1
|
Xu R, Zhang L, Pan H, Zhang Y. Retinoid X receptor heterodimers in hepatic function: structural insights and therapeutic potential. Front Pharmacol 2024; 15:1464655. [PMID: 39478961 PMCID: PMC11521896 DOI: 10.3389/fphar.2024.1464655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Nuclear receptors (NRs) are key regulators of multiple physiological functions and pathological changes in the liver in response to a variety of extracellular signaling changes. Retinoid X receptor (RXR) is a special member of the NRs, which not only responds to cellular signaling independently, but also regulates multiple signaling pathways by forming heterodimers with various other NR. Therefore, RXR is widely involved in hepatic glucose metabolism, lipid metabolism, cholesterol metabolism and bile acid homeostasis as well as hepatic fibrosis. Specific activation of particular dimers regulating physiological and pathological processes may serve as important pharmacological targets. So here we describe the basic information and structural features of the RXR protein and its heterodimers, focusing on the role of RXR heterodimers in a number of physiological processes and pathological imbalances in the liver, to provide a theoretical basis for RXR as a promising drug target.
Collapse
Affiliation(s)
- Renjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyue Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Banerjee A, Farci P. Fibrosis and Hepatocarcinogenesis: Role of Gene-Environment Interactions in Liver Disease Progression. Int J Mol Sci 2024; 25:8641. [PMID: 39201329 PMCID: PMC11354981 DOI: 10.3390/ijms25168641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
The liver is a complex organ that performs vital functions in the body. Despite its extraordinary regenerative capacity compared to other organs, exposure to chemical, infectious, metabolic and immunologic insults and toxins renders the liver vulnerable to inflammation, degeneration and fibrosis. Abnormal wound healing response mediated by aberrant signaling pathways causes chronic activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM), leading to hepatic fibrosis and cirrhosis. Fibrosis plays a key role in liver carcinogenesis. Once thought to be irreversible, recent clinical studies show that hepatic fibrosis can be reversed, even in the advanced stage. Experimental evidence shows that removal of the insult or injury can inactivate HSCs and reduce the inflammatory response, eventually leading to activation of fibrolysis and degradation of ECM. Thus, it is critical to understand the role of gene-environment interactions in the context of liver fibrosis progression and regression in order to identify specific therapeutic targets for optimized treatment to induce fibrosis regression, prevent HCC development and, ultimately, improve the clinical outcome.
Collapse
Affiliation(s)
- Anindita Banerjee
- Department of Transfusion Transmitted Diseases, ICMR-National Institute of Immunohaematology, Mumbai 400012, Maharashtra, India;
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Melis M, Tang XH, Trasino SE, Gudas LJ. Retinoids in the Pathogenesis and Treatment of Liver Diseases. Nutrients 2022; 14:1456. [PMID: 35406069 PMCID: PMC9002467 DOI: 10.3390/nu14071456] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A (VA), all-trans-retinol (ROL), and its analogs are collectively called retinoids. Acting through the retinoic acid receptors RARα, RARβ, and RARγ, all-trans-retinoic acid, an active metabolite of VA, is a potent regulator of numerous biological pathways, including embryonic and somatic cellular differentiation, immune functions, and energy metabolism. The liver is the primary organ for retinoid storage and metabolism in humans. For reasons that remain incompletely understood, a body of evidence shows that reductions in liver retinoids, aberrant retinoid metabolism, and reductions in RAR signaling are implicated in numerous diseases of the liver, including hepatocellular carcinoma, non-alcohol-associated fatty liver diseases, and alcohol-associated liver diseases. Conversely, restoration of retinoid signaling, pharmacological treatments with natural and synthetic retinoids, and newer agonists for specific RARs show promising benefits for treatment of a number of these liver diseases. Here we provide a comprehensive review of the literature demonstrating a role for retinoids in limiting the pathogenesis of these diseases and in the treatment of liver diseases.
