1
|
Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing. Int J Mol Sci 2021; 22:ijms22168977. [PMID: 34445682 PMCID: PMC8396440 DOI: 10.3390/ijms22168977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
Dysregulation of gap junction intercellular communication (GJIC) is recognized as one of the key hallmarks for identifying non-genotoxic carcinogens (NGTxC). Currently, there is a demand for in vitro assays addressing the gap junction hallmark, which would have the potential to eventually become an integral part of an integrated approach to the testing and assessment (IATA) of NGTxC. The scrape loading-dye transfer (SL-DT) technique is a simple assay for the functional evaluation of GJIC in various in vitro cultured mammalian cells and represents an interesting candidate assay. Out of the various techniques for evaluating GJIC, the SL-DT assay has been used frequently to assess the effects of various chemicals on GJIC in toxicological and tumor promotion research. In this review, we systematically searched the existing literature to gather papers assessing GJIC using the SL-DT assay in a rat liver epithelial cell line, WB-F344, after treating with chemicals, especially environmental and food toxicants, drugs, reproductive-, cardio- and neuro-toxicants and chemical tumor promoters. We discuss findings derived from the SL-DT assay with the known knowledge about the tumor-promoting activity and carcinogenicity of the assessed chemicals to evaluate the predictive capacity of the SL-DT assay in terms of its sensitivity, specificity and accuracy for identifying carcinogens. These data represent important information with respect to the applicability of the SL-DT assay for the testing of NGTxC within the IATA framework.
Collapse
|
2
|
Aranda-Anzaldo A, Dent MA. Landscaping the epigenetic landscape of cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 140:155-174. [DOI: 10.1016/j.pbiomolbio.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023]
|
3
|
Yamada S, Terada K, Ueno Y, Sugiyama T, Seno M, Kojima I. Differentiation of Adult Hepatic Stem-Like Cells into Pancreatic Endocrine Cells. Cell Transplant 2017; 14:647-53. [PMID: 16405075 DOI: 10.3727/000000005783982738] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To apply cell transplantation for treatment of diabetes mellitus, a sufficient number of β-cell sources are required. In the present study, we examined whether an epithelial cell line obtained from normal adult rat liver, namely hepatic stem-like (HSL) cells, which can be converted to both hepatocytes and billiary epithelial cells, could be a potential β-cell source. The growth speed of HSL cells was rapid and these cells were easily expanded in vitro. Bipotential hepatic stem cells, HSL cells, also expressed PGP9.5, which is expressed in neurons, β-cells, and progenitor cells of the pancreatic endocrine cells as well. Sodium butyrate induced morphological changes in HSL cells and converted them into flattened cells with large cytoplasm. When HSL cells were incubated with a combination of 5 mM sodium butyrate and 1 nM betacellulin, most of the cells were converted into morphologically neuron-like cells. RT-PCR analysis revealed that a series of transcriptional factors involved in differentiation of pancreatic endocrine cells was induced by the treatment with sodium butyrate and betacellulin. mRNAs for insulin, pancreatic polypeptide, and somatostatin were also observed. Immunoreactive pancreatic polypeptide, somatostatin, and insulin were detected in sodium butyrate and betacellulin-treated HSL cells. In conclusion, HSL cells obtained from adult normal liver also have the potential to differentiate into pancreatic endocrine cells in vitro. HSL cells may be one of the potential β-cell sources for cell transplant therapy for insulin-dependent diabetes.
Collapse
Affiliation(s)
- Satoko Yamada
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Pacitti D, Lawan MM, Feldmann J, Sweetman J, Wang T, Martin SAM, Secombes CJ. Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex®. BMC Genomics 2016; 17:116. [PMID: 26880213 PMCID: PMC4754912 DOI: 10.1186/s12864-016-2418-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/26/2016] [Indexed: 01/06/2023] Open
Abstract
Background Selenium (Se) is required for the synthesis of proteins (selenoproteins) with essential biological functions. Selenoproteins have a crucial role in the maintenance of cellular redox homeostasis in nearly all tissues, and are also involved in thyroid hormone metabolism, inflammation and immunity. Several immune processes rely on Se status and can be compromised if this element is present below the required level. Previous work has supported the notion that when Se is delivered at levels above those deemed to be the minimal required but below toxic concentrations it can have a boosting effect on the organism’s immune response. Based on this concept Se-enriched supplements may represent a valuable resource for functional feeds in animal farming, including aquaculture. Results In this study we tested the effects of Se supplemented as Sel-Plex during an immune challenge induced by polyinosinic:polycytidylic acid (poly(I:C)), a pathogen-associated molecular pattern (PAMP) that mimics viral infection. Trout were fed two diets enriched with 1 or 4 mg Se Kg−1 of feed (dry weight) by Sel-Plex addition and a commercial formulation as control. The whole trout transcriptomic response was investigated by microarray and gene ontology analysis, the latter carried out to highlight the biological processes that were influenced by Sel-Plex supplementation in the head kidney (HK) and liver, the main immune and metabolic organs in fish. Overall, Sel-Plex enrichement up to 4 mg Se Kg−1 induced an important response in the trout HK, eliciting an up-regulation of several genes involved in pathways connected with hematopoiesis and immunity. In contrast, a more constrained response was seen in the liver, with lipid metabolism being the main pathway altered by Se supplementation. Upon stimulation with poly(I:C), supplementation of 4 mg Se Kg−1 increased the expression of principal mediators of the antiviral defences, especially IFN-γ, and down-stream molecules involved in the cell-mediated immune response. Conclusions Supplementation of diets with 4 mg Se Kg−1 using Sel-Plex remarkably improved the fish response to viral PAMP stimulation. Sel-Plex, being a highly bioavailable supplement of organic Se, might represent a suitable option for supplementation of fish feeds, to achieve the final aim of improving fish fitness and resistance against immune challenges. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2418-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D Pacitti
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK. .,Present address: Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - M M Lawan
- Trace Element Speciation Laboratory, Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - J Feldmann
- Trace Element Speciation Laboratory, Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - J Sweetman
- Alltech Biosciences Centre, Sarney, Summerhill Rd, Dunboyne, County Meath, Ireland.
| | - T Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - S A M Martin
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - C J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
5
|
Sovadinova I, Babica P, Böke H, Kumar E, Wilke A, Park JS, Trosko JE, Upham BL. Phosphatidylcholine Specific PLC-Induced Dysregulation of Gap Junctions, a Robust Cellular Response to Environmental Toxicants, and Prevention by Resveratrol in a Rat Liver Cell Model. PLoS One 2015; 10:e0124454. [PMID: 26023933 PMCID: PMC4449167 DOI: 10.1371/journal.pone.0124454] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 03/10/2015] [Indexed: 12/04/2022] Open
Abstract
Dysregulation of gap junctional intercellular communication (GJIC) has been associated with different pathologies, including cancer; however, molecular mechanisms regulating GJIC are not fully understood. Mitogen Activated Protein Kinase (MAPK)-dependent mechanisms of GJIC-dysregulation have been well-established, however recent discoveries have implicated phosphatidylcholine-specific phospholipase C (PC-PLC) in the regulation of GJIC. What is not known is how prevalent these two signaling mechanisms are in toxicant/toxin-induced dysregulation of GJIC, and do toxicants/toxins work through either signaling mechanisms or both, or through alternative signaling mechanisms. Different chemical toxicants were used to assess whether they dysregulate GJIC via MEK or PC-PLC, or both Mek and PC-PLC, or through other signaling pathways, using a pluripotent rat liver epithelial oval-cell line, WB-F344. Epidermal growth factor, 12-O-tetradecanoylphorbol-13-acetate, thrombin receptor activating peptide-6 and lindane regulated GJIC through a MEK1/2-dependent mechanism that was independent of PC-PLC; whereas PAHs, DDT, PCB 153, dicumylperoxide and perfluorodecanoic acid inhibited GJIC through PC-PLC independent of Mek. Dysregulation of GJIC by perfluorooctanoic acid and R59022 required both MEK1/2 and PC-PLC; while benzoylperoxide, arachidonic acid, 18β-glycyrrhetinic acid, perfluorooctane sulfonic acid, 1-monolaurin, pentachlorophenol and alachlor required neither MEK1/2 nor PC-PLC. Resveratrol prevented dysregulation of GJIC by toxicants that acted either through MEK1/2 or PC-PLC. Except for alachlor, resveratrol did not prevent dysregulation of GJIC by toxicants that worked through PC-PLC-independent and MEK1/2-independent pathways, which indicated at least two other, yet unidentified, pathways that are involved in the regulation of GJIC. In conclusion: the dysregulation of GJIC is a contributing factor to the cancer process; however the underlying mechanisms by which gap junction channels are closed by toxicants vary. Thus, accurate assessments of risk posed by toxic agents, and the role of dietary phytochemicals play in preventing or reversing the effects of these agents must take into account the specific mechanisms involved in the cancer process.
