1
|
Jiang C, Gu S, Pan T, Wang X, Qin W, Wang G, Gao X, Zhang J, Chen K, Warren A, Xiong J, Miao W. Dynamics and timing of diversification events of ciliated eukaryotes from a large phylogenomic perspective. Mol Phylogenet Evol 2024; 197:108110. [PMID: 38768875 DOI: 10.1016/j.ympev.2024.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Ciliophora, an exceptionally diverse lineage of unicellular eukaryotes, exhibits a remarkable range of species richness across classes in the ciliate Tree of Life. In this study, we have acquired transcriptome and genome data from 40 representative species in seven ciliate classes. Utilizing 247 genes and 105 taxa, we devised a comprehensive phylogenomic tree for Ciliophora, encompassing over 60 % of orders and constituting the most extensive dataset of ciliate species to date. We established a robust phylogenetic framework that encompasses ambiguous taxa and the major classes within the phylum. Our findings support the monophyly of each of two subphyla (Postciliodesmatophora and Intramacronucleata), along with three subclades (Protocruzia, CONTHREEP, and SAPML) nested within Intramacronucleata, and elucidate evolutionary positions among the major classes within the phylum. Drawing on the robust ciliate Tree of Life and three constraints, we estimated the radiation of Ciliophora around 1175 Ma during the middle of the Proterozoic Eon, and most of the ciliate classes diverged from their sister lineage during the latter half of this period. Additionally, based on the time-calibrated tree and species richness pattern, we investigated net diversification rates of Ciliophora and its classes. The global net diversification rate for Ciliophora was estimated at 0.004979 species/Ma. Heterogeneity in net diversification rates was evident at the class level, with faster rates observed in Oligohymenophorea and Spirotrichea than other classes within the subclades CONTHREEP and SAPML, respectively. Notably, our analysis suggests that variations in net diversification rates, rather than clade ages, appear to contribute to the differences in species richness in Ciliophora at the class level.
Collapse
Affiliation(s)
- Chuanqi Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Siyu Gu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Pan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xueyan Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Weiwei Qin
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Guangying Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xinxin Gao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kai Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, UK
| | - Jie Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, China
| | - Wei Miao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
2
|
Zhang Y, Li H, Wang Y, Nie M, Zhang K, Pan J, Zhang Y, Ye Z, Zufall RA, Lynch M, Long H. Mitogenomic architecture and evolution of the soil ciliates Colpoda. mSystems 2024; 9:e0116123. [PMID: 38259100 PMCID: PMC10878089 DOI: 10.1128/msystems.01161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Colpoda are cosmopolitan unicellular eukaryotes primarily inhabiting soil and benefiting plant growth, but they remain one of the least understood taxa in genetics and genomics within the realm of ciliated protozoa. Here, we investigate the architecture of de novo assembled mitogenomes of six Colpoda species, using long-read sequencing and involving 36 newly isolated natural strains in total. The mitogenome sizes span from 43 to 63 kbp and typically contain 28-33 protein-coding genes. They possess a linear structure with variable telomeres and central repeats, with one Colpoda elliotti strain isolated from Tibet harboring the longest telomeres among all studied ciliates. Phylogenomic analyses reveal that Colpoda species started to diverge more than 326 million years ago, eventually evolving into two distinct groups. Collinearity analyses also reveal significant genomic divergences and a lack of long collinear blocks. One of the most notable features is the exceptionally high level of gene rearrangements between mitochondrial genomes of different Colpoda species, dominated by gene loss events. Population-level mitogenomic analysis on natural strains also demonstrates high sequence divergence, regardless of geographic distance, but the gene order remains highly conserved within species, offering a new species identification criterion for Colpoda species. Furthermore, we identified underlying heteroplasmic sites in the majority of strains of three Colpoda species, albeit without a discernible recombination signal to account for this heteroplasmy. This comprehensive study systematically unveils the mitogenomic structure and evolution of these ancient and ecologically significant Colpoda ciliates, thus laying the groundwork for a deeper understanding of the evolution of unicellular eukaryotes.IMPORTANCEColpoda, one of the most widespread ciliated protozoa in soil, are poorly understood in regard to their genetics and evolution. Our research revealed extreme mitochondrial gene rearrangements dominated by gene loss events, potentially leading to the streamlining of Colpoda mitogenomes. Surprisingly, while interspecific rearrangements abound, our population-level mitogenomic study revealed a conserved gene order within species, offering a potential new identification criterion. Phylogenomic analysis traced their lineage over 326 million years, revealing two distinct groups. Substantial genomic divergence might be associated with the lack of extended collinear blocks and relaxed purifying selection. This study systematically reveals Colpoda ciliate mitogenome structures and evolution, providing insights into the survival and evolution of these vital soil microorganisms.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, Shandong Province, China
| | - Haichao Li
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Yaohai Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Mu Nie
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Kexin Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiao Pan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Yu Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
- School of Mathematics Science, Ocean University of China, Qingdao, Shandong Province, China
| | - Zhiqiang Ye
- School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Rebecca A. Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Hongan Long
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, Shandong Province, China
| |
Collapse
|
3
|
Zhang T, Vďačný P. Deciphering phylogenetic relationships of and delimiting species boundaries within the controversial ciliate genus Conchophthirus using an integrative morpho-evo approach. Mol Phylogenet Evol 2024; 190:107931. [PMID: 37742881 DOI: 10.1016/j.ympev.2023.107931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
The phylum Ciliophora (ciliates) comprises about 2600 symbiotic and over 5500 free-living species. The inclusion of symbiotic ciliates in phylogenetic analyses often challenges traditional classification frameworks due to their morphological adaptions to the symbiotic lifestyle. Conchophthirus is such a controversial obligate endocommensal genus whose affinities to other symbiotic and free-living scuticociliates are still poorly understood. Using uni- and multivariate morphometrics as well as 2D-based molecular and phylogenetic analyses, we attempted to test for the monophyly of Conchophthirus, study the boundaries of Conchophthirus species isolated from various bivalves at mesoscale, and reveal the phylogenetic relationships of Conchophthirus to other scuticociliates. Multidimensional analyses of morphometric and cell geometric data generated the same homogenous clusters, as did phylogenetic analyses based on 144 new sequences of two mitochondrial and five nuclear molecular markers. Conchophthirus is not closely related to 'core' scuticociliates represented by the orders Pleuronematida and Philasterida, as assumed in the past using morphological data. Nuclear and mitochondrial markers consistently showed the free-living Dexiotricha and the mouthless endosymbiotic Haptophrya to be the nearest relatives of Conchophthirus. These three highly morphologically and ecologically dissimilar genera represent an orphan clade from the early radiation of scuticociliates in molecular phylogenies.
Collapse
Affiliation(s)
- Tengyue Zhang
- Department of Zoology, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Peter Vďačný
- Department of Zoology, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic.
| |
Collapse
|
4
|
Obert T, Zhang T, Rurik I, Vďačný P. First molecular evidence of hybridization in endosymbiotic ciliates (Protista, Ciliophora). Front Microbiol 2022; 13:1067315. [PMID: 36569075 PMCID: PMC9772525 DOI: 10.3389/fmicb.2022.1067315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Hybridization is an important evolutionary process that can fuel diversification via formation of hybrid species or can lead to fusion of previously separated lineages by forming highly diverse species complexes. We provide here the first molecular evidence of hybridization in wild populations of ciliates, a highly diverse group of free-living and symbiotic eukaryotic microbes. The impact of hybridization was studied on the model of Plagiotoma, an obligate endosymbiont of the digestive tube of earthworms, using split decomposition analyses and species networks, 2D modeling of the nuclear rRNA molecules and compensatory base change analyses as well as multidimensional morphometrics. Gene flow slowed down and eventually hampered the diversification of Lumbricus-dwelling plagiotomids, which collapsed into a single highly variable biological entity, the P. lumbrici complex. Disruption of the species boundaries was suggested also by the continuum of morphological variability in the phenotypic space. On the other hand, hybridization conspicuously increased diversity in the nuclear rDNA cistron and somewhat weakened the host structural specificity of the P. lumbrici complex, whose members colonize a variety of phylogenetically closely related anecic and epigeic earthworms. By contrast, another recorded species, P. aporrectodeae sp. n., showed no signs of introgression, no variability in the rDNA cistron, and very high host specificity. These contrasting eco-evolutionary patterns indicate that hybridization might decrease the alpha-diversity by dissolving species boundaries, weaken the structural host specificity by broadening ecological amplitudes, and increase the nuclear rDNA variability by overcoming concerted evolution within the P. lumbrici species complex.
