1
|
Sehrawat U. Exploiting Translation Machinery for Cancer Therapy: Translation Factors as Promising Targets. Int J Mol Sci 2024; 25:10835. [PMID: 39409166 PMCID: PMC11477148 DOI: 10.3390/ijms251910835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Eukaryotic protein translation has slowly gained the scientific community's attention for its advanced and powerful therapeutic potential. However, recent technical developments in studying ribosomes and global translation have revolutionized our understanding of this complex multistep process. These developments have improved and deepened the current knowledge of mRNA translation, sparking excitement and new possibilities in this field. Translation factors are crucial for maintaining protein synthesis homeostasis. Since actively proliferating cancer cells depend on protein synthesis, dysregulated protein translation is central to tumorigenesis. Translation factors and their abnormal expressions directly affect multiple oncogenes and tumor suppressors. Recently, small molecules have been used to target translation factors, resulting in translation inhibition in a gene-specific manner, opening the door for developing translation inhibitors that can lead to novel chemotherapeutic drugs for treating multiple cancer types caused by dysregulated translation machinery. This review comprehensively summarizes the involvement of translation factors in tumor progression and oncogenesis. Also, it sheds light on the evolution of translation factors as novel drug targets for developing future therapeutic drugs for treating cancer.
Collapse
Affiliation(s)
- Urmila Sehrawat
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
2
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
3
|
Meng W, Xiao H, Mei P, Chen J, Wang Y, Zhao R, Liao Y. Critical Roles of METTL3 in Translation Regulation of Cancer. Biomolecules 2023; 13:biom13020243. [PMID: 36830614 PMCID: PMC9953158 DOI: 10.3390/biom13020243] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Aberrant translation, a characteristic feature of cancer, is regulated by the complex and sophisticated RNA binding proteins (RBPs) in the canonical translation machinery. N6-methyladenosine (m6A) modifications are the most abundant internal modifications in mRNAs mediated by methyltransferase-like 3 (METTL3). METTL3 is commonly aberrantly expressed in different tumors and affects the mRNA translation of many oncogenes or dysregulated tumor suppressor genes in a variety of ways. In this review, we discuss the critical roles of METTL3 in translation regulation and how METTL3 and m6A reader proteins in collaboration with RBPs within the canonical translation machinery promote aberrant translation in tumorigenesis, providing an overview of recent efforts aiming to 'translate' these results to the clinic.
Collapse
Affiliation(s)
- Wangyang Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Han Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peiyuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiaping Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yangwei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence:
| |
Collapse
|
4
|
Huang R, Dai Q, Yang R, Duan Y, Zhao Q, Haybaeck J, Yang Z. A Review: PI3K/AKT/mTOR Signaling Pathway and Its Regulated Eukaryotic Translation Initiation Factors May Be a Potential Therapeutic Target in Esophageal Squamous Cell Carcinoma. Front Oncol 2022; 12:817916. [PMID: 35574327 PMCID: PMC9096244 DOI: 10.3389/fonc.2022.817916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/01/2022] [Indexed: 11/15/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant tumor developing from the esophageal squamous epithelium, and is the most common histological subtype of esophageal cancer (EC). EC ranks 10th in morbidity and sixth in mortality worldwide. The morbidity and mortality rates in China are both higher than the world average. Current treatments of ESCC are surgical treatment, radiotherapy, and chemotherapy. Neoadjuvant chemoradiotherapy plus surgical resection is recommended for advanced patients. However, it does not work in the significant promotion of overall survival (OS) after such therapy. Research on targeted therapy in ESCC mainly focus on EGFR and PD-1, but neither of the targeted drugs can significantly improve the 3-year and 5-year survival rates of disease. Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is an important survival pathway in tumor cells, associated with its aggressive growth and malignant progression. Specifically, proliferation, apoptosis, autophagy, and so on. Related genetic alterations of this pathway have been investigated in ESCC, such as PI3K, AKT and mTOR-rpS6K. Therefore, the PI3K/AKT/mTOR pathway seems to have the capability to serve as research hotspot in the future. Currently, various inhibitors are being tested in cells, animals, and clinical trials, which targeting at different parts of this pathway. In this work, we reviewed the research progress on the PI3K/AKT/mTOR pathway how to influence biological behaviors in ESCC, and discussed the interaction between signals downstream of this pathway, especially eukaryotic translation initiation factors (eIFs) and the development and progression of ESCC, to provide reference for the identification of new therapeutic targets in ESCC.
Collapse
Affiliation(s)
- Ran Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qiong Dai
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ruixue Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Duan
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qi Zhao
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Machine Learning analysis of high-grade serous ovarian cancer proteomic dataset reveals novel candidate biomarkers. Sci Rep 2022; 12:3041. [PMID: 35197484 PMCID: PMC8866540 DOI: 10.1038/s41598-022-06788-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/02/2022] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer is one of the most common gynecological malignancies, ranking third after cervical and uterine cancer. High-grade serous ovarian cancer (HGSOC) is one of the most aggressive subtype, and the late onset of its symptoms leads in most cases to an unfavourable prognosis. Current predictive algorithms used to estimate the risk of having Ovarian Cancer fail to provide sufficient sensitivity and specificity to be used widely in clinical practice. The use of additional biomarkers or parameters such as age or menopausal status to overcome these issues showed only weak improvements. It is necessary to identify novel molecular signatures and the development of new predictive algorithms able to support the diagnosis of HGSOC, and at the same time, deepen the understanding of this elusive disease, with the final goal of improving patient survival. Here, we apply a Machine Learning-based pipeline to an open-source HGSOC Proteomic dataset to develop a decision support system (DSS) that displayed high discerning ability on a dataset of HGSOC biopsies. The proposed DSS consists of a double-step feature selection and a decision tree, with the resulting output consisting of a combination of three highly discriminating proteins: TOP1, PDIA4, and OGN, that could be of interest for further clinical and experimental validation. Furthermore, we took advantage of the ranked list of proteins generated during the feature selection steps to perform a pathway analysis to provide a snapshot of the main deregulated pathways of HGSOC. The datasets used for this study are available in the Clinical Proteomic Tumor Analysis Consortium (CPTAC) data portal (https://cptac-data-portal.georgetown.edu/).
Collapse
|
6
|
Zhang T, Liu N, Wei W, Zhang Z, Li H. Integrated Analysis of Weighted Gene Coexpression Network Analysis Identifying Six Genes as Novel Biomarkers for Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9918498. [PMID: 34367470 PMCID: PMC8339876 DOI: 10.1155/2021/9918498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic progressive neurodegenerative disease; however, there are no comprehensive therapeutic interventions. Therefore, this study is aimed at identifying novel molecular targets that may improve the diagnosis and treatment of patients with AD. METHODS In our study, GSE5281 microarray dataset from the GEO database was collected and screened for differential expression analysis. Genes with a P value of <0.05 and ∣log2FoldChange | >0.5 were considered differentially expressed genes (DEGs). We further profiled and identified AD-related coexpression genes using weighted gene coexpression network analysis (WGCNA). Functional enrichment analysis was performed to determine the characteristics and pathways of the key modules. We constructed an AD-related model based on hub genes by logistic regression and least absolute shrinkage and selection operator (LASSO) analyses, which was also verified by the receiver operating characteristic (ROC) curve. RESULTS In total, 4674 DEGs were identified. Nine distinct coexpression modules were identified via WGCNA; among these modules, the blue module showed the highest positive correlation with AD (r = 0.64, P = 3e - 20), and it was visualized by establishing a protein-protein interaction network. Moreover, this module was particularly enriched in "pathways of neurodegeneration-multiple diseases," "Alzheimer disease," "oxidative phosphorylation," and "proteasome." Sixteen genes were identified as hub genes and further submitted to a LASSO regression model, and six genes (EIF3H, RAD51C, FAM162A, BLVRA, ATP6V1H, and BRAF) were identified based on the model index. Additionally, we assessed the accuracy of the LASSO model by plotting an ROC curve (AUC = 0.940). CONCLUSIONS Using the WGCNA and LASSO models, our findings provide a better understanding of the role of biomarkers EIF3H, RAD51C, FAM162A, BLVRA, ATP6V1H, and BRAF and provide a basis for further studies on AD progression.
Collapse
Affiliation(s)
- Tingting Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Nanyang Liu
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Wei Wei
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Zhen Zhang
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Hao Li
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
7
|
Huang Y, Zheng P, Liu X, Chen H, Tu J. OseIF3h Regulates Plant Growth and Pollen Development at Translational Level Presumably through Interaction with OsMTA2. PLANTS 2021; 10:plants10061101. [PMID: 34070794 PMCID: PMC8228589 DOI: 10.3390/plants10061101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022]
Abstract
The initiation stage of protein biosynthesis is a sophisticated process tightly regulated by numerous initiation factors and their associated components. However, the mechanism underlying translation initiation has not been completely understood in rice. Here, we showed knock-out mutation of the rice eukaryotic translation initiation factor 3 subunit h (OseIF3h) resulted in plant growth retardation and seed-setting rate reduction as compared to the wild type. Further investigation demonstrated an interaction between OseIF3h and OsMTA2 (mRNA adenosine methylase 2), a rice homolog of METTL3 (methyltransferase-like 3) in mammals, which provided new insight into how N6-methyladenosine (m6A) modification of messenger RNA (mRNA) is engaged in the translation initiation process in monocot species. Moreover, the RIP-seq (RNA immunoprecipitation sequencing) data suggested that OseIF3h was involved in multiple biological processes, including photosynthesis, cellular metabolic process, precursor metabolites, and energy generation. Therefore, we infer that OseIF3h interacts with OsMTA2 to target a particular subset of genes at translational level, regulating plant growth and pollen development.
Collapse
|
8
|
Zheng W, Li Y, Su Z, Zhang J, Shi F, Liang W. EIF3H knockdown inhibits malignant melanoma through regulating cell proliferation, apoptosis and cell cycle. Exp Cell Res 2021; 402:112488. [PMID: 33508274 DOI: 10.1016/j.yexcr.2021.112488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/24/2022]
Abstract
Malignant melanoma (MM) causes 80% of skin cancer-related deaths and becomes the most lethal type of skin cancer. The molecular mechanism of MM is still not clear. This study aimed to reveal the relationship between MM and EIF3H. Clinical specimens were collected to preliminarily explore the role of EIF3H in MM. MM cell lines with EIF3H knockdown were constructed for investigating the effects of EIF3H on cell proliferation, apoptosis, cell cycle and cell motility. Mice xenograft model was constructed for verification in vivo. We found that EIF3H was obviously upregulated in MM tissues compared with normal skin tissues, which was correlated with tumor stage and risk of lymphatic metastasis. The in vitro results indicated that silencing EIF3H in MM cells could significantly suppress cell proliferation, promote cell apoptosis and induce cell cycle arrest. Moreover, EIF3H knockdown significantly restrained cell motility through regulating EMT-related proteins. The effects of EIF3H knockdown were also verified in mice xenograft model, which were represented by slower growth rate, smaller volume and lighter weight of tumors. Therefore, EIF3H was identified as a critical factor in the development and progression of MM which may be used as a novel therapeutic target in the treatment of MM.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yong Li
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zheng Su
- Department of Plastic and Reconstructive Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Plastic and Reconstructive Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fen Shi
- Department of Plastic and Reconstructive Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weiqiang Liang
- Department of Plastic and Reconstructive Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Ma S, Dong Z, Cui Q, Liu JY, Zhang JT. eIF3i regulation of protein synthesis, cell proliferation, cell cycle progression, and tumorigenesis. Cancer Lett 2020; 500:11-20. [PMID: 33301799 DOI: 10.1016/j.canlet.2020.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/22/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
eIF3i, a 36-kDa protein, is a putative subunit of the eIF3 complex important for translation initiation of mRNAs. It is a WD40 domain-containing protein with seven WD40 repeats that forms a β-propeller structure with an important function in pre-initiation complex formation and mRNA translation initiation. In addition to participating in the eIF3 complex formation for global translational control, eIF3i may bind to specific mRNAs and regulate their translation individually. Furthermore, eIF3i has been shown to bind to TGF-β type II receptor and participate in TGF-β signaling. It may also participate in and regulate other signaling pathways including Wnt/β-catenin pathway via translational regulation of COX-2 synthesis. These multiple canonical and noncanonical functions of eIF3i in translational control and in regulating signal transduction pathways may be responsible for its role in cell differentiation, cell cycle regulation, proliferation, and tumorigenesis. In this review, we will critically evaluate recent progresses and assess future prospects in studying eIF3i.
