1
|
Benarroch E. What Are the Functions of Caveolins and Their Role in Neurologic Disorders? Neurology 2025; 104:e213341. [PMID: 39805058 DOI: 10.1212/wnl.0000000000213341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
|
2
|
Mou K, Wang H, Zhu S, Luo J, Wang J, Peng L, Lei Y, Zhang Y, Huang S, Zhao H, Li G, Xiang L, Luo Y. Comprehensive analysis of the prognostic and immunological role of cavins in non-small cell lung cancer. BMC Cancer 2024; 24:1525. [PMID: 39695458 DOI: 10.1186/s12885-024-13280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Caveolae, specialized and dynamic subdomains of the plasma membrane, have a crucial role in diverse cellular functions encompassing endocytosis, signal transduction, mechanosensation, lipid storage, and metabolism. Cavin family proteins are indispensable for caveolar formation and function. An increasing number of studies have found that cavins are involved in tumor growth, invasion, metastasis, and angiogenesis and may have dual roles in the regulation of cancer. However, the expression and prognostic value of cavins in non-small cell lung cancer (NSCLC) remain unexplored. In this study, the expression, survival data, immune infiltration, and functional enrichment of cavins in patients with NSCLC were investigated using multiple databases. Furthermore, different subtypes of cavin-binding proteins were identified through protein-protein interaction networks and k-means clustering. The results showed that the expression of Cavin-1-3 in NSCLC tissues was significantly lower than that in normal tissues, and that Cavin-2 is the major subtype of cavin that inhibits NSCLC progression. It regulates downstream signaling pathways, modulates the infiltration of immune cells and influences the prognosis of NSCLC. Related experiments also confirmed that Cavin-2 promotes the proliferation and metastasis of NSCLC cells. These findings suggest that cavins and their binding proteins may be novel biomarkers for NSCLC prognosis and immunotherapy, providing new treatment options for NSCLC.
Collapse
Affiliation(s)
- Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Siqi Zhu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Lei
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yunke Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shike Huang
- Department of Oncology, Hejiang County People's Hospital, Luzhou, China
| | - Huarong Zhao
- Department of Oncology, Hejiang County People's Hospital, Luzhou, China
| | - Gang Li
- Department of Oncology, Luzhou People's Hospital, Luzhou, China
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
3
|
Kawaguchi K, Fujita N. Shaping transverse-tubules: central mechanisms that play a role in the cytosol zoning for muscle contraction. J Biochem 2024; 175:125-131. [PMID: 37848047 PMCID: PMC10873525 DOI: 10.1093/jb/mvad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
A transverse-tubule (T-tubule) is an invagination of the plasma membrane penetrating deep into muscle cells. An extensive membrane network of T-tubules is crucial for rapid and synchronized signal transmission from the cell surface to the entire sarcoplasmic reticulum for Ca2+ release, leading to muscle contraction. T-tubules are also indispensable for the formation and positioning of other muscle organelles. Their structure and physiological roles are relatively well established; however, the mechanisms shaping T-tubules require further elucidation. Centronuclear myopathy (CNM), an inherited muscular disorder, accompanies structural defects in T-tubules. Membrane traffic-related genes, including MTM1 (Myotubularin 1), DNM2 (Dynamin 2), and BIN1 (Bridging Integrator-1), were identified as causative genes of CNM. In addition, causative genes for other muscle diseases are also reported to be involved in the formation and maintenance of T-tubules. This review summarizes current knowledge on the mechanisms of how T-tubule formation and maintenance is regulated.
Collapse
Affiliation(s)
- Kohei Kawaguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Naonobu Fujita
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, 4259 S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
4
|
Ayass MA, Tripathi T, Zhu K, Nair RR, Melendez K, Zhang J, Fatemi S, Okyay T, Griko N, Balcha Ghelan M, Pashkov V, Abi-Mosleh L. T helper (Th) cell profiles and cytokines/chemokines in characterization, treatment, and monitoring of autoimmune diseases. Methods 2023; 220:115-125. [PMID: 37967756 DOI: 10.1016/j.ymeth.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
Autoimmune diseases (AD) consist of a spectrum of disease entities whose etiologies are very complex and still not well understood. Every individual has the potential for developing AD under appropriate conditions because the body contains lymphocytes that are potentially reactive with self-antigens. The aims of this study are to (1) explore the flow cytometry method to identify the frequency of various circulating CD4+ T helper (Th) cell-subsets, including Th1, Th2, Th9, Th17, Th17.1, and Th22; (2) In parallel, to examine multiplex ELISA method for pathogenic inflammatory cytokines/chemokines, and (3) To assess the correlation of expression of T cell-subsets with serum cytokines/chemokines and understand its clinical importance with available AD treatments. We analyzed Th17, Th17.1, Th22, Th2, Th1, and Th9 Th cell populations and compared the concentrations of 67 cytokines/chemokines in healthy as well as AD-diagnosed patients. We observed that patients with autoimmune markers had significantly elevated percentages of naïve (Th17, Th22, and Th9) as well as memory (Th17 and Th22) Th cell-subsets, along with increased concentrations of cytokines/chemokines (Eotaxin, TNFβ, and FABP4). The percentage of Th cell-subsets correlated positively or negatively with the production of cytokines/chemokines of patients diagnosed with AD. Our study demonstrates that the naïve and memory Th cell-subsets with positive correlations to cytokines/chemokines show new diagnostic markers to predict the patients' outcome, while the negative correlation of cytokines/chemokines shows the response to autoimmune therapies. Our findings of Th cell-subsets by flow cytometry and cytokines/chemokines by multiplex ELISA suggest that CCR6+ Th cell-subsets (Th17, Th17.1, Th22, and Th9) contribute to our understanding of the pathogenesis of AD and identify the new onset of AD from the autoimmune spectrum. Our findings highlight the importance of CCR6+ as a possible marker in the characterization, treatment, and monitoring of AD.
Collapse
Affiliation(s)
| | | | - Kevin Zhu
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA
| | | | - Kristen Melendez
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA
| | - Jin Zhang
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA
| | | | - Tutku Okyay
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA
| | - Natalya Griko
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA
| | | | - Victor Pashkov
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA
| | - Lina Abi-Mosleh
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA.
| |
Collapse
|
5
|
Chi Y, Liu X, Chai J. A narrative review of changes in microvascular permeability after burn. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:719. [PMID: 33987417 PMCID: PMC8106041 DOI: 10.21037/atm-21-1267] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective We aimed to review and discuss some of the latest research results related to post-burn pathophysiological changes and provide some clues for future study. Background Burns are one of the most common and serious traumas and consist of a series of pathophysiological changes of thermal injury. Accompanied by thermal damage to skin and soft tissues, inflammatory mediators are released in large quantities. Changes in histamine, bradykinin, and cytokines such as vascular endothelial growth factor (VEGF), metabolic factors such as adenosine triphosphate (ATP), and activated neutrophils all affect the body’s vascular permeability. Methods We searched articles with subject words “microvascular permeability”, “burn” “endothelium”, and “endothelial barrier” in PubMed in English published from the beginning of database to Dec, 2020. Conclusions The essence of burn shock is the rapid and extensive fluid transfer in burn and non-burn tissue. After severe burns, the local and systemic vascular permeability increase, causing intravascular fluid extravasation, leading to a progressive decrease in effective circulation volume, an increase in systemic vascular resistance, a decrease in cardiac output, peripheral tissue edema, multiple organ failure, and even death. There are many cells, tissues, mediators and structures involved in the pathophysiological process of the damage to vascular permeability. Ulinastatin is a promising agent for this problem.
Collapse
Affiliation(s)
- Yunfei Chi
- Burn Institute, The Fourth Medical Center of the PLA General Hospital, Beijing, China
| | - Xiangyu Liu
- Burn Institute, The Fourth Medical Center of the PLA General Hospital, Beijing, China
| | - Jiake Chai
- Burn Institute, The Fourth Medical Center of the PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Yang R, Hao Q, Lu Q, Meng F, Niu J, Liu Z, Niu G, Yu X. Fabrication of small-structure red-emissive fluorescent probes for plasma membrane enables quantification of nuclear to cytoplasmic ratio in live cells and tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119338. [PMID: 33360060 DOI: 10.1016/j.saa.2020.119338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Nuclear to cytoplasmic ratio is one of the vital parameters in diagnosis of cancer by means of hematoxylin-eosin (HE) stained histopathology. However, HE histopathology dependent on mechanical tissue slice damages biosamples and exhibits insufficient accuracy. Herein, we rationally prepared two small-molecule plasma membrane fluorescent probes with red-emitting fluorescence for visualizing plasma membrane in living cells and tissues. Their fluorescence intensities are strongly affected by environmental viscosity, which enables the exclusive imaging of plasma membrane in high fidelity. The probes can visualize plasma membrane in SiHa and rat blood red cells. Particularly, the probes are able to visualize T-tubule (transverse tubule) in skeletal muscle tissues successfully, suggesting their ability to image plasma membrane in tissues. In cooperation with Hoechst 33342, the nuclear to cytoplasmic ratio was successfully qualified in live cells and tissues. We believe these probes may have potential applications in facilitating the study on histopathology and the related areas.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China
| | - Qiuhua Hao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China
| | - Qing Lu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China
| | - Fangfang Meng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China
| | - Jie Niu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China.
| | - Guangle Niu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China.
