1
|
Sviridov D, Bukrinsky M. Neuro-HIV-New insights into pathogenesis and emerging therapeutic targets. FASEB J 2023; 37:e23301. [PMID: 37942865 PMCID: PMC11032165 DOI: 10.1096/fj.202301239rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) is a term describing a complex set of cognitive impairments accompanying HIV infection. Successful antiretroviral therapy (ART) reduces the most severe forms of HAND, but milder forms affect over 50% of people living with HIV (PLWH). Pathogenesis of HAND in the ART era remains unknown. A variety of pathogenic factors, such as persistent HIV replication in the brain reservoir, HIV proteins released from infected brain cells, HIV-induced neuroinflammation, and some components of ART, have been implicated in driving HAND pathogenesis in ART-treated individuals. Here, we propose another factor-impairment of cholesterol homeostasis and lipid rafts by HIV-1 protein Nef-as a possible contributor to HAND pathogenesis. These effects of Nef on cholesterol may also underlie the effects of other pathogenic factors that constitute the multifactorial nature of HAND pathogenesis. The proposed Nef- and cholesterol-focused mechanism may provide a long-sought unified explanation of HAND pathogenesis that takes into account all contributing factors. Evidence for the impairment by Nef of cellular cholesterol balance, potential effects of this impairment on brain cells, and opportunities to therapeutically target this element of HAND pathogenesis are discussed.
Collapse
Affiliation(s)
- Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Michael Bukrinsky
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
2
|
Hu C, Priceputu E, Cool M, Chrobak P, Bouchard N, Forestier C, Lowell CA, Bénichou S, Hanna Z, Royal V, Jolicoeur P. NEF-Induced HIV-Associated Nephropathy Through HCK/LYN Tyrosine Kinases. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:702-724. [PMID: 36868467 PMCID: PMC10284032 DOI: 10.1016/j.ajpath.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023]
Abstract
HIV-1-associated nephropathy (HIVAN) is a severe complication of HIV-1 infection. To gain insight into the pathogenesis of kidney disease in the setting of HIV, a transgenic (Tg) mouse model [CD4C/HIV-negative regulator factor (Nef)] was used in which HIV-1 nef expression is under control of regulatory sequences (CD4C) of the human CD4 gene, thus allowing expression in target cells of the virus. These Tg mice develop a collapsing focal segmental glomerulosclerosis associated with microcystic dilatation, similar to human HIVAN. To identify kidney cells permissive to the CD4C promoter, CD4C reporter Tg lines were used. They showed preferential expression in glomeruli, mainly in mesangial cells. Breeding CD4C/HIV Tg mice on 10 different mouse backgrounds showed that HIVAN was modulated by host genetic factors. Studies of gene-deficient Tg mice revealed that the presence of B and T cells and that of several genes was dispensable for the development of HIVAN: those involved in apoptosis (Trp53, Tnfsf10, Tnf, Tnfrsf1b, and Bax), in immune cell recruitment (Ccl3, Ccl2, Ccr2, Ccr5, and Cx3cr1), in nitric oxide (NO) formation (Nos3 and Nos2), or in cell signaling (Fyn, Lck, and Hck/Fgr). However, deletion of Src partially and that of Hck/Lyn largely abrogated its development. These data suggest that Nef expression in mesangial cells through hematopoietic cell kinase (Hck)/Lck/Yes novel tyrosine kinase (Lyn) represents important cellular and molecular events for the development of HIVAN in these Tg mice.
Collapse
Affiliation(s)
- Chunyan Hu
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Elena Priceputu
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Marc Cool
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Pavel Chrobak
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Nathalie Bouchard
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Clara Forestier
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, California
| | - Serge Bénichou
- Insitut Cochin, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes and INSERM U1016, Paris, France
| | - Zaher Hanna
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada; Department of Medicine, University of Montreal, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Virginie Royal
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, Quebec, Canada
| | - Paul Jolicoeur
- Department of Microbiology/Immunology, University of Montreal, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Dash PK, Alomar FA, Cox JL, McMillan J, Hackfort BT, Makarov E, Morsey B, Fox HS, Gendelman HE, Gorantla S, Bidasee KR. A Link Between Methylglyoxal and Heart Failure During HIV-1 Infection. Front Cardiovasc Med 2022; 8:792180. [PMID: 34970611 PMCID: PMC8712558 DOI: 10.3389/fcvm.2021.792180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
Early-onset heart failure (HF) continues to be a major cause of morbidity and mortality in people living with human immunodeficiency virus type one (HIV-1) infection (PLWH), yet the molecular causes for this remain poorly understood. Herein NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ humanized mice (Hu-mice), plasma from PLWH, and autopsied cardiac tissues from deceased HIV seropositive individuals were used to assess if there is a link between the glycolysis byproduct methylglyoxal (MG) and HF in the setting of HIV-1 infection. At five weeks post HIV infection, Hu-mice developed grade III-IV diastolic dysfunction (DD) with an associated two-fold increase in plasma MG. At sixteen-seventeen weeks post infection, cardiac ejection fraction and fractional shortening also declined by 26 and 35%, and plasma MG increased to four-fold higher than uninfected controls. Histopathological and biochemical analyses of cardiac tissues from Hu-mice 17 weeks post-infection affirmed MG increase with a concomitant decrease in expression of the MG-degrading enzyme glyoxalase-1 (Glo1). The endothelial cell marker CD31 was found to be lower, and coronary microvascular leakage and myocardial fibrosis were prominent. Increasing expression of Glo1 in Hu-mice five weeks post-infection using a single dose of an engineered AAV2/9 (1.7 × 1012 virion particles/kg), attenuated the increases in plasma and cardiac MG levels. Increasing Glo1 also blunted microvascular leakage, fibrosis, and HF seen at sixteen weeks post-infection, without changes in plasma viral loads. In plasma from virally suppressed PLWH, MG was also 3.7-fold higher. In autopsied cardiac tissues from seropositive, HIV individuals with low viral log, MG was 4.2-fold higher and Glo1 was 50% lower compared to uninfected controls. These data show for the first time a causal link between accumulation of MG and HF in the setting of HIV infection.
Collapse
Affiliation(s)
- Prasanta K Dash
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Fadhel A Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Jesse L Cox
- Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - JoEllyn McMillan
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bryan T Hackfort
- Departments of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Edward Makarov
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Brenda Morsey
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Howard S Fox
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Howard E Gendelman
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Santhi Gorantla
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Keshore R Bidasee
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States.,Departments of Environment and Occupational Health, University of Nebraska Medical Center, Omaha, NE, United States.,Nebraska Redox Biology Center, Lincoln, NE, United States
| |
Collapse
|
4
|
HIV-1-Associated Left Ventricular Cardiac Dysfunction in Humanized Mice. Sci Rep 2020; 10:9746. [PMID: 32546795 PMCID: PMC7297773 DOI: 10.1038/s41598-020-65943-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/27/2020] [Indexed: 12/25/2022] Open
Abstract
The molecular cause(s) for early onset heart failure in people living with HIV-1 infection (PLWH) remains poorly defined. Herein, longitudinal echocardiography was used to assess whether NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice reconstituted with human hematopoietic stem cells (Hu-NSG mice) and infected with HIV-1ADA can recapitulate the salient features of this progressive human disease. Four weeks post infection, Hu-NSG mice of both sexes developed left ventricular (LV) diastolic dysfunction (DD), with 25% exhibiting grade III/IV restrictive DD with mitral regurgitation. Increases in global longitudinal and circumferential strains and declines in LV ejection fraction and fractional shortening were observed eight weeks post infection. After twelve weeks of infection, 33% of Hu-NSG mice exhibited LV dyskinesia and dyssynchrony. Histopathological analyses of hearts seventeen weeks post infection revealed coronary microvascular leakage, fibrosis and immune cell infiltration into the myocardium. These data show for the first time that HIV-1ADA-infected Hu-NSG mice can recapitulate key left ventricular cardiac deficits and pathophysiological changes reported in humans with progressive HIV-1 infection. The results also suggest that HIV-1 infected Hu-NSG mice may be a useful model to screen for pharmacological agents to blunt LV dysfunction and associated pathophysiologic causes reported in PLWH.