Collapse
Affiliation(s)
| | | | | | - Peter Vďačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
5
|
Plattner H. Ciliate Research. From Myth to Trendsetting Science. J Eukaryot Microbiol 2022; 69:e12926. [PMID: 35608570 DOI: 10.1111/jeu.12926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
This special issue of the Journal of Eukaryotic Microbiology (JEM) summarizes achievements obtained by generations of researchers with ciliates in widely different disciplines. In fact, ciliates range among the first cells seen under the microscope centuries ago. Their beauty made them an object of scientia amabilis and their manifold reactions made them attractive for college experiments and finally challenged causal analyses at the cellular level. Some of this work was honored by a Nobel Prize. Some observations yielded a baseline for additional novel discoveries, occasionally facilitated by specific properties of some ciliates. This also offers some advantage in the exploration of closely related parasites (malaria). Articles contributed here by colleagues from all over the world encompass a broad spectrum of ciliate life, from genetics to evolution, from molecular cell biology to ecology, from intercellular signaling to epigenetics etc. This introductory chapter, largely based on my personal perception, aims at integrating work presented in this special issue of JEM into a broader historical context up to current research.
Collapse
|
6
|
Montagnes DJS, Wang Q, Lyu Z, Shao C. Evaluating thermal performance of closely related taxa: Support for hotter is not better, but for unexpected reasons. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- David J. S. Montagnes
- Department of Ecology Jinan University Guangzhou China
- Laboratory of Protozoological Biodiversity and Evolution in Wetland College of Life Sciences, Shaanxi Normal University Xi’an China
- Department of Evolution, Ecology and Behaviour University of Liverpool, BioSciences Building, Crown Street Liverpool UK
| | - Qing Wang
- Department of Ecology Jinan University Guangzhou China
| | - Zhao Lyu
- College of Life Sciences Northwest University Xi'an China
| | - Chen Shao
- Laboratory of Protozoological Biodiversity and Evolution in Wetland College of Life Sciences, Shaanxi Normal University Xi’an China
| |
Collapse
|
7
|
Timmons CM, Shazib SUA, Katz LA. Epigenetic influences of mobile genetic elements on ciliate genome architecture and evolution. J Eukaryot Microbiol 2022; 69:e12891. [PMID: 35100457 DOI: 10.1111/jeu.12891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/27/2022]
Abstract
Mobile genetic elements (MGEs) are transient genetic material that can move either within a single organism's genome or between individuals or species. While historically considered 'junk' DNA (i.e. deleterious or at best neutral), more recent studies reveal the adaptive advantages MGEs provide in lineages across the tree of life. Ciliates, a group of single-celled microbial eukaryotes characterized by nuclear dimorphism, exemplify how epigenetic influences from MGEs shape genome architecture and patterns of molecular evolution. Ciliate nuclear dimorphism may have evolved as a response to transposon invasion and ciliates have since co-opted transposons to carry out programmed DNA deletion. Another example of the effect of MGEs is in providing mechanisms for lateral gene transfer from bacteria, which introduces genetic diversity and, in several cases, drives ecological specialization in ciliates. As a third example, the integration of viral DNA, likely through transduction, provides new genetic material and can change the way host cells defend themselves against other viral pathogens. We argue that the acquisition of MGEs through non-Mendelian patterns of inheritance, coupled with their effects on ciliate genome architecture and expression and persistence throughout evolutionary history, exemplify how the transmission of mobile elements should be considered a mechanism of transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Caitlin M Timmons
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
| | - Shahed U A Shazib
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
| |
Collapse
|
8
|
Pecina L, Vďačný P. DNA barcoding and coalescent-based delimitation of endosymbiotic clevelandellid ciliates (Ciliophora: Clevelandellida): a shift to molecular taxonomy in the inventory of ciliate diversity in panesthiine cockroaches. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Phylogenetically distinct lineages may be hidden behind identical or highly similar morphologies. The phenomenon of morphological crypticity has been recently detected in symbiotic ciliates of the family Clevelandellidae, as multivariate and Fourier shape analyses failed to distinguish genetically distinct taxa. To address the question of species boundaries, the phylogenetic information contained in the rDNA cistron of clevelandellid ciliates, which had been isolated from the digestive tract of blaberid cockroaches, was studied using a multifaceted statistical approach. Multigene phylogenies revealed that the genus Clevelandella is paraphyletic containing members of the genus Paraclevelandia. To resolve the paraphyly of Clevelandella, two new genera, Anteclevelandella gen. nov. and Rhynchoclevelandella gen. nov., are proposed based on morphological synapomorphies and shared molecular characters. Multigene analyses and Bayesian species delimitation supported the existence of 13 distinct species within the family Clevelandellidae, eight of which represent new taxa. Moreover, two new Nyctotherus species were recognized within the clade that is sister to the Clevelandellidae. According to the present distance and network analyses, the first two domains of the 28S rRNA gene showed much higher power for species discrimination than the 18S rRNA gene and ITS region. Therefore, the former molecular marker was proposed to be a suitable group-specific barcode for the family Clevelandellidae.
Collapse
Affiliation(s)
- Lukáš Pecina
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Peter Vďačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| |
Collapse
|
9
|
Multiple independent losses of cell mouth in phylogenetically distant endosymbiotic lineages of oligohymenophorean ciliates: A lesson from Clausilocola. Mol Phylogenet Evol 2021; 166:107310. [PMID: 34506949 DOI: 10.1016/j.ympev.2021.107310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 01/27/2023]
Abstract
The cell mouth is a property of the vast majority of free-living and endosymbiotic/epibiotic ciliates of the class Oligohymenophorea. Cytostome, however, naturally absents in the whole endosymbiotic subclass Astomatia and was naturally or experimentally lost in a few members of the subclass Hymenostomatia. This poses a question of how homoplastic might be the lack of oral structures in the oligohymenophorean evolution. To address this question, we used two mitochondrial genes, five nuclear markers, and detailed morphological data from an enigmatic mouthless ciliate, Clausilocola apostropha, which we re-discovered after more than half of a century. According to the present phylogenetic analyses, astomy evolved at least three times independently and in different time frames of the oligohymenophorean phylogeny, ranging from the Paleozoic to the Cenozoic period. Mouthless endosymbionts inhabiting mollusks (represented by Clausilocola), planarians (Haptophrya), and annelids ('core' astomes) never clustered together. Haptophrya grouped with the scuticociliate genus Conchophthirus, 'core' astomes were placed in a sister position to the scuticociliate orders Philasterida and Pleuronematida, and Clausilocola was robustly nested within the hymenostome family Tetrahymenidae. The tetrahymenid origin of Clausilocola is further corroborated by the existence of mouthless Tetrahymena mutants and the huge phenotypic plasticity in the cytostome size in tetrahymenids.
Collapse
|
10
|
Lahr DJ. An emerging paradigm for the origin and evolution of shelled amoebae, integrating advances from molecular phylogenetics, morphology and paleontology. Mem Inst Oswaldo Cruz 2021; 116:e200620. [PMID: 34406221 PMCID: PMC8370470 DOI: 10.1590/0074-02760200620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/05/2021] [Indexed: 11/22/2022] Open
Abstract
The phylogenetic paradigm of eukaryotic evolution has changed dramatically over the past two decades, with profound reflections on the understanding of life on earth. Arcellinida testate (shelled) amoebae lineages represent some of the oldest fossils of eukaryotes, and the elucidation of their phylogenetic relationships opened a window to the distant past, with important implications for understanding the evolution of life on earth. This four-part essay summarises advances made in the past 20 years regarding: (i) the phylogenetic relationships among amoebae with shells evolving in concert with the advances made in the phylogeny of eukaryotes; (ii) paleobiological studies unraveling the biological affinities of Neoproterozoic vase-shaped microfossils (VSMs); (iii) the interwoven interpretation of these different sets of data concluding that the Neoproterozoic contains a surprising diversity of organisms, in turn demanding a reinterpretation of the most profound events we know in the history of eukaryotes, and; (iv) a synthesis of the current knowledge about the evolution of Arcellinida, together with the possibilities and pitfalls of their interpretation.