Collapse
Affiliation(s)
- Shijie Ma
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China.
| | - Zizheng Dong
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Qingbin Cui
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| | - Jian-Ting Zhang
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| |
Collapse
|
10
|
EIF3H promotes aggressiveness of esophageal squamous cell carcinoma by modulating Snail stability. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:175. [PMID: 32867821 PMCID: PMC7457539 DOI: 10.1186/s13046-020-01678-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023]
Abstract
Background Overexpression of eukaryotic translation initiation factor 3H (EIF3H) predicts cancer progression and poor prognosis, but the mechanism underlying EIF3H as an oncogene remains unclear in esophageal squamous cell carcinoma (ESCC). Methods TCGA database and the immunohistochemistry (IHC) staining of ESCC samples were used and determined the upregulation of EIF3H in ESCC. CCK8 assay, colony formation assay and transwell assay were performed to examine the ability of cell proliferation and mobility in KYSE150 and KYSE510 cell lines with EIF3H overexpression or knockdown. Xenograft and tail-vein lung metastatic mouse models of KYSE150 cells with or without EIF3H knockdown were also used to confirm the function of EIF3H on tumor growth and metastasis in vivo. A potential substrate of EIF3H was screened by co-immunoprecipitation assay (co-IP) combined with mass spectrometry in HEK293T cells. Their interaction and co-localization were confirmed using reciprocal co-IP and immunofluorescence staining assay. The function of EIF3H on Snail ubiquitination and stability was demonstrated by the cycloheximide (CHX) pulse-chase assay and ubiquitination assay. The correlation of EIF3H and Snail in clinical ESCC samples was verified by IHC. Results We found that EIF3H is significantly upregulated in esophageal cancer and ectopic expression of EIF3H in ESCC cell lines promotes cell proliferation, colony formation, migration and invasion. Conversely, genetic inhibition of EIF3H represses ESCC tumor growth and metastasis in vitro and in vivo. Moreover, we identified EIF3H as a novel deubiquitinating enzyme of Snail. We demonstrated that EIF3H interacts with and stabilizes Snail through deubiquitination. Therefore, EIF3H could promote Snail-mediated EMT process in ESCC. In clinical ESCC samples, there is also a positive correlation between EIF3H and Snail expression. Conclusions Our study reveals a critical EIF3H-Snail signaling axis in tumor aggressiveness in ESCC and provides EIF3H as a promising biomarker for ESCC treatment.
Collapse
|
11
|
Li F, Wang H, Huang H, Zhang L, Wang D, Wan Y. m6A RNA Methylation Regulators Participate in the Malignant Progression and Have Clinical Prognostic Value in Lung Adenocarcinoma. Front Genet 2020; 11:994. [PMID: 33193582 PMCID: PMC7477360 DOI: 10.3389/fgene.2020.00994] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Abnormal methylation of N6 adenosine (m6A) in RNA plays a crucial role in the pathogenesis of many types of tumors. However, little is known about m6A RNA methylation in lung adenocarcinoma. This study aimed to identify the value of m6A RNA methylation regulators in the malignant progression and clinical prognosis of lung adenocarcinoma. The RNA-seq transcriptome data and corresponding clinical information of lung adenocarcinoma were downloaded from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database. Then the identification of differentially expressed m6A RNA methylation regulators between cancer samples and normal control samples, different subgroups by consensus expression of these regulators and the prognostic signature were achieved using R software with multiple corresponding packages. The results showed that the expression levels of HNRNPC, YTHDF1, KIAA1429, RBM15, YTHDF2, and METTL3 in cancer group were significantly up-regulated (P < 0.05), while expression levels of FTO, ZC3H13, METTL14, YTHDC1 and WTAP in cancer group were significantly down-regulated (P < 0.05) compared with control group. Two subgroups identified by consensus expression of these regulators were closely related to the clinicopathological features, clinical outcomes and malignancy of lung adenocarcinoma. In addition, a 3-gene risk signature including KIAA1429, RBM15, and HNRNPC was constructed and the lung adenocarcinoma patients in TCGA database were divided into high-risk group and low-risk group based on the median risk score. In conclusion, the prognostic signature-based risk score calculated according to the expression levels of KIAA1429, RBM15, and HNRNPC, was not only strongly associated with clinical outcomes and clinicopathological features, but also an independent prognostic factor in lung adenocarcinoma.
Collapse
Affiliation(s)
- Fangwei Li
- Department of Respiratory Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Hong Wang
- Department of Respiratory Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Huirong Huang
- Department of Respiratory Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Li Zhang
- Department of Respiratory Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Dan Wang
- Department of Respiratory Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Yixin Wan
- Department of Respiratory Medicine, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
12
|
Zhou Z, Zhou H, Ponzoni L, Luo A, Zhu R, He M, Huang Y, Guan KL, Bahar I, Liu Z, Wan Y. EIF3H Orchestrates Hippo Pathway-Mediated Oncogenesis via Catalytic Control of YAP Stability. Cancer Res 2020; 80:2550-2563. [PMID: 32269044 PMCID: PMC7316131 DOI: 10.1158/0008-5472.can-19-3718] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 01/08/2023]
Abstract
EIF3H is presumed to be a critical translational initiation factor. Here, our unbiased screening for tumor invasion factors has identified an unexpected role for EIF3H as a deubiquitylating enzyme that dictates breast tumor invasion and metastasis by modulating the Hippo-YAP pathway. EIF3H catalyzed YAP for deubiquitylation, resulting in its stabilization. Structure-based molecular modeling and simulations coupled with biochemical characterization unveiled a unique catalytic mechanism for EIF3H in dissociating polyubiquitin chains from YAP through a catalytic triad consisting of Asp90, Asp91, and Gln121. Trp119 and Tyr 140 on EIF3H directly interacted with the N-terminal region of YAP1, facilitating complex formation of EIF3H and YAP1 for YAP1 deubiquitylation. Stabilization of YAP via elevated EIF3H promoted tumor invasion and metastasis. Interference of EIF3H-mediated YAP deubiquitylation blocked YAP-induced tumor progression and metastasis in breast cancer models. These findings point to a critical role for YAP regulation by EIF3H in tumor invasion and metastasis. SIGNIFICANCE: This work demonstrates that EIF3H is a novel bona fide deubiquitinase that counteracts YAP ubiquitylation and proteolysis, and stabilization of YAP by EIF3H promotes tumor invasion and metastasis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Adult
- Aged
- Aged, 80 and over
- Animals
- Biocatalysis
- Breast/pathology
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Carcinogenesis/pathology
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/secondary
- Carcinoma, Ductal, Breast/surgery
- Cell Line, Tumor
- Deubiquitinating Enzymes/metabolism
- Disease Models, Animal
- Disease-Free Survival
- Eukaryotic Initiation Factor-3/metabolism
- Female
- Hippo Signaling Pathway
- Humans
- Kaplan-Meier Estimate
- Mastectomy
- Mice
- Middle Aged
- Molecular Docking Simulation
- Neoplasm Invasiveness/pathology
- Prognosis
- Protein Serine-Threonine Kinases/metabolism
- Protein Stability
- Signal Transduction
- Transcription Factors/metabolism
- Ubiquitination
- YAP-Signaling Proteins
- Young Adult
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Obstetrics and Gynecology, Department of Pharmacology, The Robert H. Lurie Comprehensive Cancer Center, Chemical of Life Processes Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Honghong Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luca Ponzoni
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pennsylvania
| | - Aiping Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingjing He
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yi Huang
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kun-Liang Guan
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pennsylvania
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yong Wan
- Department of Obstetrics and Gynecology, Department of Pharmacology, The Robert H. Lurie Comprehensive Cancer Center, Chemical of Life Processes Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
13
|
Li J, Yu W, Ge J, Zhang J, Wang Y, Wang P, Shi G. Targeting eIF3f Suppresses the Growth of Prostate Cancer Cells by Inhibiting Akt Signaling. Onco Targets Ther 2020; 13:3739-3750. [PMID: 32440143 PMCID: PMC7210466 DOI: 10.2147/ott.s244345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/10/2020] [Indexed: 01/14/2023] Open
Abstract
Background Eukaryotic initiation factor 3 (eIF3) is the largest translation initiation factor, and oncogenic roles have been discovered for its subunits, including the f subunit (ie, eIF3f), in various human cancers. However, the roles of eIF3f in the development and progression of prostate cancer (PCa) have not been reported. Materials and Methods We performed in silico analysis to screen the expression of eIF3 subunits. Relevant shRNAs were used to knock down eIF3 subunits in 22Rv1 cells and cell proliferation was analyzed. eIF3f expression in PCa specimens was confirmed by immunohistochemistry. eIF3f knockdown was established to evaluate the effects of eIF3f on cell proliferation in vitro and in vivo. RNA‐seq, bioinformatics analysis and Western blotting were applied to explore the molecular details underlying the biological function of eIF3f in PCa cells. shRNA-resistant eIF3f and myristoylated-Akt were used to rescue the effects of eIF3f disturbance on PCa cells. Results Functional analyses confirmed that eIF3f is essential for PCa proliferation. Notably, the expression of eIF3f was found to be elevated in human PCa tissues as well as in PCa cell lines. eIF3f silencing significantly suppressed the growth of PCa cells, both in vitro and in vivo. eIF3f expression was positively correlated with Akt signaling activity in RNA-seq profiles and published prostate cohorts. Knockdown of eIF3f markedly reduced the levels of phosphorylated Akt in PCa cells. Exogenous expression of shRNA-resistant eIF3f in eIF3f knockdown cells restored Akt phosphorylation levels and cell growth. Importantly, rescue experiments revealed that ectopic expression of myristoylated-Akt partially alleviated the suppressive effects of eIF3f disturbance with respect to the growth of PCa cells. Conclusion These results suggested that eIF3f has an oncogenic role in PCa, mediated at least partially through the regulation of Akt signaling, and that eIF3f represents a potential target for the inhibition of PCa growth and progression.
