1
|
Parvatam S, Pistollato F, Marshall LJ, Furtmann F, Jahagirdar D, Chakraborty Choudhury M, Mohanty S, Mittal H, Meganathan S, Mishra R. Human-based complex in vitro models: their promise and potential for rare disease therapeutics. Front Cell Dev Biol 2025; 13:1526306. [PMID: 39931243 PMCID: PMC11807990 DOI: 10.3389/fcell.2025.1526306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
Rare diseases affect a small percentage of an individual country's population; however, with over 7,000 in total, rare diseases represent a significant disease burden impacting up to 10% of the world's population. Despite this, there are no approved treatments for almost 95% of rare diseases, and the existing treatments are cost-intensive for the patients. More than 70% of rare diseases are genetic in nature, with patient-specific mutations. This calls for the need to have personalised and patient-specific preclinical models that can lead to effective, speedy, and affordable therapeutic options. Complex in vitro models (CIVMs), including those using induced pluripotent stem cells (iPSCs), organoids, and organs-on-chips are emerging as powerful human-based pre-clinical systems with the capacity to provide efficacy data enabling drugs to move into clinical trials. In this narrative review, we discuss how CIVMs are providing insights into biomedical research on rare diseases. We also discuss how these systems are being used in clinical trials to develop efficacy models for rare diseases. Finally, we propose recommendations on how human relevant CIVMs could be leveraged to increase translatability of basic, applied and nonclinical research outcomes in the field of rare disease therapeutics in developed as well as middle-and low-income countries.
Collapse
Affiliation(s)
- Surat Parvatam
- Department of Research and Toxicology, Humane Society International/India, Hyderabad, India
| | - Francesca Pistollato
- Department of Research and Toxicology, Humane Society International/Europe, Brussels, Belgium
| | - Lindsay J. Marshall
- Animal Research Issues, The Humane Society of the United States, Washington DC, DC, United States
| | - Fabia Furtmann
- Department of Research and Toxicology, Humane Society International/Europe, Brussels, Belgium
| | - Devashree Jahagirdar
- Department of Chemical Engineering, Indian Institute of Technology (IIT), Mumbai, Maharashtra, India
| | | | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Harshita Mittal
- Department of Research and Toxicology, Humane Society International/India, Hyderabad, India
| | - Saveetha Meganathan
- Community Engagement and Policy Stewardship, Tata Institute for Genetics and Society, Bangalore, India
| | - Rakesh Mishra
- Tata Institute for Genetics and Society, Bangalore, India
| |
Collapse
|
2
|
Ayats-Vidal R, Bosque-García M, Cordobilla B, Asensio-De la Cruz O, García-González M, Loureda-Pérez S, Fernández-López E, Robert-Barriocanal E, Valiente-Planas A, Domingo JC. Impact of 1-Year Supplementation with High-Rich Docosahexaenoic Acid (DHA) on Clinical Variables and Inflammatory Biomarkers in Pediatric Cystic Fibrosis: A Randomized Double-Blind Controlled Trial. Nutrients 2024; 16:970. [PMID: 38613004 PMCID: PMC11013158 DOI: 10.3390/nu16070970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
A randomized, double-blind, and placebo-controlled study was conducted to assess the effect of dietary supplementation with high-rich docosahexaenoic acid (DHA) (Tridocosahexanoin-AOX® 70%) at 50 mg/kg/day in pediatric patients with cystic fibrosis (CF) as compared with placebo. The duration of supplementation was 12 months. A total of 22 patients were included, with 11 in the DHA group and 11 in the placebo group. The mean age was 11.7 years. The outcome variables were pulmonary function, exacerbations, sputum cellularity, inflammatory biomarkers in sputum and peripheral blood, and anthropometric variables. In the DHA group, there was a significant increase in FVC (p = 0.004) and FVE1 expressed in liters (p = 0.044) as compared with placebo, and a lower median number of exacerbations (1 vs. 2). Differences in sputum cellularity (predominantly neutrophilic), neutrophilic elastase, and sputum and serum concentrations of resolvin D1 (RvD1), interleukin (IL)-8 (IL-8), and tumor necrosis factor alpha (TNF-α) between the study groups were not found. Significant increases in weight and height were also observed among DHA-supplemented patients. The administration of the study product was safe and well tolerated. In summary, the use of a highly concentrated DHA supplement for 1 year as compared with placebo improved pulmonary function and reduced exacerbations in pediatric CF.
Collapse
Affiliation(s)
- Roser Ayats-Vidal
- Pediatric Allergies, Immunology and Pneumology Unit, Pediatric Medicine Service, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain; (M.B.-G.); (O.A.-D.l.C.); (M.G.-G.); (S.L.-P.)
| | - Montserrat Bosque-García
- Pediatric Allergies, Immunology and Pneumology Unit, Pediatric Medicine Service, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain; (M.B.-G.); (O.A.-D.l.C.); (M.G.-G.); (S.L.-P.)
| | - Begoña Cordobilla
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, E-08028 Barcelona, Spain;
| | - Oscar Asensio-De la Cruz
- Pediatric Allergies, Immunology and Pneumology Unit, Pediatric Medicine Service, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain; (M.B.-G.); (O.A.-D.l.C.); (M.G.-G.); (S.L.-P.)
| | - Miguel García-González
- Pediatric Allergies, Immunology and Pneumology Unit, Pediatric Medicine Service, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain; (M.B.-G.); (O.A.-D.l.C.); (M.G.-G.); (S.L.-P.)
| | - Susana Loureda-Pérez
- Pediatric Allergies, Immunology and Pneumology Unit, Pediatric Medicine Service, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain; (M.B.-G.); (O.A.-D.l.C.); (M.G.-G.); (S.L.-P.)
| | - Elena Fernández-López
- Physical Medicine and Rehabilitation Service, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain; (E.F.-L.); (E.R.-B.); (A.V.-P.)
| | - Eva Robert-Barriocanal
- Physical Medicine and Rehabilitation Service, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain; (E.F.-L.); (E.R.-B.); (A.V.-P.)
| | - Andrea Valiente-Planas
- Physical Medicine and Rehabilitation Service, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain; (E.F.-L.); (E.R.-B.); (A.V.-P.)
| | - Joan Carles Domingo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, E-08028 Barcelona, Spain;
| |
Collapse
|
3
|
Gaudin C, Ghinnagow R, Lemaire F, Villeret B, Sermet-Gaudelus I, Sallenave JM. Abnormal functional lymphoid tolerance and enhanced myeloid exocytosis are characteristics of resting and stimulated PBMCs in cystic fibrosis patients. Front Immunol 2024; 15:1360716. [PMID: 38469306 PMCID: PMC10925672 DOI: 10.3389/fimmu.2024.1360716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Cystic Fibrosis (CF) is the commonest genetically inherited disease (1 in 4,500 newborns) and 70% of people with CF (pwCF) harbour the F508Del mutation, resulting in misfolding and incorrect addressing of the channel CFTR to the epithelial membrane and subsequent dysregulation of fluid homeostasis. Although studies have underscored the importance and over-activation of myeloid cells, and in particular neutrophils in the lungs of people with CF (pwCF), relatively less emphasis has been put on the potential immunological bias in CF blood cells, at homeostasis or following stimulation/infection. Methods Here, we revisited, in an exhaustive fashion, in pwCF with mild disease (median age of 15, median % FEV1 predicted = 87), whether their PBMCs, unprimed or primed with a 'non specific' stimulus (PMA+ionomycin mix) and a 'specific' one (live P.a =PAO1 strain), were differentially activated, compared to healthy controls (HC) PBMCs. Results 1) we analysed the lymphocytic and myeloid populations present in CF and Control PBMCs (T cells, NKT, Tgd, ILCs) and their production of the signature cytokines IFN-g, IL-13, IL-17, IL-22. 2) By q-PCR, ELISA and Luminex analysis we showed that CF PBMCs have increased background cytokines and mediators production and a partial functional tolerance phenotype, when restimulated. 3) we showed that CF PBMCs low-density neutrophils release higher levels of granule components (S100A8/A9, lactoferrin, MMP-3, MMP-7, MMP-8, MMP-9, NE), demonstrating enhanced exocytosis of potentially harmful mediators. Discussion In conclusion, we demonstrated that functional lymphoid tolerance and enhanced myeloid protease activity are key features of cystic fibrosis PBMCs.
Collapse
Affiliation(s)
- Clémence Gaudin
- Laboratoire d’Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, Paris, France
| | - Reem Ghinnagow
- Laboratoire d’Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, Paris, France
| | - Flora Lemaire
- Laboratoire d’Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, Paris, France
| | - Bérengère Villeret
- Laboratoire d’Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, Paris, France
| | - Isabelle Sermet-Gaudelus
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
- ERN-LUNG CF Network, Frankfurt, Germany
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hôpital Mignot, Paris, France
| | - Jean-Michel Sallenave
- Laboratoire d’Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, Paris, France
| |
Collapse
|
4
|
Rowe WJ, Lebman DA, Ohman DE. Mechanism of resistance to phagocytosis and pulmonary persistence in mucoid Pseudomonas aeruginosa. Front Cell Infect Microbiol 2023; 13:1125901. [PMID: 37009499 PMCID: PMC10050686 DOI: 10.3389/fcimb.2023.1125901] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionPseudomonas aeruginosa is known for its ability to form biofilms, which are dependent on the production of exopolysaccharides. During chronic colonization of the airway and biofilm formation, P. aeruginosa converts to a mucoid phenotype, indicating production of the exopolysaccharide alginate. The mucoid phenotype promotes resistance to phagocytic killing, but the mechanism has not been established.Methods and ResultsTo better understand the mechanism of phagocytic evasion conferred by alginate production, Human (THP-1) and murine (MH-S) macrophage cell lines were used to determine the effects of alginate production on macrophage binding, signaling and phagocytosis. Phagocytosis assays using mucoid clinical isolate FRD1 and its non-mucoid algD mutant showed that alginate production inhibited opsonic and non-opsonic phagocytosis, but exogenous alginate was not protective. Alginate caused a decrease in binding to murine macrophages. Blocking antibodies to CD11b and CD14 showed that these receptors were important for phagocytosis and were blocked by alginate. Furthermore, alginate production decreased the activation of signaling pathways required for phagocytosis. Mucoid and non-mucoid bacteria induced similar levels of MIP-2 from murine macrophages.DiscussionThis study demonstrated for the first time that alginate on the bacterial surface inhibits receptor-ligand interactions important for phagocytosis. Our data suggest that there is a selection for alginate conversion that blocks the earliest steps in phagocytosis, leading to persistence during chronic pulmonary infections.