Collapse
|
5
|
Chelvanambi S, Gupta SK, Chen X, Ellis BW, Maier BF, Colbert TM, Kuriakose J, Zorlutuna P, Jolicoeur P, Obukhov AG, Clauss M. HIV-Nef Protein Transfer to Endothelial Cells Requires Rac1 Activation and Leads to Endothelial Dysfunction Implications for Statin Treatment in HIV Patients. Circ Res 2019; 125:805-820. [PMID: 31451038 PMCID: PMC7009312 DOI: 10.1161/circresaha.119.315082] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Even in antiretroviral therapy-treated patients, HIV continues to play a pathogenic role in cardiovascular diseases. A possible cofactor may be persistence of the early HIV response gene Nef, which we have demonstrated recently to persist in the lungs of HIV+ patients on antiretroviral therapy. Previously, we have reported that HIV strains with Nef, but not Nef-deleted HIV strains, cause endothelial proinflammatory activation and apoptosis. OBJECTIVE To characterize mechanisms through which HIV-Nef leads to the development of cardiovascular diseases using ex vivo tissue culture approaches as well as interventional experiments in transgenic murine models. METHODS AND RESULTS Extracellular vesicles derived from both peripheral blood mononuclear cells and plasma from HIV+ patient blood samples induced human coronary artery endothelial cells dysfunction. Plasma-derived extracellular vesicles from antiretroviral therapy+ patients who were HIV-Nef+ induced significantly greater endothelial apoptosis compared with HIV-Nef-plasma extracellular vesicles. Both HIV-Nef expressing T cells and HIV-Nef-induced extracellular vesicles increased transfer of cytosol and Nef protein to endothelial monolayers in a Rac1-dependent manner, consequently leading to endothelial adhesion protein upregulation and apoptosis. HIV-Nef induced Rac1 activation also led to dsDNA breaks in endothelial colony forming cells, thereby resulting in endothelial colony forming cell premature senescence and endothelial nitric oxide synthase downregulation. These Rac1-dependent activities were characterized by NOX2-mediated reactive oxygen species production. Statin treatment equally inhibited Rac1 inhibition in preventing or reversing all HIV-Nef-induction abnormalities assessed. This was likely because of the ability of statins to block Rac1 prenylation as geranylgeranyl transferase inhibitors were effective in inhibiting HIV-Nef-induced reactive oxygen species formation. Finally, transgenic expression of HIV-Nef in endothelial cells in a murine model impaired endothelium-mediated aortic ring dilation, which was then reversed by 3-week treatment with 5 mg/kg atorvastatin. CONCLUSIONS These studies establish a mechanism by which HIV-Nef persistence despite antiretroviral therapy could contribute to ongoing HIV-related vascular dysfunction, which may then be ameliorated by statin treatment.
Collapse
Affiliation(s)
| | | | - Xingjuan Chen
- Indiana University School of Medicine, Indianapolis, IN 46202
| | | | | | | | - Jithin Kuriakose
- Indiana University School of Medicine, Indianapolis, IN 46202
- Ulster University, Ulster, Northern Ireland, UK
| | | | - Paul Jolicoeur
- Institut de Recherches Cliniques de Montreal, Montreal, Canada
| | | | - Matthias Clauss
- Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
6
|
Anand AR, Rachel G, Parthasarathy D. HIV Proteins and Endothelial Dysfunction: Implications in Cardiovascular Disease. Front Cardiovasc Med 2018; 5:185. [PMID: 30619892 PMCID: PMC6305718 DOI: 10.3389/fcvm.2018.00185] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/06/2018] [Indexed: 12/17/2022] Open
Abstract
With the success of antiretroviral therapy (ART), a dramatic decrease in viral burden and opportunistic infections and an increase in life expectancy has been observed in human immunodeficiency virus (HIV) infected individuals. However, it is now clear that HIV- infected individuals have enhanced susceptibility to non-AIDS (Acquired immunodeficiency syndrome)-related complications such as cardiovascular disease (CVD). CVDs such as atherosclerosis have become a significant cause of morbidity and mortality in individuals with HIV infection. Though studies indicate that ART itself may increase the risk to develop CVD, recent studies suggest a more important role for HIV infection in contributing to CVD independently of the traditional risk factors. Endothelial dysfunction triggered by HIV infection has been identified as a critical link between infection, inflammation/immune activation, and atherosclerosis. Considering the inability of HIV to actively replicate in endothelial cells, endothelial dysfunction depends on both HIV-encoded proteins as well as inflammatory mediators released in the microenvironment by HIV-infected cells. Indeed, the HIV proteins, gp120 (envelope glycoprotein) and Tat (transactivator of transcription), are actively secreted into the endothelial cell micro-environment during HIV infection, while Nef can be actively transferred onto endothelial cells during HIV infection. These proteins can have significant direct effects on the endothelium. These include a range of responses that contribute to endothelial dysfunction, including enhanced adhesiveness, permeability, cell proliferation, apoptosis, oxidative stress as well as activation of cytokine secretion. This review summarizes the current understanding of the interactions of HIV, specifically its proteins with endothelial cells and its implications in cardiovascular disease. We analyze recent in vitro and in vivo studies examining endothelial dysfunction in response to HIV proteins. Furthermore, we discuss the multiple mechanisms by which these viral proteins damage the vascular endothelium in HIV patients. A better understanding of the molecular mechanisms of HIV protein associated endothelial dysfunction leading to cardiovascular disease is likely to be pivotal in devising new strategies to treat and prevent cardiovascular disease in HIV-infected patients.
Collapse
Affiliation(s)
- Appakkudal R Anand
- L&T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, India.,Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | - Gladys Rachel
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | - Durgadevi Parthasarathy
- L&T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| |
Collapse
|
7
|
Wang T, Yi R, Green LA, Chelvanambi S, Seimetz M, Clauss M. Increased cardiovascular disease risk in the HIV-positive population on ART: potential role of HIV-Nef and Tat. Cardiovasc Pathol 2015; 24:279-82. [PMID: 26233281 PMCID: PMC4831910 DOI: 10.1016/j.carpath.2015.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/30/2015] [Accepted: 07/04/2015] [Indexed: 12/25/2022] Open
Abstract
With effective antiretroviral therapy (ART), many HIV-infected people die of diseases other than acquired immune deficiency syndrome (AIDS). In particular, coronary artery disease has emerged as one of most critical complications of HIV infection and a major cause of morbidity and mortality. Although reportedly antiretroviral combination therapy itself may accelerate atherosclerosis by enhancing dyslipidemia, most recent epidemiological studies support the notion that HIV infection itself contributes to cardiovascular disease. However, it is still a mystery how the virus can contribute to cardiovascular disease development even while suppressed by ARTs. This review discusses the current understanding of interactions between HIV infection and cardiovascular diseases in both clinical and experimental studies with special focus on those viral proteins that are still produced by HIV. This will help infectious disease/vascular biology experts to gain insights into the pathophysiological mechanisms of HIV-associated cardiovascular disease and new trends to treat and prevent cardiovascular disease in the HIV-infected population.
Collapse
Affiliation(s)
- Ting Wang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46204, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Ru Yi
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46204, USA
| | - Linden Ann Green
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46204, USA
| | - Sarvesh Chelvanambi
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46204, USA
| | - Michael Seimetz
- Medical Clinic II, Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, 35392 Giessen, Germany
| | - Matthias Clauss
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46204, USA.
| |
Collapse
|
8
|
Konadu KA, Anderson JS, Huang MB, Ali SA, Powell MD, Villinger F, Bond VC. Hallmarks of HIV-1 pathogenesis are modulated by Nef's Secretion Modification Region. ACTA ACUST UNITED AC 2015; 6. [PMID: 26523240 DOI: 10.4172/2155-6113.1000476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CD4+ T cell depletion and immune activation are hallmarks of HIV infection. Despite extensive studies, the mechanisms underlying immune modulation remain elusive. HIV-1 Nef protein is secreted in exosomes from infected cells and is abundant in the plasma of HIV+ individuals. Exosomal Nef (exNef) was also shown to induce apoptosis in bystander CD4+ T cells. We hypothesized that exNef contributes to HIV pathogenesis. A HIV-1 NL4-3 virus containing alanine substitutions in the secretion modification region (SMR; amino acids 66 to 70; HIVNefsmr5a) was developed. Nef protein containing this modified SMR was shown to be deficient in exNef secretion in nef-transfected cells. Using both HIV-1 NL4-3 wild type (HIVwt) and HIVNefsmr5a, correlates of pathogenesis were evaluated in cell-lines, human peripheral blood mononuclear cells, and humanized NOD-RAG1-/- IL2r-/- double mutant (NRG) mice. Disruption of the SMR did not affect viral replication or exNef secretion from infected cell cultures as compared with nef-transfected cells. However, T cell apoptosis was reduced in HIVNefsmr5a infected cell cultures and CD4+ T cell depletion was reduced in the spleen and peripheral blood of similarly infected NRG mice. Inflammatory cytokine release was also decreased in the sera of HIVNefsmr5a infected mice relative to HIVwt infected controls. These findings demonstrate the importance of Nef and the SMR motif in HIV pathogenesis and suggest a potential role for exNef in HIV-driven immune modulation.