Collapse
Affiliation(s)
- Junhong Li
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, People's Republic of China
| | - Wandong Yu
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, People's Republic of China
| | - Jianchao Ge
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, People's Republic of China
| | - Jun Zhang
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, People's Republic of China
| | - Yang Wang
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, People's Republic of China
| | - Pengyu Wang
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, People's Republic of China
| | - Guowei Shi
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, People's Republic of China
| |
Collapse
|
14
|
Xu Y, Ruggero D. The Role of Translation Control in Tumorigenesis and Its Therapeutic Implications. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020. [DOI: 10.1146/annurev-cancerbio-030419-033420] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As a convergent mechanism downstream of most oncogenic signals, control of mRNA translation has emerged as a key driver in establishing and tuning gene expression at specific steps in cancer development. Translation control is the most energetically expensive molecular process in the cell that needs to be modulated upon adaption to limited cellular resources, such as cellular stress. It thereby serves as the Achilles’ heel for cancer cells, particularly in response to changes in the microenvironment as well as to nutrient and metabolic shifts characteristic of cancer cell growth and metastasis. In this review, we discuss emerging discoveries that reveal how cancer cells modulate the translation machinery to adapt to oncogenic stress, the mechanisms that guide mRNA translation specificity in cancer, and how this selective mode of gene regulation provides advantages for cancer progression. We also provide an overview of promising preclinical and clinical efforts aimed at targeting the unique vulnerabilities of cancer cells that rely on the remodeling of mRNA translation for their infinite growth and survival.
Collapse
Affiliation(s)
- Yichen Xu
- Department of Urology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94157, USA
| | - Davide Ruggero
- Department of Urology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94157, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, USA
| |
Collapse
|
15
|
Brocca G, Ferraresso S, Zamboni C, Martinez-Merlo EM, Ferro S, Goldschmidt MH, Castagnaro M. Array Comparative Genomic Hybridization Analysis Reveals Significantly Enriched Pathways in Canine Oral Melanoma. Front Oncol 2019; 9:1397. [PMID: 31921654 PMCID: PMC6920211 DOI: 10.3389/fonc.2019.01397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/26/2019] [Indexed: 12/28/2022] Open
Abstract
Human Mucosal Melanoma (hMM) is an aggressive neoplasm of neuroectodermal origin with distinctive features from the more common cutaneous form of malignant melanoma (cMM). At the molecular level, hMMs are characterized by large chromosomal aberrations rather than single-nucleotide mutations, typically observed in cMM. Given the scarcity of available cases, there have been many attempts to establish a reliable animal model. In pet dogs, Canine Oral Melanoma (COM) is the most common malignant tumor of the oral cavity, sharing clinical and histological aspects with hMM. To improve the knowledge about COM's genomic DNA alterations, in the present work, formalin-fixed, paraffin-embedded (FFPE) samples of COM from different European archives were collected to set up an array Comparative Genomic Hybridization (aCGH) analysis to estimate recurrent Copy Number Aberrations (CNAs). DNA was extracted in parallel from tumor and healthy fractions and 19 specimens were successfully submitted to labeling and competitive hybridization. Data were statistically analyzed through GISTIC2.0 and a pathway-enrichment analysis was performed with ClueGO. Recurrent gained regions were detected, affecting chromosomes CFA 10, 13 and 30, while lost regions involved chromosomes CFA 10, 11, 22, and 30. In particular, CFA 13 showed a whole-chromosome gain in 37% of the samples, while CFA 22 showed a whole-chromosome loss in 25%. A distinctive sigmoidal trend was observed in CFA 10 and 30 in 25 and 30% of the samples, respectively. Comparative analysis revealed that COM and hMM share common chromosomal changes in 32 regions. MAPK- and PI3K-related genes were the most frequently involved, while pathway analysis revealed statistically significant perturbation of cancer-related biological processes such as immune response, drug metabolism, melanocytes homeostasis, and neo-angiogenesis. The latter is a new evidence of a significant involvement of neovascularization-related pathways in COMs and can provide the rationale for future application in anti-cancer targeted therapies.
Collapse
Affiliation(s)
- Ginevra Brocca
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Clarissa Zamboni
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | | | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Michael H Goldschmidt
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Massimo Castagnaro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| |
Collapse
|
16
|
Hernández G, Ramírez JL, Pedroza-Torres A, Herrera LA, Jiménez-Ríos MA. The Secret Life of Translation Initiation in Prostate Cancer. Front Genet 2019; 10:14. [PMID: 30761182 PMCID: PMC6363655 DOI: 10.3389/fgene.2019.00014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 01/11/2019] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the second most prevalent cancer in men worldwide. Despite the advances understanding the molecular processes driving the onset and progression of this disease, as well as the continued implementation of screening programs, PCa still remains a significant cause of morbidity and mortality, in particular in low-income countries. It is only recently that defects of the translation process, i.e., the synthesis of proteins by the ribosome using a messenger (m)RNA as a template, have begun to gain attention as an important cause of cancer development in different human tissues, including prostate. In particular, the initiation step of translation has been established to play a key role in tumorigenesis. In this review, we discuss the state-of-the-art of three key aspects of protein synthesis in PCa, namely, misexpression of translation initiation factors, dysregulation of the major signaling cascades regulating translation, and the therapeutic strategies based on pharmacological compounds targeting translation as a novel alternative to those based on hormones controlling the androgen receptor pathway.
Collapse
Affiliation(s)
- Greco Hernández
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer, Mexico City, Mexico
| | - Jorge L. Ramírez
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer, Mexico City, Mexico
| | - Abraham Pedroza-Torres
- Cátedra-CONACyT Program, Hereditary Cancer Clinic, National Institute of Cancer, Mexico City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, The National Autonomous University of Mexico, Mexico City, Mexico
| | | |
Collapse
|
17
|
Cao K, Arthurs C, Atta-Ul A, Millar M, Beltran M, Neuhaus J, Horn LC, Henrique R, Ahmed A, Thrasivoulou C. Quantitative Analysis of Seven New Prostate Cancer Biomarkers and the Potential Future of the 'Biomarker Laboratory'. Diagnostics (Basel) 2018; 8:diagnostics8030049. [PMID: 30060509 PMCID: PMC6163663 DOI: 10.3390/diagnostics8030049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/11/2018] [Accepted: 07/20/2018] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer is the third highest cause of male mortality in the developed world, with the burden of the disease increasing dramatically with demographic change. There are significant limitations to the current diagnostic regimens and no established effective screening modality. To this end, research has discovered hundreds of potential ‘biomarkers’ that may one day be of use in screening, diagnosis or prognostication. However, the barriers to bringing biomarkers to clinical evaluation and eventually into clinical usage have yet to be realised. This is an operational challenge that requires some new thinking and development of paradigms to increase the efficiency of the laboratory process and add ‘value’ to the clinician. Value comes in various forms, whether it be a process that is seamlessly integrated into the hospital laboratory environment or one that can provide additional ‘information’ for the clinical pathologist in terms of risk profiling. We describe, herein, an efficient and tissue-conserving pipeline that uses Tissue Microarrays in a semi-automated process that could, one day, be integrated into the hospital laboratory domain, using seven putative prostate cancer biomarkers for illustration.
Collapse
Affiliation(s)
- Kevin Cao
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King's College London, London WC2R 2LS, UK.
| | - Callum Arthurs
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King's College London, London WC2R 2LS, UK.
| | - Ali Atta-Ul
- Prostate Cancer Research Centre, University College London, London WC1E 6BT, UK.
| | - Michael Millar
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH8 9YL, UK.
| | - Mariana Beltran
- Aquila BioMedical, Nine, Edinburgh BioQuarter, 9 Little France Road, Edinburgh EH16 4UX, UK.
| | - Jochen Neuhaus
- Head of Urology Research Laboratories, University of Leipzig, Department of Urology, Research Laboratory, Liebigstr. 19, Building C, 04103 Leipzig, Germany.
| | - Lars-Christian Horn
- Division of Gynecologic, Breast & Perinatal Pathology, University Hospital Leipzig, Liebigstasse 24 D, 04103 Leipzig, Germany.
| | - Rui Henrique
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Abel Salazar Institute of Biomedical Sciences, University of Porto, 4099-002 Porto, Portugal.
| | - Aamir Ahmed
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King's College London, London WC2R 2LS, UK.
- Prostate Cancer Research Centre, University College London, London WC1E 6BT, UK.
| | - Christopher Thrasivoulou
- Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics, Rockefeller Building, University College London, London WC1E 6BT, UK.
| |
Collapse
|
18
|
Hong S, Liu Y, Xiong H, Cai D, Fan Q. Eukaryotic translation initiation factor 3H suppression inhibits osteocarcinoma cell growth and tumorigenesis. Exp Ther Med 2018; 15:4925-4931. [PMID: 29805516 PMCID: PMC5952081 DOI: 10.3892/etm.2018.6031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/07/2018] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic translation initiation factor 3H subunit (EIF3H) is a member of the EIF3 family and exhibits a central role in translation initiation in higher eukaryotes. Although EIF3H expression is upregulated in numerous tumour types, its potential role in human osteosarcoma (OS) has not yet been investigated. In the present study, it was demonstrated that EIF3H mRNA expression was upregulated in the human OS cell lines Saos-2 and U2OS. A recombinant lentivirus harbouring short hairpin RNA targeting EIF3H was constructed and successfully infected human OS Saos-2 and U2OS cells, resulting in 95% downregulated EIF3H expression compared with the respective control groups. Knockdown of EIF3H significantly inhibited the proliferation and colony formation of OS cells in vitro, and tumour growth in nude mice in vivo. Flow cytometry analysis revealed cell cycle arrest and promotion of apoptosis in OS cells with EIF3H knocked down. In conclusion, the results strongly suggested that EIF3H is a critical factor mediating the growth of OS cells and may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Song Hong
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Yi Liu
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Huazhang Xiong
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Dongfeng Cai
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Qinghong Fan
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
19
|
Elevated expression of eukaryotic translation initiation factor 3H is associated with proliferation, invasion and tumorigenicity in human hepatocellular carcinoma. Oncotarget 2018; 7:49888-49901. [PMID: 27340783 PMCID: PMC5226555 DOI: 10.18632/oncotarget.10222] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/04/2016] [Indexed: 01/05/2023] Open
Abstract
Aim We studied the role of eukaryotic translation initiation factor 3 subunit H (EIF3H) in hepatocellular carcinoma (HCC) progression. Results High EIF3H expression was observed in 50.23% patients. Upregulation of EIF3H is an independent predictor for greater rates of cancer recurrence and shorter overall survival in HCC patients. Knockdown of EIF3H expression in HCC cells promoted apoptosis, and inhibited cell growth, colony formation, migration, as well as xenograft growth. TGF-βand MAPK pathways are potentially targeted by EIF3H. Methods EIF3H mRNA expression was measured in HCC tissue samples and paired non-tumor samples (N=60) and results were validated in another dataset of 215 HCC patients. Then EIF3H expression and clinical outcomes were correlated. Malignant phenotypes were studied after EIF3H expression was knocked down with siRNA in HCC cell lines. EIF3H targeted pathways were identified by microarray analysis. Conclusion EIF3H is frequently upregulated and is an independent prognostic marker for HCC patients and EIF3H inhibition mitigates the malignant phenotype. Our data provide novel insight into the function of EIF3H in HCC progression, and suggest that EIF3H may be a potentially valuable biomarker for HCC.