Collapse
Affiliation(s)
- Daniel Jg Lahr
- Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, São Paulo, SP, Brasil
| |
Collapse
|
11
|
da Silva Costa F, Júnio Pedroso Dias R, Fonseca Rossi M. Macroevolutionary analyses of ciliates associated with hosts support high diversification rates. Int J Parasitol 2021; 51:967-976. [PMID: 33991568 DOI: 10.1016/j.ijpara.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022]
Abstract
Ciliophora is a phylum that is comprised of extremely diverse microorganisms with regard to their morphology and ecology. They may be found in various environments, as free-living organisms or associated with metazoans. Such associations range from relationships with low metabolic dependence such as epibiosis, to more intimate relationships such as mutualism and parasitism. We know that symbiotic relationships occur along the whole phylogeny of the group, however, little is known about their evolution. Theoretical studies show that there are two routes for the development of parasitism, yet few authors have investigated the evolution of these characteristics using molecular tools. In the present study, we inferred a wide dated molecular phylogeny, based on the 18S rDNA gene, for the entire Ciliophora phylum, mapped life habits throughout the evolutionary time, and evaluated whether symbiotic relationships were linked to the variation in diversification rates and to the mode of evolution of ciliates. Our results showed that the last common ancestor for Ciliophora was likely a free-living organism, and that parasitism is a recent adaptation in ciliates, emerging more than once and independently via two distinct routes: (i) a free-living ciliate evolved into a mutualistic organism and, later, into a parasitic organism, and (ii) a free-living ciliate evolved directly into a parasitic organism. Furthermore, we have found a significant increase in the diversification rate of parasitic and mutualistic ciliates compared with their free-living conspecifics. The evolutionary success in different lineages of symbiont ciliates may be associated with many factors including type and colonization placement on their host, as well as physical and physiological conditions made available by the hosts.
Collapse
Affiliation(s)
- Fabiola da Silva Costa
- Protozoology Laboratory (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Biodiversity and Nature Conservation Post-Graduation Program, Biological Sciences Institute, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Roberto Júnio Pedroso Dias
- Protozoology Laboratory (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Biodiversity and Nature Conservation Post-Graduation Program, Biological Sciences Institute, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Mariana Fonseca Rossi
- Protozoology Laboratory (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Biodiversity and Nature Conservation Post-Graduation Program, Biological Sciences Institute, Federal University of Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Gershman SJ, Balbi PE, Gallistel CR, Gunawardena J. Reconsidering the evidence for learning in single cells. eLife 2021; 10:61907. [PMID: 33395388 PMCID: PMC7781593 DOI: 10.7554/elife.61907] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022] Open
Abstract
The question of whether single cells can learn led to much debate in the early 20th century. The view prevailed that they were capable of non-associative learning but not of associative learning, such as Pavlovian conditioning. Experiments indicating the contrary were considered either non-reproducible or subject to more acceptable interpretations. Recent developments suggest that the time is right to reconsider this consensus. We exhume the experiments of Beatrice Gelber on Pavlovian conditioning in the ciliate Paramecium aurelia, and suggest that criticisms of her findings can now be reinterpreted. Gelber was a remarkable scientist whose absence from the historical record testifies to the prevailing orthodoxy that single cells cannot learn. Her work, and more recent studies, suggest that such learning may be evolutionarily more widespread and fundamental to life than previously thought and we discuss the implications for different aspects of biology.
Collapse
Affiliation(s)
- Samuel J Gershman
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, United States.,Center for Brains, Mind and Machines, MIT, Cambridge, United States
| | - Petra Em Balbi
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - C Randy Gallistel
- Rutgers Center for Cognitive Science, Rutgers University at New Brunswick, New Brunswick, United States
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
13
|
Xu J, Wilkinson M, Chen M, Zhang Q, Yang R, Yi Z. Concatenated data and dense taxon sampling clarify phylogeny and ecological transitions within Hypotricha. ZOOL SCR 2020. [DOI: 10.1111/zsc.12459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiahui Xu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture School of Life Sciences South China Normal University Guangzhou China
| | - Mark Wilkinson
- Department of Life Sciences Natural History Museum London UK
| | - Miaoying Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture School of Life Sciences South China Normal University Guangzhou China
| | - Qi Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture School of Life Sciences South China Normal University Guangzhou China
| | - Ran Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture School of Life Sciences South China Normal University Guangzhou China
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture School of Life Sciences South China Normal University Guangzhou China
| |
Collapse
|
14
|
Agatha S, Utz LRP, Zufall RA, Warren A. Symposium on Ciliates in Memory of Denis Lynn. Eur J Protistol 2020; 78:125694. [PMID: 33500175 DOI: 10.1016/j.ejop.2020.125694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
Denis Lynn (1947-2018) was an outstanding protistologist, applying multiple techniques and data sources and thus pioneering an integrative approach in order to investigate ciliate biology. For example, he recognized the importance of the ultrastructure for inferring ciliate phylogeny, based on which he developed his widely accepted classification scheme for the phylum Ciliophora. In this paper, recent findings regarding the evolution and systematics of both peritrichs and the mainly marine planktonic oligotrichean spirotrichs are discussed and compared with the concepts and hypotheses formulated by Denis Lynn. Additionally, the state of knowledge concerning the diversity of ciliates in bromeliad phytotelmata and amitosis in ciliates is reviewed.
Collapse
Affiliation(s)
- Sabine Agatha
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria.
| | - Laura R P Utz
- School of Health and Life Sciences, PUCRS, Porto Alegre, Brazil
| | - Rebecca A Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, UK.
| |
Collapse
|
15
|
Cedrola F, Senra MVX, Rossi MF, Fregulia P, D’Agosto M, Dias RJP. Trichostomatid Ciliates (Alveolata, Ciliophora, Trichostomatia) Systematics and Diversity: Past, Present, and Future. Front Microbiol 2020; 10:2967. [PMID: 32010077 PMCID: PMC6974537 DOI: 10.3389/fmicb.2019.02967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/09/2019] [Indexed: 01/14/2023] Open
Abstract
The gastrointestinal tracts of most herbivorous mammals are colonized by symbiotic ciliates of the subclass Trichostomatia, which form a well-supported monophyletic group, currently composed by ∼1,000 species, 129 genera, and 21 families, distributed into three orders, Entodiniomorphida, Macropodiniida, and Vestibuliferida. In recent years, trichostomatid ciliates have been playing a part in many relevant functional studies, such as those focusing in host feeding efficiency optimization and those investigating their role in the gastrointestinal methanogenesis, as many trichostomatids are known to establish endosymbiotic associations with methanogenic Archaea. However, the systematics of trichostomatids presents many inconsistencies. Here, we stress the importance of more taxonomic works, to improve classification schemes of this group of organisms, preparing the ground to proper development of such relevant applied works. We will present a historical review of the systematics of the subclass Trichostomatia highlighting taxonomic problems and inconsistencies. Further on, we will discuss possible solutions to these issues and propose future directions to leverage our comprehension about taxonomy and evolution of these symbiotic microeukaryotes.
Collapse
Affiliation(s)
- Franciane Cedrola
- Laboratório de Protozoologia, Programa de Pós-graduação em Comportamento e Biologia Animal, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Marcus Vinicius Xavier Senra
- Laboratório de Protozoologia, Programa de Pós-graduação em Comportamento e Biologia Animal, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Instituto de Recursos Naturais Renováveis, Universidade Federal de Itajubá, Itajubá, Brazil
| | - Mariana Fonseca Rossi
- Laboratório de Protozoologia, Programa de Pós-graduação em Comportamento e Biologia Animal, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Priscila Fregulia
- Laboratório de Protozoologia, Programa de Pós-graduação em Comportamento e Biologia Animal, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Marta D’Agosto
- Laboratório de Protozoologia, Programa de Pós-graduação em Comportamento e Biologia Animal, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Roberto Júnio Pedroso Dias
- Laboratório de Protozoologia, Programa de Pós-graduação em Comportamento e Biologia Animal, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
16
|
Obert T, Vďačný P. Evolutionary Origin and Host Range of Plagiotoma lumbrici (Ciliophora, Hypotrichia), an Obligate Gut Symbiont of Lumbricid Earthworms. J Eukaryot Microbiol 2019; 67:176-189. [PMID: 31603571 DOI: 10.1111/jeu.12768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/29/2019] [Accepted: 10/04/2019] [Indexed: 11/28/2022]
Abstract
Four common earthworm species, the anecic Lumbricus terrestris, the endogeic Octolasion tyrteum as well as the epigeic Eisenia fetida and Dendrobaena veneta, were examined for the presence of the microbial gut symbiont Plagiotoma lumbrici. The evolutionary origin of this endobiotic microbe was reconstructed, using the 18S rRNA gene, the ITS1-5.8S-ITS2 region, and the first two domains of the 28S rRNA gene. Plagiotoma lumbrici was exclusively detected in the anecic Lumbricus terrestris. Multigene analyses and the ITS2 secondary structure robustly determined the phylogenetic home of Plagiotoma lumbrici populations within the oxytrichid Dorsomarginalia (Spirotrichea: Hypotrichia) as a sister taxon of the free-living Hemiurosomoida longa. This indicates that earthworms obtained their gut endosymbiont by ingesting soil/leaf litter containing oxytrichine ciliates that became adapted to the intestinal tract of earthworms. Interestingly, according to the literature data, Plagiotoma lumbrici was detected in multiple anecic and some epigeic but never in endogeic earthworms. These observations suggest that Plagiotoma lumbrici might be adapted to certain gut conditions and the lifestyle of anecic Lumbricidae, such as Lumbricus, Aporrectodea, and Scherotheca, as well as of some co-occurring epigeic Lumbricus species.