Collapse
Affiliation(s)
- Warren J. Rowe
- Department of Microbiology & Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Deborah A. Lebman
- Department of Microbiology & Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Dennis E. Ohman
- Department of Microbiology & Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
- Research Service, McGuire Veterans Affairs Medical Center, Richmond, VA, United States
- *Correspondence: Dennis E. Ohman,
| |
Collapse
|
5
|
Plebani R, Potla R, Soong M, Bai H, Izadifar Z, Jiang A, Travis RN, Belgur C, Dinis A, Cartwright MJ, Prantil-Baun R, Jolly P, Gilpin SE, Romano M, Ingber DE. Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip. J Cyst Fibros 2022; 21:606-615. [PMID: 34799298 DOI: 10.1101/2021.07.15.21260407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2021] [Accepted: 10/14/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) is a genetic disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), which results in impaired airway mucociliary clearance, inflammation, infection, and respiratory insufficiency. The development of new therapeutics for CF are limited by the lack of reliable preclinical models that recapitulate the structural, immunological, and bioelectrical features of human CF lungs. METHODS We leveraged organ-on-a-chip technology to develop a microfluidic device lined by primary human CF bronchial epithelial cells grown under an air-liquid interface and interfaced with pulmonary microvascular endothelial cells (CF Airway Chip) exposed to fluid flow. The responses of CF and healthy Airway Chips were analyzed in the presence or absence of polymorphonuclear leukocytes (PMNs) and the bacterial pathogen, Pseudomonas aeruginosa. RESULTS The CF Airway Chip faithfully recapitulated many features of the human CF airways, including enhanced mucus accumulation, increased cilia density, and a higher ciliary beating frequency compared to chips lined by healthy bronchial epithelial cells. The CF chips also secreted higher levels of IL-8, which was accompanied by enhanced PMN adhesion to the endothelium and transmigration into the airway compartment. In addition, CF Airway Chips provided a more favorable environment for Pseudomonas aeruginosa growth, which resulted in enhanced secretion of inflammatory cytokines and recruitment of PMNs to the airway. CONCLUSIONS The human CF Airway Chip may provide a valuable preclinical tool for pathophysiology studies as well as for drug testing and personalized medicine.
Collapse
Affiliation(s)
- Roberto Plebani
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States; Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ratnakar Potla
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States; Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Mercy Soong
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Amanda Jiang
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Renee N Travis
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Chaitra Belgur
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Alexandre Dinis
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Mark J Cartwright
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Pawan Jolly
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Sarah E Gilpin
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Mario Romano
- Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States; Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States; Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, United States.
| |
Collapse
|
6
|
Ribeiro CMP, Hull-Ryde EA. Functional role of the ER stress transducer IRE1α in CF airway epithelial inflammation. Curr Opin Pharmacol 2022; 65:102258. [PMID: 35749907 DOI: 10.1016/j.coph.2022.102258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022]
Abstract
Excessive and chronic airway inflammation associated with increased morbidity and mortality is a hallmark of cystic fibrosis (CF) airway disease. Previous studies underscored the role of endoplasmic reticulum (ER) signaling in CF airway inflammatory responses. In this review we discuss 1) how airway inflammation induces ER stress-triggered activation of the unfolded protein response and 2) the functional importance of the ER stress transducer inositol requiring enzyme 1α (IRE1α) in CF airway epithelial inflammatory responses. We also briefly review the current understanding of IRE1α activation and the development of small molecules aimed at modulating IRE1α kinase and RNase activities. Inhibition of IRE1α kinase and RNase may be considered as a novel therapeutic strategy to ameliorate the robust inflammatory status of CF airways.
Collapse
Affiliation(s)
- Carla M P Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC, 27599-7248, USA; Department of Medicine, University of North Carolina, Chapel Hill, NC, 27599-7248, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599-7248, USA.
| | - Emily A Hull-Ryde
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC, 27599-7248, USA
| |
Collapse
|
7
|
Williamson M, Casey M, Gabillard-Lefort C, Alharbi A, Teo YQJ, McElvaney NG, Reeves EP. Current evidence on the effect of highly effective CFTR modulation on interleukin-8 in cystic fibrosis. Expert Rev Respir Med 2021; 16:43-56. [PMID: 34726115 DOI: 10.1080/17476348.2021.2001333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetically inherited disease, with mortality and morbidity associated with respiratory disease. The inflammatory response in CF is characterized by excessive neutrophil influx to the airways, mainly due to the increased local production and retention of interleukin-8 (IL-8), a potent neutrophil chemoattractant. AREAS COVERED We discuss how the chemokine IL-8 dominates the inflammatory profile of the airways in CF lung disease. Cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies are designed to correct the malfunctioning protein resulting from specific CFTR mutations. This review covers current evidence on the impact of CFTR impairment on levels of IL-8 and outlines the influence of effective CFTR modulation on inflammation in CF with a focus on cytokine production. Review of the literature was carried out using the PUBMED database, Google Scholar, and The Cochrane Library databases, using several appropriate generic terms. EXPERT OPINION Therapeutic interventions specifically targeting the defective CFTR protein have improved the outlook for CF. Accumulating studies on the effect of highly effective CFTR modulation on inflammation indicate an impact on IL-8 levels. Further studies are required to increase our knowledge of early onset innate inflammatory dysregulation and on anti-inflammatory mechanisms of CFTR modulators.
Collapse
Affiliation(s)
- Michael Williamson
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Michelle Casey
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Claudie Gabillard-Lefort
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Aram Alharbi
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Yu Qing Jolene Teo
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Noel G McElvaney
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Emer P Reeves
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
8
|
Ribeiro CMP, Gentzsch M. Impact of Airway Inflammation on the Efficacy of CFTR Modulators. Cells 2021; 10:3260. [PMID: 34831482 PMCID: PMC8619863 DOI: 10.3390/cells10113260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
Defective CFTR biogenesis and activity in cystic fibrosis airways leads to airway dehydration and impaired mucociliary clearance, resulting in chronic airway infection and inflammation. Most cystic fibrosis patients have at least one copy of the F508del CFTR mutation, which results in a protein retained in the endoplasmic reticulum and degraded by the proteosomal pathway. CFTR modulators, e.g., correctors, promote the transfer of F508del to the apical membrane, while potentiators increase CFTR activity. Corrector and potentiator double therapies modestly improve lung function, whereas triple therapies with two correctors and one potentiator indicate improved outcomes. Enhanced F508del rescue by CFTR modulators is achieved by exposing F508del/F508del primary cultures of human bronchial epithelia to relevant inflammatory stimuli, i.e., supernatant from mucopurulent material or bronchoalveolar lavage fluid from human cystic fibrosis airways. Inflammation enhances the biochemical and functional rescue of F508del by double or triple CFTR modulator therapy and overcomes abrogation of CFTR correction by chronic VX-770 treatment in vitro. Furthermore, the impact of inflammation on clinical outcomes linked to CFTR rescue has been recently suggested. This review discusses these data and possible mechanisms for airway inflammation-enhanced F508del rescue. Expanding the understanding of how airway inflammation improves CFTR rescue may benefit cystic fibrosis patients.
Collapse
Affiliation(s)
- Carla M. P. Ribeiro
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Pulmonary Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Pediatric Pulmonology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Plebani R, Potla R, Soong M, Bai H, Izadifar Z, Jiang A, Travis RN, Belgur C, Dinis A, Cartwright MJ, Prantil-Baun R, Jolly P, Gilpin SE, Romano M, Ingber DE. Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip: Cystic fibrosis airway chip. J Cyst Fibros 2021; 21:606-615. [PMID: 34799298 DOI: 10.1016/j.jcf.2021.10.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) is a genetic disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), which results in impaired airway mucociliary clearance, inflammation, infection, and respiratory insufficiency. The development of new therapeutics for CF are limited by the lack of reliable preclinical models that recapitulate the structural, immunological, and bioelectrical features of human CF lungs. METHODS We leveraged organ-on-a-chip technology to develop a microfluidic device lined by primary human CF bronchial epithelial cells grown under an air-liquid interface and interfaced with pulmonary microvascular endothelial cells (CF Airway Chip) exposed to fluid flow. The responses of CF and healthy Airway Chips were analyzed in the presence or absence of polymorphonuclear leukocytes (PMNs) and the bacterial pathogen, Pseudomonas aeruginosa. RESULTS The CF Airway Chip faithfully recapitulated many features of the human CF airways, including enhanced mucus accumulation, increased cilia density, and a higher ciliary beating frequency compared to chips lined by healthy bronchial epithelial cells. The CF chips also secreted higher levels of IL-8, which was accompanied by enhanced PMN adhesion to the endothelium and transmigration into the airway compartment. In addition, CF Airway Chips provided a more favorable environment for Pseudomonas aeruginosa growth, which resulted in enhanced secretion of inflammatory cytokines and recruitment of PMNs to the airway. CONCLUSIONS The human CF Airway Chip may provide a valuable preclinical tool for pathophysiology studies as well as for drug testing and personalized medicine.
Collapse
Affiliation(s)
- Roberto Plebani
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States; Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ratnakar Potla
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States; Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Mercy Soong
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Amanda Jiang
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Renee N Travis
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Chaitra Belgur
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Alexandre Dinis
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Mark J Cartwright
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Pawan Jolly
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Sarah E Gilpin
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Mario Romano
- Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States; Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States; Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, United States.
| |
Collapse
|
10
|
Majka G, Mazurek H, Strus M, Ciszek-Lenda M, Szatanek R, Pac A, Golińska E, Marcinkiewicz J. Chronic bacterial pulmonary infections in advanced cystic fibrosis differently affect the level of sputum neutrophil elastase, IL-8 and IL-6. Clin Exp Immunol 2021; 205:391-405. [PMID: 34031873 DOI: 10.1111/cei.13624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Advanced cystic fibrosis (CF) lung disease is commonly characterized by a chronic Pseudomonas aeruginosa infection and destructive inflammation caused by neutrophils. However, the lack of convincing evidence from most informative biomarkers of severe lung dysfunction (SLD-CF) has hampered the formulation of a conclusive, targeted diagnosis of CF. The aim of this study was to determine whether SLD-CF is related to the high concentration of sputum inflammatory mediators and the presence of biofilm-forming bacterial strains. Forty-one patients with advanced CF lung disease were studied. The severity of pulmonary dysfunction was defined by forced expiratory volume in 1 second (FEV1) < 40%. C-reactive protein (CRP) and NLR (neutrophil-lymphocyte ratio) were examined as representative blood-based markers of inflammation. Expectorated sputum was collected and analysed for cytokines and neutrophil-derived defence proteins. Isolated sputum bacteria were identified and their biofilm-forming capacity was determined. There was no association between FEV1% and total number of sputum bacteria. However, in the high biofilm-forming group the median FEV1 was < 40%. Importantly, high density of sputum bacteria was associated with increased concentrations of neutrophil elastase and interleukin (IL)-8 and low concentrations of IL-6 and IL-10. The low concentration of sputum IL-6 is unique for CF and distinct from that observed in other chronic pulmonary inflammatory diseases. These findings strongly suggest that expectorated sputum is an informative source of pulmonary biomarkers representative for advanced CF and may replace more invasive bronchoalveolar lavage analysis to monitor the disease. We recommend to use of the following inflammatory biomarkers: blood CRP, NLR and sputum elastase, IL-6, IL-8 and IL-10.