Collapse
Affiliation(s)
- Kateena Addae Konadu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Joseph S Anderson
- Department of Internal Medicine, University of California-Davis Medical Center, Sacramento, California, USA
| | - Ming-Bo Huang
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Syed A Ali
- Advanced Medical and Dental Institute, University Sain Malaysia, Pulau Pinang, Malaysia
| | - Michael D Powell
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Francois Villinger
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine and Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Vincent C Bond
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
9
|
de Repentigny L, Goupil M, Jolicoeur P. Oropharyngeal Candidiasis in HIV Infection: Analysis of Impaired Mucosal Immune Response to Candida albicans in Mice Expressing the HIV-1 Transgene. Pathogens 2015; 4:406-21. [PMID: 26110288 PMCID: PMC4493482 DOI: 10.3390/pathogens4020406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/13/2015] [Accepted: 06/16/2015] [Indexed: 01/07/2023] Open
Abstract
IL-17-producing Th17 cells are of critical importance in host defense against oropharyngeal candidiasis (OPC). Speculation about defective Th17 responses to oral C. albicans infection in the context of HIV infection prompted an investigation of innate and adaptive immune responses to Candida albicans in transgenic mice expressing the genome of HIV-1 in immune cells and displaying an AIDS-like disease. Defective IL-17 and IL-22-dependent mucosal responses to C. albicans were found to determine susceptibility to OPC in these transgenic mice. Innate phagocytes were quantitatively and functionally intact, and individually dispensable for control of OPC and to prevent systemic dissemination of Candida to deep organs. CD8+ T-cells recruited to the oral mucosa of the transgenic mice limited the proliferation of C. albicans in these conditions of CD4+ T-cell deficiency. Therefore, the immunopathogenesis of OPC in the context of HIV infection involves defective T-cell-mediated immunity, failure of crosstalk with innate mucosal immune effector mechanisms, and compensatory cell responses, which limit Candida infection to the oral mucosa and prevent systemic dissemination.
Collapse
Affiliation(s)
- Louis de Repentigny
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, PQ H3C 3J7, Canada.
| | - Mathieu Goupil
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, PQ H3C 3J7, Canada.
| | - Paul Jolicoeur
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, 110, avenue des Pins Ouest, Montreal, PQ H2W 1R7, Canada.
| |
Collapse
|
10
|
Goupil M, Cousineau-Côté V, Aumont F, Sénéchal S, Gaboury L, Hanna Z, Jolicoeur P, de Repentigny L. Defective IL-17- and IL-22-dependent mucosal host response to Candida albicans determines susceptibility to oral candidiasis in mice expressing the HIV-1 transgene. BMC Immunol 2014; 15:49. [PMID: 25344377 PMCID: PMC4213580 DOI: 10.1186/s12865-014-0049-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 10/16/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The tissue-signaling cytokines IL-17 and IL-22 are critical to host defense against oral Candida albicans infection, by their induction of oral antimicrobial peptide expression and recruitment of neutrophils. Mucosal Th17 cells which produce these cytokines are preferentially depleted in HIV-infected patients. Here, we tested the hypothesis that defective IL-17- and IL-22-dependent host responses to C. albicans determine the phenotype of susceptibility to oropharyngeal candidiasis (OPC) in transgenic (Tg) mice expressing HIV-1. RESULTS Naïve CD4+ T-cells and the differentiated Th1, Th2, Th17, Th1Th17 and Treg lineages were all profoundly depleted in cervical lymph nodes (CLNs) of these Tg mice. However, naive CD4+ cells from Tg mice maintained the capacity to differentiate into these lineages in response to polarizing cytokines in vitro. Expression of Il17, Il22, S100a8 and Ccl20 was enhanced in oral mucosal tissue of non-Tg, but not of Tg mice, after oral infection with C. albicans. Treatment of infected Tg mice with the combination of IL-17 and IL-22, but not IL-17 or Il-22 alone, significantly reduced oral burdens of C. albicans and abundance of Candida hyphae in the epithelium of tongues of infected Tg mice, and restored the ability of the Tg mice to up-regulate expression of S100a8 and Ccl20 in response to C. albicans infection. CONCLUSIONS These findings demonstrate that defective IL-17- and IL-22-dependent induction of innate mucosal immunity to C. albicans is central to the phenotype of susceptibility to OPC in these HIV transgenic mice.
Collapse
Affiliation(s)
- Mathieu Goupil
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
| | - Vincent Cousineau-Côté
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
| | - Francine Aumont
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
| | - Serge Sénéchal
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
| | - Louis Gaboury
- Pathology and Cell Biology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
- Histology and Molecular Pathology research unit, Institute for Research in Immunology and Cancer, C.P. 6128, succursale Centre-Ville, Montreal, QC, H3C 3J7, Canada.
| | - Zaher Hanna
- Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada.
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
| | - Paul Jolicoeur
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada.
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
| | - Louis de Repentigny
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
11
|
Cui HL, Ditiatkovski M, Kesani R, Bobryshev YV, Liu Y, Geyer M, Mukhamedova N, Bukrinsky M, Sviridov D. HIV protein Nef causes dyslipidemia and formation of foam cells in mouse models of atherosclerosis. FASEB J 2014; 28:2828-39. [PMID: 24642731 DOI: 10.1096/fj.13-246876] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Patients with HIV are at an increased risk of cardiovascular disease. In this study we investigated the effect of Nef, a secreted HIV protein responsible for the impairment of cholesterol efflux, on the development of atherosclerosis in two animal models. ApoE(-/-) mice fed a high-fat diet and C57BL/6 mice fed a high-fat, high-cholesterol diet were injected with recombinant Nef (40 ng/injection) or vehicle, and the effects of Nef on development of atherosclerosis, inflammation, and dyslipidemia were assessed. In apoE(-/-) mice, Nef significantly increased the size of atherosclerotic lesions and caused vessel remodeling. Nef caused elevation of total cholesterol and triglyceride levels in the plasma while reducing high-density lipoprotein cholesterol levels. These changes were accompanied by a reduction of ABCA1 abundance in the liver, but not in the vessels. In C57BL/6 mice, Nef caused a significant number of lipid-laden macrophages presented in adventitia of the vessels; these cells were absent from the vessels of control mice. Nef caused sharp elevations of plasma triglyceride levels and body weight. Taken together, our findings suggest that Nef causes dyslipidemia and accumulation of cholesterol in macrophages within the vessel wall, supporting the role of Nef in pathogenesis of atherosclerosis in HIV-infected patients.-Cui, H. L., Ditiatkovski, M., Kesani, R., Bobryshev, Y. V., Liu, Y., Geyer, M., Mukhamedova, N., Bukrinsky, M., Sviridov, D. HIV protein Nef causes dyslipidemia and formation of foam cells in mouse models of atherosclerosis.
Collapse
Affiliation(s)
- Huanhuan L Cui
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Rajitha Kesani
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Yuri V Bobryshev
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Yingying Liu
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Matthias Geyer
- Center for Advanced European Studies and Research (CAESAR), Bonn, Germany; and
| | | | - Michael Bukrinsky
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, District of Columbia, USA
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia;
| |
Collapse
|
12
|
Ahmed Rahim MM, Chrobak P, Priceputu E, Hanna Z, Jolicoeur P. Normal development and function but impaired memory phenotype of CD8+ T cells in transgenic mice expressing HIV-1 Nef in its natural target cells. Virology 2013; 438:84-97. [DOI: 10.1016/j.virol.2013.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/08/2012] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
13
|
Altered immune response differentially enhances susceptibility to Cryptococcus neoformans and Cryptococcus gattii infection in mice expressing the HIV-1 transgene. Infect Immun 2013; 81:1100-13. [PMID: 23340313 DOI: 10.1128/iai.01339-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cryptococcus neoformans var. grubii is the most frequent cause of AIDS-associated cryptococcosis worldwide, while Cryptococcus gattii usually infects immunocompetent people. To understand the mechanisms which cause differential susceptibility to these cryptococcal species in HIV infection, we established and characterized a model of cryptococcosis in CD4C/HIV(MutA) transgenic (Tg) mice expressing gene products of HIV-1 and developing an AIDS-like disease. Tg mice infected intranasally with C. neoformans var. grubii strain H99 or C23 consistently displayed reduced survival compared to non-Tg mice at three graded inocula, while shortened survival of Tg mice infected with C. gattii strain R265 or R272 was restricted to a single high inoculum. HIV-1 transgene expression selectively augmented systemic dissemination to the liver and spleen for strains H99 and C23 but not strains R265 and R272. Histopathologic examination of lungs of Tg mice revealed large numbers of widely scattered H99 cells, with a minimal inflammatory cell response, while in the non-Tg mice H99 was almost completely embedded within extensive mixed inflammatory cell infiltrates. In contrast to H99, R265 was dispersed throughout the lung parenchyma and failed to induce a strong inflammatory response in both Tg and non-Tg mice. HIV-1 transgene expression reduced pulmonary production of CCL2 and CCL5 after infection with H99 or R265, and production of these two chemokines was lower after infection with R265. These results indicate that an altered immune response in these Tg mice markedly enhances C. neoformans but not C. gattii infection. This model therefore provides a powerful new tool to further investigate the immunopathogenesis of cryptococcosis.