Collapse
Affiliation(s)
- Tomáš Obert
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Peter Vďačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| |
Collapse
|
17
|
Fernandes NM, Schrago CG. A multigene timescale and diversification dynamics of Ciliophora evolution. Mol Phylogenet Evol 2019; 139:106521. [PMID: 31152779 DOI: 10.1016/j.ympev.2019.106521] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 11/25/2022]
Abstract
Ciliophora is one of the most diverse lineages of unicellular eukaryotes. Nevertheless, a robust timescale including all main lineages and employing properly identified ciliate fossils as primary calibrations is lacking. Here, we inferred a time-calibrated multigene phylogeny of Ciliophora evolution, and we used this timetree to investigate the rates and patterns of lineage diversification through time. We implemented a two-step analytical approach that favored both gene and taxon sampling, reducing the uncertainty of time estimates and yielding narrower credibility intervals on the ribosomal-derived chronogram. We estimate the origin of Ciliophora at 1143 Ma, which is substantially younger than previously proposed ages, and the huge diversity explosion occurred during the Paleozoic. Among the current groups recognized as classes, Spirotrichea diverged earlier, its origin was dated at ca. 850 Ma, and Protocruziea was the younger class, with crown age estimated at 56 Ma. Macroevolutionary analysis detected a significant rate shift in diversification dynamics in the spirotrichean clade Hypotrichia + Oligotrichia + Choreotrichia, which had accelerated speciation rate ca. 570 Ma, during the Ediacaran-Cambrian transition. For all crown lineages investigated, speciation rates declined through time, whereas extinction rates remained low and relatively constant throughout the evolutionary history of ciliates.
Collapse
Affiliation(s)
- Noemi Mendes Fernandes
- Laboratório de Protistologia, Departamento de Zoologia, Universidade Federal do Rio de Janeiro, Brazil.
| | - Carlos G Schrago
- Laboratório de Biologia Evolutiva Teórica e Aplicada, Departamento de Genética, Universidade Federal do Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Rataj M, Vdacny P. Living morphology and molecular phylogeny of oligohymenophorean ciliates associated with freshwater turbellarians. DISEASES OF AQUATIC ORGANISMS 2019; 134:147-166. [PMID: 31120041 DOI: 10.3354/dao03366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Three freshwater turbellarian species (Dugesia gonocephala, Girardia tigrina, and Polycelis felina), belonging to the order Tricladida, were examined for the presence of ciliates. Living morphology and phylogenetic position of the isolated ciliates were studied using light microscopy and molecular phylogenetic methods. Three ciliate species, all from the highly diverse class Oligohymenophorea, were detected: Haptophrya planariarum from the subclass Astomatia, Urceolaria mitra from the subclass Peritrichia, and Tetrahymena sp. from the subclass Hymenostomatia. Each of these ciliates is specialized for different parts of the turbellarian bodies: H. planariarum lives in the pharynx and rami of the intestine, U. mitra colonizes the body surface, and Tetrahymena sp. attacks open wounds and feeds on the mesenchyme. Astomes and peritrichs isolated from turbellarians are placed deeper in 18S rRNA gene phylogenies than their relatives isolated from annelids and mollusks. On the other hand, Tetrahymena sp. isolated from turbellarians is classified comparatively deeply within the family Tetrahymenidae, suggesting that the phylogeny of tetrahymenids does not correlate with that of their obligate/facultative host groups. Nevertheless, the reconstruction of ancestral traits corroborated the hypothesis that histophagy was already a life history trait of the progenitor of the subclass Hymenostomatia to which Tetrahymena belongs.
Collapse
Affiliation(s)
- M Rataj
- Department of Zoology, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | | |
Collapse
|
19
|
Jiang CQ, Wang GY, Xiong J, Yang WT, Sun ZY, Feng JM, Warren A, Miao W. Insights into the origin and evolution of Peritrichia (Oligohymenophorea, Ciliophora) based on analyses of morphology and phylogenomics. Mol Phylogenet Evol 2019; 132:25-35. [DOI: 10.1016/j.ympev.2018.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 10/29/2018] [Accepted: 11/24/2018] [Indexed: 11/30/2022]
|
20
|
Vďačný P. Evolutionary Associations of Endosymbiotic Ciliates Shed Light on the Timing of the Marsupial-Placental Split. Mol Biol Evol 2018; 35:1757-1769. [PMID: 29659942 PMCID: PMC5995207 DOI: 10.1093/molbev/msy071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Trichostome ciliates are among the most conspicuous protists in the gastrointestinal tract of a large variety of vertebrates. However, little is still known about phylogeny of the trichostome/vertebrate symbiotic systems, evolutionary correlations between trichostome extrinsic traits, and character-dependent diversification of trichostomes. These issues were investigated here, using the relaxed molecular clock technique along with stochastic mapping of character evolution, and binary-state speciation and extinction models. Clock analyses revealed that trichostomes colonized the vertebrate gastrointestinal tract ∼135 Ma, that is, near the paleontological minimum for the split of therian mammals into marsupials and placentals. According to stochastic mapping, the last common ancestor of trichostomes most likely invaded the hindgut of a mammal. Although multiple shifts to fish/amphibian or avian hosts and to the foregut compartments took place during the trichostome phylogeny, only transition to the foregut was recognized as a key innovation responsible for the explosive radiation of ophryoscolecid trichostomes after the Cretaceous/Tertiary boundary, when ungulates began their diversification. Since crown radiations of main trichostome lineages follow those of their mammalian hosts and are in agreement with their historic dispersal routes, the present time-calibrated phylogeny might help to elucidate controversies in the geological and molecular timing of the split between marsupials and placental mammals.
Collapse
Affiliation(s)
- Peter Vďačný
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
21
|
Vďačný P, Rajter Ľ, Stoeck T, Foissner W. A Proposed Timescale for the Evolution of Armophorean Ciliates: Clevelandellids Diversify More Rapidly Than Metopids. J Eukaryot Microbiol 2018; 66:167-181. [PMID: 29873141 DOI: 10.1111/jeu.12641] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/11/2018] [Accepted: 06/01/2018] [Indexed: 11/30/2022]
Abstract
Members of the class Armophorea occur in microaerophilic and anaerobic habitats, including the digestive tract of invertebrates and vertebrates. Phylogenetic kinships of metopid and clevelandellid armophoreans conflict with traditional morphology-based classifications. To reconcile their relationships and understand their morphological evolution and diversification, we utilized the molecular clock theory as well as information contained in the estimated time trees and morphology of extant taxa. The radiation of the last common ancestor of metopids and clevelandellids very likely occurred during the Paleozoic and crown diversification of the endosymbiotic clevelandellids dates back to the Mesozoic. According to diversification analyses, endosymbiotic clevelandellids have higher net diversification rates than predominantly free-living metopids. Their cladogenic success was very likely associated with sharply isolated ecological niches constituted by their hosts. Conflicts between traditional classifications and molecular phylogenies of metopids and clevelandellids very likely come from processes, leading to further diversification without extinction of ancestral lineages as well as from morphological plesiomorphies incorrectly classified as apomorphies. Our study thus suggests that diversification processes and reconstruction of ancestral morphologies improve the understanding of paraphyly which occurs in groups of organisms with an apparently long evolutionary history and when speciation prevails over extinction.