Collapse
|
20
|
EIF3C-enhanced exosome secretion promotes angiogenesis and tumorigenesis of human hepatocellular carcinoma. Oncotarget 2018; 9:13193-13205. [PMID: 29568350 PMCID: PMC5862571 DOI: 10.18632/oncotarget.24149] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/03/2018] [Indexed: 01/18/2023] Open
Abstract
Targeting tumor angiogenesis is a common strategy against human hepatocellular carcinoma (HCC). However, identification of molecular targets as biomarker for elevating therapeutic efficacy is critical to prolong HCC patient survival. Here, we showed that EIF3C (eukaryotic translation initiation factor 3 subunit C) is upregulated during HCC tumor progression and associated with poor patient survival. Expression of EIF3C did not alter proliferation and expression of other tumor progressive genes such as HIF1A, TGFβ1 and VEGF, but reduced cell migration in HCC cells. Nevertheless, expression of EIF3C in HCC cells significantly increase secretion of extracellular exosomes confirmed by increased exosomes labelling by PKH26 fluorescent dye, vesicles in exosome size detected by electronic microscopy and nanoparticle tracking analysis, and expression of divergent exosome markers. The EIF3C-increased exosomes were oncogenic to potentiate tumor angiogenesis via tube formation of HUVEC cells and growth of vessels by plugs assays on nude mice. Subcutaneous inoculation of EIF3C-exosomes mixed with Huh7 HCC cells not only promoted growth of vessels but also increased expression of EIF3C in tumors. Conversely, treatment of exosome inhibitor GW4869 reversed aforementioned oncogenic assays. We identified EIF3C activated expression of S100A11 involved in EIF3C-exosome increased tube formation in angiogenesis. Simultaneous high expression of EIF3C and S100A11 in human HCC tumors for RNA level in TCGA and protein level by IHC are associated with poor survival of HCC patients. Collectively, our results demonstrated that EIF3C overexpression is a potential target of angiogenesis for treatment with exosome inhibitor or S100A11 reduction to suppress HCC angiogenesis and tumorigenesis.
Collapse
|
21
|
Abstract
The eukaryotic initiation factor 3 (eIF3) is one of the most complex translation initiation factors in mammalian cells, consisting of several subunits (eIF3a to eIF3m). It is crucial in translation initiation and termination, and in ribosomal recycling. Accordingly, deregulated eIF3 expression is associated with different pathological conditions, including cancer. In this manuscript, we discuss the interactome and function of each subunit of the human eIF3 complex. Furthermore, we review how altered levels of eIF3 subunits correlate with neurodegenerative disorders and cancer onset and development; in addition, we evaluate how such misregulation may also trigger infection cascades. A deep understanding of the molecular mechanisms underlying eIF3 role in human disease is essential to develop new eIF3-targeted therapeutic approaches and thus, overcome such conditions.
Collapse
Affiliation(s)
- Andreia Gomes-Duarte
- a Department of Human Genetics , Instituto Nacional de Saúde Doutor Ricardo Jorge , Lisbon , Portugal.,b Gene Expression and Regulation Group, Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências , Universidade de Lisboa , Lisbon , Portugal
| | - Rafaela Lacerda
- a Department of Human Genetics , Instituto Nacional de Saúde Doutor Ricardo Jorge , Lisbon , Portugal.,b Gene Expression and Regulation Group, Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências , Universidade de Lisboa , Lisbon , Portugal
| | - Juliane Menezes
- a Department of Human Genetics , Instituto Nacional de Saúde Doutor Ricardo Jorge , Lisbon , Portugal.,b Gene Expression and Regulation Group, Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências , Universidade de Lisboa , Lisbon , Portugal
| | - Luísa Romão
- a Department of Human Genetics , Instituto Nacional de Saúde Doutor Ricardo Jorge , Lisbon , Portugal.,b Gene Expression and Regulation Group, Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências , Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
22
|
Ali MU, Ur Rahman MS, Jia Z, Jiang C. Eukaryotic translation initiation factors and cancer. Tumour Biol 2017; 39:1010428317709805. [PMID: 28653885 DOI: 10.1177/1010428317709805] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent technological advancements have shown tremendous mechanistic accomplishments in our understanding of the mechanism of messenger RNA translation in eukaryotic cells. Eukaryotic messenger RNA translation is very complex process that includes four phases (initiation, elongation, termination, and ribosome recycling) and diverse mechanisms involving protein and non-protein molecules. Translation regulation is principally achieved during initiation step of translation, which is organized by multiple eukaryotic translation initiation factors. Eukaryotic translation initiation factor proteins help in stabilizing the formation of the functional ribosome around the start codon and provide regulatory mechanisms in translation initiation. Dysregulated messenger RNA translation is a common feature of tumorigenesis. Various oncogenic and tumor suppressive genes affect/are affected by the translation machinery, making the components of the translation apparatus promising therapeutic targets for the novel anticancer drug. This review provides details on the role of eukaryotic translation initiation factors in messenger RNA translation initiation, their contribution to onset and progression of tumor, and how dysregulated eukaryotic translation initiation factors can be used as a target to treat carcinogenesis.
Collapse
Affiliation(s)
- Muhammad Umar Ali
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Muhammad Saif Ur Rahman
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyu Jia
- 2 Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Cao Jiang
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Choi YJ, Lee YS, Lee HW, Shim DM, Seo SW. Silencing of translation initiation factor eIF3b promotes apoptosis in osteosarcoma cells. Bone Joint Res 2017; 6:186-193. [PMID: 28360085 PMCID: PMC5376660 DOI: 10.1302/2046-3758.63.bjr-2016-0151.r2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
Objectives Eukaryotic translation initiation factor 3 (eIF3) is a multi-subunit complex that plays a critical role in translation initiation. Expression levels of eIF3 subunits are elevated or decreased in various cancers, suggesting a role for eIF3 in tumorigenesis. Recent studies have shown that the expression of the eIF3b subunit is elevated in bladder and prostate cancer, and eIF3b silencing inhibited glioblastoma growth and induced cellular apoptosis. In this study, we investigated the role of eIF3b in the survival of osteosarcoma cells. Methods To investigate the effect of eIF3b on cell viability and apoptosis in osteosarcoma cells, we first examined the silencing effect of eIF3b in U2OS cells. Cell viability and apoptosis were examined by the Cell Counting Kit-8 (CCK-8) assay and Western blot, respectively. We also performed gene profiling to identify genes affected by eIF3b silencing. Finally, the effect of eIF3b on cell viability and apoptosis was confirmed in multiple osteosarcoma cell lines. Results eIF3b silencing decreased cell viability and induced apoptosis in U2OS cells, and by using gene profiling we discovered that eIF3b silencing also resulted in the upregulation of tumour necrosis factor receptor superfamily member 21 (TNFRSF21). We found that TNFRSF21 overexpression induced cell death in U2OS cells, and we confirmed that eIF3b silencing completely suppressed cell growth in multiple osteosarcoma cell lines. However, eIF3b silencing failed to suppress cell growth completely in normal fibroblast cells. Conclusion Our data led us to conclude that eIF3b may be required for osteosarcoma cell proliferation by regulating TNFRSF21 expression. Cite this article: Y. J. Choi, Y. S. Lee, H. W. Lee, D. M. Shim, S. W. Seo. Silencing of translation initiation factor eIF3b promotes apoptosis in osteosarcoma cells. Bone Joint Res 2017;6:186–193. DOI: 10.1302/2046-3758.63.BJR-2016-0151.R2.
Collapse
Affiliation(s)
- Y J Choi
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, 50, Ilwon-dong, Gangnam-gu, 135-710, Seoul, South Korea
| | - Y S Lee
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, 50, Ilwon-dong, Gangnam-gu, 135-710, Seoul, South Korea
| | - H W Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50, Ilwon-dong, Gangnam-gu, 135-710, Seoul, South Korea
| | - D M Shim
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, 50, Ilwon-dong, Gangnam-gu, 135-710, Seoul, South Korea
| | - S W Seo
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, 50, Ilwon-dong, Gangnam-gu, 135-710, Seoul, South Korea
| |
Collapse
|
24
|
Chu J, Cargnello M, Topisirovic I, Pelletier J. Translation Initiation Factors: Reprogramming Protein Synthesis in Cancer. Trends Cell Biol 2016; 26:918-933. [PMID: 27426745 DOI: 10.1016/j.tcb.2016.06.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Abstract
Control of mRNA translation plays a crucial role in the regulation of gene expression and is critical for cellular homeostasis. Dysregulation of translation initiation factors has been documented in several pathologies including cancer. Aberrant function of translation initiation factors leads to translation reprogramming that promotes proliferation, survival, angiogenesis, and metastasis. In such context, understanding how altered levels (and presumably activity) of initiation factors can contribute to tumor initiation and/or maintenance is of major interest for the development of novel therapeutic strategies. In this review we provide an overview of translation initiation mechanisms and focus on recent findings describing the role of individual initiation factors and their aberrant activity in cancer.
Collapse
Affiliation(s)
- Jennifer Chu
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Marie Cargnello
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, McGill University, Quebec, Canada
| | - Ivan Topisirovic
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, McGill University, Quebec, Canada.
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, McGill University, Quebec, Canada; The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
25
|
Zhou Z, Lu Q, Huang Q, Zheng C, Chen B, Lei Y. eIF3 regulates migration, invasion and apoptosis in cadmium transformed 16HBE cells and is a novel biomarker of cadmium exposure in a rat model and in workers. Toxicol Res (Camb) 2016; 5:761-772. [PMID: 30090387 PMCID: PMC6060694 DOI: 10.1039/c5tx00250h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/05/2016] [Indexed: 01/17/2023] Open
Abstract
Translation (eukaryotic) initiation factor 3 (eIF3 or TIF3) has been found to be a proto-oncogene in cadmium (Cd) response both in vitro and vivo, but whether eIF3 may serve as a biomarker of Cd exposure is still unclear. This study aimed to investigate whether eIF3 could serve as a novel biomarker of Cd toxicity in cells, animals and workers, and regulate the apoptosis, migration and invasion in human bronchial epithelial cell (16HBE cells) transformation with cadmium chloride (CdCl2). In CdCl2 transformed 16HBE cells, eIF3 expression increased gradually, and sequencing did not identify mutation and methylation of eIF3. In 16HBE cells with eIF3 silencing by siRNA and CdCl2 treated 16HBE cells of the 15th and 35th generations, the apoptosis, migration and invasion were significantly inhibited, and the expressions of relevant genes were also altered (P < 0.05). In CdCl2 treated rats, eIF3 mRNA expression increased to different extents in the blood, liver, kidney, heart and lung, and this increase was dependent on the Cd concentration (P < 0.05). The eIF3 mRNA expression was related to the mRNA expressions of AKT, BAX, BCL-2, E-CADHERIN, CASPASE-3, EGFR, FOXC2, STAT3, TGF-β1 and VIMENTIN (P < 0.05). In 181 workers with Cd exposure, the eIF3 mRNA expression was positively related to the blood Cd, urine Cd and β2-microglobulin content (P < 0.05). This study showed that abnormally expressed eIF3 may regulate the apoptosis, migration and invasion of 16HBE cells with Cd toxicity. This suggests that eIF3 may become a novel and valuable biomarker of Cd toxicity and Cd-induced effects, and may regulate apoptosis, migration and invasion of 16HBE cells. Thus, the detection of eIF3 expression is important for the monitoring of Cd toxicity in humans.
