1
|
Chen C, Li J, Wan J, Lu Y, Zhang Z, Xu Z. A low cost and input tailing method of quality control on multiple annealing, and looping-based amplification cycles-based whole-genome amplification products. J Clin Lab Anal 2018; 33:e22697. [PMID: 30461059 DOI: 10.1002/jcla.22697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Single-cell whole-genome sequencing provides novel insights into the nature of genetic heterogeneity in normal and diseased cells. However, amplification of formalin-fixed tissues with low cell numbers is still problematic and multiple annealing, and looping-based amplification cycles (MALBAC) is a commonly used whole-genome amplification (WGA) method with low cell numbers. METHODS We developed a low-input tailing method to evaluate the MALBAC-based WGA from sub-nanogram or less quantities of input DNA. The tailing method uses 2100 BioAnalyzer to evaluate the size distribution of MALBAC products, and comparing the tailing with 10380 bp. RESULTS Compared with a 22 loci qPCR panel, the tailing method provided a similar WGA evaluation efficiency in 13 samples on one set of study, with lower input, cheaper cost, shorter manual time, and a clear filtering cut off. Later, we demonstrated a strong correlation between tailing size and coverage breadth in another 29 samples on two sets of assays. As a result, the tailing method showed that it could predict whether a sequence breadth achieved 70% or not with 100% accuracy on these three sets of assays. Although further studies are needed, this tailing method is expected to be used as an excellent tool to select high-quality WGA products before library construction. CONCLUSIONS Our tailing method can provide a new WGA quality test to evaluate the WGA efficiency with 100% accuracy (42/42). Compared with qPCR panel, our tailing method needs lower input, cheaper cost, shorter manual time, a clear filtering cut off, and extendable high throughput as well as the same sensitivity.
Collapse
Affiliation(s)
- Changyue Chen
- Department of Medical Research, Shanghai MajorMed Diagnostics Company, Shanghai, China
| | - Jing Li
- Department of Medical Research, Shanghai MajorMed Diagnostics Company, Shanghai, China
| | - JueFeng Wan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yuan Lu
- Department of Medical Research, Shanghai MajorMed Diagnostics Company, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China
| | - ZengHui Xu
- Laboratory of Gene and Viral Therapy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University of Chinese PLA, Shanghai, China.,ShangHai Cell Therapy Group Company, Shanghai, China
| |
Collapse
|
2
|
Guan M, Chen X, Ma Y, Tang L, Guan L, Ren X, Yu B, Zhang W, Su B. MDA-9 and GRP78 as potential diagnostic biomarkers for early detection of melanoma metastasis. Tumour Biol 2015; 36:2973-82. [PMID: 25480418 DOI: 10.1007/s13277-014-2930-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022] Open
Abstract
Metastatic melanoma, the primary cause of skin cancer-related death, warrants new diagnostic and therapeutic approaches that target the regulatory machinery at molecular level. The heterogeneity and complexity of melanoma result in the difficulty to find biomarkers and targets for early detection and treatment. Here, we investigated metastasis-associated proteins by comparing the proteomic profiles of primary cutaneous melanomas to their matched lymph node metastases, which minimizes heterogeneity among samples from different patients. Results of two-dimensional gel electrophoresis (2-DE) followed by proteomic analysis revealed eight differentially expressed proteins. Among them, seven proteins (α-enolase, cofilin-1, LDH, m-β-actin, Nm23, GRP78, and MDA-9) showed increased and one (annexin A2) showed decreased expression in metastatic lymph node tissues than in primary melanomas. MDA-9 and GRP78 were the most highly expressed proteins in lymph node metastases, which was validated by immunohistochemical staining. Moreover, exosomes from serum samples of metastatic melanoma patients contained higher levels of MDA-9 and GRP78 than those of patients without metastases, indicating the potential of MDA-9 and GRP78 to be biomarkers for early detection of metastasis. Further, small interfering RNA (siRNA)-mediated knockdown confirmed a functional role for MDA-9 and GRP78 to promote cell invasion in the A375 cells. Finally, we showed that GRP78 co-localized with MDA-9 in 293T cells. Taken together, our findings support MDA-9, co-expressed with GRP78, as a melanoma protein associated with lymph node metastasis. Investigating how MDA-9 and GRP78 interact to contribute to melanoma metastasis and disease progression could reveal new potential avenues of targeted therapy and/or useful biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Modern molecular biology relies on large amounts of high-quality genomic DNA. However, in a number of clinical or biological applications this requirement cannot be met, as starting material is either limited (e.g., preimplantation genetic diagnosis (PGD) or analysis of minimal residual cancer) or of insufficient quality (e.g., formalin-fixed paraffin-embedded tissue samples or forensics). As a consequence, in order to obtain sufficient amounts of material to analyze these demanding samples by state-of-the-art modern molecular assays, genomic DNA has to be amplified. This chapter summarizes available technologies for whole-genome amplification (WGA), bridging the last 25 years from the first developments to currently applied methods. We will especially elaborate on research application, as well as inherent advantages and limitations of various WGA technologies.
Collapse
Affiliation(s)
- Zbigniew Tadeusz Czyz
- Project Group, Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Josef-Engert-Straße 9, 93053, Regensburg, Germany
| | - Stefan Kirsch
- Project Group, Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Josef-Engert-Straße 9, 93053, Regensburg, Germany
| | - Bernhard Polzer
- Project Group, Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Josef-Engert-Straße 9, 93053, Regensburg, Germany.
| |
Collapse
|
4
|
Criscitiello C, Gelao L, Viale G, Esposito A, Curigliano G. Investigational platelet-derived growth factor receptor kinase inhibitors in breast cancer therapy. Expert Opin Investig Drugs 2014; 23:599-610. [PMID: 24597540 DOI: 10.1517/13543784.2014.895323] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Aberrant regulation of platelet-derived growth factors (PDGFs) and their receptors (PDGFR) has been shown to be involved in many solid tumors, including breast cancer. PDGFR-α and PDGFR-β expressions were documented in breast cancer and are correlated with tumor aggressiveness and metastasis. Preclinical evidence further suggests tumor stimulatory roles of PDGFRs expressed by tumor stroma cells and indicates a deleterious effect of stromal PDGFRs on intratumoral drug uptake. AREAS COVERED This review summarizes the present understanding of PDGF signaling in breast cancer based on experimental studies and available clinical trials. It also provides a critical discussion of selected ongoing clinical trials in patients with breast cancer involving PDGFR inhibition with tyrosine kinase inhibitors, specifically in endocrine responsive breast cancer. EXPERT OPINION An increased molecular understanding of response and resistance mechanisms to endocrine therapy will be essential for therapeutic advances in PDGFR-directed cancer therapy. Future developments in the field will rely on clinical studies where prospective analyses of target expression in breast cancer cells and in the tumor stroma are included. More selective PDGFR inhibitors with reduced side effects will be crucial for combinatorial therapies. Development of sensitive diagnostics is of critical importance for patient selection and monitoring of therapeutic effects.
Collapse
Affiliation(s)
- Carmen Criscitiello
- Istituto Europeo di Oncologia, Division of Early Drug Development for Innovative Therapies , Via Ripamonti 435, 20133 Milano , Italy +39 02 57489788 ; +39 02 57489581 ;
| | | | | | | | | |
Collapse
|
5
|
Wada K, Maruno M, Suzuki T, Kagawa N, Hashiba T, Fujimoto Y, Hashimoto N, Izumoto S, Yoshimine T. Chromosomal and genetic abnormalities in benign and malignant meningiomas using DNA microarray. Neurol Res 2013; 27:747-54. [PMID: 16197812 DOI: 10.1179/016164105x35648] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Meningioma is the commonest brain tumor and many genetic abnormalities, such as the loss of chromosome 22q and the mutation of NF2, have been reported. METHODS These classical abnormalities were detected using Southern blot, PCR, fluorescence in situ hybridization and comparative genomic hybridization, but these methods examine only very limited regions or limited mapping resolution of the tumor genome. In this study, we used DNA microarray assay, which detects numerous genetic abnormalities simultaneously and analyses a global assessment of molecular events in meningioma cells. We studied 31 meningiomas by GenoSensor Array 300 in order to detect the chromosomal aberrations and genetic abnormalities in the whole genome. RESULTS This study demonstrated not only classical chromosomal aberration, such as loss of chromosome 22q in 19 meningiomas (61.3%), but also new genetic characteristics of meningiomas, such as amplification of MSH2 in 16 meningiomas (51.6%), deletion of GSCL in 13 meningiomas (41.9%) and deletion of HIRA in seven meningiomas (22.6%). CONCLUSIONS These results suggest that DNA microarray assay is useful in research for the genetic characters of meningiomas and understanding tumorigenesis.
Collapse
Affiliation(s)
- Kouichi Wada
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Arneson N, Moreno J, Iakovlev V, Ghazani A, Warren K, McCready D, Jurisica I, Done SJ. Comparison of whole genome amplification methods for analysis of DNA extracted from microdissected early breast lesions in formalin-fixed paraffin-embedded tissue. ISRN ONCOLOGY 2012; 2012:710692. [PMID: 22530150 PMCID: PMC3317021 DOI: 10.5402/2012/710692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/09/2011] [Indexed: 12/03/2022]
Abstract
To understand cancer progression, it is desirable to study the earliest stages of its development, which are often microscopic lesions. Array comparative genomic hybridization (aCGH) is a valuable high-throughput molecular approach for discovering DNA copy number changes; however, it requires a relatively large amount of DNA, which is difficult to obtain from microdissected lesions. Whole genome amplification (WGA) methods were developed to increase DNA quantity; however their reproducibility, fidelity, and suitability for formalin-fixed paraffin-embedded (FFPE) samples are questioned. Using aCGH analysis, we compared two widely used approaches for WGA: single cell comparative genomic hybridization protocol (SCOMP) and degenerate oligonucleotide primed PCR (DOP-PCR). Cancer cell line and microdissected FFPE breast cancer DNA samples were amplified by the two WGA methods and subjected to aCGH. The genomic profiles of amplified DNA were compared with those of non-amplified controls by four analytic methods and validated by quantitative PCR (Q-PCR). We found that SCOMP-amplified samples had close similarity to non-amplified controls with concordance rates close to those of reference tests, while DOP-amplified samples had a statistically significant amount of changes. SCOMP is able to amplify small amounts of DNA extracted from FFPE samples and provides quality of aCGH data similar to non-amplified samples.