Collapse
Affiliation(s)
- Marta Melis
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| | - Steven E. Trasino
- Nutrition Program, Hunter College, City University of New York, New York, NY 10065, USA;
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| |
Collapse
|
4
|
Delgado ME, Cárdenas BI, Farran N, Fernandez M. Metabolic Reprogramming of Liver Fibrosis. Cells 2021; 10:3604. [PMID: 34944111 PMCID: PMC8700241 DOI: 10.3390/cells10123604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is an excessive and imbalanced deposition of fibrous extracellular matrix (ECM) that is associated with the hepatic wound-healing response. It is also the common mechanism that contributes to the impairment of the liver function that is observed in many chronic liver diseases (CLD). Despite the efforts, no effective therapy against fibrosis exists yet. Worryingly, due to the growing obesity pandemic, fibrosis incidence is on the rise. Here, we aim to summarize the main components and mechanisms involved in the progression of liver fibrosis, with special focus on the metabolic regulation of key effectors of fibrogenesis, hepatic stellate cells (HSCs), and their role in the disease progression. Hepatic cells that undergo metabolic reprogramming require a tightly controlled, fine-tuned cellular response, allowing them to meet their energetic demands without affecting cellular integrity. Here, we aim to discuss the role of ribonucleic acid (RNA)-binding proteins (RBPs), whose dynamic nature being context- and stimuli-dependent make them very suitable for the fibrotic situation. Thus, we will not only summarize the up-to-date literature on the metabolic regulation of HSCs in liver fibrosis, but also on the RBP-dependent post-transcriptional regulation of this metabolic switch that results in such important consequences for the progression of fibrosis and CLD.
Collapse
Affiliation(s)
- M. Eugenia Delgado
- IDIBAPS Biomedical Research Institute, University of Barcelona, 08036 Barcelona, Spain; (B.I.C.); (N.F.)
| | | | | | - Mercedes Fernandez
- IDIBAPS Biomedical Research Institute, University of Barcelona, 08036 Barcelona, Spain; (B.I.C.); (N.F.)
| |
Collapse
|
5
|
Tang XH, Melis M, Lu C, Rappa A, Zhang T, Jessurun J, Gross SS, Gudas LJ. A retinoic acid receptor β2 agonist attenuates transcriptome and metabolome changes underlying nonalcohol-associated fatty liver disease. J Biol Chem 2021; 297:101331. [PMID: 34688661 PMCID: PMC8626588 DOI: 10.1016/j.jbc.2021.101331] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcohol-associated fatty liver disease (NAFLD) is characterized by excessive hepatic accumulation of fat that can progress to steatohepatitis, and currently, therapeutic options are limited. Using a high-fat diet (HFD) mouse model of NAFLD, we determined the effects of the synthetic retinoid, AC261066, a selective retinoic acid receptor β2 (RARβ2) agonist, on the global liver transcriptomes and metabolomes of mice with dietary-induced obesity (DIO) using genome-wide RNA-seq and untargeted metabolomics. We found that AC261066 limits mRNA increases in several presumptive NAFLD driver genes, including Pklr, Fasn, Thrsp, and Chchd6. Importantly, AC261066 limits the increases in the transcript and protein levels of KHK, a key enzyme for fructose metabolism, and causes multiple changes in liver metabolites involved in fructose metabolism. In addition, in cultured murine hepatocytes, where exposure to fructose and palmitate results in a profound increase in lipid accumulation, AC261066 limits this lipid accumulation. Importantly, we demonstrate that in a human hepatocyte cell line, RARβ is required for the inhibitory effects of AC261066 on palmitate-induced lipid accumulation. Finally, our data indicate that AC261066 inhibits molecular events underpinning fibrosis and exhibits anti-inflammatory effects. In conclusion, changes in the transcriptome and metabolome indicate that AC261066 affects molecular changes underlying multiple aspects of NAFLD, including steatosis and fibrosis. Therefore, we suggest that AC261066 may have potential as an effective therapy for NAFLD.