Collapse
Affiliation(s)
- Iva Sovadinova
- Department of Pediatrics & Human Development; Center for Integrative Toxicology; and the Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, United States of America
- Research Centre for Toxic Compounds in the Environment—RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Pavel Babica
- Department of Pediatrics & Human Development; Center for Integrative Toxicology; and the Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, United States of America
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany ASCR, Lidicka 25/27, CZ60200, Brno, Czech Republic
| | - Hatice Böke
- Department of Pediatrics & Human Development; Center for Integrative Toxicology; and the Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, United States of America
| | - Esha Kumar
- Department of Pediatrics & Human Development; Center for Integrative Toxicology; and the Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, United States of America
| | - Andrew Wilke
- Department of Pediatrics & Human Development; Center for Integrative Toxicology; and the Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, United States of America
| | - Joon-Suk Park
- Department of Pediatrics & Human Development; Center for Integrative Toxicology; and the Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, United States of America
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - James E. Trosko
- Department of Pediatrics & Human Development; Center for Integrative Toxicology; and the Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, United States of America
| | - Brad L. Upham
- Department of Pediatrics & Human Development; Center for Integrative Toxicology; and the Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, United States of America
- * E-mail:
| |
Collapse
|
6
|
Muller-Borer B, Esch G, Aldina R, Woon W, Fox R, Bursac N, Hiller S, Maeda N, Shepherd N, Jin JP, Hutson M, Anderson P, Kirby ML, Malouf NN. Calcium dependent CAMTA1 in adult stem cell commitment to a myocardial lineage. PLoS One 2012; 7:e38454. [PMID: 22715383 PMCID: PMC3371086 DOI: 10.1371/journal.pone.0038454] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/06/2012] [Indexed: 12/31/2022] Open
Abstract
The phenotype of somatic cells has recently been found to be reversible. Direct reprogramming of one cell type into another has been achieved with transduction and over expression of exogenous defined transcription factors emphasizing their role in specifying cell fate. To discover early and novel endogenous transcription factors that may have a role in adult-derived stem cell acquisition of a cardiomyocyte phenotype, mesenchymal stem cells from human and mouse bone marrow and rat liver were co-cultured with neonatal cardiomyocytes as an in vitro cardiogenic microenvironment. Cell-cell communications develop between the two cell types as early as 24 hrs in co-culture and are required for elaboration of a myocardial phenotype in the stem cells 8–16 days later. These intercellular communications are associated with novel Ca2+ oscillations in the stem cells that are synchronous with the Ca2+ transients in adjacent cardiomyocytes and are detected in the stem cells as early as 24–48 hrs in co-culture. Early and significant up-regulation of Ca2+-dependent effectors, CAMTA1 and RCAN1 ensues before a myocardial program is activated. CAMTA1 loss-of-function minimizes the activation of the cardiac gene program in the stem cells. While the expression of RCAN1 suggests involvement of the well-characterized calcineurin-NFAT pathway as a response to a Ca2+ signal, the CAMTA1 up-regulated expression as a response to such a signal in the stem cells was unknown. Cell-cell communications between the stem cells and adjacent cardiomyocytes induce Ca2+ signals that activate a myocardial gene program in the stem cells via a novel and early Ca2+-dependent intermediate, up-regulation of CAMTA1.
Collapse
Affiliation(s)
- Barbara Muller-Borer
- Department of Cardiovascular Sciences, East Carolina University, Greenville, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Goergen CJ, Chen HH, Bogdanov A, Sosnovik DE, Kumar ATN. In vivo fluorescence lifetime detection of an activatable probe in infarcted myocardium. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:056001. [PMID: 22612124 PMCID: PMC3381023 DOI: 10.1117/1.jbo.17.5.056001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 05/25/2023]
Abstract
Activatable fluorescent molecular probes are predominantly nonfluorescent in their inactivated state due to intramolecular quenching, but increase fluorescence yield significantly after enzyme-mediated hydrolysis of peptides. Continuous wave in vivo detection of these protease-activatable fluorophores in the heart, however, is limited by the inability to differentiate between activated and nonactivated fractions of the probe and is frequently complicated by large background signal from probe accumulation in the liver. Using a cathepsin-activatable near-infrared probe (PGC-800), we demonstrate here that fluorescence lifetime (FL) significantly increases in infarcted murine myocardial tissue (0.67 ns) when compared with healthy myocardium (0.59 ns) after 24 h. Furthermore, we show that lifetime contrast can be used to distinguish in vivo cardiac fluorescence from background nonspecific liver signal. The results of this study show that lifetime contrast is a helpful addition to preclinical imaging of activatable fluorophores in the myocardium by reporting molecular activity in vivo due to changes in intramolecular quenching. This characterization of FL from activatable molecular probes will be helpful for advancing in vivo imaging of enzyme activity.
Collapse
Affiliation(s)
- Craig J. Goergen
- Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Howard H. Chen
- Harvard Medical School, Center for Molecular Imaging Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Alexei Bogdanov
- University of Massachusetts Medical School, Laboratory of Molecular Imaging Probes, Department of Radiology, 55 Lake Avenue North, Worcester, Massachusetts 01605
| | - David E. Sosnovik
- Harvard Medical School, Athinoula A Martinos Center for Biomedical Imaging and Center for Molecular Imaging Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Anand T. N. Kumar
- Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| |
Collapse
|
8
|
Rupp H, Rupp TP, Alter P, Jung N, Pankuweit S, Maisch B. Intrapericardial procedures for cardiac regeneration by stem cells: need for minimal invasive access (AttachLifter) to the normal pericardial cavity. Herz 2011; 35:458-65. [PMID: 20941468 DOI: 10.1007/s00059-010-3382-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In view of the only modest functional and anatomical improvements achieved by bone marrow-derived cell transplantation in patients with heart disease, the question was addressed whether the intracoronary, transcoronary-venous, and intramyocardial delivery routes are adequate. It is hypothesized that an intrapericardial delivery of stem cells or activators of resident cardiac stem cells increases therapeutic benefits. From such an intrapericardial depot, cells or modulating factors, such as thymosin β4 or Ac-SDKP, are expected to reach the myocardium with sustained kinetics. Novel tools which provide access to the pericardial space even in the absence of pericardial effusion are, therefore, described. When the pericardium becomes attached to the suction head (monitored by an increase in negative pressure), the pericardium is lifted from the epicardium ("AttachLifter"). The opening of the suction head ("Attacher") is narrowed by flexible clamps which grab the tissue and improve the vacuum seal in the case of uneven tissue. A ridge, i.e.,"needle guidance", on the suction head excludes injury to the epicardium, whereby the pericardium is punctured by a needle which resides outside the suction head. A fiberscope can be used to inspect the pericardium prior to puncture. Based on these procedures, the role of the pericardial space and the presence of pericardial effusion in cardiac regeneration can be assessed.
Collapse
Affiliation(s)
- H Rupp
- Department of Internal Medicine - Cardiology, Experimental Cardiology Laboratory, Philipps University of Marburg, Marburg, Deutschland.
| | | | | | | | | | | |
Collapse
|
9
|
Dong HH, Xiang S, Chen XP, Liang HF, Zhang W, Jing K, Zhang W, Zhang WG, Chen L. The epithelial-mesenchymal transition promotes transdifferentiation of subcutaneously implanted hepatic oval cells into mesenchymal tumor tissue. Stem Cells Dev 2010; 18:1293-8. [PMID: 19226223 DOI: 10.1089/scd.2008.0321] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatic oval cells are thought to represent facultative hepatic epithelial stem cells in liver in which damage inhibits hepatocyte proliferation and liver regeneration. The LE/6 hepatic stem cell line was derived from the liver of male Sprague-Dawley rats fed a choline-deficient diet containing 0.1% ethionine. They are histochemically characterized by their expression of hepatocytic (hepPar1), cholangiocytic cytokeratin (CK19), hepatic progenitor cell (OV-6), and hematopoietic stem cell (c-kit) markers. In this study, we transplanted LE/6 cells by subcutaneous injection into adult female nude mice, and examined their engraftment and differentiation potential in the subcutaneous microenvironment in vivo. Our results demonstrated that following subcutaneous transplantation, differentiation of LE/6 cells into mesenchymal tumor tissue (MTT) was associated with reduced E-cadherin expression, upregulation of E-cadherin repressor molecules (Snail proteins), and increased expression of vimentin and N-cadherin, all of these events are characteristic of the epithelial-mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Han-Hua Dong
- Hepatic Surgery Centre, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Schabort EJ, Myburgh KH, Wiehe JM, Torzewski J, Niesler CU. Potential Myogenic Stem Cell Populations: Sources, Plasticity, and Application for Cardiac Repair. Stem Cells Dev 2009; 18:813-30. [DOI: 10.1089/scd.2008.0387] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Elske J. Schabort
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Kathryn H. Myburgh
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Juliane M. Wiehe
- Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Jan Torzewski
- Cardiovascular Unit, Oberallgäu Kliniken GmbH, Immenstadt, Germany
| | - Carola U. Niesler
- Department of Biochemistry, School of Biochemistry, Genetics, Microbiology, and Plant Pathology, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
11
|
Kubo H, Jaleel N, Kumarapeli A, Berretta RM, Bratinov G, Shan X, Wang H, Houser SR, Margulies KB. Increased cardiac myocyte progenitors in failing human hearts. Circulation 2008; 118:649-57. [PMID: 18645055 DOI: 10.1161/circulationaha.107.761031] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Increasing evidence, derived mainly from animal models, supports the existence of endogenous cardiac renewal and repair mechanisms in adult mammalian hearts that could contribute to normal homeostasis and the responses to pathological insults. METHODS AND RESULTS Translating these results, we isolated small c-kit+ cells from 36 of 37 human hearts using primary cell isolation techniques and magnetic cell sorting techniques. The abundance of these cardiac progenitor cells was increased nearly 4-fold in patients with heart failure requiring transplantation compared with nonfailing controls. Polychromatic flow cytometry of primary cell isolates (<30 microm) without antecedent c-kit enrichment confirmed the increased abundance of c-kit+ cells in failing hearts and demonstrated frequent coexpression of CD45 in these cells. Immunocytochemical characterization of freshly isolated, c-kit-enriched human cardiac progenitor cells confirmed frequent coexpression of c-kit and CD45. Primary cardiac progenitor cells formed new human cardiac myocytes at a relatively high frequency after coculture with neonatal rat ventricular myocytes. These contracting new cardiac myocytes exhibited an immature phenotype and frequent electric coupling with the rat myocytes that induced their myogenic differentiation. CONCLUSIONS Despite the increased abundance and cardiac myogenic capacity of cardiac progenitor cells in failing human hearts, the need to replace these organs via transplantation implies that adverse features of the local myocardial environment overwhelm endogenous cardiac repair capacity. Developing strategies to improve the success of endogenous cardiac regenerative processes may permit therapeutic myocardial repair without cell delivery per se.
