3 is normally expressed. In agreement, we found Shh(-/-);Gli3(-/-) lungs exhibit enhanced growth potential. Vasculogenesis is also enhanced; in contrast, bronchial myogenesis remains absent in Shh(-/-);Gli3(-/-) compared with Shh(-/-) lungs. Genes upregulated in Shh(-/-);Gli3(-/-) relative to Shh(-/-) lung include Wnt2 and, surprisingly, Foxf1 whose expression has been reported to be Shh-dependent. Cyclins D1, D2, and D3 antibody labelings also reveal distinct expression patterns in the normal and mutant lungs. We found significant repression of Tbx2 and Tbx3, both linked to inhibition of cellular senescence, in Shh(-/-) and partial derepression in Shh(-/-); Gli3(-/-) lungs, while Tbx4 and Tbx5 expressions are less affected in the mutants. Our findings shed light on the role of Shh signaling on Gli3 processing in lung growth and differentiation by regulating several critical genes.
Collapse
Affiliation(s)
- Yina Li
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA
| | | | | | | | | |
Collapse
|
38
|
Mehta SS, Gittes GK. The impact of advances in developmental biology on the management of neonatal surgical anomalies. Semin Perinatol 2004; 28:152-63. [PMID: 15283095 DOI: 10.1053/j.semperi.2004.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
While advances in the clinical management of various congenital anomalies in pediatric surgery have led to new and exciting therapeutic modalities, our understanding of the mechanisms responsible for these defects lags far behind. In a new era of developmental biology, the prospect of unlocking some of these mysteries has become a real possibility. Advances in gene sequencing has allowed us to create new phenotypes that closely mimic those seen in patients, and has created a setting where we are now better able to understand and develop new therapeutic interventions. Here we discuss the implications of some of the molecular mechanisms underlying various congenital anomalies encountered in pediatric surgery, and how continued research will impact the future of these disease processes.
Collapse
Affiliation(s)
- Sheilendra S Mehta
- Division of Pediatric Surgery, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | | |
Collapse
|
39
|
Schnitzer JJ. Control and regulation of pulmonary hypoplasia associated with congenital diaphragmatic hernia. Semin Pediatr Surg 2004; 13:37-43. [PMID: 14765369 DOI: 10.1053/j.sempedsurg.2003.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Control of fetal lung growth and development is exquisitely orchestrated and regulated. Branching morphogenesis is carefully choreographed with cell growth, proliferation, differentiation, and apoptosis in a spatially and temporally dependent manner. Some of the signals and pathways mediating these events have recently been uncovered, but much remains unknown. The precise etiologic derangements that give rise to pulmonary hypoplasia in congenital diaphragmatic hernia remain elusive. Some clues have been discovered in developmental and signaling pathways that include receptor tyrosine kinase growth factors, homeobox genes, transcription factors, airway distension, retinoid signaling, and oxidation-reduction.
Collapse
Affiliation(s)
- Jay J Schnitzer
- Pediatric Surgical Research Laboratory, Massachusetts General Hospital, and Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
40
|
Miller LAD, Wert SE, Clark JC, Xu Y, Perl AKT, Whitsett JA. Role ofSonic hedgehog in patterning of tracheal-bronchial cartilage and the peripheral lung. Dev Dyn 2004; 231:57-71. [PMID: 15305287 DOI: 10.1002/dvdy.20105] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sonic hedgehog (Shh) was conditionally deleted in respiratory epithelial cells of the embryonic lung in vivo. Deletion of Shh before embryonic day (E) 13.5 resulted in respiratory failure at birth. While lobulation was not perturbed, the lungs were hypoplastic, with reduced branching of peripheral lung tubules, evident from E13.5. Smooth muscle and endothelial cells were absent or reduced, the latter in relationship to the loss of peripheral lung parenchyma. Tracheal-bronchial ring abnormalities occurred when Shh was deleted between E8.5 and E12.5. Deletion of Shh later in gestation (after E13.5) caused mild abrogation of peripheral branching morphogenesis but did not disrupt tracheal-bronchial development. Defects in branching morphogenesis and vascularization seen in Shh null mutant (Shh(-/-)) mice were substantially corrected when SHH was ectopically expressed in the respiratory epithelium; however, peripheral expression of SHH failed to correct cartilage abnormalities in the trachea and bronchi, indicating a spatial requirement for SHH expression near sites of cartilage formation. Expression of SHH by the respiratory epithelium plays an important role in the patterning of tracheal-bronchial mesenchyme required for formation of cartilage rings in conducting airways. SHH regulates branching morphogenesis and influences differentiation of the peripheral lung mesenchyme required for formation of bronchial and vascular smooth muscle.
Collapse
Affiliation(s)
- Leigh-Anne D Miller
- Department of Pediatrics, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|