Collapse
Affiliation(s)
- Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Marta Melis
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Changyuan Lu
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Andrew Rappa
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Jose Jessurun
- Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA.
| |
Collapse
|
6
|
Caligiuri A, Gentilini A, Pastore M, Gitto S, Marra F. Cellular and Molecular Mechanisms Underlying Liver Fibrosis Regression. Cells 2021; 10:cells10102759. [PMID: 34685739 PMCID: PMC8534788 DOI: 10.3390/cells10102759] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver injury of different etiologies may result in hepatic fibrosis, a scar formation process consisting in altered deposition of extracellular matrix. Progression of fibrosis can lead to impaired liver architecture and function, resulting in cirrhosis and organ failure. Although fibrosis was previous thought to be an irreversible process, recent evidence convincingly demonstrated resolution of fibrosis in different organs when the cause of injury is removed. In the liver, due to its high regenerative ability, the extent of fibrosis regression and reversion to normal architecture is higher than in other tissues, even in advanced disease. The mechanisms of liver fibrosis resolution can be recapitulated in the following main points: removal of injurious factors causing chronic hepatic damage, elimination, or inactivation of myofibroblasts (through various cell fates, including apoptosis, senescence, and reprogramming), inactivation of inflammatory response and induction of anti-inflammatory/restorative pathways, and degradation of extracellular matrix. In this review, we will discuss the major cellular and molecular mechanisms underlying the regression of fibrosis/cirrhosis and the potential therapeutic approaches aimed at reversing the fibrogenic process.
Collapse
|
7
|
Abstract
Introduction: Hepatic stellate cells (HSCs) are essential for physiological homeostasis of the liver extracellular matrix (ECM). Excessive transdifferentiation of HSC from a quiescent to an activated phenotype contributes to disrupt this balance and can lead to liver fibrosis. Accumulating evidence has suggested that nuclear receptors (NRs) are involved in the regulation of HSC activation, proliferation, and function. Therefore, these NRs may be therapeutic targets to balance ECM homeostasis and inhibit HSC activation in liver fibrosis.Areas covered: In this review, the authors summarized the recent progress in the understanding of the regulatory role of NRs in HSCs and their potential as drug targets in liver fibrosis.Expert opinion: NRs are still potential therapy targets for inhibiting HSCs activation and liver fibrosis. However, the development of NRs agonists or antagonists to inhibit HSCs requires fully consideration of systemic effects.
Collapse
Affiliation(s)
- Shiyun Pu
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
| | - Hongjing Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
| | - Yan Liu
- Department of Interventional Therapy, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
| | - Jiao Liu
- Department of Interventional Therapy, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
- Department of Hepatobiliary Surgery, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
| | - Yuanxin Guo
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
| |
Collapse
|
8
|
Acharya P, Chouhan K, Weiskirchen S, Weiskirchen R. Cellular Mechanisms of Liver Fibrosis. Front Pharmacol 2021; 12:671640. [PMID: 34025430 PMCID: PMC8134740 DOI: 10.3389/fphar.2021.671640] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is a central organ in the human body, coordinating several key metabolic roles. The structure of the liver which consists of the distinctive arrangement of hepatocytes, hepatic sinusoids, the hepatic artery, portal vein and the central vein, is critical for its function. Due to its unique position in the human body, the liver interacts with components of circulation targeted for the rest of the body and in the process, it is exposed to a vast array of external agents such as dietary metabolites and compounds absorbed through the intestine, including alcohol and drugs, as well as pathogens. Some of these agents may result in injury to the cellular components of liver leading to the activation of the natural wound healing response of the body or fibrogenesis. Long-term injury to liver cells and consistent activation of the fibrogenic response can lead to liver fibrosis such as that seen in chronic alcoholics or clinically obese individuals. Unidentified fibrosis can evolve into more severe consequences over a period of time such as cirrhosis and hepatocellular carcinoma. It is well recognized now that in addition to external agents, genetic predisposition also plays a role in the development of liver fibrosis. An improved understanding of the cellular pathways of fibrosis can illuminate our understanding of this process, and uncover potential therapeutic targets. Here we summarized recent aspects in the understanding of relevant pathways, cellular and molecular drivers of hepatic fibrosis and discuss how this knowledge impact the therapy of respective disease.