Collapse
Affiliation(s)
- Hajime Kubo
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Upham BL, Bláha L, Babica P, Park JS, Sovadinova I, Pudrith C, Rummel AM, Weis LM, Sai K, Tithof PK, Guzvić M, Vondrácek J, Machala M, Trosko JE. Tumor promoting properties of a cigarette smoke prevalent polycyclic aromatic hydrocarbon as indicated by the inhibition of gap junctional intercellular communication via phosphatidylcholine-specific phospholipase C. Cancer Sci 2008; 99:696-705. [PMID: 18377422 PMCID: PMC3023995 DOI: 10.1111/j.1349-7006.2008.00752.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Inhibition of gap junctional intercellular communication (GJIC) and the activation of intracellular mitogenic pathways are common hallmarks of epithelial derived cancer cells. We previously determined that the 1-methyl and not the 2-methyl isomer of anthracene, which are prominent cigarette smoke components, activated extracellular receptor kinase, and inhibited GJIC in WB-F344 rat liver epithelial cells. Using these same cells, we show that an immediate upstream response to 1-methylanthracene was a rapid (<1 min) release of arachidonic acid. Inhibition of phosphatidylcholine-specific phospholipase C prevented the inhibition of GJIC by 1-methylanthracene. In contrast, inhibition of phosphatidylinositol specific phospholipase C, phospholipase A(2), diacylglycerol lipase, phospholipase D, protein kinase C, and tyrosine protein kinases had no effect on 1-methylanthracene-induced inhibition of GJIC. Inhibition of protein kinase A also prevented inhibition of GJIC by 1-methylanthracene. Direct measurement of phosphatidylcholine-specific phospholipase C and sphingomyelinase indicated that only phosphatidylcholine-specific phospholipase C was activated in response to 1-methylanthracene, while 2-methylanthracene had no effect. 1-methylanthracene also activated p38-mitogen activated protein kinase; however, like extracellular kinase, its activation was not involved in 1-methylanthracene-induced regulation of GJIC, and this activation was independent of phosphatidylcholine-specific phospholipase C. Although mitogen activated protein kinases were activated, Western blot analyzes indicated no change in connexin43 phosphorylation status. Our results indicate that phosphatidylcholine-specific phospholipase C is an important enzyme in the induction of a tumorigenic phenotype, namely the inhibition of GJIC; whereas mitogen activated protein kinases triggered in response to 1-methylanthracene, were not involved in the deregulation of GJIC.
Collapse
Affiliation(s)
- Brad L Upham
- Department of Pediatrics & Human Development, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Vertesaljai M, Piroth Z, Fontos G, Andreka G, Font G, Szantho G, Lueff S, Reti M, Masszi T, Ablonczy L, Juhasz ED, Simor T, Turner MS, Andreka P. Drugs, gene transfer, signaling factors: a bench to bedside approach to myocardial stem cell therapy. Heart Fail Rev 2007; 13:227-44. [PMID: 17668319 DOI: 10.1007/s10741-007-9047-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 07/10/2007] [Indexed: 12/13/2022]
Abstract
In the past few years, the dogma that the heart is a terminally differentiated organ has been challenged. Evidence from preclinical investigations emerged that there are cells, even in the heart itself, that may be able to restore impaired cardiac function after myocardial infarction. Although the exact mechanisms by which the infarcted heart can be repaired by stem cells are not yet fully defined, there is a new optimism among cardiologists that this treatment will prove successful in addressing the cause of heart failure after myocardial infarction-myocyte loss. Despite the promising preliminary data of human myocardial stem cell trials, scientists have also focused on the possibility of enhancing the underlying mechanisms of stem cell repair to gain healthier myocardial tissue. Attempts to induce neo-angiogenesis by transfecting stem cells with signaling factors (such as VEGF), to raise the number of endothelial progenitor cells with medical treatments (such as statins), to transfect stem cells with heat shock protein 70 (as a cardioprotective agent against ischemia) and to enhance the healing process after myocardial infarction with the use of various forms of stimulating factors (G-CSF, SCF, GM-CSF) have been made with notable results. In this article, we summarize the evidence from preclinical and clinical myocardial stem cell studies that have addressed the possibility of enhancing the regenerative capacity of cells used after myocardial infarction.
Collapse
Affiliation(s)
- Marton Vertesaljai
- Department of Adult Cardiology, Gottsegen Hungarian Institute of Cardiology, Haller u. 29, Budapest 1096, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Upham BL, Guzvić M, Scott J, Carbone JM, Blaha L, Coe C, Li LL, Rummel AM, Trosko JE. Inhibition of Gap Junctional Intercellular Communication and Activation of Mitogen-Activated Protein Kinase by Tumor-Promoting Organic Peroxides and Protection by Resveratrol. Nutr Cancer 2007; 57:38-47. [PMID: 17516861 DOI: 10.1080/01635580701268188] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dicumyl peroxide (di-CuOOH) and benzoyl peroxide (BzOOH) act as tumor promoters in SENCAR mice, whereas di-tert-butylhydroperoxide does not. Tumor promotion requires the removal of growth suppression by inhibition of gap junctional intercellular communication (GJIC) and the induction of mitogenic intracellular pathways. We showed that di-CuOOH and BzOOH both reversibly inhibited GJIC and transiently activated mitogen-activated protein kinase, specifically, the extracellular receptor kinase at noncytotoxic conditions in WB-F344 rat liver epithelial cells, whereas the non-tumor-promoting di-tert-butylhydroperoxide did not inhibit GJIC or activate extracellular receptor kinase. di-CuOOH but not BzOOH inhibited GJIC through a phosphatidylcholine-specific phospholipase C-dependent mechanism. N-acetylcysteine (NAC) was needed to prevent a cytotoxic, glutathione-depleting effect of BzOOH, whereas di-CuOOH was noncytotoxic and did not alter glutathione levels at all doses and times tested. Pretreatment of WB-F344 cells with resveratrol, a polyphenolic antioxidant present in red wine, prevented at physiological doses the inhibition of GJIC by di-CuOOH but not from BzOOH and was effective in significantly preventing extracellular receptor kinase activation by both peroxides. NAC did not prevent any of the peroxide effects on either GJIC or extracellular receptor kinase, suggesting a specific antioxidant effect of resveratrol.
Collapse
Affiliation(s)
- Brad L Upham
- Department of Pediatrics & Human Development and the National Food Safety & Toxicology Center, Michigan State University, East Lansing 48824-1302, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Many forms of cardiovascular disease are associated with cardiomyocyte loss via necrosis and/or apoptosis. The cumulative loss of contractile cells ultimately results in diminished cardiac function. Numerous approaches have been employed to reduce the rate of cardiomyocyte loss, or alternatively, to repopulate the heart with new cardiomyocytes. Strategies aimed at repopulating the heart include cardiomyocyte cell therapy, myogenic stem cell therapy, and cell cycle activation therapy. All three approaches are based on the assumption that the de novo cardiomyocytes will participate in a functional syncytium with the surviving myocardium. This review will discuss the current status of interventions aimed at repopulating the heart with functional cardiomyocytes.
Collapse
Affiliation(s)
- Michael Rubart
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, RM W376, Indianapolis, IN 46202, USA
| | | |
Collapse
|
16
|
Muller-Borer BJ, Cascio WE, Esch GL, Kim HS, Coleman WB, Grisham JW, Anderson PAW, Malouf NN. Mechanisms controlling the acquisition of a cardiac phenotype by liver stem cells. Proc Natl Acad Sci U S A 2007; 104:3877-82. [PMID: 17360446 PMCID: PMC1805456 DOI: 10.1073/pnas.0700416104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanisms underlying stem cell acquisition of a cardiac phenotype are unresolved. We studied early events during the acquisition of a cardiac phenotype by a cloned adult liver stem cell line (WB F344) in a cardiac microenvironment. WB F344 cells express a priori the transcription factors GATA4 and SRF, connexin 43 in the cell membrane, and myoinositol 1,4,5-triphosphate receptor in the perinuclear region. Functional cell-cell communication developed between WB F344 cells and adjacent cocultured cardiomyocytes in 24 h. De novo cytoplasmic [Ca(2+)](c) and nuclear [Ca(2+)](nu) oscillations appeared in WB F344 cells, synchronous with [Ca(2+)](i) transients in adjacent cardiomyocytes. The [Ca(2+)] oscillations in the WB F344 cells, but not those in the cardiomyocytes, were eliminated by a gap junction uncoupler and reappeared with its removal. By 24 h, WB F344 cells began expressing the cardiac transcription factors Nkx2.5, Tbx5, and cofactor myocardin; cardiac proteins 24 h later; and a sarcomeric pattern 4-6 days later. Myoinositol 1,4,5-triphosphate receptor inhibition suppressed WB F344 cell [Ca(2+)](nu) oscillations but not [Ca(2+)](c) oscillations, and L-type calcium channel inhibition eliminated [Ca(2+)] oscillations in cardiomyocytes and WB F344 cells. The use of these inhibitors was associated with a decrease in Nkx2.5, Tbx5, and myocardin expression in the WB F344 cells. Our findings suggest that signals from cardiomyocytes diffuse through shared channels, inducing [Ca(2+)] oscillations in the WB F344 cells. We hypothesize that the WB F344 cell [Ca(2+)](nu) oscillations activate the expression of a cardiac specifying gene program, ushering in a cardiac phenotype.