Collapse
Affiliation(s)
- Zhiheng Zhou
- School of Public Health , Guangzhou Medical University , Guangzhou 510182 , People's Republic of China .
| | - Qian Lu
- Shenzhen Longgang District Center for Disease Control & Prevention , Shenzhen 518172 , P.R. China
| | - Qinhai Huang
- School of Public Health , Guangzhou Medical University , Guangzhou 510182 , People's Republic of China .
| | - Chanjiao Zheng
- School of Public Health , Guangzhou Medical University , Guangzhou 510182 , People's Republic of China .
| | - Baoxin Chen
- School of Public Health , Guangzhou Medical University , Guangzhou 510182 , People's Republic of China .
| | - Yixiong Lei
- School of Public Health , Guangzhou Medical University , Guangzhou 510182 , People's Republic of China .
| |
Collapse
|
26
|
Gao B, Roux PP. Translational control by oncogenic signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:753-65. [PMID: 25477072 DOI: 10.1016/j.bbagrm.2014.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 01/04/2023]
Abstract
Messenger RNA (mRNA) translation is highly regulated in cells and plays an integral role in the overall process of gene expression. The initiation phase of translation is considered to be the most rate-limiting and is often targeted by oncogenic signaling pathways to promote global protein synthesis and the selective translation of tumor-promoting mRNAs. Translational control is a crucial component of cancer development as it allows cancer cells to adapt to the altered metabolism that is generally associated with the tumor state. The phosphoinositide 3-kinase (PI3K)/Akt and Ras/mitogen-activated protein kinase (MAPK) pathways are strongly implicated in cancer etiology, and they exert their biological effects by modulating both global and specific mRNA translation. In addition to having respective translational targets, these pathways also impinge on the mechanistic/mammalian target of rapamycin (mTOR), which acts as a critical signaling node linking nutrient sensing to the coordinated regulation of cellular metabolism. mTOR is best known as a central regulator of protein synthesis and has been implicated in an increasing number of pathological conditions, including cancer. In this article, we describe the current knowledge on the roles and regulation of mRNA translation by various oncogenic signaling pathways, as well as the relevance of these molecular mechanisms to human malignancies. This article is part of a Special Issue entitled: Translation and cancer.
Collapse
Affiliation(s)
- Beichen Gao
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
27
|
Purrington KS, Slettedahl S, Bolla MK, Michailidou K, Czene K, Nevanlinna H, Bojesen SE, Andrulis IL, Cox A, Hall P, Carpenter J, Yannoukakos D, Haiman CA, Fasching PA, Mannermaa A, Winqvist R, Brenner H, Lindblom A, Chenevix-Trench G, Benitez J, Swerdlow A, Kristensen V, Guénel P, Meindl A, Darabi H, Eriksson M, Fagerholm R, Aittomäki K, Blomqvist C, Nordestgaard BG, Nielsen SF, Flyger H, Wang X, Olswold C, Olson JE, Mulligan AM, Knight JA, Tchatchou S, Reed MWR, Cross SS, Liu J, Li J, Humphreys K, Clarke C, Scott R, Fostira F, Fountzilas G, Konstantopoulou I, Henderson BE, Schumacher F, Le Marchand L, Ekici AB, Hartmann A, Beckmann MW, Hartikainen JM, Kosma VM, Kataja V, Jukkola-Vuorinen A, Pylkäs K, Kauppila S, Dieffenbach AK, Stegmaier C, Arndt V, Margolin S, Balleine R, Arias Perez JI, Pilar Zamora M, Menéndez P, Ashworth A, Jones M, Orr N, Arveux P, Kerbrat P, Truong T, Bugert P, Toland AE, Ambrosone CB, Labrèche F, Goldberg MS, Dumont M, Ziogas A, Lee E, Dite GS, Apicella C, Southey MC, Long J, Shrubsole M, Deming-Halverson S, Ficarazzi F, Barile M, Peterlongo P, Durda K, Jaworska-Bieniek K, Tollenaar RAEM, Seynaeve C, Brüning T, Ko YD, Van Deurzen CHM, Martens JWM, Kriege M, Figueroa JD, Chanock SJ, Lissowska J, Tomlinson I, Kerin MJ, Miller N, Schneeweiss A, Tapper WJ, Gerty SM, Durcan L, Mclean C, Milne RL, Baglietto L, dos Santos Silva I, Fletcher O, Johnson N, Van'T Veer LJ, Cornelissen S, Försti A, Torres D, Rüdiger T, Rudolph A, Flesch-Janys D, Nickels S, Weltens C, Floris G, Moisse M, Dennis J, Wang Q, Dunning AM, Shah M, Brown J, Simard J, Anton-Culver H, Neuhausen SL, Hopper JL, Bogdanova N, Dörk T, Zheng W, Radice P, Jakubowska A, Lubinski J, Devillee P, Brauch H, Hooning M, García-Closas M, Sawyer E, Burwinkel B, Marmee F, Eccles DM, Giles GG, Peto J, Schmidt M, Broeks A, Hamann U, Chang-Claude J, Lambrechts D, Pharoah PDP, Easton D, Pankratz VS, Slager S, Vachon CM, Couch FJ. Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade. Hum Mol Genet 2014; 23:6034-46. [PMID: 24927736 PMCID: PMC4204763 DOI: 10.1093/hmg/ddu300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/20/2014] [Accepted: 06/10/2014] [Indexed: 01/01/2023] Open
Abstract
Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2156 single nucleotide polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n = 39 067 cases; n = 42 106 controls). SNPs in TACC2 [rs17550038: odds ratio (OR) = 1.24, 95% confidence interval (CI) 1.16-1.33, P = 4.2 × 10(-10)) and EIF3H (rs799890: OR = 1.07, 95% CI 1.04-1.11, P = 8.7 × 10(-6)) were significantly associated with risk of low-grade breast cancer. The TACC2 signal was retained (rs17550038: OR = 1.15, 95% CI 1.07-1.23, P = 7.9 × 10(-5)) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene, suggesting that TACC2 is a novel, independent genome-wide significant genetic risk locus for low-grade breast cancer. While no SNPs were individually associated with high-grade disease, a pathway-level gene set analysis showed that variation across the 194 mitotic genes was associated with high-grade breast cancer risk (P = 2.1 × 10(-3)). These observations will provide insight into the contribution of mitotic defects to histological grade and the etiology of breast cancer.
Collapse
Affiliation(s)
- Kristen S Purrington
- Department of Health Sciences Research, Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, USA
| | | | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics
| | | | - Stig E Bojesen
- Copenhagen General Population Study, Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Irene L Andrulis
- Ontario Cancer Genetics Network, Department of Molecular Genetics
| | - Angela Cox
- CRUK/YCR Sheffield Cancer Research Centre, Department of Oncology
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics
| | | | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Peter A Fasching
- University Breast Center Franconia, Department of Gynecology and Obstetrics, David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, USA
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Oncology, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland, Imaging Center, Department of Clinical Pathology
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu University Hospital/NordLab Oulu, Oulu, Finland
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | | | - Javier Benitez
- Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, Division of Breast Cancer Research, Institute of Cancer Research, Sutton, UK
| | - Vessela Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway, Faculty of Medicine (Faculty Division Ahus), University of Oslo (UiO), Oslo, Norway
| | - Pascal Guénel
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France, University Paris-Sud, UMRS 1018, Villejuif, France
| | - Alfons Meindl
- Division of Gynaecology and Obstetrics, Technische Universität München, Munich, Germany
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics
| | | | - Rainer Fagerholm
- Department of Obstetrics and Gynecology, Oncology and Clinical Genetics
| | | | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Henrik Flyger
- Department of Breast Surgery, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Xianshu Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, USA
| | | | | | - Anna Marie Mulligan
- Department of Laboratory Medicine and Pathobiology, Laboratory Medicine Program, University Health Network, Toronto, Canada
| | - Julia A Knight
- Prosserman Centre for Health Research, Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Sandrine Tchatchou
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
| | - Malcolm W R Reed
- CRUK/YCR Sheffield Cancer Research Centre, Department of Oncology
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Jianjun Liu
- Human Genetics Division, Genome Institute of Singapore, Singapore, Singapore
| | - Jingmei Li
- Human Genetics Division, Genome Institute of Singapore, Singapore, Singapore
| | | | - Christine Clarke
- Westmead Institute for Cancer Research, Sydney Medical School Westmead, University of Sydney at the Westmead Millennium Institute, Westmead, Australia
| | - Rodney Scott
- Division of Genetics, Hunter Area Pathology Service and University of Newcastle, Newcastle, Australia
| | - Florentia Fostira
- Molecular Diagnostics Laboratory INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - George Fountzilas
- Department of Medical Oncology, "Papageorgiou" Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Brian E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Fredrick Schumacher
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Loic Le Marchand
- Epidemiology Program, Cancer Research Center, University of Hawaii, Honolulu, USA
| | | | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | | | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Oncology, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland, Imaging Center, Department of Clinical Pathology
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Oncology, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland, Imaging Center, Department of Clinical Pathology
| | - Vesa Kataja
- School of Medicine, Institute of Clinical Medicine, Oncology, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland, Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu University Hospital/NordLab Oulu, Oulu, Finland
| | - Saila Kauppila
- Department of Pathology, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Aida Karina Dieffenbach
- Division of Clinical Epidemiology and Aging Research, German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research
| | - Sara Margolin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rosemary Balleine
- Westmead Millenium Institute for Medical Research, Sydney, Australia
| | | | - M Pilar Zamora
- Servicio de Oncología Médica, Hospital Universitario La Paz, Madrid, Spain
| | | | - Alan Ashworth
- Breakthrough Breast Cancer Research Centre and Division of Breast Cancer Research
| | | | - Nick Orr
- Breakthrough Breast Cancer Research Centre and Division of Breast Cancer Research
| | - Patrick Arveux
- Center Georges-Francois Leclerc, Registry of Gynecologic Tumors, Dijon, France
| | - Pierre Kerbrat
- Centre Eugène Marquis, Department of Medical Oncology, Rennes, France
| | - Thérèse Truong
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France, University Paris-Sud, UMRS 1018, Villejuif, France
| | - Peter Bugert
- German Red Cross Blood Service of Baden-Württemberg-Hessen, Mannheim, Germany, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Heidelberg, Germany
| | - Amanda E Toland
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | | | - France Labrèche
- Department of Environmental & Occupational Health and of Social & Preventive Medicine, School of Public Health, Université de Montréal, Montreal, Canada
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montreal, Canada, Division of Clinical Epidemiology, McGill University Health Centre, Royal Victoria Hospital, Montreal, Canada
| | - Martine Dumont
- Cancer Genomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec City, Canada
| | - Argyrios Ziogas
- Department of Epidemiology, University of California Irvine, Irvine, USA
| | - Eunjung Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Gillian S Dite
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, Melbourne School of Population Health
| | - Carmel Apicella
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, Melbourne School of Population Health
| | | | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, USA
| | - Martha Shrubsole
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Sandra Deming-Halverson
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, USA
| | - Filomena Ficarazzi
- Cogentech Cancer Genetic Test Laboratory, Milan, Italy, IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Monica Barile
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia (IEO), Milan, Italy
| | - Paolo Peterlongo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Katarzyna Durda
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | | | | | - Caroline Seynaeve
- Family Cancer Clinic, Department of Medical Oncology, Erasmus MC-Daniel den Hoed Cancer Centrer, Rotterdam, The Netherlands
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), Bochum, Germany
| | - Yon-Dschun Ko
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany
| | | | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Mieke Kriege
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center & Institute of Oncology, Warsaw, Poland
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Michael J Kerin