Collapse
|
14
|
Secretion modification region-derived peptide disrupts HIV-1 Nef's interaction with mortalin and blocks virus and Nef exosome release. J Virol 2011; 86:406-19. [PMID: 22013042 DOI: 10.1128/jvi.05720-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nef is secreted from infected cells in exosomes and is found in abundance in the sera of HIV-infected individuals. Secreted exosomal Nef (exNef) induces apoptosis in uninfected CD4⁺ T cells and may be a key component of HIV pathogenesis. The exosomal pathway has been implicated in HIV-1 virus release, suggesting a possible link between these two viral processes. However, the underlying mechanisms and cellular components of exNef secretion have not been elucidated. We have previously described a Nef motif, the secretion modification region (SMR; amino acids 66 to 70), that is required for exNef secretion. In silico modeling data suggest that this motif can form a putative binding pocket. We hypothesized that the Nef SMR binds a cellular protein involved in protein trafficking and that inhibition of this interaction would abrogate exNef secretion. By using tandem mass spectrometry and coimmunoprecipitation with a novel SMR-based peptide (SMRwt) that blocks exNef secretion and HIV-1 virus release, we identified mortalin as an SMR-specific cellular protein. A second set of coimmunoprecipitation experiments with full-length Nef confirmed that mortalin interacts with Nef via Nef's SMR motif and that this interaction is disrupted by the SMRwt peptide. Overexpression and microRNA knockdown of mortalin revealed a positive correlation between exNef secretion levels and mortalin protein expression. Using antibody inhibition we demonstrated that the Nef/mortalin interaction is necessary for exNef secretion. Taken together, this work constitutes a significant step in understanding the underlying mechanism of exNef secretion, identifies a novel host-pathogen interaction, and introduces an HIV-derived peptide with antiviral properties.
Collapse
|
15
|
Barin JG, Rose NR, Ciháková D. Macrophage diversity in cardiac inflammation: a review. Immunobiology 2011; 217:468-75. [PMID: 21820754 DOI: 10.1016/j.imbio.2011.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 06/23/2011] [Indexed: 01/04/2023]
Abstract
Cardiac inflammatory disease represents a significant public health burden, and interesting questions of immunopathologic science and clinical inquiry. Novel insights into the diverse programming and functions within the macrophage lineages in recent years have yielded a view of these cells as dynamic effectors and regulators of immunity, host defense, and inflammatory disease. In this review, we examine and discuss recent investigations into the complex participation of mononuclear phagocytic cells in the pathology of animal models of myocarditis.
Collapse
Affiliation(s)
- Jobert G Barin
- The Johns Hopkins University School of Medicine, Training Program in Immunology, USA
| | | | | |
Collapse
|
16
|
Stratos I, Graff J, Rotter R, Mittlmeier T, Vollmar B. Open blunt crush injury of different severity determines nature and extent of local tissue regeneration and repair. J Orthop Res 2010; 28:950-7. [PMID: 20069568 DOI: 10.1002/jor.21063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Insufficiency of skeletal muscle regeneration is often accompanied with functional deficiencies. The goal of our study was to assess the restoration of peripheral muscle upon injury of different severity. Blunt crush injury of the soleus muscle in rats was induced by a clamp and stepwise amplified in severity by rising the locking level of the clamp, resulting in three different groups (1x lock; 2x lock; 3x lock; n = 30 animals per group). After assessment of the fast twitch and tetanic contraction capacity at days 1, 4, 7, 14, and 42 postinjury sampling of muscle tissue served for analysis of cell proliferation, including satellite cells, apoptosis, and leukocyte infiltration. Contraction force analysis demonstrated significantly higher values of relative muscle strength in the 1x lock group compared to the two other groups over 42 days. Calculation of the twitch-to-tetanic force ratio revealed significantly higher mean values at days 1, 7, and 14 in the animals of group 2x lock and 3x lock, indicating a transformation toward a fast-twitching muscular phenotype. Moreover, cell proliferation during the first 4 days was found dependent on the severity of muscle injury in that the higher the severity the higher the proliferation. At the same time, cell apoptosis was found increased, and at day 1 the local leukocyte infiltration was significantly higher in the 3x lock compared to the 1x lock group. These data indicate that severity of injury correlates with local repair responses, which, however, are not necessarily sufficient to fully restore muscle function.
Collapse
Affiliation(s)
- Ioannis Stratos
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany
| | | | | | | | | |
Collapse
|
17
|
Ali SA, Huang MB, Campbell PE, Roth WW, Campbell T, Khan M, Newman G, Villinger F, Powell MD, Bond VC. Genetic characterization of HIV type 1 Nef-induced vesicle secretion. AIDS Res Hum Retroviruses 2010; 26:173-92. [PMID: 20156100 DOI: 10.1089/aid.2009.0068] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The HIV-1 Nef protein is known to be secreted, and our group has shown that Nef is secreted from nef-transfected and HIV-1-infected cells in small exosome-like vesicles (d. 40-100 nm). The role of secreted Nef remains to be fully characterized. Thus, it is important to characterize the nature of and the mechanisms regulating Nef secretion. We hypothesized that specific structural domains on the Nef protein interact with components of the endosomal trafficking machinery, sorting Nef into multivesicular bodies (MVB) and packaging it in exosome-like vesicles. To identify those domains, a series of mutants spanning the entire nef sequence were made and cloned into the expression vector pQB1, which expresses the mutants as Nef-GFP fusion proteins. These constructs were used in transient transfection assays to identify sequences necessary for secretion of the Nef-GFP fusion protein. N-terminal domains were identified as critical for Nef-induced vesicle secretion: (1) a basic cluster of four arginine residues (aa 17, 19, 21, 22), (2) the phosphofurin acidic cluster sequence (PACS; Glu62-65), and (3) a previously uncharacterized domain spanning amino acid residues 66-70 (VGFPV), which we named the secretion modification region (SMR). Additional amino acids P25, 29GVG31, and T44 were identified in HIV-1 Nef as regulating its secretion. These residues have not been associated with other reported Nef functions. The myristoylation domain, ubiquitination lysine residues, and the C-terminal portion of Nef (aa 71-206) had no effect on secretion. A minimal HIV-1 Nef sequence, comprising the identified motifs, was sufficient for Nef-induced vesicle secretion.
Collapse
Affiliation(s)
- Syed A. Ali
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Ming-Bo Huang
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Patrick E. Campbell
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - William W. Roth
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Tamika Campbell
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Mahfuz Khan
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Gale Newman
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Francois Villinger
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Michael D. Powell
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Vincent C. Bond
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310
| |
Collapse
|
18
|
Selective expression of human immunodeficiency virus Nef in specific immune cell populations of transgenic mice is associated with distinct AIDS-like phenotypes. J Virol 2009; 83:9743-58. [PMID: 19605470 DOI: 10.1128/jvi.00125-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that CD4C/human immunodeficiency virus (HIV)(Nef) transgenic (Tg) mice, expressing Nef in CD4(+) T cells and cells of the macrophage/dendritic cell (DC) lineage, develop a severe AIDS-like disease, characterized by depletion of CD4(+) T cells, as well as lung, heart, and kidney diseases. In order to determine the contribution of distinct populations of hematopoietic cells to the development of this AIDS-like disease, five additional Tg strains expressing Nef through restricted cell-specific regulatory elements were generated. These Tg strains express Nef in CD4(+) T cells, DCs, and macrophages (CD4E/HIV(Nef)); in CD4(+) T cells and DCs (mCD4/HIV(Nef) and CD4F/HIV(Nef)); in macrophages and DCs (CD68/HIV(Nef)); or mainly in DCs (CD11c/HIV(Nef)). None of these Tg strains developed significant lung and kidney diseases, suggesting the existence of as-yet-unidentified Nef-expressing cell subset(s) that are responsible for inducing organ disease in CD4C/HIV(Nef) Tg mice. Mice from all five strains developed persistent oral carriage of Candida albicans, suggesting an impaired immune function. Only strains expressing Nef in CD4(+) T cells showed CD4(+) T-cell depletion, activation, and apoptosis. These results demonstrate that expression of Nef in CD4(+) T cells is the primary determinant of their depletion. Therefore, the pattern of Nef expression in specific cell population(s) largely determines the nature of the resulting pathological changes.
Collapse
|
19
|
Abstract
The relationship between human immunodeficiency virus (HIV) infection and cardiovascular disease is still under debate, but it appears that the risk of myocardial infarction in those with HIV infection who are receiving highly active antiretroviral therapy (HAART) is increased. There has been less focus, however, on the effect of HIV and HAART on left ventricular function. Evidence from the past 20 years in both Westernized and developing countries has indicated that subclinical left ventricular dysfunction in HIV-infected individuals with and without well-controlled HIV infection is prevalent and may represent emerging cardiac disease. The specific roles of HIV infection and HAART are unclear, but they may exert independent direct and indirect effects on the myocardium. These effects may include chronic inflammation, metabolic complications (ie, insulin resistance, lipotoxicity, dyslipidemia), and mitochondrial toxicity. The objective of this article is to review the evidence for HIV- and HAART-related left ventricular dysfunction in persons infected with HIV.