Collapse
Affiliation(s)
- Barbara J. Muller-Borer
- *Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| | - Wayne E. Cascio
- *Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| | - Gwyn L. Esch
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599; and
| | - Hyung-Suk Kim
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599; and
| | - William B. Coleman
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599; and
| | - Joe W. Grisham
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599; and
| | | | - Nadia N. Malouf
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599; and
- To whom correspondence should be addressed at:
Department of Pathology and Laboratory Medicine, University of North Carolina, CB#7525, Chapel Hill, NC 27599. E-mail:
| |
Collapse
|
17
|
Abstract
Cellular cardiomyoplasty is an expanding field of research that involves numerous types of immature cells administered via several modes of delivery. The purpose of this review is to investigate the benefits of different types of cells used in stem cell research as well as the most efficient mode of delivery. The authors also present data showing that stem cells isolated from bone marrow are present at both 2 weeks and 3 months after engraftment in a myocardial infarction. These cells express muscle markers at both time points, which suggests that they have begun to differentiate into cardiomyocytes. Several questions must be answered, however, before stem cells can be used routinely in the clinic. Once these questions have been addressed, the use of stem cells in clinical practice can be realized.
Collapse
Affiliation(s)
- Loren E Wold
- The Heart Institute, Good Samaritan Hospital, 1225 Wilshire Boulevard, Los Angeles, CA 90017, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Viable treatment options are becoming available for the 'no-option' patient with chronic ischaemic heart disease. Instead of revascularising the highly diseased epicardial coronary arteries, scientists and clinicians have been looking at augmenting mother nature's way of providing biological bypass in an attempt to provide symptomatic relief in these patients. The novel use of gene and cell therapies for myocardial neovascularisation has exploded into a flurry of early clinical trials. This translational research has been motivated by an improved understanding of the biological mechanisms involved in tissue repair after ischaemic injury. While safety concerns will be top in priority in these trials, different types or combination of therapies, dose and route of delivery are being tested before further optimisation and establishment. With cautious optimism, a new era in the treatment of ischaemic heart disease is being entered. This article reviews the present state in gene and cell therapies for ischaemic heart disease, the modalities of their delivery, novel imaging techniques and future perspectives.
Collapse
Affiliation(s)
- Kian-Keong Poh
- Caritas St Elizabeth's Medical Center and Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
19
|
McMullen NM, Pasumarthi KBS. Donor cell transplantation for myocardial disease: does it complement current pharmacological therapies?This paper is one of a selection of papers published in this Special Issue, entitled Young Investigators' Forum. Can J Physiol Pharmacol 2007; 85:1-15. [PMID: 17487241 DOI: 10.1139/y06-105] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heart failure secondary to ischemic heart disease, hypertension, and myocardial infarction is a common cause of death in developed countries. Although pharmacological therapies are very effective, poor prognosis and shorter life expectancy of heart disease patients clearly indicate the need for alternative interventions to complement the present therapies. Since the progression of heart disease is associated with the loss of myocardial cells, the concept of donor cell transplantation into host myocardium is emerging as an attractive strategy to repopulate the damaged tissue. To this end, a number of donor cell types have been tested for their ability to increase the systolic function of diseased hearts in both experimental and clinical settings. Although initial clinical trials with bone marrow stem cells are encouraging, long-term consequences of such interventions are yet to be rigorously examined. While additional laboratory studies are required to address several issues in this field, there is also a clear need for further characterization of drug interactions with donor cells in these interventions. Here, we provide a brief summary of current pharmacological and cell-based therapies for heart disease. Further, we discuss the potential of various donor cell types in myocardial repair, mechanisms underlying functional improvement in cell-based therapies, as well as potential interactions between pharmacological and cell-based therapies.
Collapse
Affiliation(s)
- Nichole M McMullen
- Department of Pharmacology, Sir Charles Tupper Medical Building, Dalhousie University, Halifax, Canada
| | | |
Collapse
|
20
|
Bellafiore M, Sivverini G, Cappello F, David S, Palma A, Farina F, Zummo G. Research of cardiomyocyte precursors in adult rat heart. Tissue Cell 2006; 38:345-51. [PMID: 17101162 DOI: 10.1016/j.tice.2006.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 08/22/2006] [Accepted: 08/23/2006] [Indexed: 10/23/2022]
Abstract
Recent reports supported the existence of stem cells in adult hearts. However, phenotype and localization of these cells have not been completely described and it is unknown if cardiac regenerative potential differs from one subject to another. The aims of our work were to identify different populations of cardiac stem cells by the analysis of specific markers and to evaluate the expression variability of these markers in 12 adult rat hearts. The expression of CD9, taube nuss and nanog suggests the presence of stem cells from the earliest stages of embryogenesis in adult myocardium. Their different expression could be associated to the degree of stem cell differentiation. CD34 and c-Kit antibodies were used to detect stem cells committed to one or more specific tissue lineages and we found a strong immunoreactivity for CD34 exclusively in the endothelial cells and a low positivity for c-Kit in the interstitium and next to the vessels. Moreover, as c-Kit expression highly differed within all examined hearts, we suggest that cardiomyogenic potential is different among the various subjects. Undifferentiated cells with myogenic-committed phenotype expressing GATA-4 and nestin were found, respectively, in the interstitial and myocardial cells and in few interstitial cells. Therefore, the physiologic turn over of cardiomyocytes may occur in adult hearts as it has been shown in many others organs. The study of myogenic potential could be important to identify markers specific of stem cells in in vivo adult myocardium that may be used to purify these cells and evaluate their regenerative ability.
Collapse
Affiliation(s)
- M Bellafiore
- Human Anatomy Section, Department of Experimental Medicine, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|
21
|
Gaia S, Cappia S, Smedile A, Bacillo E, Gaia E, Gubetta L, Rizzetto M. Epithelial microchimerism: consistent finding in human liver transplants. J Gastroenterol Hepatol 2006; 21:1801-6. [PMID: 17074017 DOI: 10.1111/j.1440-1746.2006.04675.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Eleven liver biopsies from six male patients who received a liver transplant (LT) from female donors were examined in order to determine whether male host-derived hepatic cells were present in female grafts that exhibited minimal or important inflammatory damage. METHODS Immunohistochemistry for epithelial cell type differentiation (anticytokeratin monoclonal antibody) and fluorescence in situ hybridization for XY chromosomes identification were performed on each slide. RESULTS Host-derived hepatic cells were found in all except one transplant, with a frequency ranging from 2.3 to 25 per thousand of the total hepatocytes in the biopsy specimen. They were usually found as isolated cells scattered throughout the hepatic lobule; in one patient they were grouped into little clusters. Host-derived hepatic cells persisted throughout the histological follow up (up to 535 days after LT). Polyploidy for XY chromosome was observed. CONCLUSION Hepatocytes derived from extra-hepatic stem cells are frequently found in small numbers in human liver grafts and persist over time.
Collapse
Affiliation(s)
- Silvia Gaia
- Department of Gastroenterology, San Giovanni Battista Hospital, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Fuchs JR, Nasseri BA, Vacanti JP, Fauza DO. Postnatal myocardial augmentation with skeletal myoblast–based fetal tissue engineering. Surgery 2006; 140:100-7. [PMID: 16857447 DOI: 10.1016/j.surg.2006.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 09/29/2005] [Accepted: 01/27/2006] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cardiac anomalies constitute the most common birth defects, many of which involve variable myocardial deficiencies. Therapeutic options for structural myocardial repair remain limited in the neonatal population. This study was aimed at determining whether engineered fetal muscle constructs undergo milieu-dependent transdifferentiation after cardiac implantation, thus becoming a potential means to increase/support myocardial mass after birth. METHODS Myoblasts were isolated from skeletal muscle specimens harvested from fetal lambs, labeled by transduction with a retrovirus-expressing green fluorescent protein, expanded in vitro, and then seeded onto collagen hydrogels. After birth, animals underwent autologous implantation of the engineered constructs (n = 8) onto the myocardium as an onlay patch. Between 4 and 30 weeks postoperatively, implants were harvested for multiple analyses. RESULTS Fetal and postnatal survival rates were 89% and 100%, respectively. Labeled cells were identified within the implants at all time points by immunohistochemical staining for green fluorescent protein. At 24 and 30 weeks postimplantation, donor cells double-stained for green fluorescent protein and Troponin I, while losing skeletal (type II) myosin expression. CONCLUSIONS Fetal skeletal myoblasts engraft in native myocardium up to 30 weeks after postnatal, autologous implantation as components of engineered onlay patches. These cells also display evidence of time-dependent transdifferentiation toward a cardiomyocyte-like lineage. Further analysis of fetal skeletal myoblast-based constructs for the repair of congenital myocardial defects is warranted.
Collapse
Affiliation(s)
- Julie R Fuchs
- Harvard Center for Minimally Invasive Surgery, Boston, Mass, USA
| | | | | | | |
Collapse
|
23
|
Abstract
The use of a reporter gene in transgenic mice indicates that there are many local mutations and large genomic rearrangements per somatic cell that accumulate with age at different rates per organ and without visible effects. Dissociation of the cells for monolayer culture brings out great heterogeneity of size and loss of function among cells that presumably reflect genetic and epigenetic differences among the cells, but are masked in organized tissue. The regulatory power of a mass of contiguous normal cells is expressed in its capacity to normalize the appearance and growth behavior of solitary homophilic neoplastic cells, and to redirect differentiation of solitary heterophilic stem-like cells. Intimate contact between the interacting cells is required to induce these changes. The normalization of the neoplastic phenotype does not require gap junctional communication between cells, though transdifferentiation might. These varied relationships are manifestations of the unifying biological principle of "order in the large over heterogeneity in the small".