Collapse
Affiliation(s)
- Grzegorz Majka
- Faculty of Medicine, Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Henryk Mazurek
- Department of Pneumonology and Cystic Fibrosis, Institute of Tuberculosis and Lung Disorders, Rabka-Zdrój, Poland
| | - Magdalena Strus
- Faculty of Medicine, Department of Microbiology, Jagiellonian University Medical College, Kraków, Poland
| | - Marta Ciszek-Lenda
- Faculty of Medicine, Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Rafał Szatanek
- Faculty of Medicine, Institute of Pediatrics, Department of Clinical Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Pac
- Faculty of Medicine, Chair of Epidemiology and Preventive Medicine, Department of Epidemiology, Jagiellonian University Medical College, Kraków, Poland
| | - Edyta Golińska
- Faculty of Medicine, Department of Microbiology, Jagiellonian University Medical College, Kraków, Poland
| | - Janusz Marcinkiewicz
- Faculty of Medicine, Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
11
|
Kouadri A, Cormenier J, Gemy K, Macari L, Charbonnier P, Richaud P, Michaud-Soret I, Alfaidy N, Benharouga M. Copper-Associated Oxidative Stress Contributes to Cellular Inflammatory Responses in Cystic Fibrosis. Biomedicines 2021; 9:biomedicines9040329. [PMID: 33805052 PMCID: PMC8064106 DOI: 10.3390/biomedicines9040329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF Transmembrane Conductance Regulator (CFTR), an apical chloride channel. An early inflammation (EI) in the lung of CF patients occurring in the absence of any bacterial infection has been reported. This EI has been proposed to be associated with oxidative stress (OX-S), generated by deregulations of the oxidant/antioxidant status. Recently, we demonstrated that copper (Cu), an essential trace element, mediates OX-S in bronchial cells. However, the role of this element in the development of CF-EI, in association with OX-S, has never been investigated. Using healthy (16HBE14o-; HBE), CF (CFBE14o-; CFBE), and corrected-wild type CFTR CF (CFBE-wt) bronchial cells, we characterized the inflammation and OX-S profiles in relation to the copper status and CFTR expression and function. We demonstrated that CFBE cells exhibited a CFTR-independent intrinsic inflammation. These cells also exhibited an alteration in mitochondria, UPR (Unfolded Protein Response), catalase, Cu/Zn- and Mn-SOD activities, and an increase in the intracellular content of iron, zinc, and Cu. The increase in Cu concentration was associated with OX-S and inflammatory responses. These data identify cellular Cu as a key factor in the generation of CF-associated OX-S and opens new areas of investigation to better understand CF-associated EI.
Collapse
Affiliation(s)
- Amal Kouadri
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie Pour la Santé, 38000 Grenoble, France; (A.K.); (J.C.); (K.G.)
- Commissariat à l’Energie Atomique et Aux Energies Alternatives (CEA), 38000 Grenoble, France; (L.M.); (P.C.); (I.M.-S.)
- Université Grenoble Alpes (UGA), 38043 Grenoble, France
| | - Johanna Cormenier
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie Pour la Santé, 38000 Grenoble, France; (A.K.); (J.C.); (K.G.)
- Commissariat à l’Energie Atomique et Aux Energies Alternatives (CEA), 38000 Grenoble, France; (L.M.); (P.C.); (I.M.-S.)
- Université Grenoble Alpes (UGA), 38043 Grenoble, France
| | - Kevin Gemy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie Pour la Santé, 38000 Grenoble, France; (A.K.); (J.C.); (K.G.)
- Commissariat à l’Energie Atomique et Aux Energies Alternatives (CEA), 38000 Grenoble, France; (L.M.); (P.C.); (I.M.-S.)
- Université Grenoble Alpes (UGA), 38043 Grenoble, France
| | - Laurence Macari
- Commissariat à l’Energie Atomique et Aux Energies Alternatives (CEA), 38000 Grenoble, France; (L.M.); (P.C.); (I.M.-S.)
- Université Grenoble Alpes (UGA), 38043 Grenoble, France
- Centre National de la Recherche Scientifique (CNRS), LCBM-UMR 5249, 38000 Grenoble, France
| | - Peggy Charbonnier
- Commissariat à l’Energie Atomique et Aux Energies Alternatives (CEA), 38000 Grenoble, France; (L.M.); (P.C.); (I.M.-S.)
- Université Grenoble Alpes (UGA), 38043 Grenoble, France
- Centre National de la Recherche Scientifique (CNRS), LCBM-UMR 5249, 38000 Grenoble, France
| | - Pierre Richaud
- CEA, CNRS, Institut de Biosciences et Biotechnologies d’Aix-Marseille (BIAM), Université Aix-Marseille, UMR 7265, CEA Cadarache, 13108 Saint-Paul-lez Durance, France;
| | - Isabelle Michaud-Soret
- Commissariat à l’Energie Atomique et Aux Energies Alternatives (CEA), 38000 Grenoble, France; (L.M.); (P.C.); (I.M.-S.)
- Université Grenoble Alpes (UGA), 38043 Grenoble, France
- Centre National de la Recherche Scientifique (CNRS), LCBM-UMR 5249, 38000 Grenoble, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie Pour la Santé, 38000 Grenoble, France; (A.K.); (J.C.); (K.G.)
- Commissariat à l’Energie Atomique et Aux Energies Alternatives (CEA), 38000 Grenoble, France; (L.M.); (P.C.); (I.M.-S.)
- Université Grenoble Alpes (UGA), 38043 Grenoble, France
- Correspondance: (N.A.); (M.B.); Tel.: +4-3878-010117 (M.B.); Fax: +4-3878-5058 (M.B.)
| | - Mohamed Benharouga
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie Pour la Santé, 38000 Grenoble, France; (A.K.); (J.C.); (K.G.)
- Commissariat à l’Energie Atomique et Aux Energies Alternatives (CEA), 38000 Grenoble, France; (L.M.); (P.C.); (I.M.-S.)
- Université Grenoble Alpes (UGA), 38043 Grenoble, France
- Correspondance: (N.A.); (M.B.); Tel.: +4-3878-010117 (M.B.); Fax: +4-3878-5058 (M.B.)
| |
Collapse
|
12
|
Hull-Ryde EA, Minges JT, Martino MEB, Kato T, Norris-Drouin JL, Ribeiro CMP. IRE1α Is a Therapeutic Target for Cystic Fibrosis Airway Inflammation. Int J Mol Sci 2021; 22:3063. [PMID: 33802742 PMCID: PMC8002512 DOI: 10.3390/ijms22063063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
New anti-inflammatory treatments are needed for CF airway disease. Studies have implicated the endoplasmic reticulum stress transducer inositol requiring enzyme 1α (IRE1α) in CF airway inflammation. The activation of IRE1α promotes activation of its cytoplasmic kinase and RNase, resulting in mRNA splicing of X-box binding protein-1 (XBP-1s), a transcription factor required for cytokine production. We tested whether IRE1α kinase and RNase inhibition decreases cytokine production induced by the exposure of primary cultures of homozygous F508del CF human bronchial epithelia (HBE) to supernatant of mucopurulent material (SMM) from CF airways. We evaluated whether IRE1α expression is increased in freshly isolated and native CF HBE, and couples with increased XBP-1s levels. A FRET assay confirmed binding of the IRE1α kinase and RNase inhibitor, KIRA6, to the IRE1α kinase. F508del HBE cultures were exposed to SMM with or without KIRA6, and we evaluated the mRNA levels of XBP-1s, IL-6, and IL-8, and the secretion of IL-6 and IL-8. IRE1α mRNA levels were up-regulated in freshly isolated CF vs. normal HBE and coupled to increased XBP-1s mRNA levels. SMM increased XBP-1s, IL-6, and IL-8 mRNA levels and up-regulated IL-6 and IL-8 secretion, and KIRA6 blunted these responses in a dose-dependent manner. Moreover, a triple combination of CFTR modulators currently used in the clinic had no effect on SMM-increased XBP-1s levels coupled with increased cytokine production in presence or absence of KIRA6. These findings indicate that IRE1α mediates cytokine production in CF airways. Small molecule IRE1α kinase inhibitors that allosterically reduce RNase-dependent XBP-1s may represent a new therapeutic strategy for CF airway inflammation.
Collapse
Affiliation(s)
- Emily A. Hull-Ryde
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.A.H.-R.); (J.T.M.); (M.E.B.M.); (T.K.)
| | - John T. Minges
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.A.H.-R.); (J.T.M.); (M.E.B.M.); (T.K.)
| | - Mary E. B. Martino
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.A.H.-R.); (J.T.M.); (M.E.B.M.); (T.K.)
| | - Takafumi Kato
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.A.H.-R.); (J.T.M.); (M.E.B.M.); (T.K.)
| | - Jacqueline L. Norris-Drouin
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Carla M. P. Ribeiro
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.A.H.-R.); (J.T.M.); (M.E.B.M.); (T.K.)
- Division of Pulmonary Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Dysfunctional Inflammation in Cystic Fibrosis Airways: From Mechanisms to Novel Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22041952. [PMID: 33669352 PMCID: PMC7920244 DOI: 10.3390/ijms22041952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited disorder caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an ATP-gated chloride channel expressed on the apical surface of airway epithelial cells. CFTR absence/dysfunction results in defective ion transport and subsequent airway surface liquid dehydration that severely compromise the airway microenvironment. Noxious agents and pathogens are entrapped inside the abnormally thick mucus layer and establish a highly inflammatory environment, ultimately leading to lung damage. Since chronic airway inflammation plays a crucial role in CF pathophysiology, several studies have investigated the mechanisms responsible for the altered inflammatory/immune response that, in turn, exacerbates the epithelial dysfunction and infection susceptibility in CF patients. In this review, we address the evidence for a critical role of dysfunctional inflammation in lung damage in CF and discuss current therapeutic approaches targeting this condition, as well as potential new treatments that have been developed recently. Traditional therapeutic strategies have shown several limitations and limited clinical benefits. Therefore, many efforts have been made to develop alternative treatments and novel therapeutic approaches, and recent findings have identified new molecules as potential anti-inflammatory agents that may exert beneficial effects in CF patients. Furthermore, the potential anti-inflammatory properties of CFTR modulators, a class of drugs that directly target the molecular defect of CF, also will be critically reviewed. Finally, we also will discuss the possible impact of SARS-CoV-2 infection on CF patients, with a major focus on the consequences that the viral infection could have on the persistent inflammation in these patients.
Collapse
|
14
|
Gopallawa I, Lee RJ. Targeting the phosphoinositide-3-kinase/protein kinase B pathway in airway innate immunity. World J Biol Chem 2020; 11:30-51. [PMID: 33024516 PMCID: PMC7520643 DOI: 10.4331/wjbc.v11.i2.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The airway innate immune system maintains the first line of defense against respiratory infections. The airway epithelium and associated immune cells protect the respiratory system from inhaled foreign organisms. These cells sense pathogens via activation of receptors like toll-like receptors and taste family 2 receptors (T2Rs) and respond by producing antimicrobials, inflammatory cytokines, and chemokines. Coordinated regulation of fluid secretion and ciliary beating facilitates clearance of pathogens via mucociliary transport. Airway cells also secrete antimicrobial peptides and radicals to directly kill microorganisms and inactivate viruses. The phosphoinositide-3-kinase/protein kinase B (Akt) kinase pathway regulates multiple cellular targets that modulate cell survival and proliferation. Akt also regulates proteins involved in innate immune pathways. Akt phosphorylates endothelial nitric oxide synthase (eNOS) enzymes expressed in airway epithelial cells. Activation of eNOS can have anti-inflammatory, anti-bacterial, and anti-viral roles. Moreover, Akt can increase the activity of the transcription factor nuclear factor erythroid 2 related factor-2 that protects cells from oxidative stress and may limit inflammation. In this review, we summarize the recent findings of non-cancerous functions of Akt signaling in airway innate host defense mechanisms, including an overview of several known downstream targets of Akt involved in innate immunity.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Robert J Lee
- Department of Otorhinolaryngology and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
15
|
Mitri C, Xu Z, Bardin P, Corvol H, Touqui L, Tabary O. Novel Anti-Inflammatory Approaches for Cystic Fibrosis Lung Disease: Identification of Molecular Targets and Design of Innovative Therapies. Front Pharmacol 2020; 11:1096. [PMID: 32848733 PMCID: PMC7396676 DOI: 10.3389/fphar.2020.01096] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is the most common genetic disorder among Caucasians, estimated to affect more than 70,000 people in the world. Severe and persistent bronchial inflammation and chronic bacterial infection, along with airway mucus obstruction, are hallmarks of CF lung disease and participate in its progression. Anti-inflammatory therapies are, therefore, of particular interest for CF lung disease. Furthermore, a better understanding of the molecular mechanisms involved in airway infection and inflammation in CF has led to the development of new therapeutic approaches that are currently under evaluation by clinical trials. These new strategies dedicated to CF inflammation are designed to treat different dysregulated aspects such as oxidative stress, cytokine secretion, and the targeting of dysregulated pathways. In this review, we summarize the current understanding of the cellular and molecular mechanisms that contribute to abnormal lung inflammation in CF, as well as the new anti-inflammatory strategies proposed to CF patients by exploring novel molecular targets and novel drug approaches.