Collapse
Affiliation(s)
- W Todd Cade
- Program in Physical Therapy and Department of Medicine, Washington University School of Medicine, St Louis, MO 63108-2212, USA.
| |
Collapse
|
20
|
Rotter R, Menshykova M, Winkler T, Matziolis G, Stratos I, Schoen M, Bittorf T, Mittlmeier T, Vollmar B. Erythropoietin improves functional and histological recovery of traumatized skeletal muscle tissue. J Orthop Res 2008; 26:1618-26. [PMID: 18634017 DOI: 10.1002/jor.20692] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Apart from its hematopoietic effect, erythropoietin (EPO) is known as pleiotropic cytokine with anti-inflammatory and anti-apoptotic properties. Here, we evaluated for the first time the EPO-dependent regeneration capacity in an in vivo rat model of skeletal muscle trauma. A myoblast cell line was used to study the effect of EPO on serum deprivation-induced cell apoptosis in vitro. A crush injury was performed to the left soleus muscle in 80 rats treated with either EPO or saline. Muscle recovery was assessed by analysis of contraction capacities. Intravital microscopy, BrdU/laminin double immunohistochemistry and cleaved caspase-3 immunohistochemistry of muscle tissue on days 1, 7, 14, and 42 posttrauma served for assessment of local microcirculation, tissue integrity, and cell proliferation. Serum deprivation-induced myoblast apoptosis of 23.9 +/- 1.5% was reduced by EPO to 17.2 +/- 0.8%. Contraction force analysis in the EPO-treated animals revealed significantly improved muscle strength with 10-20% higher values of twitch and tetanic forces over the 42-day observation period. EPO-treated muscle tissue displayed improved functional capillary density as well as reduced leukocytic response and consecutively macromolecular leakage over day 14. Concomitantly, muscle histology showed significantly increased numbers of BrdU-positive satellite cells and interstitial cells as well as slightly lower counts of cleaved caspase-3-positive interstitial cells. EPO results in faster and better regeneration of skeletal muscle tissue after severe trauma and goes along with improved microcirculation. Thus, EPO, a compound established as clinically safe, may represent a promising therapeutic option to optimize the posttraumatic course of muscle tissue healing.
Collapse
Affiliation(s)
- Robert Rotter
- Department of Trauma and Reconstructive Surgery, University of Rostock, 18055 Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Antigenic stimulation in the simian model of HIV infection yields dilated cardiomyopathy through effects of TNFalpha. AIDS 2008; 22:585-94. [PMID: 18316999 DOI: 10.1097/qad.0b013e3282f57f61] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate a role for endogenous myocardial cytokine production in the development of HIV-associated cardiomyopathy. DESIGN Cardiomyopathy is a late-stage sequela of HIV infection. Although pathogenesis of this condition in HIV infection is poorly defined, inflammatory cytokines are recognized for their detrimental effects on myocardial structure and function. HIV infection is characterized by chronic immune activation and inflammatory cytokine dysregulation. As the myocardium itself is a rich potential source of inflammatory cytokines, HIV-mediated cytokine dysregulation may be an important contributor to development of HIV cardiomyopathy. An antigenic stimulation protocol conducted in the simian immunodeficiency virus (SIV) model of HIV infection was used to study the effects of endogenous cytokine production on myocardial structure and function. METHODS Twenty-six rhesus monkeys were assigned to treatment groups for a 35-day study. Animals were SIV-infected; SIV-infected and treated with killed Mycobacterium avium complex bacteria (MAC); SIV-infected, MAC-treated, and given the TNFalpha antagonist etanercept; or uninfected and MAC-treated. All animals were subjected to weekly echocardiographic studies. Hearts were collected for further evaluation at euthanasia. RESULTS SIV-infected, MAC-treated animals developed significant systolic dysfunction [left ventricular ejection fraction (LVEF) decline of 19 +/- 2%] and ventricular chamber dilatation [left ventricular end-diastolic diameter (LVEDD) increase of 26 +/- 6%] not seen in other groups. Concurrent treatment with etanercept prevented development of these changes, implicating a causative role of myocardial TNFalpha. CONCLUSIONS SIV-infected animals develop exaggerated myocardial pathology on stimulation with the ubiquitous environmental agent MAC. These responses are TNFalpha-dependent and may play a significant role in the development of cardiomyopathy in HIV infection.
Collapse
|
22
|
Stratos I, Rotter R, Eipel C, Mittlmeier T, Vollmar B. Granulocyte-colony stimulating factor enhances muscle proliferation and strength following skeletal muscle injury in rats. J Appl Physiol (1985) 2007; 103:1857-63. [PMID: 17717125 DOI: 10.1152/japplphysiol.00066.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Insufficiency of skeletal muscle regeneration often impedes the healing process with functional deficiencies and scar formation. We tested the hematopoietic growth factor granulocyte-colony stimulating factor (G-CSF) with respect to its efficacy to improve functional muscle regeneration following skeletal muscle injury in Wistar rats. After crush injury to the left soleus muscle, animals received daily G-CSF (20 μg/kg ip) or vehicle solution ( n = 30 per group each). Sham-operated animals without muscle injury served as controls ( n = 15). After in vivo assessment of the fast-twitch and tetanic contraction capacity of the soleus muscles at days 4, 7, and 14 post-injury, sampling of muscle tissue served for analysis of satellite cell proliferation [bromodeoxyuridine (BrdU)/laminin and BrdU/desmin double immunohistochemistry] and cell apoptosis (transferase nick-end labeling analysis). Muscle strength analysis revealed recovery of contraction forces to 26 ± 2, 35 ± 3, and 53 ± 3% (twitch force) and to 20 ± 3, 24 ± 2, and 37 ± 2% (tetanic force) within the 14-day observation period in vehicle-treated animals. In contrast, G-CSF increased contractile forces with markedly higher values at day 7 (twitch force: 42 ± 2%; tetanic force: 34 ± 2%) and day 14 (twitch force: 62 ± 3%; tetanic force: 43 ± 3%). This enhancement of muscle function was preceded by a significant increase of satellite cell proliferation (BrdU-positive cells/mm2: 27 ± 6 vs. vehicle: 12 ± 3) and a moderate decrease of cell apoptosis (transferase nick-end labeling-positive cells/mm2: 11 ± 2 vs. vehicle: 16 ± 3) at day 4. In conclusion, G-CSF histologically promoted viability and proliferation of muscle cells and functionally enhanced recovery of muscle strength. Thus G-CSF might represent a therapeutic option to optimize the posttraumatic course of muscle tissue healing.
Collapse
Affiliation(s)
- Ioannis Stratos
- Inst. for Experimental Surgery, Univ. of Rostock, Schillingallee 69a, 18055 Rostock, Germany
| | | | | | | | | |
Collapse
|
23
|
Priceputu E, Hanna Z, Hu C, Simard MC, Vincent P, Wildum S, Schindler M, Kirchhoff F, Jolicoeur P. Primary human immunodeficiency virus type 1 nef alleles show major differences in pathogenicity in transgenic mice. J Virol 2007; 81:4677-93. [PMID: 17314161 PMCID: PMC1900134 DOI: 10.1128/jvi.02691-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that the human immunodeficiency virus type 1 NL4-3 Nef is necessary and sufficient to induce a severe AIDS-like disease in transgenic (Tg) mice when the protein is expressed under the regulatory sequences of the human CD4 gene. We have now assayed additional Nef alleles (SF2, JR-CSF, YU10x, and NL4-3 [T71R] Nef alleles), including some from long-term nonprogressors (AD-93, 032an, and 039nm alleles) in the same Tg system and compared their pathogenicities. All these Nef alleles downregulated cell surface CD4 in human cells in vitro and also, with the exception of Nef(YU10x), in Tg CD4(+) T cells. Depletion of double-positive and single-positive thymocytes occurred with all alleles but was less pronounced in Nef(YU10x) Tg mice. A loss of peripheral CD4(+) T cells was observed with all alleles but was minimal in Nef(YU10x) Tg mice. In Nef(032an) and Nef(SF2) Tg mice, T-cell loss was severe despite lower levels of Tg expression, suggesting a higher virulence of these alleles. All Nef alleles except the Nef(YU10x) and Nef(NL4-3(T71R)) alleles induced an enhanced activated memory (CD25(+) CD69(+) CD44(high) CD45RB(low) CD62L(low)) and apoptotic phenotype. Also, all could interact with and/or activate PAK2 except the Nef(JR-CSF) allele. Organ (lung and kidney) diseases were present in Nef(NL4-3(T71R)), Nef(032an), Nef(039nm), and Nef(SF2) Tg mice, despite very low levels of Tg expression for the last strain. However, no organ disease or minimal organ disease developed in Nef(YU10x) and Nef(AD-93) Tg mice and Nef(JR-CSF) Tg mice, respectively, despite high levels of Tg expression. Our data show that important differences in the pathogenicities of various Nef alleles can be scored in Tg mice. Interestingly, our results also revealed that some phenotypes can segregate independently, such as CD4(+) T-cell depletion and activation, as well as severe depletion of thymic CD4(+) T cells and peripheral CD4(+) T cells. Therefore, expression of Nef alleles in Tg mice under the CD4C regulatory elements represents a novel assay for measuring their pathogenicity. Because of the very high similarity of this murine AIDS-like disease to human AIDS, this assay may have a predictive value regarding the behavior of Nef in infected humans.