Collapse
Affiliation(s)
- Nona Arneson
- Division of Applied Molecular Oncology, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, ON, Canada M5G 2M9
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Darouich S, Popovici C, Missirian C, Moncla A. Use of DOP-PCR for amplification and labeling of BAC DNA for FISH. Biotech Histochem 2011; 87:117-21. [PMID: 21314248 DOI: 10.3109/10520295.2011.559175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) is a powerful molecular cytogenetic method that permits rapid detection of specific chromosomal rearrangements. It is based on the hybridization of fluorescent labeled probes to metaphase chromosomes or interphase nuclei. The DNA probes commonly are generated from cloned sources such as bacterial artificial chromosomes (BACs). The major disadvantage of this approach is that it requires laborious and time-consuming work. We used a degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR) for both amplification and labeling of very small amounts of purified BAC DNA for FISH. The DOP-PCR reaction was processed in two steps: pre-amplification followed by simultaneous amplification and labeling of BAC DNA. The DOP-PCR probes obtained provided good hybridization signals and low background. Thus, DOP-PCR can be used to produce unlimited quantities of FISH probes with decreased cost and labor.
Collapse
Affiliation(s)
- S Darouich
- Electron Microscopy Laboratory, Faculty of Medicine of Tunis, Tunisia
| | | | | | | |
Collapse
|
8
|
Kibriya MG, Jasmine F, Roy S, Paul-Brutus RM, Argos M, Ahsan H. Analyses and interpretation of whole-genome gene expression from formalin-fixed paraffin-embedded tissue: an illustration with breast cancer tissues. BMC Genomics 2010; 11:622. [PMID: 21059268 PMCID: PMC3091761 DOI: 10.1186/1471-2164-11-622] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 11/08/2010] [Indexed: 12/03/2022] Open
Abstract
Background We evaluated (a) the feasibility of whole genome cDNA-mediated Annealing, Selection, extension and Ligation (DASL) assay on formalin-fixed paraffin-embedded (FFPE) tissue and (b) whether similar conclusions can be drawn by examining FFPE samples as proxies for fresh frozen (FF) tissues. We used a whole genome DASL assay (addressing 18,391 genes) on a total of 72 samples from paired breast tumor and surrounding healthy tissues from both FF and FFPE samples. Results Gene detection was very good with comparable success between the FFPE and FF samples. Reproducibility was also high (r2 = 0.98); however, concordance between the two types of samples was low. Only one-third of the differentially expressed genes in tumor tissues (compared to corresponding normal) from FF samples could be detected in FFPE samples and conversely only one-fourth of the differentially expressed genes from FFPE samples could be detected in FF samples. GO-enrichment analysis, gene set enrichment analysis (GSEA) and GO-ANOVA analyses also suggested small overlap between the lead functional groups that were differentially expressed in tumor detectable by examining FFPE and FF samples. In other words, FFPE samples may not be ideal for picking individual target gene(s), but may be used to identify some of the lead functional group(s) of genes that are differentially expressed in tumor. The differentially expressed genes in breast cancer found in our study were biologically meaningful. The "cell cycle" & "cell division" related genes were up-regulated and genes related to "regulation of epithelial cell proliferation" were down-regulated. Conclusions Gene expression experiments using the DASL assay can efficiently handle fragmentation issues in the FFPE tissues. However, formalin fixation seems to change RNA and consequently significantly alters gene expression in a number of genes which may not be uniform between tumor and normal tissues. Therefore, considerable caution needs to be taken when interpreting gene expression data from FFPE tissues, especially in relation to specific genes.
Collapse
Affiliation(s)
- Muhammad G Kibriya
- Department of Health Studies, The University of Chicago, 5841 S, Maryland Avenue, MC 2007, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
9
|
Nobusawa S, Lachuer J, Wierinckx A, Kim YH, Huang J, Legras C, Kleihues P, Ohgaki H. Intratumoral patterns of genomic imbalance in glioblastomas. Brain Pathol 2010; 20:936-44. [PMID: 20406234 DOI: 10.1111/j.1750-3639.2010.00395.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Glioblastomas are morphologically and genetically heterogeneous, but little is known about the regional patterns of genomic imbalance within glioblastomas. We recently established a reliable whole genome amplification (WGA) method to randomly amplify DNA from paraffin-embedded histological sections with minimum amplification bias [Huang et al (J Mol Diagn 11: 109-116, 2009)]. In this study, chromosomal imbalance was assessed by array comparative genomic hybridization (CGH; Agilent 105K, Agilent Technologies, Santa Clara, CA, USA), using WGA-DNA from two to five separate tumor areas of 14 primary glioblastomas (total, 41 tumor areas). Chromosomal imbalances significantly differed among glioblastomas; the only alterations that were observed in > or =6 cases were loss of chromosome 10q, gain at 7p and loss of 10p. Genetic alterations common to all areas analyzed within a single tumor included gains at 1q32.1 (PIK3C2B, MDM4), 4q11-q12 (KIT, PDGFRA), 7p12.1-11.2 (EGFR), 12q13.3-12q14.1 (GLI1, CDK4) and 12q15 (MDM2), and loss at 9p21.1-24.3 (p16(INK4a)/p14(ARF)), 10p15.3-q26.3 (PTEN, etc.) and 13q12.11-q34 (SPRY2, RB1). These are likely to be causative in the pathogenesis of glioblastomas (driver mutations). In addition, there were numerous tumor area-specific genomic imbalances, which may be either nonfunctional (passenger mutations) or functional, but constitute secondary events reflecting progressive genomic instability, a hallmark of glioblastomas.
Collapse
|
10
|
Abstract
A "one-size-fits-all" approach continues to characterize today's healthcare paradigm. But emergent rules, information, genomics tools, and economics are driving a fundamental and inevitable shift to a more personalized world of medicine. In this new world, the interests of insurers, regulators, suppliers, healthcare providers, and most important, patients, will have converged. The new goal will be the right treatment for the right individual at the right time. In this world, personalized medicine, through pharmacogenomics (PGx), will be the new healthcare paradigm. We will briefly examine healthcare trends and current opportunities for PGx development. We will then demonstrate how microarray technologies--among them bead-based approaches--have emerged as a key enabler for bringing home the promise of PGx.
Collapse
|
11
|
Gnanapragasam VJ. Unlocking the molecular archive: the emerging use of formalin-fixed paraffin-embedded tissue for biomarker research in urological cancer. BJU Int 2009; 105:274-8. [PMID: 19519763 DOI: 10.1111/j.1464-410x.2009.08665.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rapid developments have been made in identifying predictive and prognostic markers in urological cancers. Most biomarker profiling has been primarily conducted in fresh-frozen tissue taken at the time of diagnosis or surgery. The disadvantage of this process is that the sampled tissue might not be entirely representative of the tumour and there is a lack of adequate numbers and follow-up to make clear conclusions as to a biomarker's prognostic potential. Formalin fixation and paraffin embedding (FFPE) is the clinical standard for preparing samples for histopathological assessment; this preserves tissue architecture and allows the storage of diagnostic and surplus tissue in archival banks. This resource represents a vast repository of tissue material with a long-term clinical follow-up. With the advent of high-throughput profiling technologies, there is a unique opportunity to screen and comprehensively evaluate many biomarkers. Such studies require the large sample numbers and outcome data which is a key feature of archival FFPE tissue. However, the process of FFPE induces chemical changes and degradation in tissue DNA, RNA and protein, which can make subsequent analysis unreliable. Recently, several technical advances have been made to overcome the degrading effects of FFPE. This review highlights the key advances that are beginning to allow the use of FFPE archives for molecular biomarker profiling.
Collapse
Affiliation(s)
- Vincent J Gnanapragasam
- Uro-oncology Group, Department of Oncology, Hutchison MRC Research Centre, University of Cambridge, UK.
| |
Collapse
|
12
|
Huang J, Pang J, Watanabe T, Ng HK, Ohgaki H. Whole genome amplification for array comparative genomic hybridization using DNA extracted from formalin-fixed, paraffin-embedded histological sections. J Mol Diagn 2009; 11:109-16. [PMID: 19197000 DOI: 10.2353/jmoldx.2009.080143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Array comparative genomic hybridization (CGH) is useful to assess genome-wide chromosomal imbalance, but the requirement for relatively large amounts of DNA can be a limitation, in particular for samples extracted from small tumor areas on paraffin sections. Whole genome amplification (WGA) can be performed before array CGH to obtain sufficient DNA, but the possibility of artifacts attributable to biased amplification cannot be excluded. We optimized the WGA protocol to generate sufficient DNA with minimum amplification bias. Using formalin-fixed, paraffin-embedded histological sections of tumors carrying known TP53 mutations, LOH 1p, LOH 10q, LOH 19q, and EGFR amplification, we first optimized the protocol so that these genetic alterations were detected after WGA. We found that a ligation step before WGA is important because it allows a short reaction time with Phi29 to generate WGA-DNA with greatly decreased amplification bias. Using template >150 ng of DNA, a ligation step before WGA, and a short reaction time with Phi29 DNA polymerase (<1.5 hours), we obtained WGA-DNA (>4 mug) with minimum amplification bias (less than threefold). Using this protocol, we performed array CGH (Agilent 105K) before and after WGA. Pearson correlation analysis indicated a significant positive correlation in array CGH results between DNA before and after WGA (P < 0.0001). These results suggest that genetic analyses are possible using WGA-DNA extracted from paraffin sections, but that they should be performed with a carefully optimized and controlled protocol.
Collapse
Affiliation(s)
- Jian Huang
- International Agency for Research on Cancer, Lyon, France
| | | | | | | | | |
Collapse
|
13
|
Michels E, De Preter K, Van Roy N, Speleman F. Detection of DNA copy number alterations in cancer by array comparative genomic hybridization. Genet Med 2007; 9:574-84. [PMID: 17873645 DOI: 10.1097/gim.0b013e318145b25b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Over the past few years, various reliable platforms for high-resolution detection of DNA copy number changes have become widely available. Together with optimized protocols for labeling and hybridization and algorithms for data analysis and representation, this has lead to a rapid increase in the application of this technology in the study of copy number variation in the human genome in normal cells and copy number imbalances in genetic diseases, including cancer. In this review, we briefly discuss specific technical issues relevant for array comparative genomic hybridization analysis in cancer tissues. We specifically focus on recent successes of array comparative genomic hybridization technology in the progress of our understanding of oncogenesis in a variety of cancer types. A third section highlights the potential of sensitive genome-wide detection of patterns of DNA imbalances or molecular portraits for class discovery and therapeutic stratification.