Collapse
Affiliation(s)
- Peter Vďačný
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ľubomír Rajter
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Thorsten Stoeck
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Wilhelm Foissner
- FB Ecology and Evolution, University of Salzburg, Salzburg, Austria
| |
Collapse
|
22
|
Doerder FP. Barcodes Reveal 48 New Species of Tetrahymena
, Dexiostoma
, and Glaucoma
: Phylogeny, Ecology, and Biogeography of New and Established Species. J Eukaryot Microbiol 2018; 66:182-208. [DOI: 10.1111/jeu.12642] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/30/2018] [Accepted: 05/21/2018] [Indexed: 11/28/2022]
Affiliation(s)
- F. Paul Doerder
- Department of Biological, Geological and Environmental Sciences; Cleveland State University; 2121 Euclid Avenue Cleveland Ohio 44115
| |
Collapse
|
23
|
Dunthorn M, Zufall RA, Chi J, Paszkiewicz K, Moore K, Mahé F. Meiotic Genes in Colpodean Ciliates Support Secretive Sexuality. Genome Biol Evol 2018; 9:1781-1787. [PMID: 28854634 PMCID: PMC5570047 DOI: 10.1093/gbe/evx125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 12/19/2022] Open
Abstract
The putatively asexual Colpodean ciliates potentially pose a problem to macro-organismic theories of evolution. They are extremely ancient (although asexuality is thought to hasten extinction), and yet there is one apparently derived sexual species (implying an unlikely regain of a complex trait). If macro-organismic theories of evolution also broadly apply to microbial eukaryotes, though, then most or all of the colpodean ciliates should merely be secretively sexual. Here we show using de novo genome sequencing, that colpodean ciliates have the meiotic genes required for sex and these genes are under functional constraint. Along with these genomic data, we argue that these ciliates are sexual given the cytological observations of both micronuclei and macronuclei within their cells, and the behavioral observations of brief fusions as if the cells were mating. The challenge that colpodean ciliates pose is therefore not to evolutionary theory, but to our ability to induce microbial eukaryotic sex in the laboratory.
Collapse
Affiliation(s)
- Micah Dunthorn
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Rebecca A Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Jingyun Chi
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Karen Moore
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Frédéric Mahé
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany.,CIRAD, UMR LSTM, Montpellier, France
| |
Collapse
|
24
|
Rataj M, Vďačný P. Dawn of astome ciliates in light of morphology and time-calibrated phylogeny of Haptophrya planariarum, an obligate endosymbiont of freshwater turbellarians. Eur J Protistol 2018; 64:54-71. [PMID: 29674178 DOI: 10.1016/j.ejop.2018.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/08/2018] [Accepted: 03/29/2018] [Indexed: 11/18/2022]
Abstract
Morphology, systematic position and time-calibrated phylogeny of Haptophrya planariarum were investigated. This endosymbiont of freshwater turbellarians is characterized by: (i) a length of about 200-900 μm; (ii) a campanulate to truncate claviform body carrying an anterior adhesive sucker; (iii) an ellipsoidal macronucleus localized in the rear body end; (iv) a contractile canal extending along the dorsal margin; and (v) usually more than 150 meridional ciliary rows, a horseshoe-shaped suture line along the sucker, and two inconspicuous secant systems at lateral ends of the suture line. In 18S rRNA gene phylogenies, astomes were depicted as a non-monophyletic group within the scuticociliate clade, whereby H. planariarum clustered with the loxocephalid genus Dexiotricha. After considering morphological evidence, statistical tree topology tests and evolutionary distances, we find astomes as a distinct group that evolved from a free-living scuticociliate ancestor in the early Paleozoic. Molecular clock analyses indicated that astomes living in annelids diverged from those inhabiting turbellarians within about 50 Ma during the Late Cambrian and the Upper Ordovician. This comparatively short time span might have not sufficed for fixation of molecular synapomorphies in the 18S rRNA gene and/or they might have been erased by substitutions during the almost 500 Ma-long evolutionary history of astomes.
Collapse
Affiliation(s)
- Matej Rataj
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovak Republic
| | - Peter Vďačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovak Republic.
| |
Collapse
|
25
|
Bardele CF, Schultheiß S, Lynn DH, Wright ADG, Dominguez-Bello MG, Obispo NE. Aviisotricha hoazini n. gen., n. sp., the Morphology and Molecular Phylogeny of an Anaerobic Ciliate from the Crop of the Hoatzin (Opisthocomus hoazin), the Cow Among the Birds. Protist 2017; 168:335-351. [PMID: 28554152 DOI: 10.1016/j.protis.2017.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/11/2017] [Accepted: 02/24/2017] [Indexed: 11/27/2022]
Abstract
The hoatzin is the only known avian species that has evolved a foregut fermentation system similar to that of ruminant animals. Due to the closeness of the bird's fermentation chamber, the crop, to the bird's beak it exudes an unpleasant odour; therefore, the hoatzin is called the "cow among the birds". In addition to Eubacteria and Archaea, responsible for digestion of the vegetation they consume, the bird's crop contains a holotrich ciliate, described here for the first time in detail. Cytological staining of this isotrichid-like ciliate with the Chatton-Lwoff and Protargol staining procedures, as well as SEM and TEM, justified the establishment of the new genus Aviisotricha n. gen. with its new type species Aviisotricha hoazini n. gen., n. sp.. Phylogenetic analyses of a portion of the small subunit rRNA gene supported the taxonomic placement of this new genus and species in the family Isotrichidae. Aviisotricha is compared with Balantidium, Dasytricha and Isotricha with special reference to their dorsal brushes, which show similarity to the paralabial organelle of the Entodiniomorphida. The possible phylogenetic origin of Aviisotricha is discussed and a taxonomic revision of the family Isotrichidae is given.
Collapse
Affiliation(s)
| | - Sigrid Schultheiß
- Department of Evolution and Ecology, University Tübingen, Tübingen, Germany
| | - Denis H Lynn
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - André-Denis G Wright
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | | | - Nestor E Obispo
- Instituto Nacional de Investigaciones Agrícolas, Aragua, Venezuela
| |
Collapse
|
26
|
Rajter Ľ, Vďačný P. Rapid radiation, gradual extinction and parallel evolution challenge generic classification of spathidiid ciliates (Protista, Ciliophora). ZOOL SCR 2015. [DOI: 10.1111/zsc.12143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ľubomír Rajter
- Department of Zoology; Comenius University in Bratislava; Mlynská dolina B-1, Ilkovičova 6 Bratislava SK-842 15 Slovakia
| | - Peter Vďačný
- Department of Zoology; Comenius University in Bratislava; Mlynská dolina B-1, Ilkovičova 6 Bratislava SK-842 15 Slovakia
| |
Collapse
|
27
|
Vďačný P. Estimation of divergence times in litostomatean ciliates (Ciliophora: Intramacronucleata), using Bayesian relaxed clock and 18S rRNA gene. Eur J Protistol 2015. [DOI: 10.1016/j.ejop.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Plattner H. Molecular aspects of calcium signalling at the crossroads of unikont and bikont eukaryote evolution – The ciliated protozoan Paramecium in focus. Cell Calcium 2015; 57:174-85. [DOI: 10.1016/j.ceca.2014.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 12/19/2022]
|
29
|
Plattner H. Calcium signalling in the ciliated protozoan model, Paramecium: strict signal localisation by epigenetically controlled positioning of different Ca²⁺-channels. Cell Calcium 2014; 57:203-13. [PMID: 25277862 DOI: 10.1016/j.ceca.2014.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022]
Abstract
The Paramecium tetraurelia cell is highly organised, with regularly spaced elements pertinent to Ca(2+) signalling under epigenetic control. Vesicles serving as stationary Ca(2+) stores or undergoing trafficking contain Ca(2+)-release channels (PtCRCs) which, according to sequence and domain comparison, are related either to inositol 1,4,5-trisphosphate (InsP3) receptors (IP3R) or to ryanodine receptor-like proteins (RyR-LP) or to both, with intermediate characteristics or deviation from conventional domain structure. Six groups of such PtCRCs have been found. The ryanodine-InsP3-receptor homology (RIH) domain is not always recognisable, in contrast to the channel domain with six trans-membrane domains and the pore between transmembrane domain 5 and 6. Two CRC subtypes tested more closely, PtCRC-II and PtCRC-IV, with and without an InsP3-binding domain, reacted to InsP3 and to caffeine, respectively, and hence represent IP3Rs and RyR-LPs. IP3Rs occur in the contractile vacuole complex where they allow for stochastic constitutive Ca(2+) reflux into the cytosol. RyR-LPs are localised to cortical Ca(2+) stores; they are engaged in dense core-secretory vesicle exocytosis by Ca(2+) release, superimposed by Ca(2+)-influx via non-ciliary Ca(2+)-channels. One or two different types of PtCRCs also occur in other vesicles undergoing trafficking. Since the PtCRCs described combine different features they are considered derivatives of primitive precursors. The highly regular, epigenetically controlled design of a Paramecium cell allows it to make Ca(2+) available very locally, in a most efficient way, along predetermined trafficking pathways, including regulation of exocytosis, endocytosis, phagocytosis and recycling phenomena. The activity of cilia is also regulated by Ca(2+), yet independently from any CRCs, by de- and hyperpolarisation of the cell membrane potential.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P.O. Box M625, 78457 Konstanz, Germany.