Collapse
Affiliation(s)
- Harry Rubin
- Department of Molecular and Cell Biology, Life Sciences Addition, University of California, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
24
|
Moll R, Holzhausen HJ, Mennel HD, Kuhn C, Baumann R, Taege C, Franke WW. The cardiac isoform of α-actin in regenerating and atrophic skeletal muscle, myopathies and rhabdomyomatous tumors: an immunohistochemical study using monoclonal antibodies. Virchows Arch 2006; 449:175-91. [PMID: 16715231 DOI: 10.1007/s00428-006-0220-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 04/08/2006] [Indexed: 11/29/2022]
Abstract
The two sarcomeric isoforms of actins, cardiac and skeletal muscle alpha-actin, are highly homologous so that their immunohistochemical distinction is extremely difficult. Taking advantage of monoclonal antibodies distinguishing the two conservative amino acid exchanges near the aminoterminus, we have performed an extended immunohistochemical analysis of the cardiac alpha-actin (CAA) isoform in normal, regenerating, diseased and neoplastic human muscle tissues. Intense and uniform CAA staining is seen in fetal and adult myocardium and in fetal skeletal muscle while adult skeletal muscle is essentially negative, except for muscle spindle myocytes and a few scattered muscle fibres with overall reduced diameter. By contrast, CAA synthesis is markedly induced in regenerating skeletal muscle cells, in Duchenne muscular dystrophy and upon degenerative atrophy. CAA has also been detected in certain vascular and visceral smooth muscle cells. Among tumors, CAA has consistently been seen in rhabdomyosarcomas and rhabdomyomatous cells of nephroblastomas, whereas, smooth muscle tumors have shown only occasional staining. While the synthesis of this actin isoform is less restricted than previously thought, monoclonal antibodies against CAA provide a well-defined, reliable and sensitive diagnostic tool for the definition and detection of aberrant differentiation in diseased skeletal muscle and of striated muscle differentiation in rhabdomyosarcomas.
Collapse
Affiliation(s)
- Roland Moll
- Institute of Pathology, Philipp University of Marburg, Baldingerstrasse, D-35033 Marburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Borrmann CM, Grund C, Kuhn C, Hofmann I, Pieperhoff S, Franke WW. The area composita of adhering junctions connecting heart muscle cells of vertebrates. II. Colocalizations of desmosomal and fascia adhaerens molecules in the intercalated disk. Eur J Cell Biol 2006; 85:469-85. [PMID: 16600422 DOI: 10.1016/j.ejcb.2006.02.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 02/14/2006] [Accepted: 02/15/2006] [Indexed: 12/17/2022] Open
Abstract
Using immunofluorescence histochemistry and immunoelectron microscopy on sections through myocardiac tissues of diverse mammalian (human, cow, rat, mouse) and fish species we show that both desmosomal and fascia adhaerens proteins identified by gel electrophoresis and immunoblot occur in the area composita, the by far major type of plaque-bearing junctions of the intercalated disks (IDs) connecting cardiomyocytes. Specifically, we demonstrate that desmoplakin and the other desmosomal proteins occur in these junctions, together with N-cadherin, cadherin-11, alpha- and beta-catenin as well as vinculin, afadin and proteins p120(ctn), ARVCF, p0071, and ZO-1, suggestive of colocalization. We conclude that the predominant type of adhering junction present in IDs is a junction sui generis, termed area composita, that is characterized by an unusually high molecular complexity and an intimate association of molecules of both ensembles, the desmosomal one and the fascia adhaerens category. We discuss possible myocardium-specific, complex-forming interactions between members of the two ensembles and the relevance of our findings for the formation and functioning of the heart and for the understanding of hereditary and other cardiomyopathies. We further propose to use this highly characteristic area composita ensemble of molecules as cardiomyocyte markers for the monitoring of cardiomyogenesis, cardiomyocyte regeneration and possible cardiomyocyte differentiation from mesenchymal stem cells.
Collapse
Affiliation(s)
- Carola M Borrmann
- Division of Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Franke WW, Borrmann CM, Grund C, Pieperhoff S. The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur J Cell Biol 2006; 85:69-82. [PMID: 16406610 DOI: 10.1016/j.ejcb.2005.11.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 11/18/2005] [Accepted: 11/21/2005] [Indexed: 12/17/2022] Open
Abstract
Among sarcomeric muscles the cardiac muscle cells are unique by, inter alia, a systemic and extended cell-cell contact structure, the intercalated disk (ID), comprising frequent and closely spaced arrays of plaque-coated cell-cell adhering junctions (AJs). As some of these junctions may look somewhat like desmosomes and others like fasciae adhaerentes, the dogma has emerged in the literature that IDs contain - like epithelial cells - both kinds of AJs formed by - for the most - mutually exclusive molecular ensembles. This, however, is not the case. In comprehensive immunoelectron microscopic studies of mammalian (human, bovine, rat, mouse) and non-mammalian (chicken, amphibia, fishes) heart muscle tissues, we have localized major constituents of the desmosomal plaques of polar epithelia, desmoplakin, plakophilin-2 and plakoglobin, as well as the desmosomal cadherins, desmoglein Dsg2 and desmocollin Dsc2, in both kinds of ID AJs, independent of the specific morphological appearance. The desmosomal molecules are not restricted to the desmosome-like-looking junctions but can also be detected in junctions appearing similar to the zonula or fascia adhaerens structures. These AJs of cardiac ID are therefore subsumed under the collective term area composita. We discuss our results with respect to the importance of ID junction molecules for the formation, maintenance and function of the heart, particularly in relation to recent findings that deletions of - or mutations in - genes encoding such proteins can cause severe, sometimes lethal damages.
Collapse
Affiliation(s)
- Werner W Franke
- Division of Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
27
|
Muller-Borer BJ, Cascio WE, Esch GL, Grisham JW, Anderson PAW, Malouf NN. Acquired cell-to-cell coupling and "cardiac-like" calcium oscillations in adult stem cells in a cardiomyocyte microenvironment. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2006; 2006:576-579. [PMID: 17946843 DOI: 10.1109/iembs.2006.260737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Adult-derived stem cells have recently been found to respond in vivo to inductive signals from the microenvironment and to differentiate into a phenotype that is characteristic of cells in that microenvironment. We examined the differentiation potential of an adult liver stem cell line (WBF344) in a cardiac microenvironment in vitro. WBF344 cells were established from a single cloned non-parenchymal epithelial cell isolated from a normal male adult rat liver. Genetically modified, WBF344 cells that express beta-galactosidase, green fluorescent protein (GFP) or mitochondrial red fluorescent protein (DsRed) were co-cultured with rat neonatal cardiac cells. After 4-14 days, we identified WBF344-derived cardiomyocytes that were elongated, binucleated and expressed the cardiac specific proteins cardiac troponin T, cardiac troponin I and N cadherin. These WBF344-derived cardiomyocytes also exhibited myofibrils, sarcomeres, and a nascent sarcoplasmic reticulum. Furthermore, rhythmically beating WBF344-derived cardiomyocytes displayed "cardiac-like" calcium transients similar to the surrounding neonatal cardiomyocytes. Fluorescent recovery after photobleaching demonstrated that WBF344-derived cardiomyocytes were electrically coupled with adjacent neonatal cardiomyocytes through gap junctions (GJs). Collectively, these results support the conclusion that these adult-derived liver stem cells respond to signals generated in a cardiac microenvironment in vitro acquiring a cardiomyocyte phenotype and function. The identification of micro-environmental signals that appear to cross germ layer and species specificities should prove valuable in understanding the regulation of normal development and stem cell differentiation in vivo.
Collapse
|
28
|
Dai W, Hale SL, Kloner RA. Stem cell transplantation for the treatment of myocardial infarction. Transpl Immunol 2005; 15:91-7. [PMID: 16412954 DOI: 10.1016/j.trim.2005.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
Stem cell transplantation provides a potential regenerative therapy for the heart damaged by myocardial infarction. Numerous scientific studies have been undertaken in animals and humans to analyze the safety and efficacy of this new approach. However, at the present time, the results have been mixed and inconclusive, and the mechanism of stem cell transplantation therapy remains unclear. This review discusses the controversies and problems that need to be addressed in future investigations.
Collapse
Affiliation(s)
- Wangde Dai
- The Heart Institute, Good Samaritan Hospital, Division of Cardiovascular Medicine of the Keck School of Medicine at University of Southern California, 1225 Wilshire Boulevard, Los Angeles, CA 90017-2395, USA
| | | | | |
Collapse
|
29
|
Nepomnyashchikh LM, Lushnikova EL, Goldshtein DV. Whether modern cell technologies can break down biological limitations of tissue-specific regeneration of the myocardium. Bull Exp Biol Med 2005; 139:481-90. [PMID: 16027887 DOI: 10.1007/s10517-005-0328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The paper reviews modern concepts of physiological and reparative regeneration of the myocardium as a highly specific and highly differentiated tissue system. Special attention was given to evaluation of the proliferative potential of cardiomyocytes, in particular, to the existence of a population of resident cardiac stem cells in the myocardium. Modern approaches to replenishment of massive cardiomyocyte loss via transplantation and transdifferentiation of adult and embryonic stem cells are discussed and the possibilities of using cell technologies for induction of tissue-specific regeneration of the myocardium are analyzed.
Collapse
Affiliation(s)
- L M Nepomnyashchikh
- Research Institute of Regional Pathology and Pathomorphology, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia.
| | | | | |
Collapse
|
30
|
Garry DJ, Masino AM, Naseem RH, Martin CM. Ponce de Leon's Fountain: stem cells and the regenerating heart. Am J Med Sci 2005; 329:190-201. [PMID: 15832102 DOI: 10.1097/00000441-200504000-00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Despite current pharmacologic and whole organ transplantation strategies, advanced heart failure remains a common and deadly disease. Limited availability of donor organs for use in orthotopic heart transplantation has prompted the examination of alternative therapies, including cell transfer strategies. Stem cell populations have been identified in virtually all postnatal tissues with the exception of the heart, and these stem cells function in the maintenance and regeneration of the respective tissues. Recent studies challenge preexisting notions regarding cardiac repair and suggest that the heart is capable of limited regeneration through the activation of resident cardiac stem cells or the recruitment of stem cell populations from other tissues such as the bone marrow. This review highlights animal models that have the capacity for myocardial regeneration and examines potential sources of stem cell populations that may participate in tissue regeneration. While some authors view these cell-based strategies as a Fountain of Youth for the myopathic heart, future studies will decipher the regulatory mechanisms of stem cell populations and serve as a prelude to stem cell-based strategies.