Collapse
Affiliation(s)
- Christie Mitri
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Zhengzhong Xu
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Yangzhou University, Yangzhou, China
| | - Pauline Bardin
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Harriet Corvol
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Département de Pédiatrie Respiratoire, Hôpital Trousseau, AP-HP, Paris, France
| | - Lhousseine Touqui
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Equipe Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Institut Pasteur, Paris, France
| | - Olivier Tabary
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| |
Collapse
|
16
|
Chellappan DK, Yee LW, Xuan KY, Kunalan K, Rou LC, Jean LS, Ying LY, Wie LX, Chellian J, Mehta M, Satija S, Singh SK, Gulati M, Dureja H, Da Silva MW, Tambuwala MM, Gupta G, Paudel KR, Wadhwa R, Hansbro PM, Dua K. Targeting neutrophils using novel drug delivery systems in chronic respiratory diseases. Drug Dev Res 2020; 81:419-436. [PMID: 32048757 DOI: 10.1002/ddr.21648] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 12/29/2022]
Abstract
Neutrophils are essential effector cells of immune system for clearing the extracellular pathogens during inflammation and immune reactions. Neutrophils play a major role in chronic respiratory diseases. In respiratory diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, lung cancer and others, there occurs extreme infiltration and activation of neutrophils followed by a cascade of events like oxidative stress and dysregulated cellular proteins that eventually result in apoptosis and tissue damage. Dysregulation of neutrophil effector functions including delayed neutropil apoptosis, increased neutrophil extracellular traps in the pathogenesis of asthma, and chronic obstructive pulmonary disease enable neutrophils as a potential therapeutic target. Accounting to their role in pathogenesis, neutrophils present as an excellent therapeutic target for the treatment of chronic respiratory diseases. This review highlights the current status and the emerging trends in novel drug delivery systems such as nanoparticles, liposomes, microspheres, and other newer nanosystems that can target neutrophils and their molecular pathways, in the airways against infections, inflammation, and cancer. These drug delivery systems are promising in providing sustained drug delivery, reduced therapeutic dose, improved patient compliance, and reduced drug toxicity. In addition, the review also discusses emerging strategies and the future perspectives in neutrophil-based therapy.
Collapse
Affiliation(s)
- Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lim W Yee
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kong Y Xuan
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kishen Kunalan
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lim C Rou
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Leong S Jean
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lee Y Ying
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lee X Wie
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana, India
| | - Mateus Webba Da Silva
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, County Londonderry, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, County Londonderry, Northern Ireland, United Kingdom
| | - Gaurav Gupta
- School of Phamacy, Suresh Gyan Vihar University, Jaipur, India
| | - Keshav R Paudel
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Philip M Hansbro
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
17
|
Matusovsky OS, Kachmar L, Ijpma G, Panariti A, Benedetti A, Martin JG, Lauzon AM. Contractile Properties of Intrapulmonary Airway Smooth Muscle in Cystic Fibrosis. Am J Respir Cell Mol Biol 2019; 60:434-444. [PMID: 30359078 DOI: 10.1165/rcmb.2018-0005oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal-recessive disease caused by mutations in the CF transmembrane conductance regulator gene. Many patients with CF have asthma-like symptoms and airway hyperresponsiveness, which are potentially associated with altered airway smooth muscle (ASM) contractility. Our goal in this study was to assess the contractility of the CF intrapulmonary ASM. ASM strips were dissected from human control and CF intrapulmonary airways, and assessed for methacholine-induced shortening velocity, maximal force, and stress. We also assessed isoproterenol responses in maximally methacholine-contracted ASM. ASM strips were then incubated for 16 hours with IL-13 and measurements were repeated. Myosin light chain kinase (MLCK) expression was assessed by Western blotting. Airways were immunostained for morphometry. ASM mass was increased in CF airways, which likely contributes to airway hyperresponsiveness. Although ASM contractile properties were not intrinsically different between patients with CF and control subjects, CF ASM responded differently in the presence of the inflammatory mediator IL-13, showing impairment in β-adrenergic-induced relaxation. Indeed, the percentage of relaxation measured at maximal isoproterenol concentrations in the CF ASM was significantly lower after incubation with IL-13 (46.0% ± 6.7% relaxation) than without IL-13 (74.0% ± 7.7% relaxation, P = 0.018). It was also significantly lower than that observed in control ASM incubated with IL-13 (68.8% ± 4.9% relaxation, P = 0.048) and without IL-13 (82.4% ± 9.9%, P = 0.0035). CF ASM incubated with IL-13 also expressed greater levels of MLCK. Thus, our data suggest that the combination of an increase in ASM mass, increased MLCK expression, and inflammation-induced β-adrenergic hyporesponsiveness may contribute to airway dysfunction in CF.
Collapse
Affiliation(s)
- Oleg S Matusovsky
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center
| | - Linda Kachmar
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center
| | - Gijs Ijpma
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center
| | - Alice Panariti
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center
| | - Andrea Benedetti
- 2 Department of Medicine, and.,3 Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada; and.,4 Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, Montréal, Québec, Canada
| | - James G Martin
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center.,2 Department of Medicine, and
| | - Anne-Marie Lauzon
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center.,2 Department of Medicine, and
| |
Collapse
|
18
|
Bardin P, Foussignière T, Rousselet N, Rebeyrol C, Porter JC, Corvol H, Tabary O. miR-636: A Newly-Identified Actor for the Regulation of Pulmonary Inflammation in Cystic Fibrosis. Front Immunol 2019; 10:2643. [PMID: 31803183 PMCID: PMC6874100 DOI: 10.3389/fimmu.2019.02643] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) results from deficient CF transmembrane conductance regulator (CFTR) protein activity leading to defective epithelial ion transport. Pulmonary degradation due to excessive inflammation is the main cause of morbidity and mortality in CF patients. By analysing miRNAs (small RNAseq) in human primary air-liquid interface cell cultures, we measured the overexpression of miR-636 in CF patients compared to non-CF controls. We validated these results in explant biopsies and determined that the mechanism underlying miR-636 overexpression is linked to inflammation. To identify specific targets, we used bioinformatics analysis to predict whether miR-636 targets the 3′-UTR mRNA regions of IL1R1 and RANK (two pro-inflammatory cytokine receptors), IKBKB (a major protein in the NF-κB pathway), and FAM13A (a modifier gene of CF lung phenotype implicated in epithelial remodelling). Using bronchial epithelial cells from CF patients to conduct a functional analysis, we showed a direct interaction between miR-636 and IL1R1, RANK, and IKBKB, but not with FAM13A. These interactions led to a decrease in IL1R1 and IKKβ protein expression levels, while we observed an increase in RANK protein expression levels following the overexpression of miR-636. Moreover, NF-κB activity and IL-8 and IL-6 secretions decreased following the transfection of miR-636 mimics in CF cells. Similar but opposite effects were found after transfection with an antagomiR-636 in the same cells. Furthermore, we demonstrated that miR-636 was not regulated by Pseudomonas aeruginosa in our model. We went on to show that miR-636 is raised in the blood neutrophils, but not in the plasma, of CF patients and may have potential as a novel biomarker. Collectively, our findings reveal a novel actor for the regulation of inflammation in CF, miR-636, which is able to reduce constitutive NF-κB pathway activation when it is overexpressed.
Collapse
Affiliation(s)
- Pauline Bardin
- Faculté des Sciences, Sorbonne Université, Paris, France.,Inserm, Centre de Recherche Saint-Antoine, Paris, France
| | | | | | - Carine Rebeyrol
- UCL Respiratory, University College London, Hospitals NHS Foundation Trust, London, United Kingdom
| | - Joanna C Porter
- UCL Respiratory, University College London, Hospitals NHS Foundation Trust, London, United Kingdom
| | - Harriet Corvol
- Faculté des Sciences, Sorbonne Université, Paris, France.,Inserm, Centre de Recherche Saint-Antoine, Paris, France.,Département de Pédiatrie Respiratoire, Hôpital Trousseau, AP-HP, Paris, France
| | - Olivier Tabary
- Faculté des Sciences, Sorbonne Université, Paris, France.,Inserm, Centre de Recherche Saint-Antoine, Paris, France
| |
Collapse
|
19
|
McElvaney OJ, Wade P, Murphy M, Reeves EP, McElvaney NG. Targeting airway inflammation in cystic fibrosis. Expert Rev Respir Med 2019; 13:1041-1055. [PMID: 31530195 DOI: 10.1080/17476348.2019.1666715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: The major cause of morbidity and mortality in patients with cystic fibrosis (CF) is lung disease. Inflammation in the CF airways occurs from a young age and contributes significantly to disease progression and shortened life expectancy. Areas covered: In this review, we discuss the key immune cells involved in airway inflammation in CF, the contribution of the intrinsic genetic defect to the CF inflammatory phenotype, and anti-inflammatory strategies designed to overcome what is a critical factor in the pathogenesis of CF lung disease. Review of the literature was carried out using the MEDLINE (from 1975 to 2018), Google Scholar and The Cochrane Library databases. Expert opinion: Therapeutic interventions specifically targeting the defective CF transmembrane conductance regulator (CFTR) protein have changed the clinical landscape and significantly improved the outlook for CF. As survival estimates for people with CF increase, long-term management has become an important focus, with an increased need for therapies targeted at specific elements of inflammation, to complement CFTR modulator therapies.
Collapse
Affiliation(s)
- Oliver J McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Patricia Wade
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Mark Murphy
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| |
Collapse
|
20
|
Cabrini G. Innovative Therapies for Cystic Fibrosis: The Road from Treatment to Cure. Mol Diagn Ther 2019; 23:263-279. [PMID: 30478715 DOI: 10.1007/s40291-018-0372-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis (CF), a life-threatening multiorgan genetic disease, is facing a new era of research and development using innovative gene-directed personalized therapies. The priority organ to cure is the lung, which suffers recurrent and chronic bacterial infection and inflammation since infancy, representing the main cause of morbidity and precocious mortality of these individuals. After the disappointing failure of gene-replacement approaches using gene therapy vectors, no single drug is presently available to repair all the CF gene defects. The impressive number of different CF gene mutations is now tackled with different chemical and biotechnological tools tailored to the specific molecular derangements, thanks to the extensive knowledge acquired over many years on the mechanisms of CF cell and organ pathology. This review provides an overview and recalls both the successes and limitations of the different experimental approaches, such as high-throughput screening on chemical libraries to discover CF gene correctors and potentiators, dual-acting compounds, read-through molecules, splicing defect repairing tools, cystic fibrosis transmembrane conductance regulator (CFTR) "amplifiers," CFTR interactome modulators and the first gene editing attempts.