- Clinical Science Institute, University Hospital Galway, Galway, Ireland
| | - Nicola Miller
- Clinical Science Institute, University Hospital Galway, Galway, Ireland
| | - Andreas Schneeweiss
- Department of Obstetrics and Gynecology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | | | - Susan M Gerty
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Lorraine Durcan
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Catriona Mclean
- Anatomical Pathology, The Alfred Hospital, Melbourne, Australia
| | - Roger L Milne
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia, Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
| | - Laura Baglietto
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia, Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
| | - Isabel dos Santos Silva
- Non-communicable Disease Epidemiology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Olivia Fletcher
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Nichola Johnson
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Laura J Van'T Veer
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Sten Cornelissen
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, Center for Primary Health Care Research, University of Lund, Malmö, Sweden
| | - Diana Torres
- Molecular Genetics of Breast Cancer, Institute of Human Genetics, Pontificia University Javeriana, Bogota, Colombia
| | - Thomas Rüdiger
- Institute of Pathology, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | | | - Dieter Flesch-Janys
- Department of Cancer Epidemiology/Clinical Cancer Registry and Institute for Medical Biometrics and Epidemiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Matthieu Moisse
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium, Vesalius Research Center (VRC), VIB, Leuven, Belgium
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Judith Brown
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Jacques Simard
- Cancer Genomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec City, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California Irvine, Irvine, USA
| | | | - John L Hopper
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, Melbourne School of Population Health
| | | | - Thilo Dörk
- Department of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, USA
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy and
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Peter Devillee
- Department of Human Genetics & Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, University of Tübingen, Tübingen, Germany
| | - Maartje Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Elinor Sawyer
- Division of Cancer Studies, Kings College London, Guy's Hospital, London, UK
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology, Molecular Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederick Marmee
- Department of Obstetrics and Gynecology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Graham G Giles
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia, Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
| | - Julian Peto
- Non-communicable Disease Epidemiology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Marjanka Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Annegien Broeks
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | | | | | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium, Vesalius Research Center (VRC), VIB, Leuven, Belgium
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | | | | | | | - Fergus J Couch
- Department of Health Sciences Research, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, USA,
| |
Collapse
|
28
|
Hershey JWB. The role of eIF3 and its individual subunits in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:792-800. [PMID: 25450521 DOI: 10.1016/j.bbagrm.2014.10.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 12/15/2022]
Abstract
Specific individual subunits of eIF3 are elevated or reduced in numerous human tumors, and their ectopic overexpression in immortal cells can result in malignant transformation. The structure and assembly of eIF3 and its role in promoting mRNA and methionyl-tRNAi binding to the ribosome during the initiation phase of protein synthesis are described. Methods employed to detect altered levels of eIF3 subunits in cancers are critically evaluated in order to conclude rigorously that such subunits may cause malignant transformation. Strong evidence is presented that the individual overexpression of eIF3 subunits 3a, 3b, 3c, 3h, 3i and 3m may cause malignant transformation, whereas underexpression of subunits 3e and 3f may cause a similar outcome. Possible mechanisms to explain the malignant phenotypes are examined. The involvement of eIF3 in cancer reinforces the view that translational control plays an important role in the regulation of cell proliferation, and provides new targets for the development of therapeutic agents. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- John W B Hershey
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, United States.
| |
Collapse
|
29
|
Hutt DM, Roth DM, Vignaud H, Cullin C, Bouchecareilh M. The histone deacetylase inhibitor, Vorinostat, represses hypoxia inducible factor 1 alpha expression through translational inhibition. PLoS One 2014; 9:e106224. [PMID: 25166596 PMCID: PMC4148404 DOI: 10.1371/journal.pone.0106224] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/30/2014] [Indexed: 01/11/2023] Open
Abstract
Hypoxia inducible factor 1α (HIF-1α) is a master regulator of tumor angiogenesis being one of the major targets for cancer therapy. Previous studies have shown that Histone Deacetylase Inhibitors (HDACi) block tumor angiogenesis through the inhibition of HIF-1α expression. As such, Vorinostat (Suberoylanilide Hydroxamic Acid/SAHA) and Romidepsin, two HDACis, were recently approved by the Food and Drug Administration (FDA) for the treatment of cutaneous T cell lymphoma. Although HDACis have been shown to affect HIF-1α expression by modulating its interactions with the Hsp70/Hsp90 chaperone axis or its acetylation status, the molecular mechanisms by which HDACis inhibit HIF-1α expression need to be further characterized. Here, we report that the FDA-approved HDACi Vorinostat/SAHA inhibits HIF-1α expression in liver cancer-derived cell lines, by a new mechanism independent of p53, prolyl-hydroxylases, autophagy and proteasome degradation. We found that SAHA or silencing of HDAC9 mechanism of action is due to inhibition of HIF-1α translation, which in turn, is mediated by the eukaryotic translation initiation factor - eIF3G. We also highlighted that HIF-1α translation is dramatically inhibited when SAHA is combined with eIF3H silencing. Taken together, we show that HDAC activity regulates HIF-1α translation, with HDACis such as SAHA representing a potential novel approach for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Darren M. Hutt
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Daniela Martino Roth
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Hélène Vignaud
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Christophe Cullin
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Marion Bouchecareilh
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
30
|
Akcakanat A, Hong DS, Meric-Bernstam F. Targeting translation initiation in breast cancer. ACTA ACUST UNITED AC 2014; 2:e28968. [PMID: 26779407 PMCID: PMC4705830 DOI: 10.4161/trla.28968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/09/2014] [Accepted: 04/22/2014] [Indexed: 12/23/2022]
Abstract
Over the past 20 years, a better understanding of cancer biology, screening for early detection, improved adjuvant treatment, and targeted therapies have decreased the rate of breast cancer deaths. However, resistance to treatment is common, and new approaches are needed. Deregulation of translation initiation is associated with the commencement and progression of cancer. Often, translation initiation factors are overexpressed and the related signaling pathways activated in human tumors. Recently, a significant number of inhibitors that target translation factors and pathways have become available. These inhibitors are being tested alone or in combination with chemotherapeutic agents in clinical trials. The results are varied, and it is not yet clear which drug treatments most effectively inhibit tumor growth. This review highlights the pathways and downstream effects of the activation of translation and discusses targeting the control of translation initiation as a therapeutic approach in cancer, focusing on breast cancer clinical trials.
Collapse
Affiliation(s)
- Argun Akcakanat
- Department of Investigational Cancer Therapeutics; Houston, TX USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics; Houston, TX USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics; Houston, TX USA; Department of Surgical Oncology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| |
Collapse
|
31
|
Int6/eIF3e is essential for proliferation and survival of human glioblastoma cells. Int J Mol Sci 2014; 15:2172-90. [PMID: 24481065 PMCID: PMC3958844 DOI: 10.3390/ijms15022172] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 12/25/2013] [Accepted: 01/23/2014] [Indexed: 12/15/2022] Open
Abstract
Glioblastomas (GBM) are very aggressive and malignant brain tumors, with frequent relapses despite an appropriate treatment combining surgery, chemotherapy and radiotherapy. In GBM, hypoxia is a characteristic feature and activation of Hypoxia Inducible Factors (HIF-1α and HIF-2α) has been associated with resistance to anti-cancer therapeutics. Int6, also named eIF3e, is the “e” subunit of the translation initiation factor eIF3, and was identified as novel regulator of HIF-2α. Eukaryotic initiation factors (eIFs) are key factors regulating total protein synthesis, which controls cell growth, size and proliferation. The functional significance of Int6 and the effect of Int6/EIF3E gene silencing on human brain GBM has not yet been described and its role on the HIFs is unknown in glioma cells. In the present study, we show that Int6/eIF3e suppression affects cell proliferation, cell cycle and apoptosis of various GBM cells. We highlight that Int6 inhibition induces a diminution of proliferation through cell cycle arrest and increased apoptosis. Surprisingly, these phenotypes are independent of global cell translation inhibition and are accompanied by decreased HIF expression when Int6 is silenced. In conclusion, we demonstrate here that Int6/eIF3e is essential for proliferation and survival of GBM cells, presumably through modulation of the HIFs.
Collapse
|
32
|
Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett 2013; 340:9-21. [PMID: 23830805 DOI: 10.1016/j.canlet.2013.06.019] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 01/03/2023]
Abstract
Eukaryotic gene expression is a complicated process primarily regulated at the levels of gene transcription and mRNA translation. The latter involves four main steps: initiation, elongation, termination and recycling. Translation regulation is primarily achieved during initiation which is orchestrated by 12 currently known eukaryotic initiation factors (eIFs). Here, we review the current state of eIF research and present a concise summary of the various eIF subunits. As eIFs turned out to be critically implicated in different oncogenic processes the various eIF members and their contribution to onset and progression of cancer are featured.
Collapse
|
33
|
Ruggero D. Translational control in cancer etiology. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a012336. [PMID: 22767671 DOI: 10.1101/cshperspect.a012336] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The link between perturbations in translational control and cancer etiology is becoming a primary focus in cancer research. It has now been established that genetic alterations in several components of the translational apparatus underlie spontaneous cancers as well as an entire class of inherited syndromes known as "ribosomopathies" associated with increased cancer susceptibility. These discoveries have illuminated the importance of deregulations in translational control to very specific cellular processes that contribute to cancer etiology. In addition, a growing body of evidence supports the view that deregulation of translational control is a common mechanism by which diverse oncogenic pathways promote cellular transformation and tumor development. Indeed, activation of these key oncogenic pathways induces rapid and dramatic translational reprogramming both by increasing overall protein synthesis and by modulating specific mRNA networks. These translational changes promote cellular transformation, impacting almost every phase of tumor development. This paradigm represents a new frontier in the multihit model of cancer formation and offers significant promise for innovative cancer therapies. Current research, in conjunction with cutting edge technologies, will further enable us to explore novel mechanisms of translational control, functionally identify translationally controlled mRNA groups, and unravel their impact on cellular transformation and tumorigenesis.