Collapse
Affiliation(s)
- Elena Priceputu
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li X, Calvo E, Cool M, Chrobak P, Kay DG, Jolicoeur P. Overexpression of Notch1 ectodomain in myeloid cells induces vascular malformations through a paracrine pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:399-415. [PMID: 17200211 PMCID: PMC1762695 DOI: 10.2353/ajpath.2007.060351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We previously reported that truncation of Notch1 (N1) by provirus insertion leads to overexpression of both the intracellular (N1(IC)) and the extracellular (N1(EC)) domains. We produced transgenic (Tg) mice expressing N1(EC) in T cells and in cells of the myeloid lineage under the regulation of the CD4 gene. These CD4C/N1(EC) Tg mice developed vascular disease, predominantly in the liver: superficial distorted vessels, cavernae, lower branching of parenchymal vessels, capillarized sinusoids, and aberrant smooth muscle/endothelial cell topography. The disease developed in lethally irradiated normal mice transplanted with Tg bone marrow or fetal liver cells as well as in Rag-/- Tg mice. In nude mice transplanted with fetal liver cells from (ROSA26 x CD4C/N1(EC)) F1 Tg mice, abnormal vessels were of recipient origin. Transplantation of Tg peritoneal macrophages into normal recipients also induced abnormal vessels. These Tg macrophages showed impaired functions, and their conditioned medium inhibited the proliferation of liver sinusoid endothelial cells in vitro. The Egr-1 gene and some of its targets (Jag1, FIII, FXIII-A, MCP-1, and MCP-5), previously implicated in hemangioma or vascular malformations, were overexpressed in Tg macrophages. These results show that myeloid cells can be reprogrammed by N1(EC) to induce vascular malformations through a paracrine pathway.
Collapse
Affiliation(s)
- Xiujie Li
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Lupien M, Diévart A, Morales CR, Hermo L, Calvo E, Kay DG, Hu C, Jolicoeur P. Expression of constitutively active Notch1 in male genital tracts results in ectopic growth and blockage of efferent ducts, epididymal hyperplasia and sterility. Dev Biol 2006; 300:497-511. [PMID: 17046738 DOI: 10.1016/j.ydbio.2006.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 09/01/2006] [Accepted: 09/07/2006] [Indexed: 11/27/2022]
Abstract
The Notch signaling pathway is involved in a variety of developmental processes. Here, we characterize the phenotypes developing in the reproductive organs of male transgenic (Tg) mice constitutively expressing the activated mouse Notch1 intracellular domain (Notch1(intra)) under the regulatory control of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR). Tg expression was detected in testis, vas deferens and epididymis by Northern blot analysis. In situ hybridization with a Notch1-specific probe lacked sensitivity to detect expression in normal-appearing cells, but demonstrated expression in hyperplastic epithelial cells of the vas deferens, epididymis and efferent ducts. Tg males from three independent founder lines were sterile. Histological analysis of reproductive organs of young Tg males (postnatal ages 8 and 21) showed no difference compared to those of non-Tg males. In contrast, in adult Tg mice from day 38 onwards, the efferent ducts, the vas deferens and most epididymal segments revealed bilateral epithelial cell hyperplasia with absence of fully differentiated epithelial cells. Electron microscopy confirmed the uniformly undifferentiated state of these cells. Immunohistochemistry with anti-PCNA antibody also revealed enhanced proliferation of Tg epididymis. In adult Tg testis, the different generations of germ cells of seminiferous tubules appeared normal, although some tubules were highly dilated and revealed an absence of early and/or late spermatids. The epithelial cells of the Tg tubuli recti and rete testis were not abnormal, but the rete testis was highly dilated and contained numerous spermatozoa, suggesting a downstream blockage. Consistent with a blockage of efferent ducts often seen at the rete testis/efferent duct interface, spermatozoa were absent in epididymis of all adult Tg mice and in all highly hyperplastic efferent duct tubules of these Tg mice. Such a blockage was visualized by injection of Evans blue dye into the rete testis lumen. Finally, the presence of ectopic hyperplastic efferent duct tubules was observed within the testicular parenchyma itself, outside their normal territory, suggesting that Notch1 signaling is involved in the establishment of these borders. This phenotype seems to represent a novel developmental defect in mammals. Together, these results show that constitutive Notch1 signaling significantly affects the development of male reproductive organs.
Collapse
Affiliation(s)
- Mathieu Lupien
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Canada
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lewandowski D, Marquis M, Aumont F, Lussier-Morin AC, Raymond M, Sénéchal S, Hanna Z, Jolicoeur P, de Repentigny L. Altered CD4+T Cell Phenotype and Function Determine the Susceptibility to Mucosal Candidiasis in Transgenic Mice Expressing HIV-1. THE JOURNAL OF IMMUNOLOGY 2006; 177:479-91. [PMID: 16785545 DOI: 10.4049/jimmunol.177.1.479] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The impairments of protective mucosal immunity which cause susceptibility to oropharyngeal candidiasis (OPC) in HIV infection remain undefined. This study used a model of OPC in CD4C/HIV MutA transgenic (Tg) mice expressing Rev, Env, and Nef of HIV-1 to investigate the role of transgene expressing dendritic cells (DCs) and CD4+ T cells in maintenance of chronic oral carriage of Candida albicans. DCs were depleted in the Tg mice and had an immature phenotype, with low expression of MHC class II and IL-12. CD4+ T cells were quantitatively reduced in the oral mucosa, cervical lymph nodes (CLNs) and peripheral blood of the Tg mice, and displayed a polarization toward a nonprotective Th2 response. Proliferation of CLN CD4+ T cells from infected Tg mice in response to C. albicans Ag in vitro was abrogated and the cells failed to acquire an effector phenotype. Coculture of C. albicans-pulsed DCs with CD4+ T cells in vitro showed that Tg expression in either or both of these cell populations sharply reduced the proliferation of CD4+ T cells and their production of IL-2. Finally, transfer of naive non-Tg CD4+ T cells into these Tg mice restored proliferation to C. albicans Ag and sharply reduced oral burdens of C. albicans. Overall, these results indicate that defective CD4+ T cells primarily determine the susceptibility to chronic carriage of C. albicans in these Tg mice.
Collapse
Affiliation(s)
- Daniel Lewandowski
- Department of Microbiology and Immunology, Sainte-Justine Hospital, 3175 Côte Ste-Catherine, Montreal, Quebec H3T 1C5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hu C, Diévart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:973-90. [PMID: 16507912 PMCID: PMC1606519 DOI: 10.2353/ajpath.2006.050416] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mouse mammary tumor virus (MMTV) provirus was found to target the Notch1 gene, producing insertional mutations in mammary tumors of MMTV/neu transgenic (Tg) mice. In these mammary tumors, the Notch1 gene is truncated upstream of the transmembrane domain, and the resulting Notch1 intracellular domain (Notch1(intra)), deleted of most extracellular sequences, is overexpressed. Although Notch1(intra) transforms mammary epithelial cells in vitro, its role in mammary gland tumor formation in vivo was not studied. Therefore, we generated MMTV/Notch1(intra) Tg mice that overexpress murine Notch1(intra) in the mammary glands. We observed that MMTV/Notch1(intra) Tg females were unable to feed their pups because of impaired ductal and lobulo-alveolar mammary gland development. This was associated with decreased proliferation of ductal and alveolar epithelial cells during rapid expansion at puberty and in early pregnancy, as well as decreased production of beta-casein. Notch1(intra) repressed expression of the beta-casein gene promoter, as assessed in vitro with a beta-casein/luciferase reporter construct. The MMTV/Notch1(intra) Tg females developed mammary gland tumors, confirming the oncogenic potential of Notch1(intra) in vivo. Furthermore, MMTV/Notch3(intra) Tg mice exhibited a very similar phenotype. Thus, these Tg mice represent novel models for studying the role of Notch1 or Notch3 in the development and transformation of the mammary gland.