Collapse
Affiliation(s)
- Evi Michels
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | |
Collapse
|
14
|
Peng W, Takabayashi H, Ikawa K. Whole genome amplification from single cells in preimplantation genetic diagnosis and prenatal diagnosis. Eur J Obstet Gynecol Reprod Biol 2007; 131:13-20. [PMID: 17157976 DOI: 10.1016/j.ejogrb.2006.07.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 06/12/2006] [Accepted: 07/16/2006] [Indexed: 10/23/2022]
Abstract
The literature on whole genome amplification (WGA) techniques and their application to preimplantation genetic diagnosis (PGD) and prenatal diagnosis is reviewed. General polymerase chain reaction (PCR) fails to provide adequate information from limited cells in PGD and non-invasive prenatal diagnosis. Therefore several WGA techniques, such as primer extension preamplification (PEP) and degenerate oligonucleotide primed PCR (DOP-PCR), have been developed and successfully applied to clinical work during the past decade, especially in PGD and prenatal diagnosis. These techniques can provide ample amplification of genetic sequences from single cells for a series of subsequent PCR analyses such as restriction fragment length polymorphisms (RFLP) and comparative genomic hybridization (CGH), thus opening up a new area for prenatal diagnosis. However, several problems have been reported in the application of these techniques. The ideal WGA technique should have high yield, faithful representation of the original template, complete coverage of the genome, and simply performed procedure. In order to make good use of these techniques in future research and clinical work, it is undoubtedly necessary for an extensive understanding of the merits and pitfalls of these recently developed techniques.
Collapse
Affiliation(s)
- Wen Peng
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Jinan 250021, China; Division of Human Genetics, Medical Research Institute, Kanazawa Medical University, Kanazawa, Ishikawa 920-0293, Japan.
| | - Haruo Takabayashi
- Division of Human Genetics, Medical Research Institute, Kanazawa Medical University, Kanazawa, Ishikawa 920-0293, Japan
| | - Kazumi Ikawa
- Cytogenetic Laboratory, Ishikawa Health Service Association, Kanazawa, Ishikawa 920-0365, Japan
| |
Collapse
|
15
|
Chin SF, Wang Y, Thorne NP, Teschendorff AE, Pinder SE, Vias M, Naderi A, Roberts I, Barbosa-Morais NL, Garcia MJ, Iyer NG, Kranjac T, Robertson JFR, Aparicio S, Tavaré S, Ellis I, Brenton JD, Caldas C. Using array-comparative genomic hybridization to define molecular portraits of primary breast cancers. Oncogene 2006; 26:1959-70. [PMID: 17001317 DOI: 10.1038/sj.onc.1209985] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We analysed 148 primary breast cancers using BAC-arrays containing 287 clones representing cancer-related gene/loci to obtain genomic molecular portraits. Gains were detected in 136 tumors (91.9%) and losses in 123 tumors (83.1%). Eight tumors (5.4%) did not have any genomic aberrations in the 281 clones analysed. Common (more than 15% of the samples) gains were observed at 8q11-qtel, 1q21-qtel, 17q11-q12 and 11q13, whereas common losses were observed at 16q12-qtel, 11ptel-p15.5, 1p36-ptel, 17p11.2-p12 and 8ptel-p22. Patients with tumors registering either less than 5% (median value) or less than 11% (third quartile) total copy number changes had a better overall survival (log-rank test: P=0.0417 and P=0.0375, respectively). Unsupervised hierarchical clustering based on copy number changes identified four clusters. Women with tumors from the cluster with amplification of three regions containing known breast oncogenes (11q13, 17q12 and 20q13) had a worse prognosis. The good prognosis group (Nottingham Prognostic Index (NPI) <or=3.4) tumors had frequent loss of 16q24-qtel. Genes significantly associated with estrogen receptor (ER), Grade and NPI were used to build k-nearest neighbor (KNN) classifiers that predicted ER, Grade and NPI status in the test set with an average misclassification rate of 24.7, 25.7 and 35.7%, respectively. These data raise the prospect of generating a molecular taxonomy of breast cancer based on copy number profiling using tumor DNA, which may be more generally applicable than expression microarray analysis.
Collapse
Affiliation(s)
- S-F Chin
- Cancer Genomics Program, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mohapatra G, Betensky RA, Miller ER, Carey B, Gaumont LD, Engler DA, Louis DN. Glioma test array for use with formalin-fixed, paraffin-embedded tissue: array comparative genomic hybridization correlates with loss of heterozygosity and fluorescence in situ hybridization. J Mol Diagn 2006; 8:268-76. [PMID: 16645215 PMCID: PMC1867586 DOI: 10.2353/jmoldx.2006.050109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Array-based comparative genomic hybridization (aCGH) is a powerful, high-throughput tool for whole genome analysis. Until recently, aCGH could only be reproducibly performed on frozen tissue samples and with significant tissue amounts. For brain tumors however, paraffin-embedded tissue blocks from small stereotactic biopsies may be the only tissue routinely available. The development of methods to analyze formalin-fixed, paraffin-embedded (FFPE) material therefore has the potential to impact molecular diagnosis in a significant way. To this end, we constructed a BAC array representing chromosomes 1, 7, 19, and X because 1p/19q deletion and EGFR gene amplification provide clinically relevant information for glioma diagnosis. We also optimized a two-step labeling procedure using an amine-modified nucleotide for generating aCGH probes. Using this approach, we analyzed a series of 28 FFPE oligodendroglial tumors for alterations of chromosomes 1, 7, and 19. We also independently assayed these tumors for 1p/19q deletion by fluorescence in situ hybridization and by loss of heterozygosity analyses. The concordance between aCGH, standard loss of heterozygosity and fluorescence in situ hybridization was nearly 100% for the chromosomes analyzed. These results suggest that aCGH could offer an improved molecular diagnostic approach for gliomas because of its ability to detect clinically relevant molecular alterations in small FFPE specimens.
Collapse
Affiliation(s)
- Gayatry Mohapatra
- Department of Pathology, Cancer Center and Neurosurgical Service, Massachusetts General Hospital and Harvard Medical School, Boston 02129, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The introduction of comparative genomic hybridization (CGH) in 1992 opened new avenues in genomic investigation; in particular, it advanced analysis of solid tumours, including breast cancer, because it obviated the need to culture cells before their chromosomes could be analyzed. The current generation of CGH analysis uses ordered arrays of genomic DNA sequences and is therefore referred to as array-CGH or matrix-CGH. It was introduced in 1998, and further increased the potential of CGH to provide insight into the fundamental processes of chromosomal instability and cancer. This review provides a critical evaluation of the data published on array-CGH and breast cancer, and discusses some of its expected future value and developments.
Collapse
Affiliation(s)
- Erik H van Beers
- Division of Experimental Therapy, Netherlands Cancer Institute NKI-AVL, Amsterdam
| | - Petra M Nederlof
- Department of Pathology, Netherlands Cancer Institute NKI-AVL, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Yao J, Weremowicz S, Feng B, Gentleman RC, Marks JR, Gelman R, Brennan C, Polyak K. Combined cDNA array comparative genomic hybridization and serial analysis of gene expression analysis of breast tumor progression. Cancer Res 2006; 66:4065-78. [PMID: 16618726 DOI: 10.1158/0008-5472.can-05-4083] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To identify genetic changes involved in the progression of breast carcinoma, we did cDNA array comparative genomic hybridization (CGH) on a panel of breast tumors, including 10 ductal carcinoma in situ (DCIS), 18 invasive breast carcinomas, and two lymph node metastases. We identified 49 minimal commonly amplified regions (MCRs) that included known (1q, 8q24, 11q13, 17q21-q23, and 20q13) and several uncharacterized (12p13 and 16p13) regional copy number gains. With the exception of the 17q21 (ERBB2) amplicon, the overall frequency of copy number alterations was higher in invasive tumors than that in DCIS, with several of them present only in invasive cancer. Amplification of candidate loci was confirmed by quantitative PCR in breast carcinomas and cell lines. To identify putative targets of amplicons, we developed a method combining array CGH and serial analysis of gene expression (SAGE) data to correlate copy number and expression levels for each gene within MCRs. Using this approach, we were able to distinguish a few candidate targets from a set of coamplified genes. Analysis of the 12p13-p12 amplicon identified four putative targets: TEL/ETV6, H2AFJ, EPS8, and KRAS2. The amplification of all four candidates was confirmed by quantitative PCR and fluorescence in situ hybridization, but only H2AFJ and EPS8 were overexpressed in breast tumors with 12p13 amplification compared with a panel of normal mammary epithelial cells. These results show the power of combined array CGH and SAGE analysis for the identification of candidate amplicon targets and identify H2AFJ and EPS8 as novel putative oncogenes in breast cancer.
Collapse
Affiliation(s)
- Jun Yao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ghazani AA, Arneson NCR, Warren K, Done SJ. Limited tissue fixation times and whole genomic amplification do not impact array CGH profiles. J Clin Pathol 2006; 59:311-5. [PMID: 16505285 PMCID: PMC1860340 DOI: 10.1136/jcp.2005.029777] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Array comparative genomic hybridisation (CGH) is a powerful method for the genetic analysis of lesional and normal tissues to identify genomic imbalances associated with malignancies. However, the use of this technique with DNA extracted from archival formalin fixed, paraffin embedded (FFPE) tissue specimens, the most widely available resource for retrospective studies, is subject to quantitative and qualitative limitations. In this report, the suitability and integrity of the DNA extracted from FFPE MCF7 breast cancer cells fixed for different periods of time for array CGH applications were examined. RESULTS Using our established cDNA microarray protocol in conjunction with whole genome amplification methods, the genetic profiles of freshly harvested MCF7 cells and their matched FFPE counterparts were analysed. Congruent profiles between FFPE MCF7 cells and their fresh counterpart and between amplified and non-amplified FFPE MCF7 cells were observed. Our results demonstrate that formalin fixation of <20 hours has no significant adverse effect on the integrity of DNA for array CGH studies. CONCLUSIONS Our findings attest to the fidelity of our array CGH methods to effectively examine material recovered from FFPE tissue specimens for microarray applications. This in turn has great potential to identify novel diagnostic and prognostic markers for human disease.
Collapse
Affiliation(s)
- A A Ghazani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
20
|
Ishikawa N, Daigo Y, Takano A, Taniwaki M, Kato T, Hayama S, Murakami H, Takeshima Y, Inai K, Nishimura H, Tsuchiya E, Kohno N, Nakamura Y. Increases of amphiregulin and transforming growth factor-alpha in serum as predictors of poor response to gefitinib among patients with advanced non-small cell lung cancers. Cancer Res 2005; 65:9176-84. [PMID: 16230376 DOI: 10.1158/0008-5472.can-05-1556] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Serum levels of amphiregulin and transforming growth factor-alpha (TGF-alpha), which were identified previously to be expressed at high levels in non-small cell lung cancer (NSCLC) with poor response to gefitinib, were examined by ELISA using blood samples taken from 50 patients with advanced NSCLCs. Of 14 cases that revealed above the cutoff line for amphiregulin in serum, 12 responded poorly to gefitinib, whereas 18 of the 36 cases showing below the cutoff revealed partial response (PR) or stable disease (SD; P = 0.026). Thirteen of 15 patients who were positive for TGF-alpha responded poorly to gefitinib, whereas 18 of the 35 patients with negative TGF-alpha levels turned out to be relatively good responders (P = 0.014). Of 22 patients with positive values for either or both markers, 19 were poor responders. On the other hand, among 28 patients negative for both markers, 17 were classified into the PR or SD groups (P = 0.001). Gefitinib-treated NSCLC patients whose serum amphiregulin or TGF-alpha was positive showed a poorer tumor-specific survival (P = 0.037 and 0.002, respectively, by univariate analysis) compared with those whose serum amphiregulin or TGF-alpha concentrations were negative. Multivariate analysis showed an independent association between positivity for TGF-alpha and shorter survival times among NSCLC patients treated with gefitinib (P = 0.034). Amphiregulin or TGF-alpha positivity in NSCLC tissues was significantly higher in male, nonadenocarcinomas, and smokers. Our data suggest that the status of amphiregulin and TGF-alpha in serum can be an important predictor of the resistance to gefitinib among patients with advanced NSCLC.