Collapse
Affiliation(s)
- Giulio Cabrini
- Laboratory of Molecular Pathology, University Hospital, Verona, Italy. .,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
21
|
Gonoi W, Hayashi TY, Hayashi N, Abe O. Association between chronic asymptomatic pancreatic hyperenzymemia and pancreatic ductal anomalies: a magnetic resonance cholangiopancreatography study. Abdom Radiol (NY) 2019; 44:2494-2500. [PMID: 30944960 DOI: 10.1007/s00261-019-02004-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Elucidating the association between pancreatic ductal anomalies and chronic asymptomatic pancreatic hyperenzymemia using magnetic resonance cholangiopancreatography. METHODS We conducted a single-center, retrospective, case-control study. The healthy community group comprised 554 subjects who participated in a paid, whole-body health checkup program. The patient group comprised 14 subjects with idiopathic pancreatic hyperamylasemia or hyperlipasemia. All subjects underwent magnetic resonance cholangiopancreatography. The clinical features and incidence rates of pancreatic ductal anomalies were then compared between the groups. RESULTS Compared to the healthy community group, the patient group was significantly more likely to be ≥ age 65 (71.4% of patient group vs. 22.1% of healthy community group), have a history of diabetes mellitus (21.4% vs. 5.4%) or hypertension (35.7% vs. 11.4%), and to have pancreas divisum (21.4% vs. 2.7%), meandering main pancreatic duct (21.4% vs. 4.1%), Wirsungocele (14.3% vs. 1.1%), or dilated main pancreatic duct (14.3% vs. 2.3%). Multivariate analysis found that age ≥ 65 (odds ratio 8.76), presence of pancreas divisum (odds ratio 13.2), meandering main pancreatic duct (odds ratio 8.95), and Wirsungocele (odds ratio 17.6) were independent factors significantly associated with chronic asymptomatic pancreatic hyperenzymemia. CONCLUSIONS Pancreas divisum, meandering main pancreatic duct, and Wirsungocele were independently associated with chronic asymptomatic pancreatic hyperenzymemia.
Collapse
Affiliation(s)
- Wataru Gonoi
- Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Takana Yamakawa Hayashi
- Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Naoto Hayashi
- Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
22
|
Dechecchi MC, Tamanini A, Cabrini G. Molecular basis of cystic fibrosis: from bench to bedside. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:334. [PMID: 30306073 PMCID: PMC6174194 DOI: 10.21037/atm.2018.06.48] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF), is an autosomal recessive disease affecting different organs. The lung disease, characterized by recurrent and chronic bacterial infection and inflammation since infancy, is the main cause of morbidity and precocious mortality of these individuals. The innovative therapies directed to repair the defective CF gene should account for the presence of more than 200 disease-causing mutations of the CF transmembrane conductance regulator (CFTR) gene. The review will recall the different experimental approaches in discovering CFTR protein targeted molecules, such as the high throughput screening on chemical libraries to discover correctors and potentiators of CFTR protein, dual-acting compounds, read-through molecules, splicing defects repairing tools, CFTR "amplifiers".
Collapse
Affiliation(s)
- Maria Cristina Dechecchi
- Laboratory of Analysis, Section of Molecular Pathology, University Hospital of Verona, Verona, Italy
| | - Anna Tamanini
- Laboratory of Analysis, Section of Molecular Pathology, University Hospital of Verona, Verona, Italy
| | - Giulio Cabrini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
23
|
Bardin P, Marchal-Duval E, Sonneville F, Blouquit-Laye S, Rousselet N, Le Rouzic P, Corvol H, Tabary O. Small RNA and transcriptome sequencing reveal the role of miR-199a-3p in inflammatory processes in cystic fibrosis airways. J Pathol 2018; 245:410-420. [DOI: 10.1002/path.5095] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/11/2018] [Accepted: 04/26/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Pauline Bardin
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint Antoine (CRSA); Paris France
| | - Emmeline Marchal-Duval
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint Antoine (CRSA); Paris France
| | - Florence Sonneville
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint Antoine (CRSA); Paris France
| | - Sabine Blouquit-Laye
- Université de Versailles Saint Quentin en Yvelines; UFR des Sciences de la Santé, UMR 1173; Montigny-Le-Bretonneux France
| | - Nathalie Rousselet
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint Antoine (CRSA); Paris France
| | - Philippe Le Rouzic
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint Antoine (CRSA); Paris France
| | - Harriet Corvol
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint Antoine (CRSA); Paris France
- Hôpital Trousseau; Paediatric Respiratory Department, AP-HP; Paris France
| | - Olivier Tabary
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint Antoine (CRSA); Paris France
| |
Collapse
|
24
|
Abstract
La mucoviscidose est la plus fréquente des maladies génétiques dans les populations d’origine caucasienne, caractérisée par des mutations du gène codant le canal chlorure CFTR. Bien que ce gène soit connu depuis 1989, les solutions thérapeutiques curatives proposées aux patients restent limitées. De nouvelles stratégies thérapeutiques sont explorées, comme celles ciblant les microARN qui participent à la régulation de l’expression d’ARN messagers cibles. Cette revue fait le point sur les travaux portant sur l’implication de ces microARN dans la mucoviscidose, notamment dans le contrôle des canaux ioniques, de l’inflammation, de l’infection et de l’obstruction bronchique, et leurs potentiels thérapeutiques.
Collapse
|
25
|
De Rose V, Molloy K, Gohy S, Pilette C, Greene CM. Airway Epithelium Dysfunction in Cystic Fibrosis and COPD. Mediators Inflamm 2018; 2018:1309746. [PMID: 29849481 PMCID: PMC5911336 DOI: 10.1155/2018/1309746] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/15/2018] [Accepted: 02/01/2018] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis is a genetic disease caused by mutations in the CFTR gene, whereas chronic obstructive pulmonary disease (COPD) is mainly caused by environmental factors (mostly cigarette smoking) on a genetically susceptible background. Although the etiology and pathogenesis of these diseases are different, both are associated with progressive airflow obstruction, airway neutrophilic inflammation, and recurrent exacerbations, suggesting common mechanisms. The airway epithelium plays a crucial role in maintaining normal airway functions. Major molecular and morphologic changes occur in the airway epithelium in both CF and COPD, and growing evidence suggests that airway epithelial dysfunction is involved in disease initiation and progression in both diseases. Structural and functional abnormalities in both airway and alveolar epithelium have a relevant impact on alteration of host defences, immune/inflammatory response, and the repair process leading to progressive lung damage and impaired lung function. In this review, we address the evidence for a critical role of dysfunctional airway epithelial cells in chronic airway inflammation and remodelling in CF and COPD, highlighting the common mechanisms involved in the epithelial dysfunction as well as the similarities and differences of the two diseases.
Collapse
Affiliation(s)
- Virginia De Rose
- Department of Clinical and Biological Sciences, University of Torino, A.O.U. S. Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Kevin Molloy
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Dublin, Ireland
| | - Sophie Gohy
- Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Université Catholique de Louvain (UCL), Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Charles Pilette
- Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Université Catholique de Louvain (UCL), Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Catherine M. Greene
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Dublin, Ireland
| |
Collapse
|
26
|
Interactions between Neutrophils and Pseudomonas aeruginosa in Cystic Fibrosis. Pathogens 2017; 6:pathogens6010010. [PMID: 28282951 PMCID: PMC5371898 DOI: 10.3390/pathogens6010010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/03/2017] [Indexed: 12/23/2022] Open
Abstract
Cystic fibrosis (CF) affects 70,000 patients worldwide. Morbidity and mortality in CF is largely caused by lung complications due to the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Cystic fibrosis airway inflammation is mediated by robust infiltration of polymorphonuclear neutrophil granulocytes (PMNs, neutrophils). Neutrophils are not capable of clearing lung infections and contribute to tissue damage by releasing their dangerous cargo. Pseudomonas aeruginosa is an opportunistic pathogen causing infections in immunocompromised individuals. P. aeruginosa is a main respiratory pathogen in CF infecting most patients. Although PMNs are key to attack and clear P. aeruginosa in immunocompetent individuals, PMNs fail to do so in CF. Understanding why neutrophils cannot clear P. aeruginosa in CF is essential to design novel therapies. This review provides an overview of the antimicrobial mechanisms by which PMNs attack and eliminate P. aeruginosa. It also summarizes current advances in our understanding of why PMNs are incapable of clearing P. aeruginosa and how this bacterium adapts to and resists PMN-mediated killing in the airways of CF patients chronically infected with P. aeruginosa.
Collapse
|
27
|
Ribeiro CMP, Lubamba BA. Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation. Int J Mol Sci 2017; 18:ijms18010118. [PMID: 28075361 PMCID: PMC5297752 DOI: 10.3390/ijms18010118] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR). This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease.
Collapse
Affiliation(s)
- Carla M P Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Bob A Lubamba
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
28
|
Trzcińska-Daneluti AM, Chen A, Nguyen L, Murchie R, Jiang C, Moffat J, Pelletier L, Rotin D. RNA Interference Screen to Identify Kinases That Suppress Rescue of ΔF508-CFTR. Mol Cell Proteomics 2015; 14:1569-83. [PMID: 25825526 DOI: 10.1074/mcp.m114.046375] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 01/08/2023] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the Cystic fibrosis transmembrane conductance regulator (CFTR). ΔF508-CFTR, the most common disease-causing CF mutant, exhibits folding and trafficking defects and is retained in the endoplasmic reticulum, where it is targeted for proteasomal degradation. To identify signaling pathways involved in ΔF508-CFTR rescue, we screened a library of endoribonuclease-prepared short interfering RNAs (esiRNAs) that target ∼750 different kinases and associated signaling proteins. We identified 20 novel suppressors of ΔF508-CFTR maturation, including the FGFR1. These were subsequently validated by measuring channel activity by the YFP halide-sensitive assay following shRNA-mediated knockdown, immunoblotting for the mature (band C) ΔF508-CFTR and measuring the amount of surface ΔF508-CFTR by ELISA. The role of FGFR signaling on ΔF508-CFTR trafficking was further elucidated by knocking down FGFRs and their downstream signaling proteins: Erk1/2, Akt, PLCγ-1, and FRS2. Interestingly, inhibition of FGFR1 with SU5402 administered to intestinal organoids (mini-guts) generated from the ileum of ΔF508-CFTR homozygous mice resulted in a robust ΔF508-CFTR rescue. Moreover, combination of SU5402 and VX-809 treatments in cells led to an additive enhancement of ΔF508-CFTR rescue, suggesting these compounds operate by different mechanisms. Chaperone array analysis on human bronchial epithelial cells harvested from ΔF508/ΔF508-CFTR transplant patients treated with SU5402 identified altered expression of several chaperones, an effect validated by their overexpression or knockdown experiments. We propose that FGFR signaling regulates specific chaperones that control ΔF508-CFTR maturation, and suggest that FGFRs may serve as important targets for therapeutic intervention for the treatment of CF.