Collapse
MESH Headings
- Aging
- Animals
- Apoptosis
- Caseins/genetics
- Cell Proliferation
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Evolution, Molecular
- Female
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Mammary Glands, Animal/abnormalities
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Animal/etiology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/pathology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Transgenic
- Oncogenes/genetics
- Pregnancy
- Promoter Regions, Genetic/genetics
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch3
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Transcription, Genetic
- Transcriptional Activation
Collapse
Affiliation(s)
- Chunyan Hu
- Laboratory of Molecular Biology, Clinical Research Institute of Montréal, QC, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Hanna Z, Priceputu E, Hu C, Vincent P, Jolicoeur P. HIV-1 Nef mutations abrogating downregulation of CD4 affect other Nef functions and show reduced pathogenicity in transgenic mice. Virology 2006; 346:40-52. [PMID: 16310238 DOI: 10.1016/j.virol.2005.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/01/2005] [Accepted: 10/04/2005] [Indexed: 11/15/2022]
Abstract
HIV-1 Nef has the ability to downmodulate CD4 cell surface expression. Several studies have shown that CD4 downregulation is required for efficient virus replication and high infectivity. However, the pathophysiological relevance of this phenomenon in vivo, independently of its role in sustaining high virus loads, remains unclear. We studied the impact of the CD4 downregulation function of Nef on its pathogenesis in vivo, in the absence of viral replication, in the CD4C/HIV transgenic (Tg) mouse model. Two independent Nef mutants (RD35/36AA and D174K), known to abrogate CD4 downregulation, were tested in Tg mice. Flow cytometry analysis showed that downregulation of murine CD4 was severely decreased or abrogated on Tg T cells expressing respectively Nef(RD35/36AA) and Nef(D174K). Similarly, the severe depletion of double-positive CD4+CD8+ and of single-positive CD4+CD8- thymocytes, usually observed with Nef(Wt), was not detected in Nef(RD35/36AA) and Nef(D174K) Tg mice. However, both mutant Tg mice showed a partial depletion of peripheral CD4+ T cells. This was accompanied, as previously reported for Net(Wt) Tg mice, by the presence of an activated/memory-like phenotype (CD69+, CD25+, CD44+, CD45RB(Low), CD62(Low)) of CD4+ T cells expressing Nef(RD35/36AA) and to a lesser extent Nef(D174K). In addition, both mutants retained the ability to block CD4+ T cell proliferation in vitro after anti-CD3 stimulation, but not to enhance apoptosis/death of CD4+ T cells. Therefore, it appears that Nef-mediated CD4 downregulation is associated with thymic defects, but segregates independently of the activated/memory-like phenotype, of the partial depletion and of the impaired in vitro proliferation of peripheral CD4+ T cells. Histopathological assessment revealed the total absence of or decrease severity and frequency of organ AIDS-like diseases (lung, heart and kidney pathologies) in respectively Nef(RD35/36AA) and Nef(D174K) Tg mice, relative to those developing in Nef(Wt) Tg mice. Our data suggest that the RD35/36AA and D174K mutations affect other Nef functions, namely those involved in the development of lung and kidney diseases, in addition to their known role in CD4 downregulation. Similarly, in HIV-1-infected individuals, loss of CD4 downregulation by Nef alleles may reflect their lower intrinsic pathogenicity, independently of their effects on virus replication.
Collapse
Affiliation(s)
- Zaher Hanna
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7.
| | | | | | | | | |
Collapse
|
29
|
Priceputu E, Rodrigue I, Chrobak P, Poudrier J, Mak TW, Hanna Z, Hu C, Kay DG, Jolicoeur P. The Nef-mediated AIDS-like disease of CD4C/human immunodeficiency virus transgenic mice is associated with increased Fas/FasL expression on T cells and T-cell death but is not prevented in Fas-, FasL-, tumor necrosis factor receptor 1-, or interleukin-1beta-converting enzyme-deficient or Bcl2-expressing transgenic mice. J Virol 2005; 79:6377-91. [PMID: 15858021 PMCID: PMC1091671 DOI: 10.1128/jvi.79.10.6377-6391.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
CD4(+)- and CD8(+)-T-cell death is a frequent immunological dysfunction associated with the development of human AIDS. We studied a murine model of AIDS, the CD4C/HIV transgenic (Tg) mouse model, to assess the importance of the apoptotic pathway in human immunodeficiency virus type 1 (HIV-1) pathogenesis. In these Tg mice, Nef is the major determinant of the disease and is expressed in immature and mature CD4(+) T cells and in cells of the macrophage/myeloid lineage. We report here a novel AIDS-like phenotype: enhanced death, most likely by apoptosis (as assessed by 7-aminoactinomycin D and annexin V/propidium iodide staining), of Tg thymic and peripheral CD4(+) and CD8(+) T cells. The Tg CD4(+) and CD8(+) T cells were also more susceptible to cell death after activation in vitro in mixed lymph node (LN) cultures. However, activation-induced cell death was not higher in Tg than in non-Tg-purified CD4(+) T cells. In addition, expression of Fas and FasL, assessed by flow cytometry, was increased in CD4(+) and CD8(+) T cells from Tg mice compared to that of non-Tg littermates. Despite the enhanced expression of Fas and FasL on Tg CD4(+) and CD8(+) T cells, Fas (lpr/lpr) and FasL (gld/gld) mutant CD4C/HIV Tg mice developed an AIDS-like disease indistinguishable from lpr/+ and gld/+ CD4C/HIV Tg mice, including loss of CD4(+) T cells. Similarly, CD4C/HIV Tg mice homozygous for mutations of two other genes implicated in cell death (interleukin-1beta-converting enzyme [ICE], tumor necrosis factor receptor 1 [TNFR-1]) developed similar AIDS-like disease as their respective heterozygous controls. Moreover, the double-Tg mice from a cross between the Bcl2/Wehi25 and CD4C/HIV Tg mice showed no major protection against disease. These results represent genetic evidence for the dispensable role of Fas, FasL, ICE, and TNFR-1 on the development of both T-cell loss and organ disease of these Tg mice. They also provide compelling evidence on the lack of protection by Bcl2 against Tg CD4(+)-T-cell death. In view of the high resemblance between numerous phenotypes observed in the CD4C/HIV Tg mice and in human AIDS, our findings are likely to be relevant for the human disease.
Collapse
Affiliation(s)
- Elena Priceputu
- Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec H2W 1R7, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
van Marle G, Henry S, Todoruk T, Sullivan A, Silva C, Rourke SB, Holden J, McArthur JC, Gill MJ, Power C. Human immunodeficiency virus type 1 Nef protein mediates neural cell death: a neurotoxic role for IP-10. Virology 2005; 329:302-18. [PMID: 15518810 DOI: 10.1016/j.virol.2004.08.024] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 07/22/2004] [Accepted: 08/12/2004] [Indexed: 02/01/2023]
Abstract
HIV-1 Nef is expressed in astrocytes, but a contribution to neuropathogenesis and the development of HIV-associated dementia (HAD) remains uncertain. To determine the neuropathogenic actions of the HIV-1 Nef protein, the brain-derived (YU-2) and blood-derived (NL4-3) Nef proteins were expressed in neural cells using an alphavirus vector, which resulted in astrocyte death (P < 0.001). Supernatants from Nef-expressing astrocytes also caused neuronal death, suggesting the release of neurotoxic molecules by astrocytes. Analysis of pro-inflammatory gene induction in astrocytes expressing Nef revealed increased IP-10 mRNA expression (4000-fold) that was Nef sequence dependent. Recombinant IP-10 caused selective cell death in neurons (P < 0.001) but not astrocytes, and the cytotoxicity of supernatant from astrocytes expressing Nef YU-2 was blocked by an antibody directed against the chemokine receptor CXCR3 (P < 0.001). SCID/NOD mice implanted with a Nef YU-2-expressing vector displayed abnormal motor behavior (P < 0.05), neuroinflammation, and neuronal loss relative to controls. Analysis of mRNA levels in brains from patients with HAD also revealed increased expression of IP-10 (P < 0.05), which was confirmed by immunoreactivity detected principally in astrocytes. Phylogenetic and protein structure analyses of Nef sequences derived from HIV/AIDS patients with and without HAD suggested viral evolution toward a neurotropic Nef protein. These results indicate that HIV-1 Nef contributes to neuropathogenesis by directly causing astrocyte death together with indirect neuronal death through the cytotoxic actions of IP-10 on neurons. Furthermore, Nef molecular diversity was evident in brain tissue among patients with neurological disease and which may influence IP-10 production by astrocytes.