Collapse
Affiliation(s)
- Nobuhisa Ishikawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Altering DNA copy number is one of the many ways that gene expression and function may be modified. Some variations are found among normal individuals ( 14, 35, 103 ), others occur in the course of normal processes in some species ( 33 ), and still others participate in causing various disease states. For example, many defects in human development are due to gains and losses of chromosomes and chromosomal segments that occur prior to or shortly after fertilization, whereas DNA dosage alterations that occur in somatic cells are frequent contributors to cancer. Detecting these aberrations, and interpreting them within the context of broader knowledge, facilitates identification of critical genes and pathways involved in biological processes and diseases, and provides clinically relevant information. Over the past several years array comparative genomic hybridization (array CGH) has demonstrated its value for analyzing DNA copy number variations. In this review we discuss the state of the art of array CGH and its applications in medical genetics and cancer, emphasizing general concepts rather than specific results.
Collapse
Affiliation(s)
- Daniel Pinkel
- Comprehensive Cancer Center, Department of Laboratory Medicine, University of California, San Francisco, California 94143, USA.
| | | |
Collapse
|
22
|
Deeb G, Baer MR, Gaile DP, Sait SNJ, Barcos M, Wetzler M, Conroy JM, Nowak NJ, Cowell JK, Cheney RT. Genomic profiling of myeloid sarcoma by array comparative genomic hybridization. Genes Chromosomes Cancer 2005; 44:373-83. [PMID: 16080198 DOI: 10.1002/gcc.20239] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Myeloid sarcoma (MS) is a tumor mass of myeloblasts or immature myeloid cells occurring in an extramedullary site. In this study, seven cases of MS [stomach (1), testis (1), skin (2), and lymph node (3)] and 3 synchronous and 1 follow-up bone marrow (BM) samples were studied for genomic abnormalities using array comparative genomic hybridization (array-CGH). Array-CGH construction used approximately 5,400 bacterial artificial chromosome clones from the RPCI-11 library, spanning the human genome. Data were analyzed using the DNAcopy software and custom heuristics. All MS cases had genomic abnormalities detected by array-CGH. Unbalanced genomic abnormalities in five MS cases were confirmed by conventional cytogenetics (CC) and/or fluorescence in situ hybridization (FISH); these abnormalities included loss of 4q32.1-q35.2, 6q16.1-q21, and 12p12.2-p13.2 and gain of 8q21.2-q24.3, 8, 11q21-q25, 13q21.32-q34, 19, and 21. Array-CGH was also invaluable in identifying possible deletions, partner translocations, and breakpoints that were questionable by CC. The remaining two MS cases had genomic aberrations detected by array-CGH, but were not studied further by CC/FISH. Chromosome 8 was most commonly abnormal (3/7 cases). Identical genomic abnormalities were demonstrated in MS and in synchronous BM in two cases. These results demonstrate that array-CGH is a powerful tool to screen MS tissue for unbalanced genomic abnormalities, allowing identification of chromosome abnormalities when concurrent BM is nonanalyzable or nonleukemic.
Collapse
Affiliation(s)
- George Deeb
- Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Little SE, Vuononvirta R, Reis-Filho JS, Natrajan R, Iravani M, Fenwick K, Mackay A, Ashworth A, Pritchard-Jones K, Jones C. Array CGH using whole genome amplification of fresh-frozen and formalin-fixed, paraffin-embedded tumor DNA. Genomics 2005; 87:298-306. [PMID: 16271290 DOI: 10.1016/j.ygeno.2005.09.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 09/21/2005] [Indexed: 11/18/2022]
Abstract
The ability to utilize formalin-fixed, paraffin-embedded (FFPE) archival specimens reliably for high-resolution molecular genetic analysis would be of immense practical application in the study of human disease. We have evaluated the ability of the GenomePlex whole genome amplification (WGA) kit to amplify frozen and FFPE tissue for use in array CGH (aCGH). GenomePlex gave highly representative data compared with unamplified controls both from frozen material (Pearson's R(2) = 0.898) and from FFPE (R(2) = 0.883). Artifactual amplification observed using DOP-PCR at chromosomes 1p, 3, 13q, and 16p was not seen with GenomePlex. Highly reproducible aCGH profiles were obtained using as little as 5 ng starting material from FFPE (R(2) = 0.918). This WGA method should readily lend itself to the determination of DNA copy number alterations from small fresh-frozen and FFPE clinical tumor specimens, although some care must be taken to optimize the DNA extraction procedure.
Collapse
Affiliation(s)
- Suzanne E Little
- Paediatric Oncology, Institute of Cancer Research/Royal Marsden NHS Trust, Sutton, Surrey SM2 5NG, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Katoh H, Shibata T, Kokubu A, Ojima H, Loukopoulos P, Kanai Y, Kosuge T, Fukayama M, Kondo T, Sakamoto M, Hosoda F, Ohki M, Imoto I, Inazawa J, Hirohashi S. Genetic profile of hepatocellular carcinoma revealed by array-based comparative genomic hybridization: identification of genetic indicators to predict patient outcome. J Hepatol 2005; 43:863-74. [PMID: 16139920 DOI: 10.1016/j.jhep.2005.05.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 05/17/2005] [Accepted: 05/18/2005] [Indexed: 01/22/2023]
Abstract
BACKGROUND/AIMS We conducted an analysis of chromosomal numerical aberrations and their clinical significance in hepatocellular carcinoma. METHODS We analyzed 87 hepatocellular carcinomas by array-based comparative genomic hybridization with an array containing 800 bacterial artificial chromosome clones. RESULTS Frequent (>30%) chromosomal losses on 1p36.1, 4q21-25, 4q34-35.1, 8p23.3b-11.1, 13q14.1-14.3, 16p13.3, 16q22.1-24.3b, 17p13.3-13.1 and 17p13.3-11, and gains on 1q21-44f, 2q21.2, 2q34, 3q11.2, 5p14.2, 5q13.2-14, 7p22, 7p14.2, 7q21.1, 7q22.3, 7q34, 8q12-24.3 and 17q23, were observed. Recurrent (>5%) amplifications were detected on 1q25, 8q11 and 11q11, and we discovered a novel homozygous deletion at 14q32.11. The extent of chromosomal aberrations correlated significantly with various clinicopathological characteristics of the tumors, and increased in a stepwise manner with the progression of hepatocellular carcinoma. We also identified novel chromosomal alterations that were significantly associated with a range of malignant phenotypes. Multivariate analysis revealed that both chromosomal loss on 17p13.3 and gain on 8q11 are independent prognostic indicators. CONCLUSIONS Our results contribute to a complete description of genomic structural aberrations in relation to hepatocarcinogenesis and provide a valuable basis from which we can begin to understand the characteristics of tumors, predict patient outcomes and discover novel therapeutic targets for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hiroto Katoh
- Pathology Division, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, and Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Carvalho I, Milanezi F, Martins A, Reis RM, Schmitt F. Overexpression of platelet-derived growth factor receptor alpha in breast cancer is associated with tumour progression. Breast Cancer Res 2005; 7:R788-95. [PMID: 16168125 PMCID: PMC1242156 DOI: 10.1186/bcr1304] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 06/29/2005] [Accepted: 07/06/2005] [Indexed: 11/13/2022] Open
Abstract
Introduction Receptor tyrosine kinases have been extensively studied owing to their frequently abnormal activation in the development and progression of human cancers. Platelet-derived growth factor receptors (PDGFRs) are receptors with intrinsic tyrosine kinase activity that regulate several functions in normal cells and are widely expressed in a variety of malignancies. After the demonstration that gastrointestinal stromal tumours without c-Kit mutations harbour PDGFR-α-activating mutations and that PDGFR-α is also a therapeutic target for imatinib mesylate, the interest for this receptor has increased considerably. Because breast cancer is one of the most frequent neoplasias in women worldwide, and only one study has reported PDGFR-α expression in breast carcinomas, the aim of this work was to investigate the potential significance of PDGFR-α expression in invasive mammary carcinomas. Methods We used immunohistochemistry to detect PDGFR-α overexpression on a series of 181 formalin-fixed paraffin-embedded invasive ductal breast carcinomas and in two breast cancer cell lines: MCF-7 and HS578T. We associated its expression with known prognostic factors and we also performed polymerase chain reaction–single-stranded conformational polymorphism and direct sequencing to screen for PDGFR-α mutations. Results PDGFR-α expression was observed in 39.2% of the breast carcinomas and showed an association with lymph node metastasis (P = 0.0079), HER-2 expression (P = 0.0265) and Bcl2 expression (P = 0.0121). A correlation was also found with the expression of platelet-derived growth factor A (PDGF-A; P = 0.0194). The two cell lines tested did not express PDGFR-α. Screening for mutations revealed alterations in the PDGFR-α gene at the following locations: 2500A→G, 2529T→A and 2472C→T in exon 18 and 1701G→A in exon 12. We also found an intronic insertion IVS17-50insA at exon 18 in all sequenced cases. None of these genetic alterations was correlated with PDGFR-α expression. The cell lines did not reveal any alterations in the PDGFR-α gene sequence. Conclusion PDGFR-α is expressed in invasive breast carcinomas and is associated with biological aggressiveness. The genetic alterations described were not correlated with protein expression, but other mechanisms such as gene amplification or constitutive activation of a signalling pathway inducing this receptor could still sustain PDGFR-α as a potential therapeutic target.