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China; Advanced Medical Research Institute, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
7
|
Abstract
Caveolae are specialised and dynamic plasma membrane subdomains, involved in many cellular functions including endocytosis, signal transduction, mechanosensing and lipid storage, trafficking, and metabolism. Two protein families are indispensable for caveola formation and function, namely caveolins and cavins. Mutations of genes encoding these caveolar proteins cause serious pathological conditions such as cardiomyopathies, skeletal muscle diseases, and lipodystrophies. Deregulation of caveola-forming protein expression is associated with many types of cancers including prostate cancer. The distinct function of secretion of the prostatic fluid, and the unique metabolic phenotype of prostate cells relying on lipid metabolism as a main bioenergetic pathway further suggest a significant role of caveolae and caveolar proteins in prostate malignancy. Accumulating in vitro, in vivo, and clinical evidence showed the association of caveolin-1 with prostate cancer grade, stage, metastasis, and drug resistance. In contrast, cavin-1 was found to exhibit tumour suppressive roles. Studies on prostate cancer were the first to show the distinct function of the caveolar proteins depending on their localisation within the caveolar compartment or as cytoplasmic or secreted proteins. In this review, we summarise the roles of caveola-forming proteins in prostate cancer and the potential of exploiting them as therapeutic targets or biological markers.
Collapse
|
8
|
Yu H, Li Y, Li L, Huang J, Wang X, Tang R, Jiang Z, Lv L, Chen F, Yu C, Yuan K. Functional reciprocity of proteins involved in mitosis and endocytosis. FEBS J 2020; 288:5850-5866. [PMID: 33300206 DOI: 10.1111/febs.15664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
Mitosis and endocytosis are two fundamental cellular processes essential for maintaining a eukaryotic life. Mitosis partitions duplicated chromatin enveloped in the nuclear membrane into two new cells, whereas endocytosis takes in extracellular substances through membrane invagination. These two processes are spatiotemporally separated and seemingly unrelated. However, recent studies have uncovered that endocytic proteins have moonlighting functions in mitosis, and mitotic complexes manifest additional roles in endocytosis. In this review, we summarize important proteins or protein complexes that participate in both processes, compare their mechanism of action, and discuss the rationale behind this multifunctionality. We also speculate on the possible origin of the functional reciprocity from an evolutionary perspective.
Collapse
Affiliation(s)
- Haibin Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yinshuang Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Li Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | | | - Xujuan Wang
- The High School Attached to Hunan Normal University, Changsha, China
| | - Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zhenghui Jiang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhong Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,The Biobank of Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Modular transient nanoclustering of activated β2-adrenergic receptors revealed by single-molecule tracking of conformation-specific nanobodies. Proc Natl Acad Sci U S A 2020; 117:30476-30487. [PMID: 33214152 DOI: 10.1073/pnas.2007443117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
None of the current superresolution microscopy techniques can reliably image the changes in endogenous protein nanoclustering dynamics associated with specific conformations in live cells. Single-domain nanobodies have been invaluable tools to isolate defined conformational states of proteins, and we reasoned that expressing these nanobodies coupled to single-molecule imaging-amenable tags could allow superresolution analysis of endogenous proteins in discrete conformational states. Here, we used anti-GFP nanobodies tagged with photoconvertible mEos expressed as intrabodies, as a proof-of-concept to perform single-particle tracking on a range of GFP proteins expressed in live cells, neurons, and small organisms. We next expressed highly specialized nanobodies that target conformation-specific endogenous β2-adrenoreceptor (β2-AR) in neurosecretory cells, unveiling real-time mobility behaviors of activated and inactivated endogenous conformers during agonist treatment in living cells. We showed that activated β2-AR (Nb80) is highly immobile and organized in nanoclusters. The Gαs-GPCR complex detected with Nb37 displayed higher mobility with surprisingly similar nanoclustering dynamics to that of Nb80. Activated conformers are highly sensitive to dynamin inhibition, suggesting selective targeting for endocytosis. Inactivated β2-AR (Nb60) molecules are also largely immobile but relatively less sensitive to endocytic blockade. Expression of single-domain nanobodies therefore provides a unique opportunity to capture highly transient changes in the dynamic nanoscale organization of endogenous proteins.
Collapse
|
10
|
A Role for Caveolin-3 in the Pathogenesis of Muscular Dystrophies. Int J Mol Sci 2020; 21:ijms21228736. [PMID: 33228026 PMCID: PMC7699313 DOI: 10.3390/ijms21228736] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Caveolae are the cholesterol-rich small invaginations of the plasma membrane present in many cell types including adipocytes, endothelial cells, epithelial cells, fibroblasts, smooth muscles, skeletal muscles and cardiac muscles. They serve as specialized platforms for many signaling molecules and regulate important cellular processes like energy metabolism, lipid metabolism, mitochondria homeostasis, and mechano-transduction. Caveolae can be internalized together with associated cargo. The caveolae-dependent endocytic pathway plays a role in the withdrawal of many plasma membrane components that can be sent for degradation or recycled back to the cell surface. Caveolae are formed by oligomerization of caveolin proteins. Caveolin-3 is a muscle-specific isoform, whose malfunction is associated with several diseases including diabetes, cancer, atherosclerosis, and cardiovascular diseases. Mutations in Caveolin-3 are known to cause muscular dystrophies that are collectively called caveolinopathies. Altered expression of Caveolin-3 is also observed in Duchenne’s muscular dystrophy, which is likely a part of the pathological process leading to muscle weakness. This review summarizes the major functions of Caveolin-3 in skeletal muscles and discusses its involvement in the pathology of muscular dystrophies.
Collapse
|
11
|
Hall TE, Martel N, Ariotti N, Xiong Z, Lo HP, Ferguson C, Rae J, Lim YW, Parton RG. In vivo cell biological screening identifies an endocytic capture mechanism for T-tubule formation. Nat Commun 2020; 11:3711. [PMID: 32709891 PMCID: PMC7381618 DOI: 10.1038/s41467-020-17486-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/26/2020] [Indexed: 11/09/2022] Open
Abstract
The skeletal muscle T-tubule is a specialized membrane domain essential for coordinated muscle contraction. However, in the absence of genetically tractable systems the mechanisms involved in T-tubule formation are unknown. Here, we use the optically transparent and genetically tractable zebrafish system to probe T-tubule development in vivo. By combining live imaging of transgenic markers with three-dimensional electron microscopy, we derive a four-dimensional quantitative model for T-tubule formation. To elucidate the mechanisms involved in T-tubule formation in vivo, we develop a quantitative screen for proteins that associate with and modulate early T-tubule formation, including an overexpression screen of the entire zebrafish Rab protein family. We propose an endocytic capture model involving firstly, formation of dynamic endocytic tubules at transient nucleation sites on the sarcolemma, secondly, stabilization by myofibrils/sarcoplasmic reticulum and finally, delivery of membrane from the recycling endosome and Golgi complex.
Collapse
Affiliation(s)
- Thomas E Hall
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Nick Martel
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.,Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Kensington, Australia
| | - Zherui Xiong
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Harriet P Lo
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - James Rae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ye-Wheen Lim
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia. .,Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
12
|
Mair D, Biskup S, Kress W, Abicht A, Brück W, Zechel S, Knop KC, Koenig FB, Tey S, Nikolin S, Eggermann K, Kurth I, Ferbert A, Weis J. Differential diagnosis of vacuolar myopathies in the NGS era. Brain Pathol 2020; 30:877-896. [PMID: 32419263 PMCID: PMC8017999 DOI: 10.1111/bpa.12864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/10/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Altered autophagy accompanied by abnormal autophagic (rimmed) vacuoles detectable by light and electron microscopy is a common denominator of many familial and sporadic non-inflammatory muscle diseases. Even in the era of next generation sequencing (NGS), late-onset vacuolar myopathies remain a diagnostic challenge. We identified 32 adult vacuolar myopathy patients from 30 unrelated families, studied their clinical, histopathological and ultrastructural characteristics and performed genetic testing in index patients and relatives using Sanger sequencing and NGS including whole exome sequencing (WES). We established a molecular genetic diagnosis in 17 patients. Pathogenic mutations were found in genes typically linked to vacuolar myopathy (GNE, LDB3/ZASP, MYOT, DES and GAA), but also in genes not regularly associated with severely altered autophagy (FKRP, DYSF, CAV3, COL6A2, GYG1 and TRIM32) and in the digenic facioscapulohumeral muscular dystrophy 2. Characteristic histopathological features including distinct patterns of myofibrillar disarray and evidence of exocytosis proved to be helpful to distinguish causes of vacuolar myopathies. Biopsy validated the pathogenicity of the novel mutations p.(Phe55*) and p.(Arg216*) in GYG1 and of the p.(Leu156Pro) TRIM32 mutation combined with compound heterozygous deletion of exon 2 of TRIM32 and expanded the phenotype of Ala93Thr-caveolinopathy and of limb-girdle muscular dystrophy 2i caused by FKRP mutation. In 15 patients no causal variants were detected by Sanger sequencing and NGS panel analysis. In 12 of these cases, WES was performed, but did not yield any definite mutation or likely candidate gene. In one of these patients with a family history of muscle weakness, the vacuolar myopathy was eventually linked to chloroquine therapy. Our study illustrates the wide phenotypic and genotypic heterogeneity of vacuolar myopathies and validates the role of histopathology in assessing the pathogenicity of novel mutations detected by NGS. In a sizable portion of vacuolar myopathy cases, it remains to be shown whether the cause is hereditary or degenerative.