Collapse
Affiliation(s)
- Davide Ruggero
- Helen Diller Cancer Center, School of Medicine, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
34
|
Wang Z, Chen J, Sun J, Cui Z, Wu H. RNA interference-mediated silencing of eukaryotic translation initiation factor 3, subunit B (EIF3B) gene expression inhibits proliferation of colon cancer cells. World J Surg Oncol 2012; 10:119. [PMID: 22734884 PMCID: PMC3443437 DOI: 10.1186/1477-7819-10-119] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/26/2012] [Indexed: 02/06/2023] Open
Abstract
Background A key factor underlying the control of the cellular growth, size and proliferation involves the regulation of the total protein synthesis. Most often, the initial stages of mRNA translation are rate limiting, which involves a group of eukaryotic translation initiation factors (EIFs). Research advances focused on the inhibition of their expression and activity hold the key to the initiation and progression of tumor and tumor prognosis. Method We performed RNA interference (RNAi) with the lentivirus vector system to silence the EIF3B gene using the colon cancer cell strain SW1116. The negative control included the normal target cells infected with the negative control virus whereas the knockdown cells included the normal target cells transfected with the RNAi target virus. We tested the inhibition resulting from the decreased expression of EIF3B gene on the proliferation rate of SW1116 cells, including the cell cycle, apoptosis and clonability. Results Compared with the negative control, the impact of EIF3B gene expression in SW1116 cells on the levels of mRNA and protein in the knockdown group, was significantly inhibited (P <0.01). Furthermore, the cell proliferation rate and clonability were also significantly inhibited (P <0.01). The apoptosis rate increased significantly (P <0.05). A significant decrease in the number of cells in the G1 phase (P <0.01) and significant increases in S (P <0.01) and G2 phases (P <0.05) were observed. Conclusions The silencing of EIF3B gene expression inhibits the proliferation of colon cancer cells.
Collapse
Affiliation(s)
- Zheng Wang
- Department of General Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 145 Shandong Middle Road, Shanghai 200001, China.
| | | | | | | | | |
Collapse
|
35
|
Wei L, Lei YX, Wu L, Wang M, Lu Q, He CC. Alterations in the expression of translation factors as molecular markers in cadmium-exposed workers. Biomarkers 2011; 17:78-84. [PMID: 22149723 DOI: 10.3109/1354750x.2011.639463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryotic translation initiation factor 3 (eIF3) and elongation factor 1δ (eEF-1δ) are novel cadmium (Cd) responsive proto-oncogenes. This research investigated the expression of these genes in Cd-exposed workers (n = 58), and to evaluate their usefulness as biomarkers of Cd exposure. According to urinary Cd concentration, the subjects were divided into four groups (urinary Cd concentration ≥0.1 μg/g.Cr, ≥1.0 μg/g.Cr, ≥5.0 μg/g.Cr and ≥50.0 μg/g.Cr). Subjects exhibited increased severe health problems with higher urinary Cd concentrations. The eIF3 and eEF-1δ expression in the blood were investigated with real-time PCR. PCR data showed a strong positive correlation between blood eEF-1δ and urinary Cd concentrations (r = 0.788, p < 0.01), and a weak positive correlation between blood eIF3 expression and urinary Cd concentrations (r = 0.569, p < 0.05). These findings, for the first time, demonstrate that the blood eEF-1δ overexpression can be used as a molecular biomarker of Cd-exposed population.
Collapse
Affiliation(s)
- Lian Wei
- School of Public Health, Guangzhou Medical University, PR China
| | | | | | | | | | | |
Collapse
|
36
|
Koh CM, Bieberich CJ, Dang CV, Nelson WG, Yegnasubramanian S, De Marzo AM. MYC and Prostate Cancer. Genes Cancer 2011; 1:617-28. [PMID: 21779461 DOI: 10.1177/1947601910379132] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer, the majority of which is adenocarcinoma, is the most common epithelial cancer affecting a majority of elderly men in Western nations. Its manifestation, however, varies from clinically asymptomatic insidious neoplasms that progress slowly and do not threaten life to one that is highly aggressive with a propensity for metastatic spread and lethality if not treated in time. A number of somatic genetic and epigenetic alterations occur in prostate cancer cells. Some of these changes, such as loss of the tumor suppressors PTEN and p53, are linked to disease progression. Others, such as ETS gene fusions, appear to be linked more with early phases of the disease, such as invasion. Alterations in chromosome 8q24 in the region of MYC have also been linked to disease aggressiveness for many years. However, a number of recent studies in human tissues have indicated that MYC appears to be activated at the earliest phases of prostate cancer (e.g., in tumor-initiating cells) in prostatic intraepithelial neoplasia, a key precursor lesion to invasive prostatic adenocarcinoma. The initiation and early progression of prostate cancer can be recapitulated in genetically engineered mouse models, permitting a richer understanding of the cause and effects of loss of tumor suppressors and activation of MYC. The combination of studies using human tissues and mouse models paints an emerging molecular picture of prostate cancer development and early progression. This picture reveals that MYC contributes to disease initiation and progression by stimulating an embryonic stem cell-like signature characterized by an enrichment of genes involved in ribosome biogenesis and by repressing differentiation. These insights pave the way to potential novel therapeutic concepts based on MYC biology.
Collapse
|
37
|
Translational control gone awry: a new mechanism of tumorigenesis and novel targets of cancer treatments. Biosci Rep 2011; 31:1-15. [PMID: 20964625 DOI: 10.1042/bsr20100077] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Translational control is one of primary regulation mechanisms of gene expression. Eukaryotic translational control mainly occurs at the initiation step, the speed-limiting step, which involves more than ten translation initiation factors [eIFs (eukaryotic initiation factors)]. Changing the level or function of these eIFs results in abnormal translation of specific mRNAs and consequently abnormal growth of cells that leads to human diseases, including cancer. Accumulating evidence from recent studies showed that the expression of many eIFs was associated with malignant transformation, cancer prognosis, as well as gene expression regulation. In the present paper, we perform a critical review of recent advances in understanding the role and mechanism of eIF action in translational control and cancer as well as the possibility of targeting eIFs for therapeutic development.
Collapse
|
38
|
Wang RE, Hunt CR, Chen J, Taylor JS. Biotinylated quercetin as an intrinsic photoaffinity proteomics probe for the identification of quercetin target proteins. Bioorg Med Chem 2011; 19:4710-20. [PMID: 21798748 PMCID: PMC3397245 DOI: 10.1016/j.bmc.2011.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/01/2011] [Accepted: 07/02/2011] [Indexed: 01/01/2023]
Abstract
Quercetin is a flavonoid natural product, that is, found in many foods and has been found to have a wide range of medicinal effects. Though a number of quercetin binding proteins have been identified, there has been no systematic approach to identifying all potential targets of quercetin. We describe an O7-biotinylated derivative of quercetin (BioQ) that can act as a photoaffinity proteomics reagent for capturing quercetin binding proteins, which can then be identified by LC-MS/MS. BioQ was shown to inhibit heat induction of HSP70 with almost the same efficiency as quercetin, and to both inhibit and photocrosslink to CK2 kinase, a known target of quercetin involved in activation of the heat shock transcription factor. BioQ was also able to pull down a number of proteins from unheated and heated Jurkat cells following UV irradiation that could be detected by both silver staining and Western blot analysis with an anti-biotin antibody. Analysis of the protein bands by trypsinization and LC-MS/MS led to the identification of heat shock proteins HSP70 and HSP90 as possible quercetin target proteins, along with ubiquitin-activating enzyme, a spliceosomal protein, RuvB-like 2 ATPases, and eukaryotic translation initiation factor 3. In addition, a mitochondrial ATPase was identified that has been previously shown to be a target of quercetin. Most of the proteins identified have also been previously suggested to be potential anticancer targets, suggesting that quercetin's antitumor activity may be due to its ability to inhibit multiple target proteins.
Collapse
Affiliation(s)
- Rongsheng E. Wang
- Department of Chemistry, Washington University, St Louis, MO, 63130, USA
| | - Clayton R. Hunt
- Department of Radiation Oncology, School of Medicine, Washington University, St Louis, MO, 63108, USA
| | - Jiawei Chen
- Department of Chemistry, Washington University, St Louis, MO, 63130, USA
- Center for Biomedical and Bioorganic Mass Spectrometry, Washington University, St Louis, MO, 63130, USA
| | | |
Collapse
|
39
|
Barros-Silva JD, Ribeiro FR, Rodrigues Â, Cruz R, Martins AT, Jerónimo C, Henrique R, Teixeira MR. Relative 8q gain predicts disease-specific survival irrespective of the TMPRSS2-ERG fusion status in diagnostic biopsies of prostate cancer. Genes Chromosomes Cancer 2011; 50:662-671. [DOI: 10.1002/gcc.20888] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
40
|
Abstract
Remarkable progress has been made in defining a new understanding of the role of mRNA translation and protein synthesis in human cancer. Translational control is a crucial component of cancer development and progression, directing both global control of protein synthesis and selective translation of specific mRNAs that promote tumour cell survival, angiogenesis, transformation, invasion and metastasis. Translational control of cancer is multifaceted, involving alterations in translation factor levels and activities unique to different types of cancers, disease stages and the tumour microenvironment. Several clinical efforts are underway to target specific components of the translation apparatus or unique mRNA translation elements for cancer therapeutics.
Collapse
|
41
|
Le Quesne JPC, Spriggs KA, Bushell M, Willis AE. Dysregulation of protein synthesis and disease. J Pathol 2010; 220:140-51. [PMID: 19827082 DOI: 10.1002/path.2627] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The regulation of protein synthesis plays as important a role as transcriptional control in the control of gene expression. Once thought solely to act globally, translational control has now been shown to be able to control the expression of most genes specifically. Dysregulation of this process is associated with a range of pathological conditions, notably cancer and several neurological disorders, and can occur in many ways. These include alterations in the expression of canonical initiation factors, mutations in regulatory mRNA sequence elements in 5' and 3' untranslated regions (UTRs), such as upstream open reading frames (uORFs), internal ribosome entry segments (IRESs) and micro-RNA (miR) target sites, and the altered expression of trans-acting protein factors that bind to and regulate these elements. Translational control is increasingly open for study in both fresh and fixed tissue, and this rapidly developing field is yielding useful diagnostic and prognostic tools that will hopefully provide new targets for effective treatments.
Collapse
Affiliation(s)
- John P C Le Quesne
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | | | | | | |
Collapse
|
42
|
Humbert L, Chevrette M. Somatic Molecular Genetics of Prostate Cancer. MALE REPRODUCTIVE CANCERS 2010:143-180. [DOI: 10.1007/978-1-4419-0449-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
43
|
Cuesta R, Gupta M, Schneider RJ. The regulation of protein synthesis in cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:255-92. [PMID: 20374744 DOI: 10.1016/s1877-1173(09)90007-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Translational control of cancer is a multifaceted process, involving alterations in translation factor levels and activities that are unique to the different types of cancers and the different stages of disease. Translational alterations in cancer include adaptations of the tumor itself, of the tumor microenvironment, an integral component in disease, and adaptations that occur as cancer progresses from development to local disease and ultimately to metastatic disease. Adaptations include the overexpression and increased activity of specific translation factors, the physical or functional loss of translation regulatory components, increased production of ribosomes, selective mRNA translation, and alteration of signal transduction pathways to permit unfettered activation of protein synthesis. There is intense clinical interest to capitalize on the emerging new understanding of translational control in cancer by targeting specific components of the translation apparatus that are altered in disease for the development of specific cancer therapeutics. Clinical trial data are nascent but encouraging, suggesting that translational control constitutes an important new area for drug development in human cancer.