Collapse
Affiliation(s)
- Pragyan Acharya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Komal Chouhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
9
|
Czuba LC, Wu X, Huang W, Hollingshead N, Roberto JB, Kenerson HL, Yeung RS, Crispe IN, Isoherranen N. Altered vitamin A metabolism in human liver slices corresponds to fibrogenesis. Clin Transl Sci 2021; 14:976-989. [PMID: 33382909 PMCID: PMC8212748 DOI: 10.1111/cts.12962] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
All-trans-retinoic acid (atRA), the active metabolite of vitamin A, has antifibrogenic properties in vitro and in animal models. Liver vitamin A homeostasis is maintained by cell-specific enzymatic activities including storage in hepatic stellate cells (HSCs), secretion into circulation from hepatocytes, and formation and clearance of atRA. During chronic liver injury, HSC activation is associated with a decrease in liver retinyl esters and retinol concentrations. atRA is synthesized through two enzymatic steps from retinol, but it is unknown if the loss of retinoid stores is associated with changes in atRA formation and which cell types contribute to the metabolic changes. The aim of this study was to determine if the vitamin A metabolic flux is perturbed in acute liver injury, and if changes in atRA concentrations are associated with HSC activation and collagen expression. At basal levels, HSC and Kupffer cells expressed key genes involved in vitamin A metabolism, whereas after acute liver injury, complex changes to the metabolic flux were observed in liver slices. These changes include a reproducible spike in atRA tissue concentrations, decreased retinyl ester and atRA formation rate, and time-dependent changes to the expression of metabolizing enzymes. Kinetic simulations suggested that oxidoreductases are important in determining retinoid metabolic flux after liver injury. These early changes precede HSC activation and upregulation of profibrogenic gene expression, which were inversely correlated with atRA tissue concentrations, suggesting that HSC and Kupffer cells are key cells involved in changes to vitamin A metabolic flux and signaling after liver injury. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? Vitamin A is metabolized in the liver for storage as retinyl esters in hepatic stellate cell (HSCs) or to all-trans-retinoic acid (atRA), an active metabolite with antifibrogenic properties. Following chronic liver injury, vitamin A metabolic flux is perturbed, and HSC activation leads to diminished retinoid stores. WHAT QUESTION DID THIS STUDY ADDRESS? Do changes in the expression of vitamin A metabolizing enzymes explain changes in atRA concentrations and the regulation of fibrosis following acute liver injury? WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? In healthy liver, both HSC and Kupffer cells may mediate vitamin A homeostasis. Following acute liver injury, complex changes in metabolizing enzyme expression/activity alter the metabolic flux of retinoids, resulting in a transient peak in atRA concentrations. The atRA concentrations are inversely correlated with profibrogenic gene expression, HSC activation, and collagen deposition. HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? Improved understanding of altered vitamin A metabolic flux in acute liver injury may provide insight into cell-specific contributions to vitamin A loss and lead to novel interventions in liver fibrosis.
Collapse
Affiliation(s)
- Lindsay C. Czuba
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
| | - Xia Wu
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Weize Huang
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
| | - Nicole Hollingshead
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Jessica B. Roberto
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| | | | - Raymond S. Yeung
- Department of SurgeryUniversity of WashingtonSeattleWashingtonUSA
| | - Ian N. Crispe
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Nina Isoherranen
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
10
|
Li B, Cai SY, Boyer JL. The role of the retinoid receptor, RAR/RXR heterodimer, in liver physiology. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166085. [PMID: 33497820 PMCID: PMC11152086 DOI: 10.1016/j.bbadis.2021.166085] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/31/2022]
Abstract
Activated by retinoids, metabolites of vitamin A, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs) play important roles in a wide variety of biological processes, including embryo development, homeostasis, cell proliferation, differentiation and death. In this review, we summarized the functional roles of nuclear receptor RAR/RXR heterodimers in liver physiology. Specifically, RAR/RXR modulate the synthesis and metabolism of lipids and bile acids in hepatocytes, regulate cholesterol transport in macrophages, and repress fibrogenesis in hepatic stellate cells. We have also listed the specific genes that carry these functions and how RAR/RXR regulate their expression in liver cells, providing a mechanistic view of their roles in liver physiology. Meanwhile, we pointed out many questions regarding the detailed signaling of RAR/RXR in regulating the expression of liver genes, and hope future studies will address these issues.