Collapse
Affiliation(s)
- Daniel J Garry
- Departments of Internal Medicine, Donald W. Reynolds Cardiovascular Clinical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573, USA.
| | | | | | | |
Collapse
|
31
|
Abstract
Heart failure is becoming a major issue for public health in western countries and the effect of currently available therapies is limited. Therefore cell transplantation was developed as an alternative strategy to improve cardiac structure and function. This review describes the multiple cell types and clinical trials considered for use in this indication. Most studies have been developed in models of post-ischemic heart failure. The transplantation of fetal or neonatal cardiomyocytes has proven to be functionally successful, but ethical as well as immunological and technical reasons make their clinical use limited. Recent reports, however, suggested that adult autologous cardiomyocytes could be prepared from stem cells present in various tissues (bone marrow, vessels, adult heart itself, adipose tissue). Alternatively, endothelial progenitors originating from bone marrow or peripheral blood could promote the neoangiogenesis within the scar tissue. Hematopietic stem cells prepared from bone marrow or peripheral blood have been proposed but their differentiation ability seems limited. Finally, the transplantation of skeletal muscle cells (myoblasts) in the infarcted area improved myocardial function, in correlation with the development of skeletal muscle tissue in various animal models. The latter results paved the way for the development of a first phase I clinical trial of myoblast transplantation in patients with severe post-ischemic heart failure. It required the scale-up of human cell production according to good manufacturing procedures, started in june 2000 in Paris and was terminated in november 2001, and was followed by several others. The results were encouraging and prompted the onset of a blinded, multicentric phase II clinical trial for skeletal muscle cells transplantation. Meanwhile, phase I clinical trials also evaluate the safeness and efficacy of various cell types originating from the bone marrow or the peripheral blood. However, potential side effects related to the biological properties of the cells or the delivery procedures are being reported. High quality clinical trials supported by strong pre-clinical data will help to evaluate the role of cell therapy as a potential treatment for heart failure.
Collapse
Affiliation(s)
- Jean-Thomas Vilquin
- Inserm U.582, Institut de Myologie, Groupe hospitalier Pitié-Salpêtrière, Bâtiment Babinski, 75651 Paris Cedex 13, France.
| | | |
Collapse
|
32
|
Bedelbaeva K, Gourevitch D, Clark L, Chen P, Leferovich JM, Heber-Katz E. The MRL mouse heart healing response shows donor dominance in allogeneic fetal liver chimeric mice. CLONING AND STEM CELLS 2005; 6:352-63. [PMID: 15671663 DOI: 10.1089/clo.2004.6.352] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We previously demonstrated that after a severe cryoinjury to the right ventricle of the heart, adult MRL mice display structural and functional recovery with myocardial tissue replacement resembling that seen in amphibians. The control non-regenerating adult C57BL/6 (B6) mouse shows a predominant scar response. In the present study, radiation chimeras reconstituted with fetal liver cells from either healer MRL or nonhealer B6 mice were generated to test for a transfer of phenotype. Allogeneic MRL fetal liver cells were injected into x-irradiated (9 Gy) B6 mice and B6 fetal liver cells were injected into x-irradiated MRL mice. In these allogeneic chimeras, the healing response to cardiac cryoinjury was predominantly of the donor phenotype. Thus, MRL fetal liver cells transferred the healing phenotype to the B6 nonhealer with the appearance of Y-chromosome positive, donor-derived cardiomyocytes in the injury site and MRL-like healing with little scar. Similarly, B6 fetal liver cells transferred the nonhealing phenotype to the MRL with little cardiomyocyte growth and an acellular B6-like scar. These results are in contrast to the ear hole closure response which was of the recipient phenotype. We conclude that, in the case of the heart, fetal liver-derived stem cells regulate regenerative healing.
Collapse
|
33
|
Liu Z, Martin LJ. Pluripotent fates and tissue regenerative potential of adult olfactory bulb neural stem and progenitor cells. J Neurotrauma 2005; 21:1479-99. [PMID: 15672637 DOI: 10.1089/neu.2004.21.1479] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neural stem cells and progenitor cells reside in the adult olfactory bulb (OB) core of mouse, rat, and human. Adult rodent OB core cells have the capacities for self-renewal and multipotency and form neurospheres. The differentiation fates of these neurosphere-forming cells were studied in vitro and in vivo. Adult OB neurospheres were comprised of stem cells and neuronal and glial progenitor cells. OB neurospheres in co-culture with primary embryonic striatal neurons and cortical neurons generated cells with morphological and neurochemical phenotypes of striatal and cortical neurons, respectively. Transplanted OB cells, delivered as dissociated cells or as intact neurospheres, dispersed, survived for long-term, extended neurites, migrated, expressed neuronal or glial markers, and formed synapses with host neurons when placed into the environment of the nonlesioned and lesioned central nervous system (CNS). Grafted cells in the CNS also showed angiogenic capacity by forming blood vessels. In a model of spinal motor neuron degeneration, adult OB neurosphere cells transplanted into lesioned spinal cord adopted phenotypes of motor neurons and had a robust potential to become oligodendrocytes. OB core cells in co-culture with skeletal myoblasts generated skeletal muscle cells. Chimeric skeletal muscle was formed when mouse OB neurospheres were transplanted into rat skeletal muscle. Within skeletal muscle, adult OB neurosphere cells became myogenic progenitor cells to form myotubes de novo. We conclude that the adult mammalian OB is a source of pluripotent neural stem cells and progenitor cells that have the potential to become, in a context-dependent manner, specific types of cells for regeneration of tissues in brain, spinal cord, and muscle.
Collapse
Affiliation(s)
- Zhiping Liu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | |
Collapse
|
34
|
Angelini P, Markwald RR. Stem cell treatment of the heart: a review of its current status on the brink of clinical experimentation. Tex Heart Inst J 2005; 32:479-88. [PMID: 16429891 PMCID: PMC1351818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Stem cells are multipotent, undifferentiated cells capable of multiplication and differentiation. Preliminary experimental evidence suggests that stem cells derived from embryonic or adult tissues (especially bone marrow) may develop into myocardial cells. Some experts believe that this phenomenon occurs naturally in human beings, specifically during recovery from a myocardial infarction. Recently, stem cells have been used with the therapeutic intention of regenerating damaged tissues. Cardiac experiments, mainly with adult homologous stem cells, have proved that this therapy is safe and may improve myocardial vascularization and pump function. We review current fundamental concepts regarding the normal development of embryonic stem cells into myocardial tissue and the heart as a whole. We describe the multiple conditions that naturally enable a stem cell to become a myocardial cell and a group of stem cells to become a heart. We also discuss the challenge of translating basic cellular and molecular mechanisms into effective, clinically relevant treatment options.
Collapse
Affiliation(s)
- Paolo Angelini
- Department of Cardiology, Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, Texas, USA.
| | | |
Collapse
|
35
|
Affiliation(s)
- Timothy S Sadiq
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
36
|
Eisenberg LM, Markwald RR. Cellular recruitment and the development of the myocardium. Dev Biol 2004; 274:225-32. [PMID: 15385154 DOI: 10.1016/j.ydbio.2004.07.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 07/01/2004] [Accepted: 07/23/2004] [Indexed: 10/26/2022]
Abstract
The vertebrate embryo experiences very rapid growth following fertilization. This necessitates the establishment of blood circulation, which is initiated during the early somite stages of development when the embryo begins to exhibit three-dimensional tissue organization. Accordingly, the contractile heart is the first functional organ that develops in both the bird and mammalian embryo. The vertebrate heart is quickly assembled as a simple two-layer tube consisting of an outer myocardium and inner endocardium. During embryogenesis, the heart undergoes substantial growth and remodeling to meet the increased circulatory requirements of an adult organism. Until recently, it was thought that all the cells that comprise the muscle of the mature heart could trace their roots back to two bilaterally distributed mesodermal fields within the early gastrula. It is now known that the cellular components that give rise to the myocardium have multiple ancestries and that de novo addition of cardiac myocytes to the developing heart occurs at various points during embryogenesis. In this article, we review what is presently known about the source of the cells that contribute to the myocardium and explore reasons why multiple myocardial cell sources exist.