Collapse
Affiliation(s)
- Rafael Cuesta
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
44
|
Nakamura Y, Endo K, Adachi H, Ishiguro A. RNA aptamers to translational components. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:369-95. [PMID: 20374747 DOI: 10.1016/s1877-1173(09)90010-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Potential applications for functional RNAs are rapidly expanding, not only to address functions based on primary nucleotide sequences, but also by RNA aptamers, which can suppress the activity of any target molecule. Aptamers are short DNA or RNA folded molecules that can be selected in vitro on the basis of their high affinity for a target molecule. Here, we summarize RNA aptamers selected against human translation initiation factors, and their superior potentials to recognize and inhibit their target proteins. Importantly, the high affinity of RNA aptamers to proteins without RNA recognition motifs or intrinsic, strong affinity to RNA is achieved through the capture of the protein's global conformation. In other words, RNA has a high potential to form a vast set of tertiary structures, which we would like to refer to as 'RNA plasticity'. This provides us with a solid and promising basis to take steps to create novel RNA molecules of therapeutic potential with distinct structures, which should be equivalent or superior to antibodies.
Collapse
Affiliation(s)
- Yoshikazu Nakamura
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
45
|
MYC and EIF3H Coamplification significantly improve response and survival of non-small cell lung cancer patients (NSCLC) treated with gefitinib. J Thorac Oncol 2009; 4:472-8. [PMID: 19204574 DOI: 10.1097/jto.0b013e31819a5767] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND We investigated the incidence of eukaryotic translation initiation factor 3 subunit H (EIF3H) and MYC amplification in non-small cell lung cancer (NSCLC) patients, and whether MYC/EIF3H increased gene copy number affected response to Epidermal Growth Factor Receptor tyrosine kinase inhibitors. METHODS Metastatic NSCLC patients (n = 54) treated with gefitinib were analyzed for the genomic content of EIF3H and MYC genes by fluorescence in situ hybridization (FISH) using a custom-designed 3-color DNA probe set. RESULT Amplification of EIF3H (ratio EIF3H/CEP8 >2), was observed in 10 cases (18.5%), and MYC was coamplified in all. MYC amplification without coamplification of EIF3H was observed in 2 cases (3.7%). Receiver operating characteristic analysis was conducted to identify the cutoff for MYC and EIF3H copy number best discriminating sensitive and resistant populations. MYC FISH positive patients (MYC+, mean > or =2.8) had a significantly higher response rate (p = 0.003), longer time to progression (p = 0.01) and overall survival (OS: p = 0.02) than MYC- (mean <2.8). Similarly, EIF3H FISH positive patients (EIF3H+, mean > or =2.75) had a significantly higher response rate (p = 0.002), longer time to progression (p = 0.01) and OS (p = 0.01) than EIF3H- (mean <2.75). CONCLUSION Our results indicate that MYC and EIF3H are frequently coamplified in NSCLC and that a high copy number correlates with increased epidermal growth factor receptor tyrosine kinase inhibitors sensitivity.
Collapse
|
46
|
Jalava SE, Porkka KP, Rauhala HE, Isotalo J, Tammela TL, Visakorpi T. TCEB1 promotes invasion of prostate cancer cells. Int J Cancer 2009; 124:95-102. [PMID: 18844214 DOI: 10.1002/ijc.23916] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Amplification of the long arm of chromosome 8 is one of the most recurrent findings in prostate cancer and it is associated with poor prognosis. Several minimal regions of amplification suggest multiple target genes which are yet to be identified. We have previously shown that TCEB1, EIF3S3, KIAA0196 and RAD21 are amplified and overexpressed in prostate cancer and they are located in the 8q area. In this study, we examined the functional effects of these genes to prostate cancer cell phenotype. We overexpressed and inhibited the genes by lentivirus mediated overexpression and RNA interference, respectively. shRNA mediated TCEB1 silencing decreased significantly cellular invasion of PC-3 and DU145 cells through Matrigel. TCEB1 silencing reduced the anchorage-independent growth of PC-3 cells. Similar effects were not seen with any other genes. When overexpressed in NIH 3T3 cells, TCEB1 and EIF3S3 increased the growth rate of the cells. Transcriptional profiling of TCEB1 silenced PC-3 cells revealed decrease of genes involved in invasion and metastasis. Finally, we also confirmed here the overexpression of TCEB1 in hormone-refractory prostate tumors. This study indicates that TCEB1 promotes invasion of prostate cancer cells, is involved in development of hormone-refractory prostate cancer and is thereby a strong candidate to be one of the target genes for the 8q gain.
Collapse
Affiliation(s)
- Sanni E Jalava
- Laboratory of Cancer Genetics, Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | |
Collapse
|
47
|
Doldan A, Chandramouli A, Shanas R, Bhattacharyya A, Leong SPL, Nelson MA, Shi J. Loss of the eukaryotic initiation factor 3f in melanoma. Mol Carcinog 2008; 47:806-13. [PMID: 18381585 DOI: 10.1002/mc.20436] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aberrant regulation of the translation initiation is known to contribute to tumorigenesis. eIF3 plays an important role in translation initiation. eIF3f is the p47 subunit of the eIF3 complex whose function in cancer is not clear. Initial studies from our group indicated that eIF3f expression is decreased in melanoma. Overexpression of eIF3f inhibits translation and induces apoptosis in melanoma cells. The eIF3f gene is located at chromosome region 11p15.4. Loss of 11p15.4 is a common event in many tumors including melanoma. In order to investigate the molecular mechanism of the decreased expression of eIF3f in melanoma, we performed loss of heterozygosity (LOH) analysis in 24 melanoma specimens using three microsatellite markers encompassing the eIF3f gene. We showed that the prevalence of LOH ranged from 75% to 92% in melanoma. We also performed eIF3f gene copy number analysis using quantitative real-time PCR to further confirm the specific allelic loss of the eIF3f gene in melanoma. We demonstrated a statistically significant decrease of the eIF3f gene copy number in melanoma compared with normal tissues with a tumor/normal ratio of 0.52. To further elucidate the somatic genetic alterations, we carried out mutation analysis covering the entire coding region and 5'UTR of the eIF3f gene in melanoma tissues and cell lines. Despite some polymorphisms, we did not find any mutations. Furthermore, immunohistochemistry analysis demonstrated that eIF3f protein expression is decreased in melanoma compared to benign nevi. These data provide new insight into the understanding of the molecular pathogenesis of eIF3f during melanoma tumorigenesis.
Collapse
Affiliation(s)
- Adriana Doldan
- Department of Pathology, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Rauhala HE, Porkka KP, Saramäki OR, Tammela TLJ, Visakorpi T. Clusterin is epigenetically regulated in prostate cancer. Int J Cancer 2008; 123:1601-9. [PMID: 18649357 DOI: 10.1002/ijc.23658] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lack of good models has complicated investigations on the mechanisms of prostate cancer. By far, the most commonly used transgenic mouse model of prostate cancer is TRAMP, which, however, has not been fully characterized for genetic and epigenetic aberrations. Here, we screened TRAMP-derived C2 cell line for the alterations using different microarray approaches, and compared it to human prostate cancer. TRAMP-C2 had relatively few genomic copy number alterations according to array comparative genomic hybridization (aCGH). However, the gene copy number and expression were significantly correlated (p < 0.001). Screening genes for promoter hypermethylation using demethylation treatment with 5-aza-2'-deoxycytidine and subsequent expression profiling indicated 43 putatively epigenetically silenced genes. Further studies revealed that clusterin is methylated in the TRAMP-C2 cell line, as well as in the human prostate cancer cell line LNCaP. Its expression was found to be significantly reduced (p < 0.01) in untreated and hormone-refractory human prostate carcinomas. Together with known function of clusterin, the data suggest an epigenetic component in the regulation of clusterin in prostate cancer.
Collapse
Affiliation(s)
- Hanna E Rauhala
- Institute of Medical Technology, University of Tampere, and Tampere University Hospital, Tampere, Finland
| | | | | | | | | |
Collapse
|
49
|
Gurel B, Iwata T, Koh C, Jenkins RB, Lan F, Van Dang C, Hicks JL, Morgan J, Cornish TC, Sutcliffe S, Isaacs WB, Luo J, De Marzo AM. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol 2008; 21:1156-67. [PMID: 18567993 PMCID: PMC3170853 DOI: 10.1038/modpathol.2008.111] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The MYC onco-protein is a transcription factor that regulates cell proliferation, metabolism, protein synthesis, mitochondrial function and stem cell renewal. A region on chromosome 8q24 encompassing the MYC locus is amplified in prostate cancer, but this occurs mostly in advanced disease suggesting that MYC alterations occur late in prostate cancer. In contrast, MYC mRNA is elevated in most prostate cancers, even those of relatively low stage and grade (eg Gleason score 6) suggesting that MYC plays a role in initiation. However, since MYC protein levels are tightly regulated, elevated MYC mRNA does not necessarily imply elevated MYC protein. Thus, it is critical to determine whether MYC protein is elevated in human prostate cancer, and if so, at what stage of the disease this elevation occurs. Prior studies of MYC protein localization have been hampered by lack of suitable antibodies and controls. We utilized a new anti-MYC antibody coupled with genetically defined control experiments to localize MYC protein within human tissue microarrays consisting of normal, atrophy, PIN, primary adenocarcinoma, and metastatic adenocarcinoma. Nuclear overexpression of MYC protein occurred frequently in luminal cells of PIN, as well as in most primary carcinomas and metastatic disease. MYC protein did not correlate with gain of 8q24, suggesting alternative mechanisms for MYC overexpression. These results provide evidence that upregulation of nuclear MYC protein expression is a highly prevalent and early change in prostate cancer and suggest that increased nuclear MYC may be a critical oncogenic event driving human prostate cancer initiation and progression.
Collapse
Affiliation(s)
- Bora Gurel
- Department of Pathology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Tsuyoshi Iwata
- Department of Pathology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Cheryl Koh
- Department of Pathology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | | | - Fusheng Lan
- Department of Pathology, The Mayo Clinic, Rochester, Minnesota
| | - Chi Van Dang
- Division of Hematology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Jessica L. Hicks
- Department of Pathology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - James Morgan
- Department of Pathology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Toby C. Cornish
- Department of Pathology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Siobhan Sutcliffe
- Siteman Cancer Center, Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis MO
| | - William B. Isaacs
- Department of Urology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, The Brady Urological Research Institute, The Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Jun Luo
- Department of Urology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, The Brady Urological Research Institute, The Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Angelo M. De Marzo
- Department of Pathology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, Department of Urology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, Department of Oncology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, The Brady Urological Research Institute, The Johns Hopkins University, School of Medicine, Baltimore, Maryland
| |
Collapse
|
50
|
Shen W, liu H, Yu Y. Translation initiation proteins, ubiquitin-proteasome system related proteins, and 14-3-3 proteins as response proteins in FL cells exposed to anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide. Proteomics 2008; 8:3450-68. [DOI: 10.1002/pmic.200800085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|