Collapse
Affiliation(s)
- Inês Carvalho
- IPATIMUP – Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Fernanda Milanezi
- IPATIMUP – Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Albino Martins
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Rui M Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Fernando Schmitt
- IPATIMUP – Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- Medical Faculty of Porto University, Porto, Portugal
| |
Collapse
|
26
|
Devries S, Nyante S, Korkola J, Segraves R, Nakao K, Moore D, Bae H, Wilhelm M, Hwang S, Waldman F. Array-based comparative genomic hybridization from formalin-fixed, paraffin-embedded breast tumors. J Mol Diagn 2005; 7:65-71. [PMID: 15681476 PMCID: PMC1867501 DOI: 10.1016/s1525-1578(10)60010-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Identification of prognostic and predictive genomic markers requires long-term clinical follow-up of patients. Extraction of high-quality DNA from archived formalin-fixed, paraffin-embedded material is essential for such studies. Of particular importance is a robust reproducible method of whole genome amplification for small tissue samples. This is especially true for high-resolution analytical approaches because different genomic regions and sequences may amplify differentially. We have tested a number of protocols for DNA amplification for array-based comparative genomic hybridization (CGH), in which relative copy number of the entire genome is measured at 1 to 2 mb resolution. Both random-primed amplification and degenerate oligonucleotide-primed amplification approaches were tested using varying amounts of fresh and paraffin-extracted normal and breast tumor input DNAs. We found that random-primed amplification was clearly superior to degenerate oligonucleotide-primed amplification for array-based CGH. The best quality and reproducibility strongly depended on accurate determination of the amount of input DNA using a quantitative polymerase chain reaction-based method. Reproducible and high-quality results were attained using 50 ng of input DNA, and some samples yielded quality results with as little as 5 ng input DNA. We conclude that random-primed amplification of DNA isolated from paraffin sections is a robust and reproducible approach for array-based CGH analysis of archival tumor samples.
Collapse
Affiliation(s)
- Sandy Devries
- Cancer Center, Box 0808, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pinkel D, Albertson DG. Array comparative genomic hybridization and its applications in cancer. Nat Genet 2005; 37 Suppl:S11-7. [PMID: 15920524 DOI: 10.1038/ng1569] [Citation(s) in RCA: 371] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alteration in DNA copy number is one of the many ways in which gene expression and function may be modified. Some variations are found among normal individuals, others occur in the course of normal processes in some species and still others participate in causing various disease states. For example, many defects in human development are due to gains and losses of chromosomes and chromosomal segments that occur before or shortly after fertilization, and DNA dosage-alteration changes occurring in somatic cells are frequent contributors to cancer. Detecting these aberrations and interpreting them in the context of broader knowledge facilitates the identification of crucial genes and pathways involved in biological processes and disease. Over the past several years, array comparative genomic hybridization has proven its value for analyzing DNA copy-number variations. Here, we discuss the state of the art of array comparative genomic hybridization and its applications in cancer, emphasizing general concepts rather than specific results.
Collapse
Affiliation(s)
- Daniel Pinkel
- Department of Laboratory Medicine and Comprehensive Cancer Center, University of California San Francisco, Box 0808, San Francisco, California 94143, USA.
| | | |
Collapse
|
28
|
Garnis C, Coe BP, Lam SL, MacAulay C, Lam WL. High-resolution array CGH increases heterogeneity tolerance in the analysis of clinical samples. Genomics 2005; 85:790-3. [PMID: 15885505 DOI: 10.1016/j.ygeno.2005.02.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2004] [Revised: 02/15/2005] [Accepted: 02/28/2005] [Indexed: 11/21/2022]
Abstract
Recent advances in array comparative genomic hybridization (array CGH) technology are revolutionizing our understanding of tumor genomes. Marker-based arrays enable rapid survey at megabase intervals, while tiling path arrays examine the entire genome in unprecedented detail. Tumor biopsies are typically small and contain infiltrating stromal cells, requiring tedious microdissection. Tissue heterogeneity is a major barrier to high-throughput profiling of tumor genomes and is also an important consideration for the introduction of array CGH to clinical settings. We propose that increasing array resolution will enhance detection sensitivity in mixed tissues and as a result significantly reduce microdissection requirements. In this study, we first simulated normal cell contamination to determine the heterogeneity tolerance of array CGH and then validated this detection sensitivity model on cancer specimens using the newly developed submegabase resolution tiling-set (SMRT) array, which spans the human genome with 32,433 overlapping BAC clones.
Collapse
|
29
|
Tsubosa Y, Sugihara H, Mukaisho KI, Kamitani S, Peng DF, Ling ZQ, Tani T, Hattori T. Effects of degenerate oligonucleotide-primed polymerase chain reaction amplification and labeling methods on the sensitivity and specificity of metaphase- and array-based comparative genomic hybridization. ACTA ACUST UNITED AC 2005; 158:156-66. [PMID: 15796963 DOI: 10.1016/j.cancergencyto.2004.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 07/28/2004] [Accepted: 08/20/2004] [Indexed: 10/25/2022]
Abstract
Degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR) is often applied to small amounts of DNA from microdissected tissues in the analyses of chromosomal copy number with comparative genomic hybridization (CGH). The sensitivity and specificity in CGH analyses largely depend on the unbiased amplification and labeling of probe DNA, and the sensitivity and specificity should be high enough to detect one-copy changes in aneuploid cancer cells when accurate assessment of chromosomal instability is needed. The present study was designed to assess the effects of DOP-PCR and labeling method on the sensitivity of metaphase- and array-based CGHs in the detection of one-copy changes in near-tetraploid Kato-III cells. By focusing on several chromosomes whose absolute copy numbers were determined by FISH, we first compared the green-to-red ratio profiles of metaphase- and array-based CGH to the absolute copy numbers using the DNA diluted with varying proportions of lymphocyte DNA, with and without prior DOP-PCR amplification, and found that the amplification process scarcely affected the sensitivity but gave slightly lower specificity. Second, we compared random priming (RP) labeling with nick translation (NT) labeling and found that the RP labeling gave fewer false-positive gains and fewer false-negative losses in the detection of one-copy changes. In array CGH, locus-by-locus concordance between the DNAs with and without DOP-PCR amplification was high (nearly 100%) in the gain of three copies or more and the loss of two copies or more. This suggests that we could pinpoint the candidate genes within large-shift losses-gains that are detected with array CGH in microdissected tissues.
Collapse
Affiliation(s)
- Yasuhiro Tsubosa
- Department of Pathology, Shiga University of Medical Science, Otsu 520-2192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hughes S, Arneson N, Done S, Squire J. The use of whole genome amplification in the study of human disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 88:173-89. [PMID: 15561304 DOI: 10.1016/j.pbiomolbio.2004.01.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The availability of large amounts of genomic DNA is of critical importance for many of the molecular biology assays used in the analysis of human disease. However, since the amount of patient tissue available is often limited and as particular foci of interest may consist of only a few hundred cells, the yield of DNA is often insufficient for extensive analysis. To address this problem, several whole genome amplification (WGA) methodologies have been developed. Initial WGA approaches were based on the polymerase chain reaction (PCR). However, recent reports have described the use of non-PCR-based linear amplification protocols for WGA. Using these methods, it is possible to generate microgram quantities of DNA starting with as little as 1mg of genomic DNA. This review will provide an overview of WGA approaches and summarize some of the uses for amplified DNA in various high-throughput genetic applications.
Collapse
Affiliation(s)
- Simon Hughes
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Ontario, Canada.
| | | | | | | |
Collapse
|
31
|
Callagy G, Pharoah P, Chin SF, Sangan T, Daigo Y, Jackson L, Caldas C. Identification and validation of prognostic markers in breast cancer with the complementary use of array-CGH and tissue microarrays. J Pathol 2005; 205:388-96. [PMID: 15682439 DOI: 10.1002/path.1694] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene amplification, an important mechanism of oncogene activation in breast cancer, can have both prognostic and therapeutic implications. In this work, an attempt is made to identify amplified genes that can be used to improve prognostication in breast cancer. A series of 52 node-negative tumours was screened for genomic gains at 57 loci by array-CGH. A subset of these genes was identified that could divide the series into two divergent outcome groups of either long-term survivors or early disease-related deaths (p = 0.01) using a combination of k-means clustering and statistical analysis. The prognostic significance of amplification of four of the genes (EMS1, TOP2A, CCNE1, and ERBB2) was then evaluated, using fluorescent in situ hybridization on a tissue microarray, in a second larger 'validation' series of 232 tumours with a median follow-up of 4.8 years. Adverse disease-related outcome was associated with amplification of TOP2A (p = 0.004); ERBB2 (p = 0.002); and with the combined amplification of TOP2A, ERBB2, and EMS1 (p = 0.01). EMS1 amplification was more common (26% of cases) than previously reported but, in isolation, had no prognostic significance. Amplification of CCNE1, seen in only 6% of cases, had no prognostic role. These results indicate that the complementary use of array-CGH and tissue microarrays has the potential to help in the identification and validation of molecular markers that can be used to classify breast cancers into different prognostic groups.
Collapse
Affiliation(s)
- Grace Callagy
- Cancer Genomics Program, Department of Oncology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Hattinger CM, Tarkkanen M, Benini S, Pasello M, Stoico G, Bacchini P, Knuutila S, Scotlandi K, Picci P, Serra M. Genetic analysis of fibrosarcoma of bone, a rare tumour entity closely related to osteosarcoma and malignant fibrous histiocytoma of bone. Eur J Cell Biol 2005; 83:483-91. [PMID: 15540465 DOI: 10.1078/0171-9335-00408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fibrosarcoma (FS) of bone is an extremely rare and genetically uncharacterised malignant tumour arising in the skeleton. On the basis of clinicopathologic features it appears to be closely related to either fibroblastic osteosarcoma (OS) or malignant fibrous histiocytoma (MFH) of bone. In this study, 27 decalcified, paraffin-embedded FS of bone were collected for genetic and immunohistochemical characterisation. Good quality DNA, suitable for genetic analyses, was isolated from nine cases (7 primary tumours, 1 local recurrence, and 1 lung metastasis), which were analysed by comparative genomic hybridisation (CGH) on chromosomes and DNA microarrays. DNA sequence copy number changes were found in five out of seven primary tumours (72%), as well as in both, the local recurrence and the metastatic lesion, by CGH on chromosomes. The most frequent aberration was gain of the chromosomal region 22q, which was present in four out of the five primary tumours with genetic changes, in the local recurrence and, as the sole genetic aberration, in the lung metastasis. DNA microarray analysis showed that gain of the platelet-derived growth factor beta (PDGF-B) gene (located at 22q12.3-q13.1) was the most frequent gene imbalance, which was present in three out of the five analysed tumours. In these three cases, real-time PCR revealed a 2.1- to 2.7-fold increase of PDGF-B gene copy numbers. By immunohistochemistry, a positive reaction for B-chain-containing PDGF proteins was revealed in all the cases showing gain of 22q. A more extensive immunohistochemical analysis identified the presence of PDGF-B proteins in 8/20 primary FS of bone (40%), 3/3 lung metastases and in 1/2 local recurrences. A simultaneous positive reaction for PDGF-B proteins and PDGF receptors was found in two third of PDGF-B-positive cases (8/12). Taken together, the genetic and immunohistochemical data indicate that over-representation of the chromosomal region 22q, including particularly the PDGF-B gene, may be important for the pathogenesis of FS of bone. Our results also demonstrate that CGH on chromosomes and DNA microarrays are suitable for the genetic characterisation of decalcified, paraffin-embedded tumour tissue samples and may facilitate, combined with other techniques, the rapid acquisition of data providing insight into the molecular genetic and biologic basis of rare bone sarcomas. Moreover, these findings suggest the possible presence of an autocrine loop in FS of bone, which might be taken into account for planning innovative therapeutic strategies for patients unresponsive to conventional treatments.