| |
Collapse
|
30
|
Design and validation of four new primers for next-generation sequencing to target the 18S rRNA genes of gastrointestinal ciliate protozoa. Appl Environ Microbiol 2014; 80:5515-21. [PMID: 24973070 DOI: 10.1128/aem.01644-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Four new primers and one published primer were used to PCR amplify hypervariable regions within the protozoal 18S rRNA gene to determine which primer pair provided the best identification and statistical analysis. PCR amplicons of 394 to 498 bases were generated from three primer sets, sequenced using Roche 454 pyrosequencing with Titanium, and analyzed using the BLAST database (NCBI) and MOTHUR version 1.29. The protozoal diversity of rumen contents from moose in Alaska was assessed. In the present study, primer set 1, P-SSU-316F and GIC758R (amplicon of 482 bases), gave the best representation of diversity using BLAST classification, and the set amplified Entodinium simplex and Ostracodinium spp., which were not amplified by the other two primer sets. Primer set 2, GIC1080F and GIC1578R (amplicon of 498 bases), had similar BLAST results and a slightly higher percentage of sequences that were identified with a higher sequence identity. Primer sets 1 and 2 are recommended for use in ruminants. However, primer set 1 may be inadequate to determine protozoal diversity in nonruminants. The amplicons created by primer set 1 were indistinguishable for certain species within the genera Bandia, Blepharocorys, Polycosta, and Tetratoxum and between Hemiprorodon gymnoprosthium and Prorodonopsis coli, none of which are normally found in the rumen.
Collapse
|
31
|
Doerder FP. Abandoning sex: multiple origins of asexuality in the ciliate Tetrahymena. BMC Evol Biol 2014; 14:112. [PMID: 24885485 PMCID: PMC4045964 DOI: 10.1186/1471-2148-14-112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/14/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND By segregating somatic and germinal functions into large, compound macronuclei and small diploid micronuclei, respectively, ciliates can explore sexuality in ways other eukaryotes cannot. Sex, for instance, is not for reproduction but for nuclear replacement in the two cells temporarily joined in conjugation. With equal contributions from both conjugants, there is no cost of sex which theory predicts should favor asexuality. Yet ciliate asexuality is rare. The exceptional Tetrahymena has abandoned sex through loss of the micronucleus; its amicronucleates are abundant in nature where they reproduce by binary fission but never form conjugating pairs. A possible reason for their abundance is that the Tetrahymena macronucleus does not accumulate mutations as proposed by Muller's ratchet. As such, Tetrahymena amicronucleates have the potential to be very old. This study used cytochrome oxidase-1 barcodes to determine the phylogenetic origin and relative age of amicronucleates isolated from nature. RESULTS Amicronucleates constituted 25% of Tetrahymena-like wild isolates. Of the 244 amicronucleates examined for cox1 barcodes, 237 belonged to Tetrahymena, seven to other genera. Sixty percent originated from 12 named species or barcoded strains, including the model Tetrahymena thermophila, while the remaining 40% represent 19 putative new species, eight of which have micronucleate counterparts and 11 of which are known only as amicronucleates. In some instances, cox1 haplotypes were shared among micronucleate and amicronucleates collected from the same source. Phylogenetic analysis showed that most amicronucleates belong to the "borealis" clade in which mating type is determined by gene rearrangement. Some amicronucleate species were clustered on the SSU phylogenetic tree and had longer branch lengths, indicating more ancient origin. CONCLUSIONS Naturally occurring Tetrahymena amicronucleates have multiple origins, arising from numerous species. Likely many more new species remain to be discovered. Shared haplotypes indicate that some are of contemporary origin, while phylogeny indicates that others may be millions of years old. The apparent success of amicronucleate Tetrahymena may be because macronuclear assortment and recombination allow them to avoid Muller's ratchet, incorporate beneficial mutations, and evolve independently of sex. The inability of amicronucleates to mate may be the result of error(s) in mating type gene rearrangement.
Collapse
Affiliation(s)
- F Paul Doerder
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA.
| |
Collapse
|
32
|
The symbiotic intestinal ciliates and the evolution of their hosts. Eur J Protistol 2014; 50:166-73. [DOI: 10.1016/j.ejop.2014.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 11/23/2022]
|
33
|
Simon M, Plattner H. Unicellular Eukaryotes as Models in Cell and Molecular Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:141-98. [DOI: 10.1016/b978-0-12-800255-1.00003-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Abstract
Our understanding of the evolution of life on Earth is limited by the imperfection of the fossil record. One reason for this imperfect record is that organisms without hard parts, such as bones, shells, and wood, have a very low potential to enter the fossil record. Occasionally, however, exceptional fossil deposits that preserve soft-bodied organisms provide a rare glimpse of the true biodiversity during past periods of Earth history. We here present an extraordinary find of a fossil ciliate that is encased inside the wall layer of a more than 200 Ma leech cocoon from Antarctica. The microfossil consists of a helically contractile stalk that attaches to a main body with a peristomial feeding apparatus and a large C-shaped macronucleus. It agrees in every aspect with the living bell animals, such as Vorticella. Vorticellids and similar peritrichs are vital constituents of aquatic ecosystems worldwide, but so far have lacked any fossil record. This discovery offers a glimpse of ancient soft-bodied protozoan biotas, and also highlights the potential of clitellate cocoons as microscopic "conservation traps" comparable to amber.
Collapse
|
35
|
Bernhard JM, Casciotti KL, McIlvin MR, Beaudoin DJ, Visscher PT, Edgcomb VP. Potential importance of physiologically diverse benthic foraminifera in sedimentary nitrate storage and respiration. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jg001949] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Plattner H, Sehring IM, Mohamed IK, Miranda K, De Souza W, Billington R, Genazzani A, Ladenburger EM. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma). Cell Calcium 2012; 51:351-82. [PMID: 22387010 DOI: 10.1016/j.ceca.2012.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 12/20/2022]
Abstract
The importance of Ca2+-signaling for many subcellular processes is well established in higher eukaryotes, whereas information about protozoa is restricted. Recent genome analyses have stimulated such work also with Alveolates, such as ciliates (Paramecium, Tetrahymena) and their pathogenic close relatives, the Apicomplexa (Plasmodium, Toxoplasma). Here we compare Ca2+ signaling in the two closely related groups. Acidic Ca2+ stores have been characterized in detail in Apicomplexa, but hardly in ciliates. Two-pore channels engaged in Ca2+-release from acidic stores in higher eukaryotes have not been stingently characterized in either group. Both groups are endowed with plasma membrane- and endoplasmic reticulum-type Ca2+-ATPases (PMCA, SERCA), respectively. Only recently was it possible to identify in Paramecium a number of homologs of ryanodine and inositol 1,3,4-trisphosphate receptors (RyR, IP3R) and to localize them to widely different organelles participating in vesicle trafficking. For Apicomplexa, physiological experiments suggest the presence of related channels although their identity remains elusive. In Paramecium, IP3Rs are constitutively active in the contractile vacuole complex; RyR-related channels in alveolar sacs are activated during exocytosis stimulation, whereas in the parasites the homologous structure (inner membrane complex) may no longer function as a Ca2+ store. Scrutinized comparison of the two closely related protozoan phyla may stimulate further work and elucidate adaptation to parasitic life. See also "Conclusions" section.