Collapse
Affiliation(s)
- Agata M Trzcińska-Daneluti
- From the ‡Program in Cell Biology, The Hospital for Sick Children, Toronto, and Biochemistry Department, University of Toronto; PGCRL, 19-9715, 686 Bay St., Toronto, Ont., Canada, M5G 0A4
| | - Anthony Chen
- From the ‡Program in Cell Biology, The Hospital for Sick Children, Toronto, and Biochemistry Department, University of Toronto; PGCRL, 19-9715, 686 Bay St., Toronto, Ont., Canada, M5G 0A4
| | - Leo Nguyen
- From the ‡Program in Cell Biology, The Hospital for Sick Children, Toronto, and Biochemistry Department, University of Toronto; PGCRL, 19-9715, 686 Bay St., Toronto, Ont., Canada, M5G 0A4
| | - Ryan Murchie
- From the ‡Program in Cell Biology, The Hospital for Sick Children, Toronto, and Biochemistry Department, University of Toronto; PGCRL, 19-9715, 686 Bay St., Toronto, Ont., Canada, M5G 0A4
| | - Chong Jiang
- From the ‡Program in Cell Biology, The Hospital for Sick Children, Toronto, and Biochemistry Department, University of Toronto; PGCRL, 19-9715, 686 Bay St., Toronto, Ont., Canada, M5G 0A4
| | | | | | - Daniela Rotin
- From the ‡Program in Cell Biology, The Hospital for Sick Children, Toronto, and Biochemistry Department, University of Toronto; PGCRL, 19-9715, 686 Bay St., Toronto, Ont., Canada, M5G 0A4
| |
Collapse
|
29
|
Sonneville F, Ruffin M, Guillot L, Rousselet N, Le Rouzic P, Corvol H, Tabary O. New insights about miRNAs in cystic fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:897-908. [PMID: 25687559 DOI: 10.1016/j.ajpath.2014.12.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 01/08/2023]
Abstract
The molecular basis of cystic fibrosis (CF) is a mutation-related defect in the epithelial-cell chloride channel called CF transmembrane conductance regulator (CFTR). This defect alters chloride ion transport and impairs water transport across the cell membrane. Marked clinical heterogeneity occurs even among patients carrying the same mutation in the CFTR gene. Recent studies suggest that such heterogeneity could be related to epigenetic factors and/or miRNAs, which are small noncoding RNAs that modulate the expression of various proteins via post-transcriptional inhibition of gene expression. In the respiratory system, it has been shown that the dysregulation of miRNAs could participate in and lead to pathogenicity in several diseases. In CF airways, recent studies have proposed that miRNAs may modulate disease progression by affecting the production of either CFTR or various proteins that are dysregulated in the CF lung. Herein, we provide an overview of studies showing how miRNAs may modulate CF pathology and the efforts to develop miRNA-based treatments and/or to consider miRNAs as biomarkers. The identification of miRNAs involved in CF disease progression opens up new avenues toward treatments targeting selected clinical components of CF, independently from the CFTR mutation.
Collapse
Affiliation(s)
- Florence Sonneville
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Manon Ruffin
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Loïc Guillot
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Nathalie Rousselet
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Philippe Le Rouzic
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Harriet Corvol
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France; Paediatric Respiratory Department, Hôpital Trousseau, AP-HP, Paris, France
| | - Olivier Tabary
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France.
| |
Collapse
|
30
|
Fan L, Wang Q, de la Fuente-Núñez C, Sun FJ, Xia JG, Xia PY, Hancock REW. Increased IL-8 production in human bronchial epithelial cells after exposure to azithromycin-pretreated Pseudomonas aeruginosa in vitro. FEMS Microbiol Lett 2014; 355:43-50. [PMID: 24716633 DOI: 10.1111/1574-6968.12441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 03/24/2014] [Accepted: 04/05/2014] [Indexed: 11/28/2022] Open
Abstract
Although Pseudomonas aeruginosa is not typically susceptible to azithromycin (AZM) in in vitro tests, AZM improves the clinical outcome in patients with chronic respiratory infections, in which both the modulation of the host immune system and of bacterial virulence by AZM are thought to play an important role. However, there is currently little direct evidence showing the impact of bacteria pretreated with AZM on epithelial cells, which represents the first barrier to infecting P. aeruginosa. In this study, we pretreated P. aeruginosa with AZM and subsequently infected human bronchial epithelial cells (HBEs) in the absence of AZM. The results showed that AZM-pretreated P. aeruginosa (PAO1 and six different clinical isolates) significantly stimulated HBE cells to release IL-8, a crucial pro-inflammatory cytokine. This effect was not observed in a P. aeruginosa PAO1 mutant strain unable to produce the type III secretion system effector gene pcrV (strain PW4017). Our results suggest that AZM-pretreated P. aeruginosa could indirectly exacerbate pro-inflammation by inducing IL-8 production in HBEs.
Collapse
Affiliation(s)
- Li Fan
- Department of Pharmacy, Xinqiao Hospital, the Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Jacquot J, Tabary O, Clement A. Hyperinflammation in airways of cystic fibrosis patients: what’s new? Expert Rev Mol Diagn 2014; 8:359-63. [DOI: 10.1586/14737159.8.4.359] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Wallace HL, Southern KW, Connell MG, Wray S, Burdyga T. Abnormal tracheal smooth muscle function in the CF mouse. Physiol Rep 2013; 1:e00138. [PMID: 24400140 PMCID: PMC3871453 DOI: 10.1002/phy2.138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 12/29/2022] Open
Abstract
Increased airway smooth muscle (ASM) contractility is thought to underlie symptoms of airway hyperresponsiveness (AHR). In the cystic fibrosis (CF) airway, ASM anomalies have been reported, but have not been fully characterized and the underlying mechanisms are largely unknown. We examined ASM in an adult CF mouse tracheal ring preparation, and determined whether changes in contractility were associated with altered ASM morphology. We looked for inherent changes in the cellular pathways involved in contractility, and characterized trachea morphology in the adult trachea and in an embryonic lung culture model during development. Results showed that that there was a reduction in tracheal caliber in CF mice as indicated by a reduction in the number of cartilage rings; proximal cross-sectional areas of cftr (-/-) tracheas and luminal areas were significantly smaller, but there was no difference in the area or distribution of smooth muscle. Morphological differences observed in adult trachea were not evident in the embryonic lung at 11.5 days gestation or after 72 h in culture. Functional data showed a significant reduction in the amplitude and duration of contraction in response to carbachol (CCh) in Ca-free conditions. The reduction in contraction was agonist specific, and occurred throughout the length of the trachea. These data show that there is a loss in the contractile capacity of the CF mouse trachea due to downregulation of the pathway specific to acetylcholine (ACh) activation. This reduction in contraction is not associated with changes in the area or distribution of ASM.
Collapse
Affiliation(s)
- Helen L Wallace
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool Liverpool, U.K
| | - Kevin W Southern
- Department for Women's and Children's Health, Institute of Translational Medicine, University of Liverpool Liverpool, U.K
| | - Marilyn G Connell
- Department for Women's and Children's Health, Institute of Translational Medicine, University of Liverpool Liverpool, U.K
| | - Susan Wray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool Liverpool, U.K
| | - Theodor Burdyga
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool Liverpool, U.K
| |
Collapse
|
33
|
Normal CFTR inhibits epidermal growth factor receptor-dependent pro-inflammatory chemokine production in human airway epithelial cells. PLoS One 2013; 8:e72981. [PMID: 23977375 PMCID: PMC3745379 DOI: 10.1371/journal.pone.0072981] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 07/18/2013] [Indexed: 01/14/2023] Open
Abstract
Mutations in cystic fibrosis transmembrane conductance regulator (CFTR) protein cause cystic fibrosis, a disease characterized by exaggerated airway epithelial production of the neutrophil chemokine interleukin (IL)-8, which results in exuberant neutrophilic inflammation. Because activation of an epidermal growth factor receptor (EGFR) signaling cascade induces airway epithelial IL-8 production, we hypothesized that normal CFTR suppresses EGFR-dependent IL-8 production and that loss of CFTR at the surface exaggerates IL-8 production via activation of a pro-inflammatory EGFR cascade. We examined this hypothesis in human airway epithelial (NCI-H292) cells and in normal human bronchial epithelial (NHBE) cells containing normal CFTR treated with a CFTR-selective inhibitor (CFTR-172), and in human airway epithelial (IB3) cells containing mutant CFTR versus isogenic (C38) cells containing wild-type CFTR. In NCI-H292 cells, CFTR-172 induced IL-8 production EGFR-dependently. Pretreatment with an EGFR neutralizing antibody or the metalloprotease TACE inhibitor TAPI-1, or TACE siRNA knockdown prevented CFTR-172-induced EGFR phosphorylation (EGFR-P) and IL-8 production, implicating TACE-dependent EGFR pro-ligand cleavage in these responses. Pretreatment with neutralizing antibodies to IL-1R or to IL-1alpha, but not to IL-1beta, markedly suppressed CFTR-172-induced EGFR-P and IL-8 production, suggesting that binding of IL-1alpha to IL-1R stimulates a TACE-EGFR-IL-8 cascade. Similarly, in NHBE cells, CFTR-172 increased IL-8 production EGFR-, TACE-, and IL-1alpha/IL-1R-dependently. In IB3 cells, constitutive IL-8 production was markedly increased compared to C38 cells. EGFR-P was increased in IB3 cells compared to C38 cells, and exaggerated IL-8 production in the IB3 cells was EGFR-dependent. Activation of TACE and binding of IL-1alpha to IL-1R contributed to EGFR-P and IL-8 production in IB3 cells but not in C38 cells. Thus, we conclude that normal CFTR suppresses airway epithelial IL-8 production that occurs via a stimulatory EGFR cascade, and that loss of normal CFTR activity exaggerates IL-8 production via activation of a pro-inflammatory EGFR cascade.
Collapse
|
34
|
Manson ME, Corey DA, Bederman I, Burgess JD, Kelley TJ. Regulatory role of β-arrestin-2 in cholesterol processing in cystic fibrosis epithelial cells. J Lipid Res 2012; 53:1268-76. [PMID: 22523395 DOI: 10.1194/jlr.m021972] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cystic fibrosis (CF) cells exhibit an increase in the protein expression of β-arrestin-2 (βarr2) coincident with perinuclear accumulation of free cholesterol. Arrestins are proteins that both serve as broad signaling regulators and contribute to G-protein coupled receptor internalization after agonist stimulation. The hypothesis of this study is that βarr2 is an important component in the mechanisms leading to cholesterol accumulation characteristic of CF cells. To test this hypothesis, epithelial cells stably expressing GFP-tagged βarr2 (βarr2-GFP) and respective GFP-expressing control cells (cont-GFP) were analyzed by filipin staining. The βarr2-GFP cells show a late endosomal/lysosomal cholesterol accumulation that is identical to that seen in CF cells. This βarr2-mediated accumulation is sensitive to Rp-cAMPS treatment, and depleting βarr2 expression in CF-model cells by shRNA alleviates cholesterol accumulation compared with controls. Cftr/βarr2 double knockout mice also exhibit wild-type (WT) levels of cholesterol synthesis, and WT profiles of signaling protein expression have previously been shown to be altered in CF due to cholesterol-related pathways. These data indicate a significant regulatory role for βarr2 in the development of CF-like cholesterol accumulation and give further insight into cholesterol processing mechanisms. An impact of βarr2 expression on Niemann-Pick type C-1 (NPC1)-containing organelle movement is proposed as the mechanism of βarr2-mediated alterations on cholesterol processing. It is concluded that βarr2 expression contributes to altered cholesterol trafficking observed in CF cells.