Collapse
Affiliation(s)
- Dorothea Mair
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany.,Department of Neurology, Kassel School of Medicine, Klinikum Kassel, Kassel, Germany.,University of Southampton, Southampton, UK
| | - Saskia Biskup
- Centre for Genomics and Transcriptomics CeGaT, Tübingen, Germany
| | - Wolfram Kress
- Institute of Human Genetics, University Würzburg, Würzburg, Germany
| | | | - Wolfgang Brück
- Institute of Neuropathology, Göttingen University, Göttingen, Germany
| | - Sabrina Zechel
- Institute of Neuropathology, Göttingen University, Göttingen, Germany
| | | | | | - Shelisa Tey
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Stefan Nikolin
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Katja Eggermann
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Andreas Ferbert
- Department of Neurology, Kassel School of Medicine, Klinikum Kassel, Kassel, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
13
|
Shah DS, Nisr RB, Stretton C, Krasteva-Christ G, Hundal HS. Caveolin-3 deficiency associated with the dystrophy P104L mutation impairs skeletal muscle mitochondrial form and function. J Cachexia Sarcopenia Muscle 2020; 11:838-858. [PMID: 32090499 PMCID: PMC7296273 DOI: 10.1002/jcsm.12541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/22/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Caveolin-3 (Cav3) is the principal structural component of caveolae in skeletal muscle. Dominant pathogenic mutations in the Cav3 gene, such as the Limb Girdle Muscular Dystrophy-1C (LGMD1C) P104L mutation, result in substantial loss of Cav3 and myopathic changes characterized by muscle weakness and wasting. We hypothesize such myopathy may also be associated with disturbances in mitochondrial biology. Herein, we report studies assessing the effects of Cav3 deficiency on mitochondrial form and function in skeletal muscle cells. METHODS L6 myoblasts were stably transfected with Cav3P104L or expression of native Cav3 repressed by shRNA or CRISPR/Cas9 genome editing prior to performing fixed/live cell imaging of mitochondrial morphology, subcellular fractionation and immunoblotting, or analysis of real time mitochondrial respiration. Skeletal muscle from wild-type and Cav3-/- mice was processed for analysis of mitochondrial proteins by immunoblotting. RESULTS Caveolin-3 was detected in mitochondrial-enriched membranes isolated from mouse gastrocnemius muscle and L6 myoblasts. Expression of Cav3P104L in L6 myoblasts led to its targeting to the Golgi and loss of native Cav3 (>95%), including that associated with mitochondrial membranes. Cav3P104L reduced mitochondrial mass and induced fragmentation of the mitochondrial network that was associated with significant loss of proteins involved in mitochondrial biogenesis, respiration, morphology, and redox function [i.e. PGC1α, succinate dehyrdogenase (SDHA), ANT1, MFN2, OPA1, and MnSOD). Furthermore, Cav3P104L myoblasts exhibited increased mitochondrial cholesterol and loss of cardiolipin. Consistent with these changes, Cav3P104L expression reduced mitochondrial respiratory capacity and increased myocellular superoxide production. These morphological, biochemical, and functional mitochondrial changes were phenocopied in myoblasts in which Cav3 had been silenced/knocked-out using shRNA or CRISPR. Reduced mitochondrial mass, PGC1α, SDHA, ANT1, and MnSOD were also demonstrable in Cav3-/- mouse gastrocnemius. Strikingly, Cav3 re-expression in Cav3KO myoblasts restored its mitochondrial association and facilitated reformation of a tubular mitochondrial network. Significantly, re-expression also mitigated changes in mitochondrial superoxide, cholesterol, and cardiolipin content and recovered cellular respiratory capacity. CONCLUSIONS Our results identify Cav3 as an important regulator of mitochondrial homeostasis and reveal that Cav3 deficiency in muscle cells associated with the Cav3P104L mutation invokes major disturbances in mitochondrial respiration and energy status that may contribute to the pathology of LGMD1C.
Collapse
Affiliation(s)
- Dinesh S Shah
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK
| | - Raid B Nisr
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK
| | - Clare Stretton
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, School of Medicine, Saarland University, Homburg, Germany
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
14
|
Roos A, Hathazi D, Schara U. Immunofluorescence-Based Analysis of Caveolin-3 in the Diagnostic Management of Neuromuscular Diseases. Methods Mol Biol 2020; 2169:197-216. [PMID: 32548831 DOI: 10.1007/978-1-0716-0732-9_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Immunohistochemistry- and/or immunofluorescence-based analysis of muscular proteins represents a standard procedure in the diagnostic management of patients suffering from neuromuscular diseases such as "Caveolinopathies" which are caused by mutations in the CAV3 gene encoding for caveolin-3. Human caveolin-3 is a 151 amino acid sized transmembrane protein localized within caveolae, predominantly expressed in cardiac and skeletal muscle cells and involved in a diversity of cellular functions crucial for muscle cell homeostasis. Loss of caveolin-3 protein abundance is indicative for the presence of pathogenic mutations within the corresponding gene and thus for the diagnosis of "Caveolinopathies." Moreover, description of abnormal immunoreactivity findings for the caveolin-3 protein is increasing in the context of other neuromuscular diseases suggesting that profound knowledge of abnormal caveolin-3-expression and/or distribution findings can be decisive also for the diagnosis of other neurological diseases as well as for a better understanding of the biology of the protein. Here, we summarize the current knowledge about the caveolin-3, report on a protocol for immunofluorescence-based analysis of the protein in the diagnostic workup of neuromuscular patients-also considering problems encountered-and confirm as well as summarize already published abnormal histological findings in muscular pathologies beyond "Caveolinopathies."
Collapse
Affiliation(s)
- Andreas Roos
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Denisa Hathazi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ulrike Schara
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
15
|
Yan S, Wang Y, Zhang Y, Wang L, Zhao X, Du C, Gao P, Yan F, Liu F, Gong X, Guan Y, Cui X, Wang X, Xi Zhang C. Synaptotagmin-11 regulates the functions of caveolae and responds to mechanical stimuli in astrocytes. FASEB J 2019; 34:2609-2624. [PMID: 31908017 DOI: 10.1096/fj.201901715r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/04/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Caveolae play crucial roles in intracellular membrane trafficking and mechanosensation. In this study, we report that synaptotagmin-11 (Syt11), a synaptotagmin isoform associated with Parkinson's disease and schizophrenia, regulates both caveolae-mediated endocytosis and the caveolar response to mechanical stimuli in astrocytes. Syt11-knockout (KO) accelerated caveolae-mediated endocytosis. Interestingly, the caveolar structures on the cell surface were markedly fewer in the absence of Syt11. Caveolar disassembly in response to hypoosmotic stimuli and astrocyte swelling were both impaired in Syt11-KO astrocytes. Live imaging revealed that Syt11 left caveolar structures before cavin1 during hypoosmotic stress and returned earlier than cavin1 after isoosmotic recovery. Chronic hypoosmotic stress led to proteasome-mediated Syt11 degradation. In addition, Syt11-KO increased the turnover of cavin1 and EH domain-containing protein 2 (EHD2), accompanied by compromised membrane integrity, suggesting a mechanoprotective role of Syt11. Direct interactions between Syt11 and cavin1 and EHD2, but not caveolin-1, are found. Altogether, we propose that Syt11 stabilizes caveolar structures on the cell surface of astrocytes and regulates caveolar functions under physiological and pathological conditions through cavin1 and EHD2.
Collapse
Affiliation(s)
- Shuxin Yan
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yalong Wang
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yujia Zhang
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Le Wang
- Department of Neurobiology, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xiaofang Zhao
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Cuilian Du
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Pei Gao
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Feng Yan
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Fengwei Liu
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaoli Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Yuan Guan
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Department of Anesthesiology, Huaxin Hospital, First Hospital of Tsinghua University, Beijing, China
| | - Xiuyu Cui
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaomin Wang
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurobiology, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Claire Xi Zhang
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Bhattachan P, Rae J, Yu H, Jung W, Wei J, Parton RG, Dong B. Ascidian caveolin induces membrane curvature and protects tissue integrity and morphology during embryogenesis. FASEB J 2019; 34:1345-1361. [PMID: 31914618 DOI: 10.1096/fj.201901281r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 01/20/2023]
Abstract
Cell morphology and tissue integrity are essential for embryogenesis. Caveolins are membrane proteins that induce the formation of surface pits called caveolae that serve as membrane reservoirs for cell and tissue protection during development. In vertebrates, caveolin 1 (Cav1) and caveolin 3 (Cav3) are required for caveola formation. However, the formation of caveola and the function of caveolins in invertebrates are largely unknown. In this study, three caveolins, Cav-a, Cav-b, and CavY, are identified in the genome of the invertebrate chordate Ciona spp. Based on phylogenetic analysis, Cav-a is found to be closely related to the vertebrate Cav1 and Cav3. In situ hybridization shows that Cav-a is expressed in Ciona embryonic notochord and muscle. Cell-free experiments, model cell culture systems, and in vivo experiments demonstrate that Ciona Cav-a has the ability to induce membrane curvature at the plasma membrane. Knockdown of Cav-a in Ciona embryos causes loss of invaginations in the plasma membrane and results in the failure of notochord elongation and lumenogenesis. Expression of a dominant-negative Cav-a point mutation causes cells to change shape and become displaced from the muscle and notochord to disrupt tissue integrity. Furthermore, we demonstrate that Cav-a vesicles show polarized trafficking and localize at the luminal membrane during notochord lumenogenesis. Taken together, these results show that the invertebrate chordate caveolin from Ciona plays crucial roles in tissue integrity and morphology by inducing membrane curvature and intracellular vesicle trafficking during embryogenesis.