Collapse
MESH Headings
- AIDS Dementia Complex/metabolism
- AIDS Dementia Complex/physiopathology
- Animals
- Animals, Genetically Modified
- Astrocytes/metabolism
- Astrocytes/virology
- Cell Death
- Cells, Cultured
- Chemokine CCL2/biosynthesis
- Chemokine CCL2/genetics
- Chemokine CXCL10
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/pharmacology
- Chemokines, CXC/physiology
- Gene Products, nef/biosynthesis
- Gene Products, nef/genetics
- Genetic Vectors
- HIV-1/genetics
- HIV-1/pathogenicity
- Humans
- Interleukin-1/biosynthesis
- Interleukin-1/genetics
- Interleukin-1beta
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Molecular Sequence Data
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Neurotoxins/pharmacology
- Peptide Fragments/biosynthesis
- Peptide Fragments/genetics
- RNA, Messenger/analysis
- Recombinant Proteins/pharmacology
- nef Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Guido van Marle
- Department of Clinical Neurosciences, University of Calgary, Calgary AB, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hanna Z, Priceputu E, Kay DG, Poudrier J, Chrobak P, Jolicoeur P. In vivo mutational analysis of the N-terminal region of HIV-1 Nef reveals critical motifs for the development of an AIDS-like disease in CD4C/HIV transgenic mice. Virology 2004; 327:273-86. [PMID: 15351215 DOI: 10.1016/j.virol.2004.06.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 06/11/2004] [Indexed: 10/26/2022]
Abstract
HIV-1 Nef is a critical determinant of pathogenicity in humans and transgenic (Tg) mice. To gain a better understanding of the molecular mechanisms by which Nef induces an AIDS-like disease in Tg mice, a mutational analysis of the N-terminal domain, involved in anchoring Nef to the plasma membrane, was carried out. The pathogenic effects of these Nef mutant alleles were evaluated in Tg mice by FACS analysis and by histopathological assessment. Mutation of the myristoylation site (G2A) completely abrogated the development of the AIDS-like organ disease in Tg mice, although partial downregulation of the CD4 cell surface protein and depletion of peripheral CD4+ T-cells, but not of CD4(+)CD8+ thymocytes, still occurred. Despite that, the peripheral CD4+ T cells expressing Nef(G2A) show normal spontaneous proliferation in vivo or after stimulation in vitro, including in an allogenic mixed leukocyte reaction (MLR). Three other internal deletion mutants of Nef, spanning amino acids 8-17 (Nef(Delta8-17)), 25-35 (Nef(Delta25-35)), and 57-66 (Nef(Delta57-66)), were also studied. Nef(Delta8-17) retained full pathogenic potential, although Nef(Delta25-35) and Nef(Delta57-66) Tg mice were free of organ disease. However, Nef(Delta25-35) Tg mice exhibited disorganization of thymic architecture and a partial depletion of peripheral CD4+ T cells. These data indicate that myristoylation and other regions at the N-terminus of Nef (aa 25-35 and 57-66) are involved in mediating severe T-cell phenotypes and organ disease, although residues 8-17 are dispensable for these Nef functions. In addition, these results indicate that at least some of the CD4+ T-cell phenotypes can develop independently of the other AIDS-like organ phenotypes. This apparent segregation of different Nef-mediated phenotypes suggests distinct mechanisms of Nef action in different populations of target cells, and may be relevant to human AIDS.
Collapse
Affiliation(s)
- Zaher Hanna
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, PQ, Canada H2W 1R7.
| | | | | | | | | | | |
Collapse
|
32
|
de Repentigny L, Lewandowski D, Jolicoeur P. Immunopathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection. Clin Microbiol Rev 2004; 17:729-59, table of contents. [PMID: 15489345 PMCID: PMC523562 DOI: 10.1128/cmr.17.4.729-759.2004] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oropharyngeal and esophageal candidiases remain significant causes of morbidity in human immunodeficiency virus (HIV)-infected patients, despite the dramatic ability of antiretroviral therapy to reconstitute immunity. Notable advances have been achieved in understanding, at the molecular level, the relationships between the progression of HIV infection, the acquisition, maintenance, and clonality of oral candidal populations, and the emergence of antifungal resistance. However, the critical immunological defects which are responsible for the onset and maintenance of mucosal candidiasis in patients with HIV infection have not been elucidated. The devastating impact of HIV infection on mucosal Langerhans' cell and CD4(+) cell populations is most probably central to the pathogenesis of mucosal candidiasis in HIV-infected patients. However, these defects may be partly compensated by preserved host defense mechanisms (calprotectin, keratinocytes, CD8(+) T cells, and phagocytes) which, individually or together, may limit Candida albicans proliferation to the superficial mucosa. The availability of CD4C/HIV transgenic mice expressing HIV-1 in immune cells has provided the opportunity to devise a novel model of mucosal candidiasis that closely mimics the clinical and pathological features of candidal infection in human HIV infection. These transgenic mice allow, for the first time, a precise cause-and-effect analysis of the immunopathogenesis of mucosal candidiasis in HIV infection under controlled conditions in a small laboratory animal.
Collapse
Affiliation(s)
- Louis de Repentigny
- Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, 3175 Côte Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada.
| | | | | |
Collapse
|
33
|
Weng X, Priceputu E, Chrobak P, Poudrier J, Kay DG, Hanna Z, Mak TW, Jolicoeur P. CD4+ T cells from CD4C/HIVNef transgenic mice show enhanced activation in vivo with impaired proliferation in vitro but are dispensable for the development of a severe AIDS-like organ disease. J Virol 2004; 78:5244-57. [PMID: 15113906 PMCID: PMC400335 DOI: 10.1128/jvi.78.10.5244-5257.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellular and molecular mechanisms of dysfunction and depletion of CD4+ T lymphocytes over the course of human immunodeficiency virus type 1 (HIV-1) infection are still incompletely understood, but chronic immune activation is thought to play an important role in disease progression. We studied CD4+ T-cell biology in CD4C/HIV transgenic (Tg) mice, in which Nef expression is sufficient to induce a severe AIDS-like disease including a preferential decrease of CD4+ T cells. We show here that Nef-expressing Tg CD4+ T cells exhibit an activated/memory-like phenotype which appears to be independent of antigenic stimulation, as documented in experiments involving breeding with AD10 TcR Tg mice. In addition, in vivo bromodeoxyuridine incorporation showed that a larger proportion of Tg than non-Tg CD4+ T cells entered the S phase. However, in vitro, Tg CD4+ T cells were found to have a very limited capacity to divide in response to stimulation with anti-CD3 and anti-CD28 or in allogeneic mixed leukocyte reactions. Interestingly, despite these observations, the deletion of Tg CD4+ T cells had little impact on the development of other AIDS-like organ phenotypes. Thus, the Nef-induced chronic activation of CD4+ T cells may exhaust the T-cell pool and may contribute to the thymic atrophy and the low number of CD4+ T cells observed in these Tg mice.
Collapse
Affiliation(s)
- Xiaoduan Weng
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Heckmann A, Waltzinger C, Jolicoeur P, Dreano M, Kosco-Vilbois MH, Sagot Y. IKK2 inhibitor alleviates kidney and wasting diseases in a murine model of human AIDS. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1253-62. [PMID: 15039214 PMCID: PMC1615343 DOI: 10.1016/s0002-9440(10)63213-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2003] [Indexed: 12/20/2022]
Abstract
Wasting and renal diseases are frequent complications of HIV (human immunodeficiency virus) infection and are associated with accelerated disease progression and increased mortality. Transgenic mice expressing HIV1 under control of the CD4 promoter develop an AIDS-like disease and were used in the present work to study HIV1-induced wasting and kidney pathology. In this study, we reported that disease evolution paralleled increases in serum urea and creatinine levels, indicating an early and progressive deterioration of kidney function; meanwhile the wasting syndrome characterized by up-regulation of the ubiquitine-proteasome pathway and increased level of serum 3-methyl-histidine levels occurred at later stages just prior to death. Further examination of kidney and muscle pathologies revealed a progressive accumulation of CD45(+) cells, first affecting the kidneys. In addition, the onset of disease is accompanied by elevated levels of circulating "regulated on activation, normal and secreted T cell expressed and secreted" (RANTES). These results prompted us to assess the effects of AS602868, a specific small molecule inhibitor of IkappaB kinase 2 (IKK2) on disease progression. Inhibition of the NF-kappaB pathway indeed resulted in increased lifespan, kidney and lean body mass preservation. These beneficial results were associated with a reduction of CD45(+) cells infiltrating the kidneys, amelioration of the renal architecture, and reduced level of circulating RANTES. Together our data provide evidence that IKK2 inhibitors have therapeutic relevance in the treatment of HIV1-associated disorders.
Collapse
|
35
|
Radja F, Kay DG, Albrecht S, Jolicoeur P. Oligodendrocyte-specific expression of human immunodeficiency virus type 1 Nef in transgenic mice leads to vacuolar myelopathy and alters oligodendrocyte phenotype in vitro. J Virol 2003; 77:11745-53. [PMID: 14557659 PMCID: PMC229323 DOI: 10.1128/jvi.77.21.11745-11753.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2003] [Accepted: 07/23/2003] [Indexed: 11/20/2022] Open
Abstract
Vacuolar myelopathy (VM) is a frequent central nervous system complication of human immunodeficiency virus type 1 (HIV-1) infection. We report here that transgenic (Tg) mice expressing even low levels of Nef in oligodendrocytes under the regulation of the myelin basic protein (MBP) promoter (MBP/HIV(Nef)) developed VM similar to the human disease in its appearance and topography. The spinal cords of these Tg mice showed lower levels of the myelin proteins MAG and CNPase and of the 21-kDa isoform of MBP prior to the development of vacuoles. In addition, Tg oligodendrocytes in primary in vitro cultures appeared morphologically more mature but, paradoxically, exhibited a less mature phenotype based on O4, O1, CNPase, and MBP staining. In particular, mature CNPase(+) MBP(+) Tg oligodendrocytes were less numerous than non-Tg oligodendrocytes. Therefore, Nef appears to affect the proper differentiation of oligodendrocytes. These data suggest that even low levels of Nef expression in human oligodendrocytes may be responsible for the development of VM in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Fatiha Radja
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | | | | | | |
Collapse
|