Collapse
Affiliation(s)
- Baixue Li
- Liver Center, Yale University School of Medicine, New Haven, CT 06520, United States; College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Shi-Ying Cai
- Liver Center, Yale University School of Medicine, New Haven, CT 06520, United States.
| | - James L Boyer
- Liver Center, Yale University School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
11
|
Abstract
Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and retinoid homeostasis. In chronic liver injury, HSCs drive hepatic fibrosis and are implicated in inflammation and cancer. To do so, the cells activate, or transdifferentiate, from a quiescent state into proliferative, motile myofibroblasts that secrete extracellular matrix, which demands rapid adaptation to meet a heightened energy need. Adaptations include reprogramming of central carbon metabolism, enhanced mitochondrial number and activity, endoplasmic reticulum stress, and liberation of free fatty acids through autophagy-dependent hydrolysis of retinyl esters that are stored in cytoplasmic droplets. As an archetype for pericytes in other tissues, recognition of the HSC's metabolic drivers and vulnerabilities offer the potential to target these pathways therapeutically to enhance parenchymal growth and modulate repair.
Collapse
Affiliation(s)
- Parth Trivedi
- Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shuang Wang
- Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Scott L Friedman
- Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
12
|
Khomich O, Ivanov AV, Bartosch B. Metabolic Hallmarks of Hepatic Stellate Cells in Liver Fibrosis. Cells 2019; 9:E24. [PMID: 31861818 PMCID: PMC7016711 DOI: 10.3390/cells9010024] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis is a regenerative process that occurs after injury. It is characterized by the deposition of connective tissue by specialized fibroblasts and concomitant proliferative responses. Chronic damage that stimulates fibrogenic processes in the long-term may result in the deposition of excess matrix tissue and impairment of liver functions. End-stage fibrosis is referred to as cirrhosis and predisposes strongly to the loss of liver functions (decompensation) and hepatocellular carcinoma. Liver fibrosis is a pathology common to a number of different chronic liver diseases, including alcoholic liver disease, non-alcoholic fatty liver disease, and viral hepatitis. The predominant cell type responsible for fibrogenesis is hepatic stellate cells (HSCs). In response to inflammatory stimuli or hepatocyte death, HSCs undergo trans-differentiation to myofibroblast-like cells. Recent evidence shows that metabolic alterations in HSCs are important for the trans-differentiation process and thus offer new possibilities for therapeutic interventions. The aim of this review is to summarize current knowledge of the metabolic changes that occur during HSC activation with a particular focus on the retinol and lipid metabolism, the central carbon metabolism, and associated redox or stress-related signaling pathways.
Collapse
Affiliation(s)
- Olga Khomich
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Birke Bartosch
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
| |
Collapse
|
13
|
Xu S, Zhang X, Liu P. Lipid droplet proteins and metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1968-1983. [DOI: 10.1016/j.bbadis.2017.07.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
|
14
|
The stellate cell system (vitamin A-storing cell system). Anat Sci Int 2017; 92:387-455. [PMID: 28299597 DOI: 10.1007/s12565-017-0395-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/15/2017] [Indexed: 01/18/2023]
Abstract
Past, present, and future research into hepatic stellate cells (HSCs, also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells, or Ito cells) are summarized and discussed in this review. Kupffer discovered black-stained cells in the liver using the gold chloride method and named them stellate cells (Sternzellen in German) in 1876. Wake rediscovered the cells in 1971 using the same gold chloride method and various modern histological techniques including electron microscopy. Between their discovery and rediscovery, HSCs disappeared from the research history. Their identification, the establishment of cell isolation and culture methods, and the development of cellular and molecular biological techniques promoted HSC research after their rediscovery. In mammals, HSCs exist in the space between liver parenchymal cells (PCs) or hepatocytes and liver sinusoidal endothelial cells (LSECs) of the hepatic lobule, and store 50-80% of all vitamin A in the body as retinyl ester in lipid droplets in the cytoplasm. SCs also exist in extrahepatic organs such as pancreas, lung, and kidney. Hepatic (HSCs) and extrahepatic stellate cells (EHSCs) form the stellate cell (SC) system or SC family; the main storage site of vitamin A in the body is HSCs in the liver. In pathological conditions such as liver fibrosis, HSCs lose vitamin A, and synthesize a large amount of extracellular matrix (ECM) components including collagen, proteoglycan, glycosaminoglycan, and adhesive glycoproteins. The morphology of these cells also changes from the star-shaped HSCs to that of fibroblasts or myofibroblasts.