Collapse
Affiliation(s)
- Punit Bhattachan
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Haiyan Yu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - WooRam Jung
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Jiankai Wei
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, QLD, Australia
| | - Bo Dong
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
17
|
Introducing a mammalian nerve-muscle preparation ideal for physiology and microscopy, the transverse auricular muscle in the ear of the mouse. Neuroscience 2019; 439:80-105. [PMID: 31351140 DOI: 10.1016/j.neuroscience.2019.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 11/23/2022]
Abstract
A new mammalian neuromuscular preparation is introduced for physiology and microscopy of all sorts: the intrinsic muscle of the mouse ear. The great utility of this preparation is demonstrated by illustrating how it has permitted us to develop a wholly new technique for staining muscle T-tubules, the critical conductive-elements in muscle. This involves sequential immersion in dilute solutions of osmium and ferrocyanide, then tannic acid, and then uranyl acetate, all of which totally blackens the T-tubules but leaves the muscle pale, thereby revealing that the T-tubules in mouse ear-muscles become severely distorted in several pathological conditions. These include certain mouse-models of muscular dystrophy (specifically, dysferlin-mutations), certain mutations of muscle cytoskeletal proteins (specifically, beta-tubulin mutations), and also in denervation-fibrillation, as observed in mouse ears maintained with in vitro tissue-culture conditions. These observations permit us to generate the hypothesis that T-tubules are the "Achilles' heel" in several adult-onset muscular dystrophies, due to their unique susceptibility to damage via muscle lattice-dislocations. These new observations strongly encourage further in-depth studies of ear-muscle architecture, in the many available mouse-models of various devastating human muscle-diseases. Finally, we demonstrate that the delicate and defined physical characteristics of this 'new' mammalian muscle are ideal for ultrastructural study, and thereby facilitate the imaging of synaptic vesicle membrane recycling in mammalian neuromuscular junctions, a topic that is critical to myasthenia gravis and related diseases, but which has, until now, completely eluded electron microscopic analysis. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
|
18
|
Shang L, Chen T, Xian J, Deng Y, Huang Y, Zhao Q, Liang G, Liang Z, Lian F, Wei H, Huang Q. The caveolin-3 P104L mutation in LGMD-1C patients inhibits non-insulin-stimulated glucose metabolism and growth but promotes myocyte proliferation. Cell Biol Int 2019; 43:669-677. [PMID: 30958599 DOI: 10.1002/cbin.11144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 03/23/2019] [Indexed: 12/21/2022]
Abstract
The caveolin-3 (CAV3) protein is known to be specifically expressed in various myocytes, and skeletal muscle consumes most of the blood glucose as an energy source to maintain normal cell metabolism and function. The P104L mutation in the coding sequence of the human CAV3 gene leads to autosomal dominant disease limb-girdle muscular dystrophy type 1C (LGMD-1C). We previously reported that C2C12 cells transiently transfected with the P104L CAV3 mutant exhibited decreased glucose uptake and glycogen synthesis after insulin stimulation. The present study aimed to examine whether the P104L mutation affects C2C12 cell glucose metabolism, growth, and proliferation without insulin stimulation. C2C12 cells stably transfected with CAV3-P104L were established, and biochemical assays, western blot analysis and confocal microscopy were used to observe glucose metabolism as well as cell growth and proliferation and to determine the effect of the P104L mutation on the PI3K/Akt signaling pathway. Without insulin stimulation, C2C12 cells stably transfected with the P104L CAV3 mutant exhibited decreased glucose uptake and glycogen synthesis, decreased CAV3 expression and reduced localization of CAV3 and GLUT4 on the cell membrane. The P104L mutant significantly reduced the cell diameters, but accelerated cell proliferation. Akt phosphorylation was inhibited, and protein expression of GLUT4, p-GSK3β, and p-p70s6K, which are molecules downstream of Akt, was significantly decreased. The CAV3-P104L mutation inhibits glycometabolism and cell growth but accelerates C2C12 cell proliferation by reducing CAV3 protein expression and cell membrane localization, which may contribute to the pathogenesis of LGMD-1C.
Collapse
Affiliation(s)
- Lina Shang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Tingting Chen
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Jing Xian
- Department of Endocrinology, Guangxi Medical University First Affiliated Hospital, Nanning, 530022, Guangxi, China
| | - Yufeng Deng
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Yiyuan Huang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Qiwei Zhao
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Guining Liang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Zhifeng Liang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Fang Lian
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Hongqiao Wei
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Qin Huang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, Guangxi, China
| |
Collapse
|
19
|
Dystrophy-associated caveolin-3 mutations reveal that caveolae couple IL6/STAT3 signaling with mechanosensing in human muscle cells. Nat Commun 2019; 10:1974. [PMID: 31036801 PMCID: PMC6488599 DOI: 10.1038/s41467-019-09405-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Caveolin-3 is the major structural protein of caveolae in muscle. Mutations in the CAV3 gene cause different types of myopathies with altered membrane integrity and repair, expression of muscle proteins, and regulation of signaling pathways. We show here that myotubes from patients bearing the CAV3 P28L and R26Q mutations present a dramatic decrease of caveolae at the plasma membrane, resulting in abnormal response to mechanical stress. Mutant myotubes are unable to buffer the increase in membrane tension induced by mechanical stress. This results in impaired regulation of the IL6/STAT3 signaling pathway leading to its constitutive hyperactivation and increased expression of muscle genes. These defects are fully reversed by reassembling functional caveolae through expression of caveolin-3. Our study reveals that under mechanical stress the regulation of mechanoprotection by caveolae is directly coupled with the regulation of IL6/STAT3 signaling in muscle cells and that this regulation is absent in Cav3-associated dystrophic patients. Caveolae are mechanosensors and mutations of their coat proteins are implicated in muscle disorders, but molecular mechanisms are unclear. Here, the authors show that caveolae can regulate IL6/STAT3 signaling in muscle cells under stress, and that dystrophy related Cav3 mutant myotubes have reduced caveolae and upregulated IL6 signaling.
Collapse
|
20
|
Abstract
The plasma membrane of eukaryotic cells is not a simple sheet of lipids and proteins but is differentiated into subdomains with crucial functions. Caveolae, small pits in the plasma membrane, are the most abundant surface subdomains of many mammalian cells. The cellular functions of caveolae have long remained obscure, but a new molecular understanding of caveola formation has led to insights into their workings. Caveolae are formed by the coordinated action of a number of lipid-interacting proteins to produce a microdomain with a specific structure and lipid composition. Caveolae can bud from the plasma membrane to form an endocytic vesicle or can flatten into the membrane to help cells withstand mechanical stress. The role of caveolae as mechanoprotective and signal transduction elements is reviewed in the context of disease conditions associated with caveola dysfunction.
Collapse
Affiliation(s)
- Robert G. Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4060, Australia
| |
Collapse
|
21
|
Seemann E, Sun M, Krueger S, Tröger J, Hou W, Haag N, Schüler S, Westermann M, Huebner CA, Romeike B, Kessels MM, Qualmann B. Deciphering caveolar functions by syndapin III KO-mediated impairment of caveolar invagination. eLife 2017; 6. [PMID: 29202928 PMCID: PMC5716666 DOI: 10.7554/elife.29854] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022] Open
Abstract
Several human diseases are associated with a lack of caveolae. Yet, the functions of caveolae and the molecular mechanisms critical for shaping them still are debated. We show that muscle cells of syndapin III KO mice show severe reductions of caveolae reminiscent of human caveolinopathies. Yet, different from other mouse models, the levels of the plasma membrane-associated caveolar coat proteins caveolin3 and cavin1 were both not reduced upon syndapin III KO. This allowed for dissecting bona fide caveolar functions from those supported by mere caveolin presence and also demonstrated that neither caveolin3 nor caveolin3 and cavin1 are sufficient to form caveolae. The membrane-shaping protein syndapin III is crucial for caveolar invagination and KO rendered the cells sensitive to membrane tensions. Consistent with this physiological role of caveolae in counterpoising membrane tensions, syndapin III KO skeletal muscles showed pathological parameters upon physical exercise that are also found in CAVEOLIN3 mutation-associated muscle diseases.
Collapse
Affiliation(s)
- Eric Seemann
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Minxuan Sun
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Sarah Krueger
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Jessica Tröger
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Wenya Hou
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Natja Haag
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Susann Schüler
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Martin Westermann
- Electron Microscopy Center, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Christian A Huebner
- Institute for Human Genetics, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Bernd Romeike
- Institute of Pathology, Division of Neuropathology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Michael M Kessels
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Britta Qualmann
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
22
|
Lipina C, Hundal HS. Lipid modulation of skeletal muscle mass and function. J Cachexia Sarcopenia Muscle 2017; 8:190-201. [PMID: 27897400 PMCID: PMC5377414 DOI: 10.1002/jcsm.12144] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 12/22/2022] Open
Abstract
Loss of skeletal muscle mass is a characteristic feature of various pathologies including cancer, diabetes, and obesity, as well as being a general feature of ageing. However, the processes underlying its pathogenesis are not fully understood and may involve multiple factors. Importantly, there is growing evidence which supports a role for fatty acids and their derived lipid intermediates in the regulation of skeletal muscle mass and function. In this review, we discuss evidence pertaining to those pathways which are involved in the reduction, increase and/or preservation of skeletal muscle mass by such lipids under various pathological conditions, and highlight studies investigating how these processes may be influenced by dietary supplementation as well as genetic and/or pharmacological intervention.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
23
|
Zhu Y, Zhang C, Chen B, Chen R, Guo A, Hong J, Song LS. Cholesterol is required for maintaining T-tubule integrity and intercellular connections at intercalated discs in cardiomyocytes. J Mol Cell Cardiol 2016; 97:204-12. [PMID: 27255730 PMCID: PMC5002380 DOI: 10.1016/j.yjmcc.2016.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUNDS Low serum cholesterol levels are associated with cardiac arrhythmias and poor prognosis in patients with chronic heart failure. However, the underlying mechanisms by which decreases in cholesterol content lead to cardiac dysfunction remain unclear. Multiple studies have implicated damage to cardiac transverse (T)-tubules as a key mediator of excitation-contraction (E-C) coupling dysfunction and heart failure. Since the T-tubule membrane system is enriched in cholesterol, we hypothesized that depletion of membrane cholesterol promotes T-tubule remodeling and E-C coupling dysfunction. METHODS AND RESULTS We first examined the impact of membrane cholesterol depletion on T-tubule architecture by treating isolated C57BL/6 murine cardiomyocytes with methyl-β-cyclodextrin (MβCD). T-tubule structural integrity was progressively decreased by MβCD in a concentration- and time-dependent manner. Membrane cholesterol depletion also promoted a severe decrease in the amplitude of Ca(2+) transients and an increase in Ca(2+) release dyssynchrony as well as a significant increase in the frequency of spontaneous Ca(2+) sparks. Reintroduction of cholesterol restored T-tubule integrity and partially restored Ca(2+) handling properties in acutely-treated myocytes and slowed T-tubule deterioration in response to chronic MβCD exposure. Studies were extended to determine the impact of membrane cholesterol depletion on T-tubule structure in intact hearts. In addition to T-tubule remodeling, Langendorff perfusion of MβCD resulted in rapid and severe disruption of the intercellular connections between cardiomyocytes, in particular at intercalated disc regions in intact hearts. CONCLUSIONS These data provide the first evidence that cholesterol plays a critical role in maintaining cardiac T-tubule structure as well as the integrity of intercalated discs.