Collapse
Affiliation(s)
- Mary E Manson
- Departments of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
35
|
A novel neutrophil derived inflammatory biomarker of pulmonary exacerbation in cystic fibrosis. J Cyst Fibros 2012; 11:100-7. [DOI: 10.1016/j.jcf.2011.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/21/2011] [Accepted: 09/27/2011] [Indexed: 11/17/2022]
|
36
|
Pancreas divisum is not a cause of pancreatitis by itself but acts as a partner of genetic mutations. Am J Gastroenterol 2012; 107:311-7. [PMID: 22158025 DOI: 10.1038/ajg.2011.424] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The role of pancreas divisum (PD) as a cause of acute recurrent or chronic pancreatitis (AR/CP) is still a matter of debate. METHODS The aims of this study were to evaluate the frequency of PD diagnosed using magnetic resonance cholangiopancreatography (MRCP) in patients with AR/CP of unknown origin (n=40) after careful exclusion of all known causes and to test the hypothesis of an interaction between anatomical (PD) and functional genetic anomalies (SPINK1, PRSS1, or CFTR gene mutations or polymorphisms (n=19, 25, and 30, respectively)) that could result in AR/CP. Patients with alcohol-induced pancreatitis (n=29) and subjects who had MRCP for a nonpancreatic disease (n=45) served as controls. RESULTS PD frequency was 7% in subjects without pancreatic disease, 7% in patients with alcohol-induced pancreatitis, and 5, 16, 16, and 47% in those with idiopathic, and PRSS1-, SPINK1-, and CFTR-associated pancreatitis, respectively (P<0.0001). There was no significant difference between idiopathic pancreatitis and the two control groups. The frequency of PD was higher in patients with CFTR gene-associated pancreatitis as compared with those with idiopathic and alcoholic pancreatitis (P<0.0001) and with those with SPINK1 and PRSS1 gene-associated pancreatitis (P<0.02). CONCLUSIONS The frequency of PD was not different in patients with idiopathic pancreatitis as compared with controls, demonstrating that PD by itself is not a cause of pancreatitis. PD frequency was higher in patients with genetic pancreatitis, especially in those with CFTR mutations or polymorphisms, suggesting a cumulative effect of these two cofactors.
Collapse
|
37
|
Rebeyrol C, Saint-Criq V, Guillot L, Riffault L, Corvol H, Chadelat K, Ray DW, Clement A, Tabary O, Le Rouzic P. Glucocorticoids reduce inflammation in cystic fibrosis bronchial epithelial cells. Cell Signal 2012; 24:1093-9. [PMID: 22285804 DOI: 10.1016/j.cellsig.2012.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/16/2011] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
Abstract
Reduction of lung inflammation is one of the goals of cystic fibrosis (CF) therapy. Among anti-inflammatory molecules, glucocorticoids (GC) are one of the most prescribed. However, CF patients seem to be resistant to glucocorticoid treatment. Several molecular mechanisms that contribute to decrease anti-inflammatory effects of glucocorticoids have been identified in pulmonary diseases, but the molecular actions of glucocorticoids have never been studied in CF. In the cytoplasm, glucocorticoids bind to glucocorticoid receptor (GR) and then, control NF-κB and MAPK pathways through direct interaction with AP-1 and NF-κB in the nucleus. Conversely, MAPK can regulate glucocorticoid activation by targeting GR phosphorylation. Together these pathways regulate IL-8 release in the lung. Using bronchial epithelial cell lines derived from non CF and CF patients, we analyzed GR-based effects of glucocorticoids on NF-κB and MAPK pathways, after stimulation with TNF-α. We demonstrate that the synthetic glucocorticoid dexamethasone (Dex) significantly decreases IL-8 secretion, AP-1 and NF-κB activity in CF cells in a pro-inflammatory context. Moreover, we show that p38 MAPK controls IL-8 release by determining GR activation through specific phosphorylation on serine 211. Finally, we demonstrate a synergistic effect of dexamethasone treatment and inhibition of p38 MAPK inducing more than 90% inhibition of IL-8 production in CF cells. All together, these results demonstrate the good responsiveness to glucocorticoids of CF bronchial epithelial cells and the reciprocal link between glucocorticoids and p38 MAPK in the control of CF lung inflammation.
Collapse
|
38
|
Azithromycin fails to reduce inflammation in cystic fibrosis airway epithelial cells. Eur J Pharmacol 2012; 674:1-6. [DOI: 10.1016/j.ejphar.2011.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 10/12/2011] [Accepted: 10/20/2011] [Indexed: 11/23/2022]
|
39
|
Differential global gene expression in cystic fibrosis nasal and bronchial epithelium. Genomics 2011; 98:327-36. [DOI: 10.1016/j.ygeno.2011.06.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 01/08/2023]
|
40
|
Sutanto EN, Kicic A, Foo CJ, Stevens PT, Mullane D, Knight DA, Stick SM. Innate Inflammatory Responses of Pediatric Cystic Fibrosis Airway Epithelial Cells. Am J Respir Cell Mol Biol 2011; 44:761-7. [DOI: 10.1165/rcmb.2010-0368oc] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
41
|
Borgatti M, Mancini I, Bianchi N, Guerrini A, Lampronti I, Rossi D, Sacchetti G, Gambari R. Bergamot (Citrus bergamia Risso) fruit extracts and identified components alter expression of interleukin 8 gene in cystic fibrosis bronchial epithelial cell lines. BMC BIOCHEMISTRY 2011; 12:15. [PMID: 21496221 PMCID: PMC3095539 DOI: 10.1186/1471-2091-12-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 04/15/2011] [Indexed: 01/01/2023]
Abstract
Background Cystic fibrosis (CF) airway pathology is a fatal, autosomal, recessive genetic disease characterized by extensive lung inflammation. After induction by TNF-α, elevated concentrations of several pro-inflammatory cytokines (i.e. IL-6, IL-1β) and chemokines (i.e. IL-8) are released from airway epithelial cells. In order to reduce the excessive inflammatory response in the airways of CF patients, new therapies have been developed and in this respect, medicinal plant extracts have been studied. In this article we have investigated the possible use of bergamot extracts (Citrus bergamia Risso) and their identified components to alter the expression of IL-8 associated with the cystic fibrosis airway pathology. Methods The extracts were chemically characterized by 1H-NMR (nuclear magnetic resonance), GC-FID (gas chromatography-flame ionization detector), GC-MS (gas chromatography-mass spectrometry) and HPLC (high pressure liquid chromatography). Both bergamot extracts and main detected chemical constituents were assayed for their biological activity measuring (a) cytokines and chemokines in culture supernatants released from cystic fibrosis IB3-1 cells treated with TNF-α by Bio-Plex cytokine assay; (b) accumulation of IL-8 mRNA by real-time PCR. Results The extracts obtained from bergamot (Citrus bergamia Risso) epicarps contain components displaying an inhibitory activity on IL-8. Particularly, the most active molecules were bergapten and citropten. These effects have been confirmed by analyzing mRNA levels and protein release in the CF cellular models IB3-1 and CuFi-1 induced with TNF-α or exposed to heat-inactivated Pseudomonas aeruginosa. Conclusions These obtained results clearly indicate that bergapten and citropten are strong inhibitors of IL-8 expression and could be proposed for further studies to verify possible anti-inflammatory properties to reduce lung inflammation in CF patients.
Collapse
Affiliation(s)
- Monica Borgatti
- Department of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, Ferrara, 44121, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Role of endoplasmic reticulum stress in cystic fibrosis-related airway inflammatory responses. Ann Am Thorac Soc 2011; 7:387-94. [PMID: 21030518 DOI: 10.1513/pats.201001-017aw] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic airway infection and inflammation are hallmarks of cystic fibrosis (CF) pulmonary disease. The altered airway environment resulting from infection and inflammation can affect the innate defense of the airway epithelia. Luminal bacterial and inflammatory stimuli trigger an adaptation in human airway epithelia, characterized by a hyperinflammatory response to inflammatory mediators, which is mediated by an expansion of the endoplasmic reticulum (ER) and its Ca(2+) stores. Recent studies demonstrated that a form of ER stress, the unfolded protein response (UPR), is activated in airway epithelia by bacterial infection-induced airway inflammation. UPR-dependent signaling is responsible for the ER Ca(2+) store expansion-mediated amplification of airway inflammatory responses. These studies highlight the functional importance of the UPR in airway inflammation and suggest that targeting the UPR may be a therapeutic strategy for airway diseases typified by chronic inflammation. This article reviews the contribution of airway epithelia to airway inflammatory responses, discusses how expansion of the ER Ca(2+) stores in inflamed airway epithelia contributes to airway inflammation, describes the functional role of the UPR in these processes, and discusses how UPR activation might be relevant for CF airways inflammatory disease.
Collapse
|
43
|
Reeves EP, Williamson M, O'Neill SJ, Greally P, McElvaney NG. Nebulized hypertonic saline decreases IL-8 in sputum of patients with cystic fibrosis. Am J Respir Crit Care Med 2011; 183:1517-23. [PMID: 21330456 DOI: 10.1164/rccm.201101-0072oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
RATIONALE Inflammation within the cystic fibrosis (CF) lung is mediated by inflammatory chemokines, such as IL-8. IL-8 is protected from proteolytic degradation in the airways by binding to glycosaminoglycans, while remaining active. Evidence that increased hypertonicity of airway secretions induced by hypertonic saline treatment alters levels of IL-8 is lacking. OBJECTIVES To investigate the antiinflammatory effect of hypertonic saline (HTS) treatment within the CF lung by focusing on IL-8. METHODS Degradation of IL-8 in CF lung secretions after treatment with glycosaminoglycan lyases and HTS was analyzed by Western blot analysis and ELISA. The ex vivo chemotactic activity of purified neutrophils in response to CF airway secretions was evaluated post nebulization of HTS (7% saline). MEASUREMENTS AND MAIN RESULTS In vivo CF bronchoalveolar lavage fluid (BALF) IL-8 levels were significantly higher than the control group (P < 0.05). Digesting glycosaminoglycans in CF BALF displaced IL-8 from glycosaminoglycan matrices, rendering the chemokine susceptible to proteolytic cleavage. High sodium concentrations also liberate IL-8 in CF BALF in vitro, and in vivo in CF sputum from patients receiving aerosolized HTS, resulting in degradation of IL-8 and decreased neutrophil chemotactic efficiency. CONCLUSIONS Glycosaminoglycans possess the ability to influence the chemokine profile of the CF lung by binding and stabilizing IL-8, which promotes neutrophil chemotaxis and activation. Nebulized hypertonic saline treatment disrupts the interaction between glycosaminoglycans and IL-8, rendering IL-8 susceptible to proteolytic degradation with subsequent decrease in neutrophil chemotaxis, thereby facilitating resolution of inflammation.