Collapse
Affiliation(s)
- H Plattner
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Swart EC, Nowacki M, Shum J, Stiles H, Higgins BP, Doak TG, Schotanus K, Magrini VJ, Minx P, Mardis ER, Landweber LF. The Oxytricha trifallax mitochondrial genome. Genome Biol Evol 2011; 4:136-54. [PMID: 22179582 PMCID: PMC3318907 DOI: 10.1093/gbe/evr136] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Oxytricha trifallax mitochondrial genome contains the largest sequenced ciliate mitochondrial chromosome (~70 kb) plus a ~5-kb linear plasmid bearing mitochondrial telomeres. We identify two new ciliate split genes (rps3 and nad2) as well as four new mitochondrial genes (ribosomal small subunit protein genes: rps- 2, 7, 8, 10), previously undetected in ciliates due to their extreme divergence. The increased size of the Oxytricha mitochondrial genome relative to other ciliates is primarily a consequence of terminal expansions, rather than the retention of ancestral mitochondrial genes. Successive segmental duplications, visible in one of the two Oxytricha mitochondrial subterminal regions, appear to have contributed to the genome expansion. Consistent with pseudogene formation and decay, the subtermini possess shorter, more loosely packed open reading frames than the remainder of the genome. The mitochondrial plasmid shares a 251-bp region with 82% identity to the mitochondrial chromosome, suggesting that it most likely integrated into the chromosome at least once. This region on the chromosome is also close to the end of the most terminal member of a series of duplications, hinting at a possible association between the plasmid and the duplications. The presence of mitochondrial telomeres on the mitochondrial plasmid suggests that such plasmids may be a vehicle for lateral transfer of telomeric sequences between mitochondrial genomes. We conjecture that the extreme divergence observed in ciliate mitochondrial genomes may be due, in part, to repeated invasions by relatively error-prone DNA polymerase-bearing mobile elements.
Collapse
Affiliation(s)
- Estienne C Swart
- Department of Ecology and Evolutionary Biology, Princeton University, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Phylogeny and classification of the Litostomatea (Protista, Ciliophora), with emphasis on free-living taxa and the 18S rRNA gene. Mol Phylogenet Evol 2011; 59:510-22. [DOI: 10.1016/j.ympev.2011.02.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/27/2011] [Accepted: 02/03/2011] [Indexed: 11/17/2022]
|
39
|
Katz LA, Kovner AM. Alternative processing of scrambled genes generates protein diversity in the ciliate Chilodonella uncinata. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:480-8. [PMID: 20700892 DOI: 10.1002/jez.b.21354] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In ciliates, chromosomal rearrangements occur during the development of the somatic macronuclear genome from the germline micronuclear genome. These rearrangements are extensive in three ciliate classes-Armophorea, Spirotrichea, and Phyllopharyngea-generating a macronucleus with up to 20,000,000 gene-sized chromosomes. Earlier, we have shown that these three classes also share elevated rates of protein evolution relative to other ciliates. To assess the evolution of germline-limited sequences in the class Phyllopharyngea, we used a combination of traditional and walking PCR to analyze micronuclear copies of multiple genes from two lines of the morphospecies Chilodonella uncinata for which we had previously characterized macronuclear sequences. Analyses of the resulting data yield three main results: (1) conserved macronuclear (somatic) regions are found within rapidly evolving micronuclear (germline) regions; (2) gene scrambling exists within this ciliate lineage; and (3) alternative processing of micronuclear regions yields diverse macronuclear beta-tubulin paralogs. To our knowledge, this is the first study to demonstrate gene scrambling outside the nonsister class Spirotrichea, and to show that alternative processing of scrambled genes generates diversity in gene families. Intriguingly, the Spirotrichea and Phyllopharyngea are also united in having transient "giant" polytene chromosomes, gene-sized somatic chromosomes, and elevated rates of protein evolution. We hypothesize that this suite of characters enables these ciliates to enjoy the benefits of asexuality while still maintaining the ability to go through sexual cycles. The data presented here add to the growing evidence of the dynamic nature of eukaryotic genomes within diverse lineages across the tree of life.
Collapse
Affiliation(s)
- Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA.
| | | |
Collapse
|
40
|
Secretive ciliates and putative asexuality in microbial eukaryotes. Trends Microbiol 2010; 18:183-8. [PMID: 20299224 DOI: 10.1016/j.tim.2010.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 02/08/2010] [Accepted: 02/17/2010] [Indexed: 12/31/2022]
Abstract
Facultative sexuality is assumed to have occurred in the ancestor of all extant eukaryotes, but the distribution and maintenance of sex among microbial eukaryotes is still under debate. In this paper, we address the purported asexuality in colpodean ciliates as an exemplary lineage. Colpodeans are a primarily terrestrial clade thought to have arisen up to 900 MYA and contain one known derived sexual species. We conclude that the putative asexuality of this lineage is an observational artifact. We suggest that the same might hold for other microbial eukaryotes, and that many are secretively sexual as well. Theoretical work from the distantly related plants and animals suggests that both the evolutionary success of ancient asexuals and the reversal of the loss of sex are highly unlikely, further suggesting that colpodeans are secretively sexual. However, it remains to be seen to what extent sexual theories and predictions derived from macro-organismic lineages apply also to microbial eukaryotes.
Collapse
|
41
|
Cavalier-Smith T. Megaphylogeny, cell body plans, adaptive zones: causes and timing of eukaryote basal radiations. J Eukaryot Microbiol 2009; 56:26-33. [PMID: 19340985 DOI: 10.1111/j.1550-7408.2008.00373.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
I discuss eukaryote megaphylogeny and the timing of major innovations in the light of multigene trees and the rarity of marine/freshwater evolutionary transitions. The first eukaryotes were aerobic phagotrophs, probably substratum-associated heterotrophic amoeboflagellates. The primary eukaryote bifurcation generated unikonts (ancestrally probably unicentriolar, with a conical microtubular [MT] cytoskeleton) and bikonts (ciliary transformation from anterior cilium to ancestrally gliding posterior cilium; cytoskeleton of ventral MT bands). Unikonts diverged into Amoebozoa with anterior cilia, lost when lobosan broad pseudopods evolved for locomotion, and Choanozoa with posterior cilium and filose pseudopods that became unbranched tentacles/microvilli in holozoa and eventually the choanoflagellate/choanocyte collar. Of choanozoan ancestry, animals evolved epithelia, fibroblasts, eggs, and sperm. Fungi and Ichthyosporea evolved walls. Bikonts, ancestrally with ventral grooves, include three adaptively divergent megagroups: Rhizaria (Retaria and Cercozoa, ancestrally reticulofilose soft-surfaced gliding amoeboflagellates), and the originally planktonic Excavata, and the corticates (Plantae and chromalveolates) that suppressed pseudopodia. Excavata evolved cilia-generated feeding currents for grooval ingestion; corticates evolved cortical alveoli and ciliary hairs. Symbiogenetic origin and transfers of chloroplasts stimulated an explosive radiation of corticates--hard to resolve on multigene trees--and opisthokonts, and ensuing Cambrian explosions of animals and protists. Plantae lost phagotrophy and multiply evolved walls and macroalgae. Apusozoa, with dorsal pellicle and ventral pseudopods, are probably the most divergent bikonts or related to opisthokonts. Eukaryotes probably originated 800-850 My ago. Amoebozoa, Apusozoa, Loukozoa, and Metamonada may be the only extant eukaryote phyla pre-dating Neoproterozoic snowball earth. New subphyla are established for Choanozoa and Loukozoa; Amoebozoa are divided into three revised subphyla, with Variosea transferred into Conosa.