Collapse
Affiliation(s)
- Yanqi Zhu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China; Division of Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Caimei Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Biyi Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Rong Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China; Department of Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Ang Guo
- Division of Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jiang Hong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China; Department of Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA.
| |
Collapse
|
24
|
Abstract
Caveolae, small bulb-like pits, are the most abundant surface feature of many vertebrate cell types. The relationship of the structure of caveolae to their function has been a subject of considerable scientific interest in view of the association of caveolar dysfunction with human disease. In a recent study Lo et al. (1) investigated the organization and function of caveolae in skeletal muscle. Using quantitative 3D electron microscopy caveolae were shown to be predominantly organized into multilobed structures which provide a large reservoir of surface-connected membrane underlying the sarcolemma. These structures were preferentially disassembled in response to changes in membrane tension. Perturbation or loss of caveolae in mouse and zebrafish models suggested that caveolae can protect the muscle sarcolemma against damage in response to excessive membrane activity. Flattening of caveolae to release membrane into the bulk plasma membrane in response to increased membrane tension can allow cell shape changes and prevent membrane rupture. In addition, disassembly of caveolae can have widespread effects on lipid-based plasma membrane organization. These findings suggest that the ability of the caveolar membrane system to respond to mechanical forces is a crucial evolutionarily-conserved process which is compromised in disease conditions associated with mutations in key caveolar components.
Collapse
Affiliation(s)
- Harriet P Lo
- a The University of Queensland; Institute for Molecular Bioscience ; St. Lucia , Queensland , Australia
| | - Thomas E Hall
- a The University of Queensland; Institute for Molecular Bioscience ; St. Lucia , Queensland , Australia
| | - Robert G Parton
- a The University of Queensland; Institute for Molecular Bioscience ; St. Lucia , Queensland , Australia.,b Centre for Microscopy and Microanalysis ; St. Lucia , Queensland , Australia
| |
Collapse
|
25
|
Caveolin-1/-3: therapeutic targets for myocardial ischemia/reperfusion injury. Basic Res Cardiol 2016; 111:45. [PMID: 27282376 DOI: 10.1007/s00395-016-0561-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 01/20/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a major cause of morbidity and mortality worldwide. Caveolae, caveolin-1 (Cav-1), and caveolin-3 (Cav-3) are essential for the protective effects of conditioning against myocardial I/R injury. Caveolins are membrane-bound scaffolding proteins that compartmentalize and modulate signal transduction. In this review, we introduce caveolae and caveolins and briefly describe the interactions of caveolins in the cardiovascular diseases. We also review the roles of Cav-1/-3 in protection against myocardial ischemia and I/R injury, and in conditioning. Finally, we suggest several potential research avenues that may be of interest to clinicians and basic scientists. The information included, herein, is potentially useful for the design of future studies and should advance the investigation of caveolins as therapeutic targets.
Collapse
|
26
|
Lo HP, Nixon SJ, Hall TE, Cowling BS, Ferguson C, Morgan GP, Schieber NL, Fernandez-Rojo MA, Bastiani M, Floetenmeyer M, Martel N, Laporte J, Pilch PF, Parton RG. The caveolin-cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. J Cell Biol 2015; 210:833-49. [PMID: 26323694 PMCID: PMC4555827 DOI: 10.1083/jcb.201501046] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The caveolar membrane microdomain plays an integral role in stabilizing the muscle fiber surface in mice and zebrafish. Dysfunction of caveolae is involved in human muscle disease, although the underlying molecular mechanisms remain unclear. In this paper, we have functionally characterized mouse and zebrafish models of caveolae-associated muscle disease. Using electron tomography, we quantitatively defined the unique three-dimensional membrane architecture of the mature muscle surface. Caveolae occupied around 50% of the sarcolemmal area predominantly assembled into multilobed rosettes. These rosettes were preferentially disassembled in response to increased membrane tension. Caveola-deficient cavin-1−/− muscle fibers showed a striking loss of sarcolemmal organization, aberrant T-tubule structures, and increased sensitivity to membrane tension, which was rescued by muscle-specific Cavin-1 reexpression. In vivo imaging of live zebrafish embryos revealed that loss of muscle-specific Cavin-1 or expression of a dystrophy-associated Caveolin-3 mutant both led to sarcolemmal damage but only in response to vigorous muscle activity. Our findings define a conserved and critical role in mechanoprotection for the unique membrane architecture generated by the caveolin–cavin system.
Collapse
Affiliation(s)
- Harriet P Lo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susan J Nixon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas E Hall
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Belinda S Cowling
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de la Recherche Scientifique UMR7104, Strasbourg University, Illkirch 67404, France
| | - Charles Ferguson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia Center for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Garry P Morgan
- Center for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicole L Schieber
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Manuel A Fernandez-Rojo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michele Bastiani
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthias Floetenmeyer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia Center for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nick Martel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de la Recherche Scientifique UMR7104, Strasbourg University, Illkirch 67404, France
| | - Paul F Pilch
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia Center for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
27
|
Gupta R, Toufaily C, Annabi B. Caveolin and cavin family members: dual roles in cancer. Biochimie 2014; 107 Pt B:188-202. [PMID: 25241255 DOI: 10.1016/j.biochi.2014.09.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 09/04/2014] [Indexed: 12/16/2022]
Abstract
Caveolae are specialized plasma membrane subdomains with distinct lipid and protein compositions, which play an essential role in cell physiology through regulation of trafficking and signaling functions. The structure and functions of caveolae have been shown to require the proteins caveolins. Recently, members of the cavin protein family were found to be required, in concert with caveolins, for the formation and function of caveolae. Caveolins have a paradoxical role in the development of cancer formation. They have been involved in both tumor suppression and oncogenesis, depending on tumor type and progress stage. High expression of caveolins and cavins leads to inhibition of cancer-related pathways, such as growth factor signaling pathways. However, certain cancer cells that express caveolins and cavins have been shown to be more aggressive and metastatic because of their increased potential for anchorage-independent growth. Here, we will survey the functional roles of caveolins and of different cavin family members in cancer regulation.
Collapse
Affiliation(s)
- Reshu Gupta
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Département de Chimie, Université du Québec à Montréal, Québec H3C 3P8, Canada.
| | - Chirine Toufaily
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Département de Chimie, Université du Québec à Montréal, Québec H3C 3P8, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Département de Chimie, Université du Québec à Montréal, Québec H3C 3P8, Canada
| |
Collapse
|
28
|
Carotenuto F, Minieri M, Monego G, Fiaccavento R, Bertoni A, Sinigaglia F, Vecchini A, Carosella L, Di Nardo P. A diet supplemented with ALA-rich flaxseed prevents cardiomyocyte apoptosis by regulating caveolin-3 expression. Cardiovasc Res 2013; 100:422-31. [PMID: 24042018 DOI: 10.1093/cvr/cvt211] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIMS n-3 polyunsaturated fatty acids (PUFAs) induce beneficial effects on the heart, but the mechanisms through which these effects are operated are not completely clarified yet. Among others, cardiac diseases are often associated with increased levels of cytokines, such as tumour necrosis factor-α (TNF), that cause degeneration and death of cardiomyocytes. The present study has been carried out to investigate (i) the potential anti-apoptotic effects induced by the n-3 polyunsaturated α-linolenic acid (ALA) in experimental models of cardiac diseases characterized by high levels of TNF, and (ii) the potential role of caveolin-3 (Cav-3) in the mechanisms involved in this process. METHODS AND RESULTS An ALA-rich flaxseed diet, administered from weaning to hereditary cardiomyopathic hamsters, prevented the onset of myocardial apoptosis associated with high plasma and tissue levels of TNF preserving caveolin-3 expression. To confirm these findings, isolated neonatal mouse cardiomyocytes were exposed to TNF to induce apoptosis. ALA pre-treatment greatly enhanced Cav-3 expression hampering the internalization of the caveolar TNF receptor and, thus, determining the abortion of the apoptotic vs. survival cascade. CONCLUSION This study unveiled the Cav-3 pivotal role in defending cardiomyocytes against the TNF pro-apoptotic action and the ALA capacity to regulate this mechanism preventing cardiac degenerative diseases.
Collapse
Affiliation(s)
- Felicia Carotenuto
- Laboratorio di Cardiologia Molecolare e Cellulare, Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier, 1, Roma 00133, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fridolfsson HN, Patel HH. Caveolin and caveolae in age associated cardiovascular disease. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2013; 10:66-74. [PMID: 23610576 PMCID: PMC3627709 DOI: 10.3969/j.issn.1671-5411.2013.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/15/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022]
Abstract
It is estimated that the elderly (> 65 years of age) will increase from 13%−14% to 25% by 2035. If this trend continues, > 50% of the United States population and more than two billion people worldwide will be “aged” in the next 50 years. Aged individuals face formidable challenges to their health, as aging is associated with a myriad of diseases. Cardiovascular disease is the leading cause of morbidity and mortality in the United States with > 50% of mortality attributed to coronary artery disease and > 80% of these deaths occurring in those age 65 and older. Therefore, age is an important predictor of cardiovascular disease. The efficiency of youth is built upon cellular signaling scaffolds that provide tight and coordinated signaling. Lipid rafts are one such scaffold of which caveolae are a subset. In this review, we consider the importance of caveolae in common cardiovascular diseases of the aged and as potential therapeutic targets. We specifically address the role of caveolin in heart failure, myocardial ischemia, and pulmonary hypertension.