Collapse
Affiliation(s)
- Leonard M Eisenberg
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
37
|
Soukiasian HJ, Czer LSC, Avital I, Aoki T, Kim YH, Umehara Y, Pass J, Tabrizi R, Magliato K, Fontana GP, Cheng W, Demetriou AA, Trento A. A novel sub-population of bone marrow-derived myocardial stem cells: potential autologous cell therapy in myocardial infarction. J Heart Lung Transplant 2004; 23:873-80. [PMID: 15261183 DOI: 10.1016/j.healun.2003.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Revised: 07/26/2003] [Accepted: 08/02/2003] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Several studies have identified beta2-microglobulin-negative (beta2M(-)) cells as a potential stem cell fraction in the bone marrow of rats and humans. We studied the ability of bone marrow-derived beta2M(-) cells to differentiate into cardiomyocytes and reconstitute the myocardium in a model of myocardial infarction. METHODS beta2M(-) cells were purified from bone marrow of Lewis rats using a magnetic activated cell-sorting technique. beta2M(-) cells, 2.5 x 10(6) cells in 100 microl of phosphate-buffered saline (PBS), were transplanted 7 days after infarction into a transmural myocardial scar induced by cryoinjury in Lewis rats (n = 9). Control Group 1(n = 10) received a 100-microl injection of PBS, and Control Group 2 (n = 15) received no injection. The beta2M(-) cells were labeled before transplantation, using the membrane fluorescent intercalated dye, PKH26. Repopulation was examined at 6 and 8 weeks after transplantation. Differentiation of beta2M(-) cells into cardiac myocytes was determined by the colocalization of troponin and PKH26 to the same cell, utilizing immunohistochemistry, ultraviolet photomicroscopy and fluorescence microscopy on 6-microm serial sections. Area of engraftment within the scar was calculated by planimetry. RESULTS The treatment group had multiple islands of de novo-formed myocardium within the fibrous matrix of the transmural scar (mean area 35 +/- 4.2% of scar area at 6 and 8 weeks). These cells colocalized cardiac-specific troponin and PKH26. Using these techniques, no myocardial islands were seen in the control groups. Before transplantation, beta2M(-) cells were troponin-negative. CONCLUSIONS This study demonstrates that beta2M(-) cells represent a novel sub-population of bone marrow-derived stem cells capable of successful and substantial engraftment in areas of transmural myocardial scar, with de novo formation of cardiac myocytes. The functional significance of this observation is being studied.
Collapse
Affiliation(s)
- Harmik J Soukiasian
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Molnar EM. Stem Cells and Myocardial Regeneration. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2004. [DOI: 10.29333/ejgm/82238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Beier JP, Kneser U, Stern-Sträter J, Stark GB, Bach AD. Y chromosome detection of three-dimensional tissue-engineered skeletal muscle constructs in a syngeneic rat animal model. Cell Transplant 2004; 13:45-53. [PMID: 15040604 DOI: 10.3727/000000004772664888] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Surgical reconstruction of muscle tissue lost by trauma or tumor ablation is limited by the lack of availability of functional native tissue substitution. Moreover, so far most inherited or acquired muscle diseases are lacking sufficient treatment, because only few alternatives exist to provide functional restoration of lost muscle tissues. Engineering those tissues and transplantation into sites of dysfunction may be an alternative approach and may allow replacement of such damaged or failing skeletal muscle tissues. Techniques attempting reconstruction of some human tissues and organs (tissue engineering) have been introduced into clinical practice recently. One major problem that previous transplantation studies were facing is the ability of detection of transplanted cells after integration. Using the Y chromosome in situ hybridization technique in a syngeneic rat model allows transplantation of cell constructs orthotopically, without manipulation of the cells, with no rejection or immunosuppression being implied, but providing a nondilutable genetic marker to identify transplanted cells. The purpose of our study was to create functional skeletal muscle tissue in vivo using the transplantation of primary myoblasts precultivated within a three-dimensional (3D) fibrin matrix and to determine the fate of the transplanted cells using the Y chromosome detection technique. 3D myoblast cultures were established derived from male donor rats and after 7 days of cultivation we performed an orthotopic transplantation of 3D cell constructs into a created muscle defect within the gracilis muscle of syngeneic female rats. Anti-desmin immunostaining and Y chromosome in situ hybridization indicated the survival and integration of transplanted male myoblasts into the female recipient animal, thus demonstrating the feasibility of this approach in tissue engineering and the research of cell transplantation in general.
Collapse
Affiliation(s)
- J P Beier
- Department of Plastic and Hand Surgery, Tissue Engineering Laboratory, University of Freiburg Medical Center, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
40
|
Muller-Borer BJ, Cascio WE, Anderson PAW, Snowwaert JN, Frye JR, Desai N, Esch GL, Brackham JA, Bagnell CR, Coleman WB, Grisham JW, Malouf NN. Adult-derived liver stem cells acquire a cardiomyocyte structural and functional phenotype ex vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:135-45. [PMID: 15215169 PMCID: PMC1618549 DOI: 10.1016/s0002-9440(10)63282-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We examined the differentiation potential of an adult liver stem cell line (WB F344) in a cardiac microenvironment, ex vivo. WB F344 cells were established from a single cloned nonparenchymal epithelial cell isolated from a normal male adult rat liver. Genetically modified, WB F344 cells that express beta-galactosidase and green fluorescent protein or only beta-galactosidase were co-cultured with dissociated rat or mouse neonatal cardiac cells. After 4 to 14 days, WB F344-derived cardiomyocytes expressed cardiac-specific proteins and exhibited myofibrils, sarcomeres, and a nascent sarcoplasmic reticulum. Further, rhythmically beating WB F344-derived cardiomyocytes displayed calcium transients. Fluorescent recovery after photobleaching demonstrated that WB F344-derived cardiomyocytes were coupled with adjacent neonatal cardiomyocytes and other WB F344-derived cardiomyocytes. Fluorescence in situ hybridization experiments suggested that fusion between WB F344 cells and neonatal mouse cardiomyocytes did not take place. Collectively, these results support the conclusion that these adult-derived liver stem cells respond to signals generated in a cardiac microenvironment ex vivo acquiring a cardiomyocyte phenotype and function. The identification ex vivo of microenvironmental signals that appear to cross germ layer and species specificities should prove valuable in understanding the molecular basis of adult stem cell differentiation and phenotypic plasticity.
Collapse
Affiliation(s)
- Barbara J Muller-Borer
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Oh H, Chi X, Bradfute SB, Mishina Y, Pocius J, Michael LH, Behringer RR, Schwartz RJ, Entman ML, Schneider MD. Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Ann N Y Acad Sci 2004; 1015:182-9. [PMID: 15201159 DOI: 10.1196/annals.1302.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The evidence of cardiomyocyte proliferation in damaged heart implied cardiac regeneration might occur by resident or extra cardiac stem cells. However, the specification and origin of these cells remain unknown. Here, we report using fluorescence-activated cell sorting that cardiac progenitor cells resided in adult heart and colocalized with small capillary vessels, within the stem cell antigen (Sca-1) population expressing high telomerase activity. Notably, hematopoietic stem cells capable of efflux Hoechst 33342, termed side population cells, also were identified within the heart-derived cells. The cardiac progenitor cells (CD45(-)/CD34(-)) express neither cardiac muscle nor endothelial cell markers at an undifferentiated stage. The exposure of 5-azacytidine induced cardiac differentiation, which depends, in part, on Bmpr1a, a type IA receptor for bone morphogenetic protein (BMP). The capability of adult Sca1(+) cells to adopt a cardiac muscle in embryogenesis was substantiated by blastocyst injection, using progenitors from the adult hearts of transgenic mice that harbor a bacterial artificial chromosome expressing GFP via the Nkx-2.5 locus. Intravenously injected progenitors, shortly after ischemic/reperfusion, homed and functionally differentiated 3.5% of total left ventricle in the host myocardium. Differentiation included both fusion-independent and fusion-associated components, proved by the Cre/loxP donor/recipient system. Our studies suggest that endogenous cardiac progenitors reside in the adult heart, regenerate cardiomyocytes functionally, and integrate into the existing heart circuitry.
Collapse
Affiliation(s)
- Hidemasa Oh
- Center for Cardiovascular Development, and Department of Medicine, Baylor College of Medicine, Houston, Texas, 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The field of stem cell biology continues to evolve with the ongoing characterization of multiple types of stem cells with their inherent potential for experimental and clinical application. Mesenchymal stem cells (MSC) are one of the most promising stem cell types due to their availability and the relatively simple requirements for in vitro expansion and genetic manipulation. Multiple populations described as "MSCs" have now been isolated from various tissues in humans and other species using a variety of culture techniques. Despite extensive in vitro characterization, relatively little has been demonstrated regarding their in vivo biology and therapeutic potential. Nevertheless, clinical trials utilizing MSCs are currently underway. The aim of this review is to critically analyze the field of MSC biology, particularly with respect to the current paradox between in vitro promise and in vivo efficacy. It is the authors' opinion that until this paradox is better understood, therapeutic applications will remain limited.
Collapse
Affiliation(s)
- Elisabeth H Javazon
- Children's Institute for Surgical Science, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
43
|
Hassink RJ, Dowell JD, Brutel de la Rivière A, Doevendans PA, Field LJ. Stem cell therapy for ischemic heart disease. Trends Mol Med 2004; 9:436-41. [PMID: 14557056 DOI: 10.1016/j.molmed.2003.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent experimental and clinical observations have suggested that cell transplantation could be of therapeutic value for the treatment of heart disease. This approach was based on the idea that transplanted donor cardiomyocytes would integrate with the host myocardium and thereby directly contribute to cardiac function. Surprisingly, the observation that non-cardiomyogenic cells could also improve cardiac function indicates that functional integration of donor cells might not be required to achieve a beneficial effect. More recently, several observations have suggested the presence of a greater than anticipated developmental repertoire in adult-derived stem cells, which, if further validated, would offer unprecedented opportunities for the restoration of cardiac function in diseased hearts. Here, we discuss current issues regarding the potential use of stem cell transplantation for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Rutger J Hassink
- University Medical Center, Heart Lung Center, Dept of Cardio-Thoracic Surgery, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
Ishikawa H, Nakao K, Matsumoto K, Nishimura D, Ichikawa T, Hamasaki K, Eguchi K. Bone marrow engraftment in a rodent model of chemical carcinogenesis but no role in the histogenesis of hepatocellular carcinoma. Gut 2004; 53:884-9. [PMID: 15138218 PMCID: PMC1774082 DOI: 10.1136/gut.2003.026047] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIM Recent studies indicated that hepatic stem cells in the bone marrow could differentiate into mature hepatocytes, suggesting that bone marrow cells could be used for replacement of damaged hepatocytes in a variety of liver diseases. Hepatocellular carcinoma (HCC) is thought to arise from hepatic stem cells. In this study, we investigated the malignant potential of hepatic stem cells derived from the bone marrow in a mouse model of chemical hepatocarcinogenesis. METHODS Bone marrow cells were obtained from the male beta-galactosidase (beta-gal) transgenic mouse and transplanted into female recipient mice. Hepatocarcinogenesis was induced by a year of treatment with diethylnitrosamine and phenobarbital (NDEA/PB). One year later, the liver was removed from each treated mouse and evaluated by x-gal staining, immunohistochemistry, and fluorescence in situ hybridisation (FISH). RESULTS Forty per cent of recipient mice survived and developed multiple HCC. Clusters of beta-gal positive mature hepatocytes were detected sporadically in the entire liver of NDEA/PB treated mice who underwent bone marrow transplantation (BMT) with while no such hepatocytes were identified in the liver of BMT mice that were not treated with NDEA/PB. The Y chromosome was detected with the same frequency as the donor male liver in clusters of beta-gal positive mature hepatocytes by FISH. However, no HCC was positive for beta-gal or the Y chromosome. Immunohistochemically, beta-gal positive mature hepatocytes did not express CD34 or alpha-fetoprotein. CONCLUSIONS Our results suggest that hepatic stem cells derived from the bone marrow have low malignant potential, at least in our model.