Collapse
Affiliation(s)
- Thomas Cavalier-Smith
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| |
Collapse
|
42
|
Microbial Cretaceous park: biodiversity of microbial fossils entrapped in amber. Naturwissenschaften 2009; 96:551-64. [DOI: 10.1007/s00114-009-0508-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 01/12/2009] [Accepted: 01/22/2009] [Indexed: 11/25/2022]
|
43
|
Martín-González A, Wierzchos J, Gutiérrez JC, Alonso J, Ascaso C. Morphological Stasis of Protists in Lower Cretaceous Amber. Protist 2008; 159:251-7. [DOI: 10.1016/j.protis.2007.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 08/05/2007] [Indexed: 01/26/2023]
|
44
|
Strüder-Kypke MC, Kornilova OA, Lynn DH. Phylogeny of trichostome ciliates (Ciliophora, Litostomatea) endosymbiotic in the Yakut horse (Equus caballus). Eur J Protistol 2007; 43:319-28. [PMID: 17720462 DOI: 10.1016/j.ejop.2007.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 06/14/2007] [Accepted: 06/22/2007] [Indexed: 11/23/2022]
Abstract
Ciliates of the subclass Trichostomatia inhabit the fermentative regions of the digestive tract of herbivores. Most available small subunit ribosomal RNA (SSrRNA) gene sequences of trichostomes are from species isolated from the rumen of cattle or sheep and from marsupials. No ciliate species endosymbiotic in horses has yet been analyzed. We have sequenced the SSrRNA genes of five ciliate species, isolated from the cecum and colon of four Yakut horses: Cycloposthium edentatum, Cycloposthium ishikawai, Tripalmaria dogieli, Cochliatoxum periachtum, and Paraisotricha colpoidea. Based on their morphology, Cycloposthium, Tripalmaria, and Cochliatoxum are classified as Entodiniomorphida, while Paraisotricha is considered a member of the Vestibuliferida. Phylogenetic analyses using Bayesian inference, distance, and parsimony methods confirm these placements. The two Cycloposthium species cluster together with the published Cycloposthium species isolated from a wallaby in Australia. Tripalmaria and Cochliatoxum branch as a sister group to or basal within the Entodiniomorphida. The Vestibuliferida remain paraphyletic with Paraisotricha and Balantidium branching basal to all other trichostome species, but not closely related to Isotricha and Dasytricha.
Collapse
|
45
|
Williams YJ, Rea SM, Popovski S, Pimm CL, Williams AJ, Toovey AF, Skillman LC, Wright ADG. Reponses of sheep to a vaccination of entodinial or mixed rumen protozoal antigens to reduce rumen protozoal numbers. Br J Nutr 2007; 99:100-9. [PMID: 17697432 DOI: 10.1017/s0007114507801553] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Two rumen protozoa vaccine formulations containing either whole fixed Entodinium or mixed rumen protozoa cells were tested on Merino sheep with the aim of decreasing the number and/or activity of protozoa in the rumen. Negative control (no antigen) and positive control (Tetrahymena corlissi antigens) treatments were also included in the experiment. Blood and saliva were sampled to measure the specific immune response. Protozoal numbers in the rumen were monitored by microscopic counts. Vaccination with protozoal formulations resulted in the presence of specific IgG in plasma and saliva, but saliva titres were low. Titres after secondary vaccination were higher (P < 0·05) than after primary vaccination. There was a moderate (r2 0·556) relationship (P < 0·05) between plasma and saliva titres for the rumen protozoal vaccine formulations. Rumen protozoa were not decreased (P>0·05) by the vaccination and there was also no difference (P>0·05) between treatments in rumen fluid ammonia-N concentration or wool growth. In vitro studies investigated the binding ability of the antibodies and estimated the amount of antibody required to reduce cell numbers in the rumen. The studies showed that the antibodies did bind to and reduced protozoa numbers, but the amount of antibody generated by vaccination was not enough to produce results in an in vivo system. It is suggested that the vaccine could be improved if specific protozoal antigens are determined and isolated and that improved understanding of the actions of protozoa antibodies in rumen fluid and the relationships between levels of antibodies and numbers of protozoa in the rumen is needed.
Collapse
Affiliation(s)
- Yvette J Williams
- CSIRO Livestock Industries, Centre for Environment and Life Sciences, Private Bag 5, Wembley, WA, 6913, Australia
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Fenchel T, Finlay BJ. The diversity of microbes: resurgence of the phenotype. Philos Trans R Soc Lond B Biol Sci 2007; 361:1965-73. [PMID: 17062414 PMCID: PMC1764925 DOI: 10.1098/rstb.2006.1924] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The introduction of molecular genetic methods has caused confusion about the nature of microbial species. Environmental DNA extraction has indicated the existence of a vast diversity of genotypes, but how this relates to functional and phenotypic diversity has not been sufficiently explored. It has been implied that genetic distance per se correlates with phenotypic differentiation and thus reflects subtle (but undiscovered) adaptive fine-tuning to the environment, and that microbes may show biogeographic patterns at the genetic level. Here, we argue that no theoretically based species concept exists; species represent only the basic unit in the taxonomic hierarchy. The significance of naming species is that it organizes biological information. The reason why microbial species collectively represent large genetic differences is owing to huge absolute population sizes, absence of allopatric speciation and low extinction rates. Microbial phenotypes are, therefore, ancient in terms of the geological time-scale and have been maintained through stabilizing selection. These problems are discussed with special reference to eukaryotic micro-organisms.
Collapse
Affiliation(s)
- Tom Fenchel
- Marine Biological Laboratory, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark.
| | | |
Collapse
|
47
|
Li CW, Chen JY, Lipps JH, Gao F, Chi HM, Wu HJ. Ciliated protozoans from the Precambrian Doushantuo Formation, Wengan, South China. ACTA ACUST UNITED AC 2007. [DOI: 10.1144/sp286.11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractCiliates, a major eukaryotic crown-group lineage with thousands of living species, are poorly represented in the fossil record. Ciliate biomarkers are known from the Precambrian, but only one group, the tintinnids, have an extensive fossil record dating back to the Ordovician. Thus, the occurrence of probable ciliate body fossils in Neoproterozoic rocks confirms their earlier appearance, so far inferred only from molecular sequence data and biomarkers. In this paper, we describe those fossils from the 580 million year old Precambrian Doushantuo phosphates, Guizhou, South China. Three new monospecific genera (100 µm to 200 µm in size) are represented by three-dimensional specimens with exceptionally well-preserved cell bodies including cilia, cytostome and tentacles. Two possess loricas and are referred to the tintinnids. The third has numerous tentacles, an apical cytostome and somatic cilia; it is interpreted as an ancestral early suctorian ciliate. These fossils indicate that the origin and evolutionary differentiation and specialization of ciliates took place before or along with the radiation of other crown-group eukaryotes, including metazoans.
Collapse
Affiliation(s)
- C.-W. Li
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan, China (e-mail: )
| | - J.-Y. Chen
- Nanjing Institute of Geology and Paleontology, Nanjing 210008, China
| | - J. H. Lipps
- Divisions of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - F. Gao
- Nanjing Institute of Geology and Paleontology, Nanjing 210008, China
- Department of Integrative Biology, Museum of Paleontology, University of California, Berkeley, CA 94720, USA
| | - H.-M. Chi
- Nanjing Institute of Geology and Paleontology, Nanjing 210008, China
| | - H.-J. Wu
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan, China (e-mail: )
| |
Collapse
|
48
|
Sequence analyses of the small subunit rRNA gene confirm the paraphyly of oligotrich ciliates sensu lato and support the monophyly of the subclasses Oligotrichia and Choreotrichia (Ciliophora, Spirotrichea). J Zool (1987) 2006. [DOI: 10.1017/s0952836903003546] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Matthews RA. Ichthyophthirius multifiliis Fouquet and Ichthyophthiriosis in Freshwater Teleosts. ADVANCES IN PARASITOLOGY 2005; 59:159-241. [PMID: 16182866 DOI: 10.1016/s0065-308x(05)59003-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The ciliate Ichthyophthirius multifiliis is an important pathogen of freshwater teleosts occurring in both temperate and tropical regions throughout the world. The disease, ichthyophthiriosis, accounts for significant economic losses to the aquaculture industry, including the ornamental fish trade, and epizootics in wild fish populations can result in mass kills. This review attempts to provide a comprehensive overview of the biology of the parasite, covering the free-living and parasitic stages in the life cycle, host-parasite interactions, and the immune response of host and immune evasion strategies by the parasite. Emphasis on the immunological aspects of infection within the fish host, including molecular studies of i-antigens, reflects the current interest in this subject area and the quest to develop a recombinant vaccine against the disease. The current status of methods for the control of ichthyophthiriosis is discussed, together with new approaches in combating this important disease.
Collapse
Affiliation(s)
- R A Matthews
- School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
50
|
Doak TG, Cavalcanti ARO, Stover NA, Dunn DM, Weiss R, Herrick G, Landweber LF. Sequencing the Oxytricha trifallax macronuclear genome: a pilot project. Trends Genet 2004; 19:603-7. [PMID: 14585610 DOI: 10.1016/j.tig.2003.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|