Collapse
Affiliation(s)
- Heidi N Fridolfsson
- Departments of Anesthesiology, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
30
|
Whiteley G, Collins RF, Kitmitto A. Characterization of the molecular architecture of human caveolin-3 and interaction with the skeletal muscle ryanodine receptor. J Biol Chem 2012; 287:40302-16. [PMID: 23071107 PMCID: PMC3504746 DOI: 10.1074/jbc.m112.377085] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Caveolin-3 (cav-3), an integral membrane protein, is a building block of caveolae as well as a regulator of a number of physiological processes by facilitating the formation of multiprotein signaling complexes. We report that the expression of cav-3 in insect (Sf9) cells induces caveola formation, comparable in size with those observed in native tissue. We have also purified the recombinant cav-3 determining that it forms an oligomer of ∼220 kDa. We present the first three-dimensional structure for cav-3 (using transmission electron microscopy and single particle analysis methods) and show that nine cav-3 monomers assemble to form a complex that is toroidal in shape, ∼16.5 nm in diameter and ∼ 5.5 nm in height. Labeling experiments and reconstitution of the purified cav-3 into liposomes have allowed a proposal for the orientation of the protein with respect to the membrane. We have identified multiple caveolin-binding motifs within the ryanodine receptor (RyR1) sequence employing a bioinformatic analysis. We have then shown experimentally that there is a direct interaction between recombinant cav-3 nonamers and purified RyR1 homotetramers that would imply that at least one of the predicted cav-3-binding sites is exposed within the fully assembled RyR1 structure. The cav-3 three-dimensional model provides new insights as to how a cav-3 oligomer can bind multiple partners in close proximity to form signaling complexes. Furthermore, a direct interaction with RyR1 suggests a possible role for cav-3 as a modifier of muscle excitation-contraction coupling and/or for localization of the receptor to regions of the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Gareth Whiteley
- School of Biomedicine, Cardiovascular Group, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9NT, UK
| | | | | |
Collapse
|
31
|
Milone M, Mcevoy KM, Sorenson EJ, Daube JR. Myotonia associated with caveolin-3 mutation. Muscle Nerve 2012; 45:897-900. [DOI: 10.1002/mus.23270] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
|
33
|
Lowalekar SK, Cristofaro V, Radisavljevic ZM, Yalla SV, Sullivan MP. Loss of bladder smooth muscle caveolae in the aging bladder. Neurourol Urodyn 2012; 31:586-92. [PMID: 22374691 DOI: 10.1002/nau.21217] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/15/2011] [Indexed: 12/16/2022]
Abstract
AIMS Caveolae are specialized regions of the cell membrane that modulate signal transduction and alterations in these structures affect bladder smooth muscle (BSM) contraction. Since bladder dysfunctions are common in the elderly, we evaluated the effect of aging on the morphology of caveolae and caveolin protein expression in BSM. METHODS Caveolar morphology (number, size, and depth) in BSM was determined from electron microscopy images of young (10 weeks), adult (6-month old), and old (12-month old) rat urinary bladders. Changes in expression levels of caveolin proteins with age were investigated by Western blot and immunofluorescence microscopy. Caveolin-3 gene expression was determined by real-time RT-PCR in young and 19-month-old rat bladders. RESULTS Twelve-month-old animals exhibited 50% fewer BSM caveolae compared to young (P < 0.01). The area of caveolae was significantly decreased at 6 and 12 months. Despite a decrease in the number of BSM caveolae at 12 months, the expression of caveolin-1 and cavin-1 were unaltered with age. In contrast, caveolin-2 and caveolin-3 protein expression and immunoreactivity were reduced in BSM at 6 and 12 months of age. Caveolin-3 gene expression was also downregulated at 19 months compared to young animals. CONCLUSION Biological aging significantly decreases BSM caveolae number and morphology with associated selective alteration in caveolin protein expression. Since caveolae are protected membrane regions that regulate signal transduction, age-related alterations in caveolae and caveolin protein expression could alter BSM contractility resulting in bladder dysfunctions of the elderly.
Collapse
Affiliation(s)
- Samar K Lowalekar
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
34
|
Chen B, Li Y, Jiang S, Xie YP, Guo A, Kutschke W, Zimmerman K, Weiss RM, Miller FJ, Anderson ME, Song LS. β-Adrenergic receptor antagonists ameliorate myocyte T-tubule remodeling following myocardial infarction. FASEB J 2012; 26:2531-7. [PMID: 22375019 DOI: 10.1096/fj.11-199505] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
β-Adrenergic receptor (AR) blockers provide substantial clinical benefits, including improving overall survival and left ventricular (LV) function following myocardial infarction (MI), though the mechanisms remain incompletely defined. The transverse-tubule (T-tubule) system of ventricular myocytes is an important determinant of cardiac excitation-contraction function. T-tubule remodeling occurs early during LV failure. We hypothesized that β-AR blockers prevent T-tubule remodeling and thereby provide therapeutic benefits. A murine model of MI was utilized to examine the effect of β-AR blockers on T-tubule remodeling following LV MI. We applied the in situ imaging of T-tubule structure from Langendorff-perfused intact hearts with laser scanning confocal microscopy. We found that MI caused remarkable T-tubule remodeling near the infarction border zone and moderate LV remodeling remote from the MI. Metoprolol and carvedilol administered 6 d after MI for 4 wk each increased the T-tubule integrity at the remote and border zones. At the molecular level, both β-AR blockers restored border and remote zone expression of junctophilin-2 (JP-2), which is involved in T-tubule organization and formation of the T-tubule/sarcoplasmic reticulum junctions. In contrast, β-AR blockers had no significant effects on caveolin-3 expression. In summary, our data show that β-AR antagonists can protect against T-tubule remodeling after MI, suggesting a novel therapeutic mechanism of action for this drug class. Preservation of JP-2 expression may contribute to the beneficial effects of metoprolol and carvedilol on T-tubule remodeling.
Collapse
Affiliation(s)
- Biyi Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Caveolins serve as a platform in plasma membrane associated caveolae to orchestrate various signaling molecules to effectively communicate extracellular signals into the interior of cell. All three types of caveolin, Cav-1, Cav-2 and Cav-3 are expressed throughout the cardiovascular system especially by the major cell types involved including endothelial cells, cardiac myocytes, smooth muscle cells and fibroblasts. The functional significance of caveolins in the cardiovascular system is evidenced by the fact that caveolin loss leads to the development of severe cardiac pathology. Caveolin gene mutations are associated with altered expression of caveolin protein and inherited arrhythmias. Altered levels of caveolins and related downstream signaling molecules in cardiomyopathies validate the integral participation of caveolin in normal cardiac physiology. This chapter will provide an overview of the role caveolins play in cardiovascular disease. Furthering our understanding of the role for caveolins in cardiovascular pathophysiology has the potential to lead to the manipulation of caveolins as novel therapeutic targets.
Collapse
|
36
|
Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S, Lisanti MP. Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:423-67. [PMID: 22077552 DOI: 10.1146/annurev-pathol-011811-120856] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Caveolins are a family of membrane-bound scaffolding proteins that compartmentalize and negatively regulate signal transduction. Recent studies have implicated a loss of caveolin-1 (Cav-1) expression in the pathogenesis of human cancers. Loss of Cav-1 expression in cancer-associated fibroblasts results in an activated tumor microenvironment, thereby driving early tumor recurrence, metastasis, and poor clinical outcome in breast and prostate cancers. We describe various paracrine signaling mechanism(s) by which the loss of stromal Cav-1 promotes tumor progression, including fibrosis, extracellular matrix remodeling, and the metabolic/catabolic reprogramming of cancer-associated fibroblast, to fuel the growth of adjacent tumor cells. It appears that oxidative stress is the root cause of initiation of the loss of stromal Cav-1 via autophagy, which provides further impetus for the use of antioxidants in anticancer therapy. Finally, we discuss the functional role of Cav-1 in epithelial cancer cells.
Collapse
Affiliation(s)
- Federica Sotgia
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Gazzerro E, Bonetto A, Minetti C. Caveolinopathies: translational implications of caveolin-3 in skeletal and cardiac muscle disorders. HANDBOOK OF CLINICAL NEUROLOGY 2011; 101:135-142. [PMID: 21496630 DOI: 10.1016/b978-0-08-045031-5.00010-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Caveolae are specialized lipid rafts localized on the cytoplasmic surface of the sarcolemmal membrane. Caveolae contribute to the maintenance of plasma membrane integrity, constitute specific macromolecular complexes that provide highly localized regulation of ion channels, and regulate vesicular trafficking and signal transduction. In skeletal muscle, the main structural assembly of caveolae is mediated by caveolin-3. Another family of adapter proteins, the cavins, is involved in the regulation of caveolae function and in the trafficking of caveolin-derived structures. Caveolin-3 defects lead to four distinct skeletal muscle disease phenotypes: limb-girdle muscular dystrophy, rippling muscle disease, distal myopathy, and hyperCKemia. Many patients show an overlap of these symptoms, and the same mutation can be linked to different clinical phenotypes. An ever-growing interest is also focused on the association between caveolin-3 mutations and heart disorders. Indeed, caveolin-3 mutants have been described in a patient with hypertrophic cardiomyopathy and two patients with dilated cardiomyopathy, and mutations in the caveolin-3 gene (CAV3) have been identified in patients affected by congenital long QT syndrome. Although caveolin-3 deficiency represents the primary event, multiple secondary molecular mechanisms lead to muscle tissue damage. Among these, sarcolemmal membrane alterations, disorganization of skeletal muscle T-tubule network, and disruption of distinct cell signaling pathways have been determined.