Collapse
|
15
|
Rouzaire M, Comptour A, Belville C, Bouvier D, Clairefond G, Ponelle F, Sapin V, Gallot D, Blanchon L. All-trans retinoic acid promotes wound healing of primary amniocytes through the induction of LOXL4, a member of the lysyl oxidase family. Int J Biochem Cell Biol 2016; 81:10-19. [PMID: 27769742 DOI: 10.1016/j.biocel.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/23/2016] [Accepted: 10/07/2016] [Indexed: 01/19/2023]
Abstract
Thirty percent of preterm births directly result from preterm premature rupture of fetal membranes (PPROM). Clinical management currently proposes using a collagen plug to mechanically stop loss of amniotic fluid. Vitamin A and its active metabolite (retinoic acid) have well-known pro-healing properties and could thus make good candidates as a proposable adjuvant to this mechanical approach. Here we investigate the molecular mechanisms involved in the pro-healing properties of all-trans retinoic acid (atRA) in fetal membranes via an approach using an in vitro primary amniocyte wound model and transcriptomics. The results demonstrate that atRA promotes migration in primary amniocytes, improving wound healing in vitro by up to 90%. This effect is mediated by the induction of LOXL4, which plays a crucial role in the dynamics of the extracellular matrix by regulating collagen reticulation. This new insight into how atRA exerts its pro-healing properties prompts us to propose using atRA as a candidate strategy to help prevent future PPROM.
Collapse
Affiliation(s)
- Marion Rouzaire
- Clermont Université, Auvergne University, EA7281- Retinoids, Reproduction, Developmental Diseases, Medicine School, 63000 Clermont-Ferrand, France
| | - Aurélie Comptour
- Clermont Université, Auvergne University, EA7281- Retinoids, Reproduction, Developmental Diseases, Medicine School, 63000 Clermont-Ferrand, France
| | - Corinne Belville
- Clermont Université, Auvergne University, EA7281- Retinoids, Reproduction, Developmental Diseases, Medicine School, 63000 Clermont-Ferrand, France; Clermont Université, Auvergne University, GReD, 63000 Clermont-Ferrand, France
| | - Damien Bouvier
- Clermont Université, Auvergne University, EA7281- Retinoids, Reproduction, Developmental Diseases, Medicine School, 63000 Clermont-Ferrand, France; CHU Clermont-Ferrand, Biochemistry and Molecular Biology Department, 63000 Clermont-Ferrand, France
| | - Gaël Clairefond
- Clermont Université, Auvergne University, EA7281- Retinoids, Reproduction, Developmental Diseases, Medicine School, 63000 Clermont-Ferrand, France
| | - Flora Ponelle
- Clermont Université, Auvergne University, EA7281- Retinoids, Reproduction, Developmental Diseases, Medicine School, 63000 Clermont-Ferrand, France
| | - Vincent Sapin
- Clermont Université, Auvergne University, EA7281- Retinoids, Reproduction, Developmental Diseases, Medicine School, 63000 Clermont-Ferrand, France; CHU Clermont-Ferrand, Biochemistry and Molecular Biology Department, 63000 Clermont-Ferrand, France.