Collapse
|
33
|
Gorringe KL, Chin SF, Pharoah P, Staines JM, Oliveira C, Edwards PAW, Caldas C. Evidence that both genetic instability and selection contribute to the accumulation of chromosome alterations in cancer. Carcinogenesis 2005; 26:923-30. [PMID: 15677628 DOI: 10.1093/carcin/bgi032] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cancer cells contain many genetic alterations, and genetic instability may be important in tumourigenesis. We evaluated 58 breast and ovarian cancer cell lines for microsatellite instability (MSI) and chromosomal instability (CIN). MSI was identified in 3/33 breast and 5/25 ovarian cell lines, and 7/8 MSI lines showed an inactivation of mismatch repair. Average ploidy by centromeric fluorescence in situ hybridization (FISH) of MSI (n = 8, average ploidy = 2.65) and microsatellite stable (MSS; n = 7, average ploidy = 3.01) cell lines was not different, due to the presence of three aneuploid MSI lines, and two near-diploid MSS lines. However, the variability of the centromeric FISH data was different between MSI and MSS (P = 0.049). The complexity of structural chromosomal rearrangements was not different between MSI and MSS. Thus, MSI and numerical CIN are not mutually exclusive, and structural CIN occurs independently of MSI or numerical CIN. Dynamic genetic instability was evaluated in three cell lines-MSI diploid (MT-3), MSS diploid (SUM159) and MSS aneuploid (MT-1). Ten clones of each of these cell lines were analysed by centromeric FISH and six-colour chromosome painting. The variation in chromosome number was different among all three cell lines (P < 0.001). MT-3 appeared numerically constant (94% of centromeric FISH signals matched the mode). SUM159 was 88% constant; however, 7% of cells had duplicated chromosomes. MT-1 was 82% constant; most changes were chromosomal losses. The six-colour FISH data showed that SUM159 had more stable structural chromosomal alterations (e.g. chromosomal translocations) compared with MT-3 and MT-1, but had no increase in unstable changes (e.g. chromatid breaks) when compared with MT-3. MT-1 had fewer unstable changes than both MT-3 and SUM159. These data suggest that numerical CIN may contribute to aneuploidy, but that selection plays an important role, particularly for the accumulation of structural chromosomal changes.
Collapse
Affiliation(s)
- Kylie L Gorringe
- Cancer Genomics Program, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 2XZ, UK.
| | | | | | | | | | | | | |
Collapse
|
34
|
Bibikova M, Talantov D, Chudin E, Yeakley JM, Chen J, Doucet D, Wickham E, Atkins D, Barker D, Chee M, Wang Y, Fan JB. Quantitative gene expression profiling in formalin-fixed, paraffin-embedded tissues using universal bead arrays. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1799-807. [PMID: 15509548 PMCID: PMC1618650 DOI: 10.1016/s0002-9440(10)63435-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We recently developed a sensitive and flexible gene expression profiling system that is not dependent on an intact poly-A tail and showed that it could be used to analyze degraded RNA samples. We hypothesized that the DASL (cDNA-mediated annealing, selection, extension and ligation) assay might be suitable for the analysis of formalin-fixed, paraffin-embedded tissues, an important source of archival tissue material. We now show that, using the DASL assay system, highly reproducible tissue- and cancer-specific gene expression profiles can be obtained with as little as 50 ng of total RNA isolated from formalin-fixed tissues that had been stored from 1 to over 10 years. Further, tissue- and cancer-specific markers derived from previous genome-wide expression profiling studies of fresh-frozen samples were validated in the formalin-fixed samples. The DASL assay system should prove useful for high-throughput expression profiling of archived clinical samples.
Collapse
Affiliation(s)
- Marina Bibikova
- Genetic Analysis, Illumina, Inc., 9885 Towne Center Drive, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mears R, Craven RA, Hanrahan S, Totty N, Upton C, Young SL, Patel P, Selby PJ, Banks RE. Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics 2004; 4:4019-31. [PMID: 15478216 DOI: 10.1002/pmic.200400876] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exosomes are 40-100 nm vesicles released by numerous cell types and are thought to have a variety of roles depending on their origin. Exosomes derived from antigen presenting cells have been shown to be capable of initiating immune responses in vivo and eradicating established tumours in murine models. Tumour-derived exosomes can be utilised as a source of tumour antigen for cross-priming to T-cells and are thus of interest for use in anti-tumour immunotherapy. Further exploration into the protein composition of exosomes may increase our understanding of their potential roles in vivo and this study has examined the proteome of exosomes purified from cell supernatants of the melanoma cell lines MeWo and SK-MEL-28. The vesicular nature and size (30-100 nm) of the purified exosomes was confirmed by electron microscopy and sucrose density gradient centrifugation. Western blotting demonstrated the absence of calnexin and cytochrome c, verifying the purity of the exosome preparations, as well as enrichment of MHC class I and the tumour-associated antigens Mart-1 and Mel-CAM. The two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) protein profiles of exosomes from the two cell lines were highly comparable and strikingly different from the profiles of the total cell lysates. Mass spectrometric sequencing identified proteins present in 49 protein spots in the exosome lysates. Several of these have been identified previously in exosomes but some are novel, including p120 catenin, radixin, and immunoglobulin superfamily member 8 (PGRL). Proteins present in whole-cell lysates that were significantly reduced or excluded from exosomes were also identified and included several mitochondrial and lysosomal proteins, again confirming the proposed endosomal origin of exosomes. This study presents a starting point for future more in-depth protein studies of tumour-derived exosomes which will aid the understanding of their biogenesis and targeting for use in anti-tumour immunotherapy protocols.
Collapse
Affiliation(s)
- Rainy Mears
- Cancer Research UK Clinical Centre, St James's University Hospital, Leeds, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cardoso J, Molenaar L, de Menezes RX, Rosenberg C, Morreau H, Möslein G, Fodde R, Boer JM. Genomic profiling by DNA amplification of laser capture microdissected tissues and array CGH. Nucleic Acids Res 2004; 32:e146. [PMID: 15514107 PMCID: PMC528818 DOI: 10.1093/nar/gnh142] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Comparative genomic hybridization by means of BAC microarrays (array CGH) allows high-resolution profiling of copy-number aberrations in tumor DNA. However, specific genetic lesions associated with small but clinically relevant tumor areas may pass undetected due to intra-tumor heterogeneity and/or the presence of contaminating normal cells. Here, we show that the combination of laser capture microdissection, phi29 DNA polymerase-mediated isothermal genomic DNA amplification, and array CGH allows genomic profiling of very limited numbers of cells. Moreover, by means of simple statistical models, we were able to bypass the exclusion of amplification distortions and variability prone areas, and to detect tumor-specific chromosomal gains and losses. We applied this new combined experimental and analytical approach to the genomic profiling of colorectal adenomatous polyps and demonstrated our ability to accurately detect single copy gains and losses affecting either whole chromosomes or small genomic regions from as little as 2 ng of DNA or 1000 microdissected cells.
Collapse
Affiliation(s)
- Joana Cardoso
- Department of Pathology, Josephine Nefkens Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wada K, Maruno M, Suzuki T, Kagawa N, Hashiba T, Fujimoto Y, Hashimoto N, Izumoto S, Yoshimine T. Chromosomal and genetic aberrations differ with meningioma subtype. Brain Tumor Pathol 2004; 21:127-33. [PMID: 15696974 DOI: 10.1007/bf02482188] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Meningioma is one of the most common brain tumors, and a variety of genetic abnormalities have been detected by the Southern blotting, polymerase chain reaction (PCR), fluorescence in situ hybridization (FISH), and comparative genomic hybridization (CGH) methods. However, these methods detect only a very limited portion of the tumor genome or have a limited mapping resolution. In this study, we used DNA microarray assay, which detects numerous genetic abnormalities and analyzes a global assessment of molecular events in tumor cells. We analyzed genomic DNA from 26 patients with benign meningiomas by GenoSensor Array 300 in order to characterize gene amplifications, gene deletions, and chromosomal information in the whole genome. Loss of chromosome 22q was found most frequently. This chromosomal aberration was detected in 14 meningiomas (53.8%), particularly in transitional and fibrous meningiomas. In meningothelial meningiomas, amplification of INS and TCL1A was detected more frequently than in other meningioma subtypes. DNA microarray assay revealed new genetic differences among the meningioma subtypes, thus indicating that this novel technique is useful for understanding tumor genesis and for the diagnosis of meningioma subtype.
Collapse
Affiliation(s)
- Kouichi Wada
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Guillaud-Bataille M, Valent A, Soularue P, Perot C, Inda MM, Receveur A, Smaïli S, Roest Crollius H, Bénard J, Bernheim A, Gidrol X, Danglot G. Detecting single DNA copy number variations in complex genomes using one nanogram of starting DNA and BAC-array CGH. Nucleic Acids Res 2004; 32:e112. [PMID: 15284333 PMCID: PMC506828 DOI: 10.1093/nar/gnh108] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Comparative genomic hybridization to bacterial artificial chromosome (BAC)-arrays (array-CGH) is a highly efficient technique, allowing the simultaneous measurement of genomic DNA copy number at hundreds or thousands of loci, and the reliable detection of local one-copy-level variations. We report a genome-wide amplification method allowing the same measurement sensitivity, using 1 ng of starting genomic DNA, instead of the classical 1 microg usually necessary. Using a discrete series of DNA fragments, we defined the parameters adapted to the most faithful ligation-mediated PCR amplification and the limits of the technique. The optimized protocol allows a 3000-fold DNA amplification, retaining the quantitative characteristics of the initial genome. Validation of the amplification procedure, using DNA from 10 tumour cell lines hybridized to BAC-arrays of 1500 spots, showed almost perfectly superimposed ratios for the non-amplified and amplified DNAs. Correlation coefficients of 0.96 and 0.99 were observed for regions of low-copy-level variations and all regions, respectively (including in vivo amplified oncogenes). Finally, labelling DNA using two nucleotides bearing the same fluorophore led to a significant increase in reproducibility and to the correct detection of one-copy gain or loss in >90% of the analysed data, even for pseudotriploid tumour genomes.