Collapse
Affiliation(s)
- E Gazzerro
- Unit of Muscular and Neurodegenerative Diseases, G. Gaslini Institute, Genova, Italy
| | | | | |
Collapse
|
38
|
Hoshijima M, Hayashi T, Jeon YE, Fu Z, Gu Y, Dalton ND, Ellisman MH, Xiao X, Powell FL, Ross J. Delta-sarcoglycan gene therapy halts progression of cardiac dysfunction, improves respiratory failure, and prolongs life in myopathic hamsters. Circ Heart Fail 2010; 4:89-97. [PMID: 21036890 DOI: 10.1161/circheartfailure.110.957258] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The BIO14.6 hamster provides a useful model of hereditary cardiomyopathies and muscular dystrophy. Previous δ-sarcoglycan (δSG) gene therapy (GT) studies were limited to neonatal and young adult animals and prevented the development of cardiac and skeletal muscle dysfunction. GT of a pseudophosphorylated mutant of phospholamban (S16EPLN) moderately alleviated the progression of cardiomyopathy. METHODS AND RESULTS We treated 4-month-old BIO14.6 hamsters with established cardiac and skeletal muscle diseases intravenously with a serotype-9 adeno-associated viral vector carrying δSG alone or in combination with S16EPLN. Before treatment at age 14 weeks, the left ventricular fractional shortening by echocardiography was 31.3% versus 45.8% in normal hamsters. In a randomized trial, GT halted progression of left ventricular dilation and left ventricular dysfunction. Also, respiratory function improved. Addition of S16EPLN had no significant additional effects. δSG-GT prevented severe degeneration of the transverse tubular system in cardiomyocytes (electron tomography) and restored distribution of dystrophin and caveolin-3. All placebo-treated hamsters, except animals removed for the hemodynamic study, died with heart failure between 34 and 67 weeks of age. In the GT group, signs of cardiac and respiratory failure did not develop, and animals lived for 92 weeks or longer, an age comparable to that reported in normal hamsters. CONCLUSION GT was highly effective in BIO14.6 hamsters even when given in late-stage disease, a finding that may carry implications for the future treatment of hereditary cardiac and muscle diseases in humans.
Collapse
Affiliation(s)
- Masahiko Hoshijima
- Center for Research in Biological Systems, the Department of Medicine, National Center for Microscopy and Imaging Research, University of California-San Diego, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fiaccavento R, Carotenuto F, Vecchini A, Binaglia L, Forte G, Capucci E, Maccari AM, Minieri M, Di Nardo P. An omega-3 fatty acid-enriched diet prevents skeletal muscle lesions in a hamster model of dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2176-84. [PMID: 20829440 DOI: 10.2353/ajpath.2010.100174] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Currently, despite well-known mutational causes, a universal treatment for neuromuscular disorders is still lacking, and current therapeutic efforts are mainly restricted to symptomatic treatments. In the present study, δ-sarcoglycan-null dystrophic hamsters were fed a diet enriched in flaxseed-derived ω3 α-linolenic fatty acid from weaning until death. α-linolenic fatty acid precluded the dystrophic degeneration of muscle morphology and function. In fact, in dystrophic animals fed flaxseed-derived α-linolenic fatty acid, the histological appearance of the muscular tissue was improved, the proliferation of interstitial cells was decreased, and the myogenic differentiation originated new myocytes to repair the injured muscle. In addition, muscle myofibers were larger and cell membrane integrity was preserved, as witnessed by the correct localization of α-, β-, and γ-sarcoglycans and α-dystroglycan. Furthermore, the cytoplasmic accumulation of both β-catenin and caveolin-3 was abolished in dystrophic hamster muscle fed α-linolenic fatty acid versus control animals fed standard diet, while α-myosin heavy chain was expressed at nearly physiological levels. These findings, obtained by dietary intervention only, introduce a novel concept that provides evidence that the modulation of the plasmalemma lipid profile could represent an efficacious strategy to ameliorate human muscular dystrophy.
Collapse
Affiliation(s)
- Roberta Fiaccavento
- Laboratorio di Cardiologia Molecolare e Cellulare, Dipartimento di Medicina Interna, Università di Roma Tor Vergata, Via Montpellier, 1, 00133 Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hansen CG, Nichols BJ. Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol 2010; 20:177-86. [PMID: 20153650 DOI: 10.1016/j.tcb.2010.01.005] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/07/2010] [Accepted: 01/11/2010] [Indexed: 01/29/2023]
Abstract
Caveolae are ampullate (flask-shaped) invaginations that are abundant in the plasma membrane of many mammalian cell types. Although caveolae are implicated in a wide range of processes including endothelial transcytosis, lipid homeostasis and cellular signalling, a detailed molecular picture of many aspects of their function has been elusive. Until recently, the only extensively characterised protein components of caveolae were the caveolins. Recently, data from several laboratories have demonstrated that a family of four related proteins, termed cavins 1-4, plays key roles in caveolar biogenesis and function. Salient properties of the cavin family include their propensity to form complexes with each other and their different but overlapping tissue distribution. This review summarises recent data on the cavins, and sets them in the context of open questions on the construction and function of caveolae. The discovery of cavins implies that caveolae might have unexpectedly diverse structural properties, in accord with the wide range of functions attributed to these 'little caves'.
Collapse
|
41
|
Navarro C, Teijeira S. Molecular diagnosis of muscular dystrophies, focused on limb girdle muscular dystrophies. ACTA ACUST UNITED AC 2009; 3:631-47. [PMID: 23496048 DOI: 10.1517/17530050903313988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Muscular dystrophies include a spectrum of muscle disorders, some of which are phenotypically well characterized. The identification of dystrophin as the causative factor in Duchenne muscular dystrophy has led to the development of molecular genetics and has facilitated the division of muscular dystrophies into distinct groups, among which are the 'limb girdle muscular dystrophies'. OBJECTIVES This article reviews the methodology to be used in the diagnosis of muscular dystrophies, focused on the groups of limb girdle muscular dystrophies, and the development of new strategies to reach a final molecular diagnosis. METHOD A literature review (Medline) from 1985 to the present. CONCLUSION Immunohistochemistry and western blotting analyses of the proteins involved in the various forms of muscular dystrophies have permitted a refined pathological approach necessary to conduct genetic studies and to offer appropriate genetic counseling. The application of molecular medicine in genetic muscular dystrophies also brings great hope to the therapeutic management of these patients.
Collapse
Affiliation(s)
- Carmen Navarro
- University Hospital of Vigo, Department of Pathology and Neuropathology, Meixoeiro, s/n, 36200 Vigo - Pontevedra, Spain +34 986 81 11 11 ext. 211661 ; +34 986 27 64 16 ;
| | | |
Collapse
|
42
|
Hayashi YK, Matsuda C, Ogawa M, Goto K, Tominaga K, Mitsuhashi S, Park YE, Nonaka I, Hino-Fukuyo N, Haginoya K, Sugano H, Nishino I. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest 2009; 119:2623-33. [PMID: 19726876 DOI: 10.1172/jci38660] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 06/03/2009] [Indexed: 12/23/2022] Open
Abstract
Caveolae are invaginations of the plasma membrane involved in many cellular processes, including clathrin-independent endocytosis, cholesterol transport, and signal transduction. They are characterized by the presence of caveolin proteins. Mutations that cause deficiency in caveolin-3, which is expressed exclusively in skeletal and cardiac muscle, have been linked to muscular dystrophy. Polymerase I and transcript release factor (PTRF; also known as cavin) is a caveolar-associated protein suggested to play an essential role in the formation of caveolae and the stabilization of caveolins. Here, we identified PTRF mutations in 5 nonconsanguineous patients who presented with both generalized lipodystrophy and muscular dystrophy. Muscle hypertrophy, muscle mounding, mild metabolic complications, and elevated serum creatine kinase levels were observed in these patients. Skeletal muscle biopsies revealed chronic dystrophic changes, deficiency and mislocalization of all 3 caveolin family members, and reduction of caveolae structure. We generated expression constructs recapitulating the human mutations; upon overexpression in myoblasts, these mutations resulted in PTRF mislocalization and disrupted physical interaction with caveolins. Our data confirm that PTRF is essential for formation of caveolae and proper localization of caveolins in human cells and suggest that clinical features observed in the patients with PTRF mutations are associated with a secondary deficiency of caveolins.
Collapse
Affiliation(s)
- Yukiko K Hayashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
In muscle tissue the protein caveolin-3 forms caveolae--flask-shaped invaginations localized on the cytoplasmic surface of the sarcolemmal membrane. Caveolae have a key role in the maintenance of plasma membrane integrity and in the processes of vesicular trafficking and signal transduction. Mutations in the caveolin-3 gene lead to skeletal muscle pathology through multiple pathogenetic mechanisms. Indeed, caveolin-3 deficiency is associated to sarcolemmal membrane alterations, disorganization of skeletal muscle T-tubule network and disruption of distinct cell-signaling pathways. To date, there have been 30 caveolin-3 mutations identified in the human population. Caveolin-3 defects lead to four distinct skeletal muscle disease phenotypes: limb girdle muscular dystrophy, rippling muscle disease, distal myopathy, and hyperCKemia. In addition, one caveolin-3 mutant has been described in a case of hypertrophic cardiomyopathy. Many patients show an overlap of these symptoms and the same mutation can be linked to different clinical phenotypes. This variability can be related to additional genetic or environmental factors. This review will address caveolin-3 biological functions in muscle cells and will describe the muscle and heart disease phenotypes associated with caveolin-3 mutations.