| | - Denis Gallot
- Clermont Université, Auvergne University, EA7281- Retinoids, Reproduction, Developmental Diseases, Medicine School, 63000 Clermont-Ferrand, France; CHU Clermont-Ferrand, Obstetrics and Gynecology Department, 63000 Clermont-Ferrand, France
| | - Loïc Blanchon
- Clermont Université, Auvergne University, EA7281- Retinoids, Reproduction, Developmental Diseases, Medicine School, 63000 Clermont-Ferrand, France
| |
Collapse
|
16
|
Treatment with 4-methylpyrazole modulated stellate cells and natural killer cells and ameliorated liver fibrosis in mice. PLoS One 2015; 10:e0127946. [PMID: 26024318 PMCID: PMC4449184 DOI: 10.1371/journal.pone.0127946] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/20/2015] [Indexed: 02/06/2023] Open
Abstract
Background & Aims Accumulating evidence suggests that retinol and its metabolites are closely associated with liver fibrogenesis. Recently, we demonstrated that genetic ablation of alcohol dehydrogenase 3 (ADH3), a retinol metabolizing gene that is expressed in hepatic stellate cells (HSCs) and natural killer (NK) cells, attenuated liver fibrosis in mice. In the current study, we investigated whether pharmacological ablation of ADH3 has therapeutic effects on experimentally induced liver fibrosis in mice. Methods Liver fibrosis was induced by intraperitoneal injections of carbon tetrachloride (CCl4) or bile duct ligation (BDL) for two weeks. To inhibit ADH3-mediated retinol metabolism, 10 μg 4-methylpyrazole (4-MP)/g of body weight was administered to mice treated with CCl4 or subjected to BDL. The mice were sacrificed at week 2 to evaluate the regression of liver fibrosis. Liver sections were stained for collagen and α-smooth muscle actin (α-SMA). In addition, HSCs and NK cells were isolated from control and treated mice livers for molecular and immunological studies. Results Treatment with 4-MP attenuated CCl4- and BDL-induced liver fibrosis in mice, without any adverse effects. HSCs from 4-MP treated mice depicted decreased levels of retinoic acids and increased retinol content than HSCs from control mice. In addition, the expression of α-SMA, transforming growth factor-β1 (TGF-β1), and type I collagen α1 was significantly reduced in the HSCs of 4-MP treated mice compared to the HSCs from control mice. Furthermore, inhibition of retinol metabolism by 4-MP increased interferon-γ production in NK cells, resulting in increased apoptosis of activated HSCs. Conclusions Based on our data, we conclude that inhibition of retinol metabolism by 4-MP ameliorates liver fibrosis in mice through activation of NK cells and suppression of HSCs. Therefore, retinol and its metabolizing enzyme, ADH3, might be potential targets for therapeutic intervention of liver fibrosis.
Collapse
|
17
|
Barber T, Esteban-Pretel G, Marín MP, Timoneda J. Vitamin a deficiency and alterations in the extracellular matrix. Nutrients 2014; 6:4984-5017. [PMID: 25389900 PMCID: PMC4245576 DOI: 10.3390/nu6114984] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/26/2014] [Accepted: 10/20/2014] [Indexed: 12/13/2022] Open
Abstract
Vitamin A or retinol which is the natural precursor of several biologically active metabolites can be considered the most multifunctional vitamin in mammals. Its deficiency is currently, along with protein malnutrition, the most serious and common nutritional disorder worldwide. It is necessary for normal embryonic development and postnatal tissue homeostasis, and exerts important effects on cell proliferation, differentiation and apoptosis. These actions are produced mainly by regulating the expression of a variety of proteins through transcriptional and non-transcriptional mechanisms. Extracellular matrix proteins are among those whose synthesis is known to be modulated by vitamin A. Retinoic acid, the main biologically active form of vitamin A, influences the expression of collagens, laminins, entactin, fibronectin, elastin and proteoglycans, which are the major components of the extracellular matrix. Consequently, the structure and macromolecular composition of this extracellular compartment is profoundly altered as a result of vitamin A deficiency. As cell behavior, differentiation and apoptosis, and tissue mechanics are influenced by the extracellular matrix, its modifications potentially compromise organ function and may lead to disease. This review focuses on the effects of lack of vitamin A in the extracellular matrix of several organs and discusses possible molecular mechanisms and pathologic implications.
Collapse
Affiliation(s)
- Teresa Barber
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, Avda V. Andrés Estellés s/n, 46100-Burjassot, Spain.
| | - Guillermo Esteban-Pretel
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, Avda V. Andrés Estellés s/n, 46100-Burjassot, Spain.
| | - María Pilar Marín
- Unidad de Microscopía IIS La Fe Valencia, Avda Campanar, 21, 46009-Valencia, Spain.
| | - Joaquín Timoneda
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, Avda V. Andrés Estellés s/n, 46100-Burjassot, Spain.