Collapse
Affiliation(s)
- Marine Guillaud-Bataille
- Génomique Cellulaire des Cancers, CNRS UMR 8125, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Valladares A, Salamanca F, Madrigal-Bujaidar E, Arenas D. Identification of chromosomal changes with comparative genomic hybridization in sporadic breast cancer in Mexican women. ACTA ACUST UNITED AC 2004; 152:163-6. [PMID: 15262439 DOI: 10.1016/j.cancergencyto.2003.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 11/11/2003] [Accepted: 11/24/2003] [Indexed: 02/06/2023]
Abstract
Breast cancer is the second leading cause of death in women older than 35 years in Mexico. In this study, we used comparative genomic hybridization (CGH) to analyze sporadic breast cancers at stages II and III from untreated patients. We obtained 4.1 chromosomal alterations per sample, less than in previous reports. We identified a small region in Xq27 with high-level amplification in 3 of 16 samples. This amplification has been reported only in pancreatic and gastric cancer cell lines and in testis tumors; in addition, this amplification had been reported in one primary breast cancer, but in a more extended region that we identified. We also identified a loss in 2p13, not previously reported in this neoplasia. The most frequent alterations were amplifications in 4q, 5q, 8q, 12p, and 13q and losses in 1p, 8p, 16p, 19q, and Xp. CGH provides data for better understanding of molecular events in this neoplasia.
Collapse
Affiliation(s)
- Adán Valladares
- Laboratorio de Genética Molecular, Unidad de Investigación Médica en Genética Humana, Centro Médico Nacional Siglo XXI, IMSS, Av. Cuauhtémoc 330, Col. Doctores, 06725 Mexico City, D.F., Mexico
| | | | | | | |
Collapse
|
40
|
Hashimoto K, Mori N, Tamesa T, Okada T, Kawauchi S, Oga A, Furuya T, Tangoku A, Oka M, Sasaki K. Analysis of DNA copy number aberrations in hepatitis C virus-associated hepatocellular carcinomas by conventional CGH and array CGH. Mod Pathol 2004; 17:617-22. [PMID: 15133472 DOI: 10.1038/modpathol.3800107] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To clarify the genetic aberrations involved in the development and progression of hepatitis C virus-associated hepatocellular carcinoma (HCV-HCC), we investigated DNA copy number aberrations (DCNAs) in 19 surgically resected HCCs by conventional CGH and array CGH. Conventional CGH revealed that increases of DNA copy number were frequent at 1q (79% of the cases), 8q (37%), 6p (32%), and 10p (32%) and that decreases were frequent at 17p (79%), 16q (58%), 4q (53%), 13q (42%), 10q (37%), 1p (32%), and 8p (32%). In general, genes that showed DCNAs by array CGH were usually located in chromosomal regions with DCNAs detected by conventional CGH analysis. Increases in copy numbers of the LAMC2, TGFB2, and AKT3 genes (located on 1q) and decreases in copy numbers of FGR/SRC2 and CYLD (located on 1p and 16q, respectively) were observed in more than 30% of tumors, including small, well-differentiated carcinomas. These findings suggest that these genes are associated with the development of HCV-HCC. Increases of MOS, MYC, EXT1, and PTK2 (located on 8q) were detected exclusively in moderately and poorly differentiated tumors, suggesting that these alterations contribute to tumor progression. In conclusion, chromosomal and array CGH technologies allow identification of genes involved in the development and progression of HCV-HCC.
Collapse
|
41
|
Suzuki T, Maruno M, Wada K, Kagawa N, Fujimoto Y, Hashimoto N, Izumoto S, Yoshimine T. Genetic analysis of human glioblastomas using a genomic microarray system. Brain Tumor Pathol 2004; 21:27-34. [PMID: 15696966 DOI: 10.1007/bf02482174] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genomic microarray systems can simultaneously provide substantial genetic and chromosomal information in a relatively short time. We have analyzed genomic DNA from frozen sections of 30 cases of primary glioblastomas by GenoSensor Array 300 in order to characterize gene amplifications, gene deletions, and chromosomal information in the whole genome. Genes that were frequently amplified included RFC2/CYLN2 (63.3%), EGFR (53.3%), IL6 (53.3%), ABCB1 (MDR1) (36.7%), and PDGFRA (26.7%). Genes that were frequently deleted included (56.7%), FGFR2 (66.7%), MTAP (60.0%), DMBT1 CDKN2A (p16)/MTAP (50.0%), PIK3CA (43.3%), and EGR2 (43.3%), but deletion of RB1 or TP53 was rarely detected. Chromosomal gains were observed frequently for 7q (33.3%), 7p (20.0%), and 17q (13.3%). Loss of the 10q was frequently detected in 13 of 30 cases (46.7%). Loss of the entire chromosome 10 was seen in 9 of 30 cases (30.0%), and was often accompanied by EGFR amplification (7 cases, 77.8%). The GenoSensor Array 300 proved to be useful for identification of genome-wide molecular changes in glioblastomas. The obtained microarray profile can also yield valuable insight into the molecular events underlying carcinogenesis of brain tumors and may provide clues about clinical correlations, including response to treatment.
Collapse
Affiliation(s)
- Tsuyoshi Suzuki
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Moch H. Genomic alterations in renal tumours: what have we learned in the era of comparative genomic hybridisation? Pathology 2004; 36:51-7. [PMID: 14757557 DOI: 10.1080/0031302032000174932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
One of the major challenges in cancer research is to generate molecular profiles of tumours and establish correlations between genetic changes and clinical parameters by screening technologies. The identification of tumour-specific gene targets has potential diagnostic and therapeutic implications. Metaphase comparative genomic hybridisation has been used to detect relative DNA-sequence copy number gains (including high-level amplifications of chromosomal regions) and copy number losses in human neoplasms. In the past, metaphase comparative genomic hybridisation has been shown to be a powerful genome-wide screening method and this has considerably advanced our understanding of renal cancer biology. Novel molecular technologies, including array-based comparative genomic hybridisation, fluorescence in situ hybridisation (FISH), cDNA and tissue microarrays will serve to facilitate further characterisation of candidate genes residing in chromosomal regions defined by metaphase comparative genomic hybridisation. This review concentrates on the application of metaphase comparative genomic hybridisation in the area of renal cancer research and summarises data obtained from comparative genomic hybridisation studies.
Collapse
Affiliation(s)
- Holger Moch
- Institute of Pathology, University of Basel, Switzerland.
| |
Collapse
|
43
|
Peng DF, Sugihara H, Mukaisho KI, Tsubosa Y, Hattori T. Alterations of chromosomal copy number during progression of diffuse-type gastric carcinomas: metaphase- and array-based comparative genomic hybridization analyses of multiple samples from individual tumours. J Pathol 2004; 201:439-50. [PMID: 14595756 DOI: 10.1002/path.1459] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The application of comparative genomic hybridization (CGH) has led to the rapid accumulation of cytogenetic information on gastric carcinoma (GC), but there is little information on the time sequence of cytogenetic changes. In the present study, degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR) and CGH were applied to multiple samples microdissected from 19 diffuse-type GCs including eight early cancers. Recurrent gains were detected at 8q, 3q, 7q, and 8p, and loss at 17p (in more than 50% of the cancers), the frequencies of which were fairly similar between the samples with (SIG) and those without (POR) abundant signet ring cells. Earlier stemline changes (8q+, 8p+, 1q+, 17p-, etc), with breakpoints that were common to all the samples, were discriminated from later sideline changes (2q+, 11q+, 17q-, 21q-, etc) in individual tumours. The changes were generally common to early and advanced cancers, except for 7p+, 15q+, 3p-, and 18q-, which were largely sideline changes and more frequently detected in advanced cancers (p<0.05). Because the samples with 7p+ had a greater number of copy-number changes than those without 7p+ (p<0.01), 7p+ may play a role in tumour progression by acceleration of chromosomal instability. Fifteen different chromosomal loci with amplification were detected in ten cases, mostly as sideline changes in advanced cancers. By microarray-based CGH, KRAS, MDM2, and FGFR2 were confirmed in the amplicons at 12p, 12q, and 10q, and FES at 15q26, for the first time in GC. These results support the notion that SIG and POR are of a genetically single lineage in both early and advanced diffuse-type GC and that the majority of advanced cancers derive from early cancers through the accumulation of various sideline changes in addition to stemline changes.
Collapse
Affiliation(s)
- Dun-Fa Peng
- First Department of Pathology, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | | | | | | | | |
Collapse
|
44
|
Jeffrey SS, Pollack JR. The diagnosis and management of pre-invasive breast disease: promise of new technologies in understanding pre-invasive breast lesions. Breast Cancer Res 2003; 5:320-8. [PMID: 14580250 PMCID: PMC314415 DOI: 10.1186/bcr655] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Array-based comparative genomic hybridization, RNA expression profiling, and proteomic analyses are new molecular technologies used to study breast cancer. Invasive breast cancers were originally evaluated because they provided ample quantities of DNA, RNA, and protein. The application of these technologies to pre-invasive breast lesions is discussed, including methods that facilitate their implementation. Data indicate that atypical ductal hyperplasia and ductal carcinoma in situ are precursor lesions molecularly similar to adjacent invasive breast cancer. It is expected that molecular technologies will identify breast tissue at risk for the development of unfavorable subtypes of invasive breast cancer and reveal strategies for targeted chemoprevention or eradication.
Collapse
|
45
|
Weber-Mangal S, Sinn HP, Popp S, Klaes R, Emig R, Bentz M, Mansmann U, Bastert G, Bartram CR, Jauch A. Breast cancer in young women (?35 years): Genomic aberrations detected by comparative genomic hybridization. Int J Cancer 2003; 107:583-92. [PMID: 14520696 DOI: 10.1002/ijc.11460] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sporadic breast cancer in young women is different from the one in older patients regarding pathological features and aggressiveness of the tumors, but the spectrum of genetic alterations are largely unknown. We used comparative genomic hybridization (CGH) to analyze DNA copy number changes in 88 tumor samples from women </=35 years of age. Findings were compared to histopathological data including tumor type, grading, lymph nodes and metastasis. Genomic gains clustered to chromosome arms 1q (64.8%), 8q (61.4%), 17q (50.0%), 20q (33.0%), 3q (20.5%), 1p (17.0%), 5p (17.0%) and 15q (17%). Losses were commonly located on 8p (19.3 %), 11q (11.4%), 16q (11.4%), 17p (11.4%) and 18q (10.2%). A comparison with published CGH data from breast carcinomas of similar type and grade showed the following differences: (1) gains were much more frequent than losses, and (2) losses on 8p22-p23 were more prevalent in patients with positive lymph node metastasis (p = 0.02), and Grade III tumors were associated with gains on the long arm of chromosome 8 (p = 0.01). Therefore, alterations in these genomic regions may be responsible for the reduced survival of patients with early onset breast cancer.