Collapse
Affiliation(s)
- Emer P Reeves
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| | | | | | | | | |
Collapse
|
44
|
Role of CFTR expressed by neutrophils in modulating acute lung inflammation and injury in mice. Inflamm Res 2011; 60:619-32. [PMID: 21301926 PMCID: PMC3116128 DOI: 10.1007/s00011-011-0313-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/22/2010] [Accepted: 01/15/2011] [Indexed: 12/21/2022] Open
Abstract
Objective and design Cystic fibrosis transmembrane conductance regulator (CFTR) regulates infection and inflammation. In this study, we investigated whether a lack of functional CFTR in neutrophils would promote lipopolysaccharide (LPS)-induced lung inflammation and injury. Materials and methods CFTR-inhibited or F508del-CFTR-mutated neutrophils were stimulated with LPS and cultured to evaluate production of cytokines and NF-κB activation. Wild-type mice were reconstituted with F508del neutrophils or bone marrow and then intratracheally challenged with LPS to observe lung inflammatory response. Results Pharmacologic inhibition and genetic mutation of CFTR in neutrophils activated NF-κB and facilitated macrophage inflammatory protein-2 (MIP-2) and tumor necrosis factor-α (TNF-α) production. Wild-type mice reconstituted with F508del neutrophils and bone marrow had more severe lung inflammation and injury after LPS challenge compared to wild-type mice receiving wild-type neutrophils or bone marrow reconstitution. Conclusions Lack of functional CFTR in neutrophils can promote LPS-induced acute lung inflammation and injury.
Collapse
|
45
|
Zaman MM, Martin CR, Andersson C, Bhutta AQ, Cluette-Brown JE, Laposata M, Freedman SD. Linoleic acid supplementation results in increased arachidonic acid and eicosanoid production in CF airway cells and in cftr-/- transgenic mice. Am J Physiol Lung Cell Mol Physiol 2010; 299:L599-606. [PMID: 20656894 DOI: 10.1152/ajplung.00346.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis (CF) patients display a fatty acid imbalance characterized by low linoleic acid levels and variable changes in arachidonic acid. This led to the recommendation that CF patients consume a high-fat diet containing >6% linoleic acid. We hypothesized that increased conversion of linoleic acid to arachidonic acid in CF leads to increased levels of arachidonate-derived proinflammatory metabolites and that this process is exacerbated by increasing linoleic acid levels in the diet. To test this hypothesis, we determined the effect of linoleic acid supplementation on downstream proinflammatory biomarkers in two CF models: 1) in vitro cell culture model using 16HBE14o(-) sense [wild-type (WT)] and antisense (CF) human airway epithelial cells; and 2) in an in vivo model using cftr(-/-) transgenic mice. Fatty acids were analyzed by gas chromatography-mass spectrometry (GC/MS), and IL-8 and eicosanoids were measured by ELISA. Neutrophils were quantified in bronchoalveolar lavage fluid from knockout mice following linoleic acid supplementation and exposure to aerosolized Pseudomonas LPS. Linoleic acid supplementation increased arachidonic acid levels in CF but not WT cells. IL-8, PGE(2), and PGF(2α) secretion were increased in CF compared with WT cells, with a further increase following linoleic acid supplementation. cftr(-/-) Mice supplemented with 100 mg of linoleic acid had increased arachidonic acid levels in lung tissue associated with increased neutrophil infiltration into the airway compared with control mice. These findings support the hypothesis that increasing linoleic acid levels in the setting of loss of cystic fibrosis transmembrane conductance regulator (CFTR) function leads to increased arachidonic acid levels and proinflammatory mediators.
Collapse
|
46
|
Farberman MM, Ibricevic A, Joseph TD, Akers KT, Garcia-Medina R, Crosby S, Clarke LL, Brody SL, Ferkol TW. Effect of polarized release of CXC-chemokines from wild-type and cystic fibrosis murine airway epithelial cells. Am J Respir Cell Mol Biol 2010; 45:221-8. [PMID: 20639462 DOI: 10.1165/rcmb.2009-0249oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The respiratory epithelium lining the airway relies on mucociliary clearance and a complex network of inflammatory mediators to protect the lung. Alterations in the composition and volume of the periciliary liquid layer, as occur in cystic fibrosis (CF), lead to impaired mucociliary clearance and persistent airway infection. Moreover, the respiratory epithelium releases chemoattractants after infection, inciting airway inflammation. However, characterizing the inflammatory response of primary human airway epithelial cells to infection can be challenging because of genetic heterogeneity. Using well-characterized, differentiated, primary murine tracheal cells grown at an air-liquid interface, which provides an in vitro polarized epithelial model, we compared inflammatory gene expression and secretion in wild-type and ΔF508 CF airway cells after infection with Pseudomonas aeruginosa. The expression of several CXC-chemokines, including macrophage inflammatory protein-2, small inducible cytokine subfamily member 2, lipopolysaccharide-induced chemokine, and interferon-inducible cytokine-10, was markedly increased after infection, and these proinflammatory mediators were asymmetrically released from the airway epithelium, predominantly from the basolateral surface. Equal amounts of CXC-chemokines were released from wild-type and CF cells. Secreted mediators were concentrated in the thin, periciliary fluid layer, and the dehydrated apical microenvironment of CF airway epithelial cells amplified the inflammatory signal, potentially resulting in high chemokine concentration gradients across the epithelium. Consistent with this observation, the enhanced chemotaxis of wild-type neutrophils was detected in CF airway epithelial cultures, compared with wild-type cells. These data suggest that P. aeruginosa infection of the airway epithelium induces the expression and polarized secretion of CXC-chemokines, and the increased concentration gradient across the CF airway leads to an exaggerated inflammatory response.
Collapse
Affiliation(s)
- Michelle M Farberman
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hunter MJ, Treharne KJ, Winter AK, Cassidy DM, Land S, Mehta A. Expression of wild-type CFTR suppresses NF-kappaB-driven inflammatory signalling. PLoS One 2010; 5:e11598. [PMID: 20644644 PMCID: PMC2904384 DOI: 10.1371/journal.pone.0011598] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/07/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mutation of the cystic fibrosis transmembrane-conductance regulator (CFTR) causes cystic fibrosis (CF) but not all CF aspects can easily be explained by deficient ion transport. CF-inflammation provides one example but its pathogenesis remains controversial. Here, we tested the simple but fundamental hypothesis that wild-type CFTR is needed to suppress NF-kappaB activity. METHODOLOGY/PRINCIPAL FINDINGS In lung epithelial (H441) and engineered (H57) cell lines; we report that inflammatory markers are significantly suppressed by wild-type CFTR. Transient-transfection of wild-type CFTR into CFTR-naïve H441 cells, dose-dependently down-regulates both basal and Tumour Necrosis Factor-alpha evoked NF-kappaB activity when compared to transfection with empty vector alone (p<0.01, n>5). This effect was also observed in CFTR-naïve H57-HeLa cells which stably express a reporter of NF-kappaB activity, confirming that the CFTR-mediated repression of inflammation was not due to variable reporter gene transfection efficiency. In contrast, H57 cells transfected with a control cyano-fluorescent protein show a significantly elevated basal level of NF-kappaB activity above control. Initial cell seeding density may be a critical factor in mediating the suppressive effects of CFTR on inflammation as only at a certain density (1x10(5) cells/well) did we observe the reduction in NF-kappaB activity. CFTR channel activity may be necessary for this suppression because the CFTR specific inhibitor CFTR(inh172) significantly stimulates NF-kappaB activity by approximately 30% in CFTR expressing 16HBE14o- cells whereas pharmacological elevation of cyclic-AMP depresses activity by approximately 25% below baseline. CONCLUSIONS/SIGNIFICANCE These data indicate that CFTR has inherent anti-inflammatory properties. We propose that the hyper-inflammation found in CF may arise as a consequence of disrupted repression of NF-kappaB signalling which is normally mediated by CFTR. Our data therefore concur with in vivo and in vitro data from Vij and colleagues which highlights CFTR as a suppressor of basal inflammation acting through NF-kappaB, a central hub in inflammatory signalling.
Collapse
Affiliation(s)
- Mairi J. Hunter
- Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Kate J. Treharne
- Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Alexandra K. Winter
- Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Diane M. Cassidy
- Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Stephen Land
- Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Anil Mehta
- Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Weiss B, Bujanover Y, Yahav Y, Vilozni D, Fireman E, Efrati O. Probiotic supplementation affects pulmonary exacerbations in patients with cystic fibrosis: a pilot study. Pediatr Pulmonol 2010; 45:536-40. [PMID: 20503277 DOI: 10.1002/ppul.21138] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Probiotics reduce intestinal inflammation in, and Lactobacillus GG (LGG) reduces pulmonary exacerbation rate cystic fibrosis (CF) patients. We intended to determine the effect of a mixed probiotic preparation on pulmonary exacerbations and inflammatory characteristics of the sputum in CF patients. STUDY DESIGN A prospective pilot study of 10 CF patients with mild-moderate lung disease and Pseudomonas aeruginosa colonization, treated with probiotics for 6 months. Pulmonary function tests (PFT's), sputum cultures with semi-quantitative bacterial analysis, and sputum neutrophil count and interleukin-8 (IL-8) levels were compared to pre-treatment and post-treatment values. The rate of pulmonary exacerbations was compared to 2 years prior to the study. RESULTS The exacerbation rate was significantly reduced in comparison to the previous 2 years and to 6 months post-treatment (P = 0.002). PFT's have not changed at the end of treatment and during 6 months post-treatment. No change in sputum bacteria, neutrophil count, and IL-8 levels was observed. CONCLUSION Probiotics reduce pulmonary exacerbations rate in patients with CF. Probiotics may have a preventive potential for pulmonary deterioration in CF patients.
Collapse
Affiliation(s)
- Batia Weiss
- Division of Pediatric Gastroenterology and Nutrition, Safra Children's Hospital, Tel-Hashomer, Israel.
| | | | | | | | | | | |
Collapse
|
49
|
Zhang Y, Li X, Grassmé H, Döring G, Gulbins E. Alterations in ceramide concentration and pH determine the release of reactive oxygen species by Cftr-deficient macrophages on infection. THE JOURNAL OF IMMUNOLOGY 2010; 184:5104-11. [PMID: 20351190 DOI: 10.4049/jimmunol.0902851] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently demonstrated that the accumulation of ceramide in Cftr-deficient epithelial cells is important for the pathophysiology of CF. However, the role of ceramide in other lung cells, particularly lung macrophages, requires definition. In this study, we report that ceramide is accumulated in Cftr-deficient lung macrophages. Alveolar macrophages contain a vesicle population, which is stained with LysoSensor probes but not by tetramethylrhodamine dextran. These vesicles, presumably secretory lysosomes, exhibit a higher pH in Cftr-deficient macrophages than the corresponding vesicles in lung macrophages isolated from wild-type (WT) mice. Alkalinization of these vesicles in Cftr-deficient macrophages correlates with a failure of the macrophages to respond to infection with various Pseudomonas aeruginosa strains by acutely activating acid sphingomyelinase, releasing ceramide, forming ceramide-enriched membrane platforms that serve to cluster gp91(phox), and, most importantly, releasing reactive oxygen species (ROS). In contrast, these events occur rapidly in WT lung macrophages postinfection. Inhibiting ROS in WT macrophages prevents the killing of P. aeruginosa. These findings provide evidence for a novel pH-controlled pathway from acid sphingomyelinase activation via ceramide and clustering of gp91(phox) to the release of ROS in lung macrophages.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | | | | | | | | |
Collapse
|
50
|
Reeves EP, Williamson M, Byrne B, Bergin DA, Smith SGJ, Greally P, O’Kennedy R, O’Neill SJ, McElvaney NG. IL-8 Dictates Glycosaminoglycan Binding and Stability of IL-18 in Cystic Fibrosis. THE JOURNAL OF IMMUNOLOGY 2009; 184:1642-52. [DOI: 10.4049/jimmunol.0902605] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|