Collapse
Affiliation(s)
- H Ishikawa
- The First Department of Internal Medicine, Nagasaki University School of Medicine, Sakamoto, Nagasaki, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Heart failure remains a leading cause of hospital admissions and mortality in the elderly, and current interventional approaches often fail to treat the underlying cause of pathogenesis. Preservation of structure and function in the aging myocardium is most likely to be successful via ongoing cellular repair and replacement, as well as survival of existing cardiomyocytes that generate contractile force. Research has led to a paradigm shift driven by application of stem cells to generate cardiovascular cell lineages. Early controversial findings of pluripotent precursors adopting cardiac phenotypes are now widely accepted, and current debate centers upon the efficiency of progenitor cell incorporation into the myocardium. Much work remains to be done in determining the relevant progenitor cell population and optimizing conditions for efficient differentiation and integration. Significant implications exist for treatment of pathologically damaged or aging myocardium since future interventional approaches will capitalize upon the use of cardiac stem cells as therapeutic reagents.
Collapse
Affiliation(s)
- Mark A Sussman
- SDSU Heart Institute, San Diego State University, Department of Biology, LS426, San Diego, California 98182, USA.
| | | |
Collapse
|
46
|
Abstract
Hematopoietic stem cell (HSC) plasticity and its clinical application have been studied profoundly in the past few years. Recent investigations indicate that HSC and other bone marrow stem cells can develop into other tissues. Because of the high morbidity and mortality of myocardial infarction and other heart disorders, myocardial regeneration is a good example of the clinical application of HSC plasticity in regenerative medicine. Preclinical studies in animals suggest that the use of this kind of treatment can reconstruct heart blood vessels, muscle, and function. Some clinical study results have been reported in the past 2 years. In 2003, reports of myocardial regeneration treatment increased significantly. Other studies include observations on the cell surface markers of transplanted cells and treatment efficacy. Some investigations, such as HSC testing, have focused on clinical applications using HSC plasticity and bone marrow transplantation to treat different types of disorders. In this review, we focus on the clinical application of bone marrow cells for myocardial regeneration.
Collapse
Affiliation(s)
- Fu-Sheng Wang
- R&D Department, Sysmex America, Mundelein, Illinois 60060, USA.
| | | |
Collapse
|
47
|
Abstract
Cardiomyoplasty with skeletal myoblasts may benefit cardiac function after infarction. Recent reports indicate that adult stem cells can fuse with other cell types. Because myoblasts are “fusigenic” cells by nature, we hypothesized they might be particularly likely to fuse with cardiomyocytes. To test this, neonatal rat cardiomyocytes labeled with LacZ and green fluorescent protein (GFP) were cocultured with unlabeled C2C12 myoblasts. After 3 days, we observed a small population of skeletal myotubes that expressed LacZ and GFP, indicating cell fusion. To test whether such fusion occurred in vivo, LacZ-expressing C2C12 myoblasts were grafted into normal nude mouse hearts. At 2 weeks after grafting, cells at the graft-host interface expressed both LacZ and cardiac-specific myosin light chain 2v (MLC2v). To test more definitively whether fusion between skeletal and cardiac muscle could occur, we used a Cre/lox reporter system that activated LacZ only upon cell fusion. When neonatal cardiomyocytes from α-myosin heavy chain promoter (α-MHC)-Cre mice were cocultured with myoblasts from floxed-lacZ reporter mice, LacZ was activated in a subset of cells, indicating cell fusion occurred in vitro. Finally, we grafted the floxed-lacZ myoblasts into normal hearts of α-MHC-Cre
+
and α-MHC-Cre
−
mice (n=5 each). Hearts analyzed at 4 days and 1 week after transplantation demonstrated activation of LacZ when the skeletal muscle cells were implanted into hearts of α-MHC-Cre
+
mice, but not after implantation into α-MHC-Cre
−
mice. These data indicate that skeletal muscle cell grafting gives rise to a subpopulation of skeletal-cardiac hybrid cells with a currently unknown phenotype. The full text of this article is available online at
http://circres.ahajournals.org
.
Collapse
Affiliation(s)
- Hans Reinecke
- Department of Pathology, University of Washington, Box 357470, HSB Room D-514. Seattle, Wash 98195-7470, USA.
| | | | | | | |
Collapse
|
48
|
Zimmermann WH, Melnychenko I, Eschenhagen T. Engineered heart tissue for regeneration of diseased hearts. Biomaterials 2004; 25:1639-47. [PMID: 14697865 DOI: 10.1016/s0142-9612(03)00521-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cardiac tissue engineering aims at providing contractile heart muscle constructs for replacement therapy in vivo. At present, most cardiac tissue engineering attempts utilize heart cells from embryonic chicken and neonatal rats and scaffold materials. Over the past years our group has developed a novel technique to engineer collagen/matrigel-based cardiac muscle constructs, which we termed engineered heart tissue (EHT). EHT display functional and morphological properties of differentiated heart muscle and can be constructed in different shape and size from collagen type I, extracellular matrix proteins (Matrigel((R))), and heart cells from neonatal rats and embryonic chicken. First implantation studies in syngeneic Fischer 344 rats provided evidence of EHT survival and integration in vivo. This review will focus on our experience in tissue engineering of cardiac muscle. Mainly, EHT construction, matrix requirements, potential applications of different cell types including stem cells, and our first implantation experiences will be discussed. Despite many critical and unresolved questions, we believe that cardiac tissue engineering in general has an interesting perspective for the replacement of malfunctioning myocardium and reconstruction of congenital malformations.
Collapse
Affiliation(s)
- Wolfram Hubertus Zimmermann
- Department of Clinical Pharmacology and Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany.
| | | | | |
Collapse
|
49
|
Xaymardan M, Tang L, Zagreda L, Pallante B, Zheng J, Chazen JL, Chin A, Duignan I, Nahirney P, Rafii S, Mikawa T, Edelberg JM. Platelet-Derived Growth Factor-AB Promotes the Generation of Adult Bone Marrow–Derived Cardiac Myocytes. Circ Res 2004; 94:E39-45. [PMID: 14963008 DOI: 10.1161/01.res.0000122042.51161.b6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The directed generation of cardiac myocytes from endogenous stem cells offers the potential for novel therapies for cardiovascular disease. To facilitate the development of such approaches, we sought to identify and exploit the pathways directing the generation of cardiac myocytes from adult rodent bone marrow cells (BMCs). In vitro cultures supporting the spontaneous generation of functional cardiac myocytes from murine BMCs demonstrated induced expression of platelet-derived growth factor (PDGF)-A and -B isoforms with α- and β-myosin heavy chains as well as connexin43. Supplementation of PDGF-AB speeded the kinetics of myocyte development in culture by 2-fold. In a rat heart, myocardial infarction pretreatment model PDGF-AB also promoted the derivation of cardiac myocytes from BMCs, resulting in a significantly greater number of islands of cardiac myocyte bundles within the myocardial infarction scar compared with other treatment groups. However, gap junctions were detected only between the cardiac myocytes receiving BMCs alone, but not BMCs injected with PDGF-AB. Echocardiography and exercise testing revealed that the functional improvement of hearts treated with the combination of BMCs and PDGF-AB was no greater than with injections of BMCs or PDGF-AB alone. These studies demonstrated that PDGF-AB enhances the generation of BMC-derived cardiac myocytes in rodent hearts, but suggest that alterations in cellular patterning may limit the functional benefit from the combined injection of PDGF-AB and BMCs. Strategies based on the synergistic interactions of PDGF-AB and endogenous stem cells will need to maintain cellular patterning in order to promote the restoration of cardiac function after acute coronary occlusion. The full text of this article is available online at http://circres.ahajournals.org.
Collapse
Affiliation(s)
- Munira Xaymardan
- Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a versatile biophysical technique with wide applicability in drug discovery research, particularly for the detection and characterization of molecular interactions. This review highlights in a comprehensive manner the aspects of biomolecular NMR which are most beneficial for pharmaceutical research and presents them as contributions to the different stages of a drug discovery program: target selection, assay development, lead generation and lead optimization. Emphasis is put on the concept of the particular NMR application, rather than on technical details, and on recent examples. Finally, an appendix of frequently asked questions is given.
Collapse
Affiliation(s)
- W Jahnke
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Lichtstrasse, 4002, Basel, Switzerland.
| | - H Widmer
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Lichtstrasse, 4002, Basel, Switzerland
| |
Collapse
|