Collapse
|
44
|
Merrick D, Stadler LKJ, Larner D, Smith J. Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation. Dis Model Mech 2009; 2:374-88. [PMID: 19535499 DOI: 10.1242/dmm.001008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Examination of embryonic myogenesis of two distinct, but functionally related, skeletal muscle dystrophy mutants (mdx and cav-3(-/-)) establishes for the first time that key elements of the pathology of Duchenne muscular dystrophy (DMD) and limb-girdle muscular dystrophy type 1C (LGMD-1c) originate in the disruption of the embryonic cardiac and skeletal muscle patterning processes. Disruption of myogenesis occurs earlier in mdx mutants, which lack a functional form of dystrophin, than in cav-3(-/-) mutants, which lack the Cav3 gene that encodes the protein caveolin-3; this finding is consistent with the milder phenotype of LGMD-1c, a condition caused by mutations in Cav3, and the earlier [embryonic day (E)9.5] expression of dystrophin. Myogenesis is severely disrupted in mdx embryos, which display developmental delays; myotube morphology and displacement defects; and aberrant stem cell behaviour. In addition, the caveolin-3 protein is elevated in mdx embryos. Both cav-3(-/-) and mdx mutants (from E15.5 and E11.5, respectively) exhibit hyperproliferation and apoptosis of Myf5-positive embryonic myoblasts; attrition of Pax7-positive myoblasts in situ; and depletion of total Pax7 protein in late gestation. Furthermore, both cav-3(-/-) and mdx mutants have cardiac defects. In cav-3(-/-) mutants, there is a more restricted phenotype comprising hypaxial muscle defects, an excess of malformed hypertrophic myotubes, a twofold increase in myonuclei, and reduced fast myosin heavy chain (FMyHC) content. Several mdx mutant embryo pathologies, including myotube hypotrophy, reduced myotube numbers and increased FMyHC, have reciprocity with cav-3(-/-) mutants. In double mutant (mdxcav-3(+/-)) embryos that are deficient in dystrophin (mdx) and heterozygous for caveolin-3 (cav-3(+/-)), whereby caveolin-3 is reduced to 50% of wild-type (WT) levels, these phenotypes are severely exacerbated: intercostal muscle fibre density is reduced by 71%, and Pax7-positive cells are depleted entirely from the lower limbs and severely attenuated elsewhere; these data suggest a compensatory rather than a contributory role for the elevated caveolin-3 levels that are found in mdx embryos. These data establish a key role for dystrophin in early muscle formation and demonstrate that caveolin-3 and dystrophin are essential for correct fibre-type specification and emergent stem cell function. These data plug a significant gap in the natural history of muscular dystrophy and will be invaluable in establishing an earlier diagnosis for DMD/LGMD and in designing earlier treatment protocols, leading to better clinical outcome for these patients.
Collapse
Affiliation(s)
- Deborah Merrick
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
45
|
Immunohistochemical evidence of caveolin-1 expression in the human fetal and neonatal striated muscle and absence in the adult's. Appl Immunohistochem Mol Morphol 2009; 16:267-73. [PMID: 18301242 DOI: 10.1097/pai.0b013e31812e4b0e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Caveolin-1 (Cav-1) is a 22-kd protein, which exerts essential roles in the regulation of cell proliferation and in transmembrane transport processes. It is mainly expressed in adipocytes, smooth muscle, fibroblasts, and endothelial cells. Its expression in striated muscle fibers is controversial. Indeed, most authors have attributed Cav-1 detection in striated muscle to endothelial cells, adipocytes, and fibroblasts secretion. Nonetheless, recent in vitro studies have shown that Cav-1 is expressed in L6 myoblasts and maintained during the differentiation process. In view of this, and, because only one study has heretofore explored Cav-1 expression in human striated muscle, the aim of the present study was to evaluate and to compare Cav-1 immunohistochemical expression in the human striated muscles of fetus, newborn, and adult. DESIGN Samples of skeletal muscles of different sites and of myocardium were taken at autopsy from 13 fetuses and 4 newborns and submitted to the immunohistochemical analysis for Cav-1 together with 10 samples of adult skeletal muscle. RESULTS Myocardial fibers displayed a weak immunoreaction in all samples, from both the newborns and the fetuses, independently of the week of gestation. Conversely, skeletal muscle fibers were only labeled in specimens from fetuses at late gestation and from the newborns, whereas no immunoreaction was evidenced in muscles taken from fetuses at mid-gestation and in the adult samples. CONCLUSIONS This novel and unexpected pattern of Cav-1 expression in human skeletal muscle suggests a role for Cav-1 in terminal differentiation processes, which need to be clarified by further studies.
Collapse
|
46
|
Plasma membrane removal in rat skeletal muscle fibers reveals caveolin-3 hot-spots at the necks of transverse tubules. Exp Cell Res 2009; 315:1015-28. [DOI: 10.1016/j.yexcr.2008.11.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/11/2008] [Accepted: 11/30/2008] [Indexed: 02/07/2023]
|
47
|
Lach B, Tarnopolsky M, Nguyen C. Sarcoplasmic hexagonally cross-linked tubular arrays immunostain for caveolin-3: an excess caveolinopathy? Acta Neuropathol 2009; 117:339-41. [PMID: 19184067 DOI: 10.1007/s00401-009-0487-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 11/29/2022]
|
48
|
Weiss N, Couchoux H, Legrand C, Berthier C, Allard B, Jacquemond V. Expression of the muscular dystrophy-associated caveolin-3(P104L) mutant in adult mouse skeletal muscle specifically alters the Ca(2+) channel function of the dihydropyridine receptor. Pflugers Arch 2008; 457:361-75. [PMID: 18509671 DOI: 10.1007/s00424-008-0528-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/30/2008] [Accepted: 05/07/2008] [Indexed: 12/11/2022]
Abstract
Caveolins are plasma-membrane-associated proteins potentially involved in a variety of signalling pathways. Different mutations in CAV3, the gene encoding for the muscle-specific isoform caveolin-3 (Cav-3), lead to muscle diseases, but the underlying molecular mechanisms remain largely unknown. Here, we explored the functional consequences of a Cav-3 mutation (P104L) inducing the 1C type limb-girdle muscular dystrophy (LGMD 1C) in human on intracellular Ca(2+) regulation of adult skeletal muscle fibres. A YFP-tagged human Cav-3(P104L) mutant was expressed in vivo in muscle fibres from mouse. Western blot analysis revealed that expression of this mutant led to an approximately 80% drop of the level of endogenous Cav-3. The L-type Ca(2+) current density was found largely reduced in fibres expressing the Cav-3(P104L) mutant, with no change in the voltage dependence of activation and inactivation. Interestingly, the maximal density of intramembrane charge movement was unaltered in the Cav-3(P104L)-expressing fibres, suggesting no change in the total amount of functional voltage-sensing dihydropyridine receptors (DHPRs). Also, there was no obvious alteration in the properties of voltage-activated Ca(2+) transients in the Cav-3(P104L)-expressing fibres. Although the actual role of the Ca(2+) channel function of the DHPR is not clearly established in adult skeletal muscle, its specific alteration by the Cav-3(P104L) mutant suggests that it may be involved in the physiopathology of LGMD 1C.
Collapse
Affiliation(s)
- Norbert Weiss
- Physiologie Intégrative Cellulaire et Moléculaire, Université Claude Bernard-Lyon 1,Villeurbanne Cedex, France
| | | | | | | | | | | |
Collapse
|
49
|
Quest AFG, Gutierrez-Pajares JL, Torres VA. Caveolin-1: an ambiguous partner in cell signalling and cancer. J Cell Mol Med 2008; 12:1130-50. [PMID: 18400052 PMCID: PMC3865655 DOI: 10.1111/j.1582-4934.2008.00331.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Caveolae are small plasma membrane invaginations that have been implicated in a variety of functions including transcytosis, potocytosis and cholesterol transport and signal transduction. The major protein component of this compartment is a family of proteins called caveolins. Experimental data obtained in knockout mice have provided unequivocal evidence for a requirement of caveolins to generate morphologically detectable caveolae structures. However, expression of caveolins is not sufficient per seto assure the presence of these structures. With respect to other roles attributed to caveolins in the regulation of cellular function, insights are even less clear. Here we will consider, more specifically, the data concerning the ambiguous roles ascribed to caveolin-1 in signal transduction and cancer. In particular, evidence indicating that caveolin-1 function is cell context dependent will be discussed.
Collapse
Affiliation(s)
- Andrew F G Quest
- FONDAP Centre for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | |
Collapse
|
50
|
Traverso M, Gazzerro E, Assereto S, Sotgia F, Biancheri R, Stringara S, Giberti L, Pedemonte M, Wang X, Scapolan S, Pasquini E, Donati MA, Zara F, Lisanti MP, Bruno C, Minetti C. Caveolin-3 T78M and T78K missense mutations lead to different phenotypes in vivo and in vitro. J Transl Med 2008; 88:275-83. [PMID: 18253147 DOI: 10.1038/labinvest.3700713] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Caveolins are the principal protein components of caveolae, invaginations of the plasma membrane involved in cell signaling and trafficking. Caveolin-3 (Cav-3) is the muscle-specific isoform of the caveolin family and mutations in the CAV3 gene lead to a large group of neuromuscular disorders. In unrelated patients, we identified two distinct CAV3 mutations involving the same codon 78. Patient 1, affected by dilated cardiomyopathy and limb girdle muscular dystrophy (LGMD)-1C, shows an autosomal recessive mutation converting threonine to methionine (T78M). Patient 2, affected by isolated familiar hyperCKemia, shows an autosomal dominant mutation converting threonine to lysine (T78K). Cav-3 wild type (WT) and Cav-3 mutations were transiently transfected into Cos-7 cells. Cav-3 WT and Cav-3 T78M mutant localized at the plasma membrane, whereas Cav-3 T78K was retained in a perinuclear compartment. Cav-3 T78K expression was decreased by 87% when compared with Cav-3 WT, whereas Cav-3 T78M protein levels were unchanged. To evaluate whether Cav-3 T78K and Cav-3 T78M mutants behaved with a dominant negative pattern, Cos-7 cells were cotransfected with green fluorescent protein (GFP)-Cav-3 WT in combination with either mutant or WT Cav-3. When cotransfected with Cav-3 WT or Cav-3 T78M, GFP-Cav-3 WT was localized at the plasma membrane, as expected. However, when cotransfected with Cav-3 T78K, GFP-Cav-3 WT was retained in a perinuclear compartment, and its protein levels were reduced by 60%, suggesting a dominant negative action. Accordingly, Cav-3 protein levels in muscles from a biopsy of patient 2 (T78K mutation) were reduced by 80%. In conclusion, CAV3 T78M and T78K mutations lead to distinct disorders showing different clinical features and inheritance, and displaying distinct phenotypes in vitro.
Collapse
Affiliation(s)
- Monica Traverso
- Muscular and Neurodegenerative Disease Unit, University of Genoa and G. Gaslini Paediatric Institute, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|