Collapse
MESH Headings
- Adult
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/secondary
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Chromosome Aberrations
- DNA, Neoplasm/genetics
- DNA, Neoplasm/isolation & purification
- Female
- Gene Amplification
- Gene Dosage
- Humans
- In Situ Hybridization, Fluorescence
- Neoplasm Invasiveness/genetics
- Neoplasm Invasiveness/pathology
- Neoplasm Staging
- Neoplasms, Ductal, Lobular, and Medullary/genetics
- Neoplasms, Ductal, Lobular, and Medullary/pathology
- Nucleic Acid Hybridization
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
Collapse
|
46
|
Schraml P, Schwerdtfeger G, Burkhalter F, Raggi A, Schmidt D, Ruffalo T, King W, Wilber K, Mihatsch MJ, Moch H. Combined array comparative genomic hybridization and tissue microarray analysis suggest PAK1 at 11q13.5-q14 as a critical oncogene target in ovarian carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:985-92. [PMID: 12937139 PMCID: PMC1868266 DOI: 10.1016/s0002-9440(10)63458-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Amplification of chromosomal regions leads to an increase of DNA copy numbers and expression of oncogenes in many human tumors. The identification of tumor-specific oncogene targets has potential diagnostic and therapeutic implications. To identify distinct spectra of oncogenic alterations in ovarian carcinoma, metaphase comparative genomic hybridization (mCGH), array CGH (aCGH), and ovarian tumor tissue microarrays were used in this study. Twenty-six primary ovarian carcinomas and three ovarian carcinoma cell lines were analyzed by mCGH. Frequent chromosomal overrepresentation was observed on 2q (31%), 3q (38%), 5p (38%), 8q (52%), 11q (21%), 12p (21%), 17q (21%), and 20q (52%). The role of oncogenes residing in gained chromosomal loci was determined by aCGH with 59 genetic loci commonly amplified in human tumors. DNA copy number gains were most frequently observed for PIK3CA on 3q (66%), PAK1 on 11q (59%), KRAS2 on 12p (55%), and STK15 on 20q (55%). The 11q13-q14 amplicon, represented by six oncogenes (CCND1, FGF4, FGF3, EMS1, GARP, and PAK1) revealed preferential gene copy number gains of PAK1, which is located at 11q13.5-q14. Amplification and protein expression status of both PAK1 and CCND1 were further examined by fluorescence in situ hybridization and immunohistochemistry using a tissue microarray consisting of 268 primary ovarian tumors. PAK1 copy number gains were observed in 30% of the ovarian carcinomas and PAK1 protein was expressed in 85% of the tumors. PAK1 gains were associated with high grade (P < 0.05). In contrast, CCND1 gene alterations and protein expression were less frequent (10.6% and 25%, respectively), suggesting that the critical oncogene target of amplicon 11q13-14 lies distal to CCND1. This study demonstrates that aCGH facilitates further characterization of oncogene candidates residing in amplicons defined by mCGH.
Collapse
Affiliation(s)
- Peter Schraml
- Institute of Pathology, University Hospital, University of Basel, Schönbeinstrasse 40, 4031 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hattinger CM, Reverter-Branchat G, Remondini D, Castellani GC, Benini S, Pasello M, Manara MC, Scotlandi K, Picci P, Serra M. Genomic imbalances associated with methotrexate resistance in human osteosarcoma cell lines detected by comparative genomic hybridization-based techniques. Eur J Cell Biol 2003; 82:483-93. [PMID: 14582536 DOI: 10.1078/0171-9335-00336] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Methotrexate (MTX) is one of the most important drugs for osteosarcoma (OS) treatment. To identify genetic aberrations associated with the development of MTX resistance in OS cells, in addition to the previously reported expression changes of dihydrofolate reductase (DHFR) and reduced folate carrier (RFC) genes, comparative genomic hybridization (CGH)-based techniques were used. The direct comparison between MTX-resistant variants of U-2OS or Saos-2 human OS cell lines with their respective parental cell lines by CGH on chromosomes revealed that development of MTX resistance was associated with gain of the chromosomal regions 5q12-q15 and 11q14-qter in U-2OS variants, and with gain of 8q22-qter in Saos-2 variants. Further analyses by CGH on microarrays demonstrated a progressively increasing gain of mixed lineage leukemia (MLL) gene (11q23) in U-2OS MTX-resistant variants, which was also confirmed by fluorescence in situ hybridization (FISH), in addition to gain of FGR (1p36), amplification/overexpression of DHFR, and slight decrease of RFC expression. In Saos-2 MTX-resistant variants, gain of MYC (8q24.12-q24.13) was detected, together with a remarkable decrease of RFC expression. Further analyses of DHFR, MLL, MYC, and RFC gene status in four additional human OS cell lines revealed that only gain of DHFR and MLL were associated with an inherent lower sensitivity to MTX. These data demonstrate that genetic analyses with complementary techniques are helpful for the identification of new candidate genes, which might be considered for an early identification of MTX unresponsive tumors.
Collapse
Affiliation(s)
- Claudia M Hattinger
- Laboratorio di Ricerca Oncologica, Istituti Ortopedici Rizzoli, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mao X, Onadim Z, Price EA, Child F, Lillington DM, Russell-Jones R, Young BD, Whittaker S. Genomic alterations in blastic natural killer/extranodal natural killer-like T cell lymphoma with cutaneous involvement. J Invest Dermatol 2003; 121:618-27. [PMID: 12925224 DOI: 10.1046/j.1523-1747.2003.12406.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Natural killer and natural killer-like T cell lymphomas represent a rare type of non-Hodgkin's lymphoma originally described to involve the upper aerodigestive tract. This malignancy has been increasingly observed in other extranodal sites, particularly in the skin. Patients with cutaneous natural killer cell lymphoma generally have a poor prognosis; however, the etiology and the underlying molecular pathogenesis remain unclear. This study aimed to investigate comprehensively genomic changes in blastic natural killer and extranodal natural killer-like T cell lymphoma with cutaneous involvement. Comparative genomic hybridization showed chromosome imbalances in six of eight cases studied (75%). The mean number of chromosome imbalances per sample was 2.18+/-1.63 with similar number of gains (1.18+/-1.17) and losses (1.00+/-1.34). The most frequent DNA copy number changes observed were losses of 9/9p (83%), followed by loss of 13q and gain of 7 (67%). Similar patterns of chromosome imbalances were observed in both blastic natural killer and cutaneous natural killer-like T cell lymphomas. Loss of the RB1 gene at 13q14.2 was detected in one blastic natural killer cell lymphoma with 13q loss using a gene dosage assay, and in one cutaneous natural killer-like T cell lymphoma without 13q loss using fluorescent in situ hybridization. Genomic microarray analysis identified oncogene copy number gains of PAK1 and JUNB in three of four cases studied, and gains of RAF1, CTSB, FGFR1, and BCR in two cases. Real-time polymerase chain reaction detected amplification of CTSB and RAF1 in four of five cases analyzed, JUNB and MYCN in three cases, and REL and YES1 in two cases, respectively. In conjunction with this study, an extensive literature search for the published G-banded karyotypes of four subsets of natural killer cell lymphomas was conducted, which showed a nonrandom pattern of multiple chromosome aberrations. These results reveal consistent genetic alterations in cutaneous natural killer cell lymphomas, and provide a basis for further investigation of molecular pathogenesis in this malignancy.
Collapse
Affiliation(s)
- Xin Mao
- Skin Tumour Unit, St John's Institute of Dermatology, 4th Floor, South Wing Block 7, St Thomas' Hospital, Lambeth Palace Road, London SE1 7EH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hostein I, Coindre JM, Derré J, Mariani O, Chibon F, Aurias A. Comparative genomic hybridization study of paraffin-embedded dedifferentiated liposarcoma fixed with Holland Bouin's fluid. DIAGNOSTIC MOLECULAR PATHOLOGY : THE AMERICAN JOURNAL OF SURGICAL PATHOLOGY, PART B 2003; 12:166-73. [PMID: 12960699 DOI: 10.1097/00019606-200309000-00008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dedifferentiated and differentiated liposarcoma are characterized by 12q15 chromosomal amplification. Comparative genomic hybridization is a powerful tool able to detect DNA copy number changes in the genome. This technique has been widely used in frozen tumors and in some studies in paraffin-embedded tumors fixed with formalin. The purpose of this study was to demonstrate the ability of CGH to detect DNA copy number changes in the genome when the DNA was extracted from tissues fixed with Holland Bouin's fluid. Sixteen liposarcoma tumors both frozen and fixed in Holland Bouin's fluid were characterized by CGH. Eighty-one percent of the main chromosomal alterations detected in the frozen liposarcomas (amp 12q15, amp 6q23, amp 1p32, amp 16q22, +7, +8) were detected in the corresponding fixed tumors. The limitation of this technique when using Holland Bouin's fluid extracted DNA compared with formalin-extracted DNA was the yield of analyzable samples. Eighty-one percent of tumors fixed with Holland Bouin's fluid (13/16) were analyzable compared with 100% of formalin-fixed tumors (4/4). This study demonstrates that comparative genomic hybridization is a useful tool even if only fixed tissues (formalin and Holland Bouin's fluid tissues) are available, and that it allows more tumors to be analyzed in retrospective studies.
Collapse
Affiliation(s)
- Isabelle Hostein
- Department of Pathology, Institut Bergonié, Bordeaux cedex, France.
| | | | | | | | | | | |
Collapse
|
50
|
Fuller AP, Palmer-Toy D, Erlander MG, Sgroi DC. Laser capture microdissection and advanced molecular analysis of human breast cancer. J Mammary Gland Biol Neoplasia 2003; 8:335-45. [PMID: 14973377 DOI: 10.1023/b:jomg.0000010033.49464.0c] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Advances in comprehensive genomic and proteomic technologies are providing researchers with an unprecedented opportunity for high-throughput molecular analysis of human breast cancer. Adaptation of these technologies to laser capture microdissection (LCM) is poised to exert dramatic change on the pace of breast cancer research. Although technical limitations have impeded the coupling of these high-throughput technologies to LCM, recent advances have allowed for the successful application of this cellular-based approach to breast cancer, and the results of such studies have provided researchers with unique insight into the disease. This approach holds great potential for rapid advancement in our understanding of breast cancer, and it is hoped that such advancements will lead to novel predictive and therapeutic strategies for women with the disease. This review outlines the current status of the adaptation of advanced molecular technologies to LCM and highlights recent studies in which this approach has been applied to human breast cancer.
Collapse
Affiliation(s)
- Andrew P Fuller
- Department of Pathology, Harvard Medical School, Molecular Pathology Research Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|