| |
Collapse
|
18
|
Kim BH. Safety Evaluation and Anti-wrinkle Effects of Retinoids on Skin. Toxicol Res 2013; 26:61-6. [PMID: 24278507 PMCID: PMC3834457 DOI: 10.5487/tr.2010.26.1.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 02/18/2010] [Accepted: 02/21/2010] [Indexed: 11/20/2022] Open
Abstract
Retinoids have many beneficial effects on dermatological applications. But, retinoids cause skin irritation. In this study, the safety of retinoids was clarified via both primary skin irritation test in rabbits and sensitization study using an integrated model for the differentiation of chemical-induced allergic and irritant skin reaction (IMDS) , an alternative method to sensitization test. The effects of retinoids on the change of ultraviolet A (UVA) -induced matrix metalloproteinase-1 (MMP-1) in human skin fibroblasts and the modulation of type-1 pN collagen synthesis in hairless mice were examined to clarify the anti-wrinkle effects. All-trans retinol (t-ROL) and its derivative, all-trans retinoic acid (t-RA) , showed mild skin irritation but did not induce the sensitization. t-ROL and t-RA exerted anti-wrinkle effects by inhibiting the UVA-induced MMP-1 in human skin fibroblasts and increasing the type-1 pN collagen synthesis in hairless mice. These findings suggest that retinoids do not induce the allergy, and show anti-wrinkle effects by decreasing MMP-1 activation and increasing collagen synthesis.
Collapse
Affiliation(s)
- Bae-Hwan Kim
- Department of Public Health, Keimyung University, Daegu 704-701, Korea
| |
Collapse
|
19
|
Zhang Y, Ross AC. Retinoic acid and the transcription factor MafB act together and differentially to regulate aggrecan and matrix metalloproteinase gene expression in neonatal chondrocytes. J Cell Biochem 2013; 114:471-9. [PMID: 22961837 DOI: 10.1002/jcb.24387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/30/2012] [Indexed: 11/11/2022]
Abstract
Vitamin A (VA) and its active form, retinoic acid (RA), are regulators of skeletal development and chondrogenesis. MafB, a transcription factor, has been identified as an important mediator in monocyte and osteoclast differentiation. However, the presence and function of MafB in chondrocytes is not clear. In this study, MafB gene expression was regulated by both the VA status of the mother (VA-marginal, adequate, and supplemented diets) and by direct oral supplementation of the neonates with VARA (VA mixed with 10% RA). Expression was highest in neonates of VA-supplemented versus VA-marginal dams (P < 0.05), and in VARA-treated versus placebo-treated neonates across all diet groups (P < 0.05). To examine cellular changes, primary chondrocytes derived from neonatal rat ribs were cultured in the presence of RA for up to 48 h. MafB mRNA exhibited a time- and dose-dependent increase in response to RA, while the induction of MafB mRNA was attenuated by BMS-493, a pan-RAR inverse agonist, implicating RAR signaling in the regulation of MafB. The genetic knockdown of MafB in chondrocytes using siRNA (MafB(SI) chondrocytes) abrogated the RA-induced increase in MafB expression. MafB(SI) chondrocytes expressed higher levels of aggrecan mRNA. Additionally, the increased matrix metalloproteinase (MMP)3 and MMP13 gene expression due to RA was attenuated in MafB(SI) chondrocytes, while total extracellular matrix staining was increased. These results support a role for MafB as a regulator of chondrocyte gene expression and matrix formation via control of aggrecan, MMP3 and MMP13 expression, and indicate an important role for RA in the regulation of MafB.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
20
|
Zhang Y, Chen Q, Ross AC. Retinoic acid and tumor necrosis factor-α induced monocytic cell gene expression is regulated in part by induction of transcription factor MafB. Exp Cell Res 2012; 318:2407-16. [PMID: 22820162 DOI: 10.1016/j.yexcr.2012.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 12/24/2022]
Abstract
All-trans-retinoic acid (RA), the major active metabolite of vitamin A, is a regulator of gene expression with many roles in cell differentiation. In the present study, we investigated RA in the regulation of MafB, a basic leucine-zipper transcription factor with broad roles in embryonic development, hematopoiesis and monocyte-macrophage differentiation. In RA-treated THP-1 human monocytic cells, MafB mRNA and protein levels were up-regulated by RA dose and time-dependently, while, additionally, RA and tumor necrosis factor (TNF)α, also known to induce monocyte to macrophage differentiation, increased MafB expression synergistically. Screening of potential targets containing Maf recognition elements (MARE motifs) in their promoter regions identified SPOCK1, Blimp1 and CCL2 as potential targets; these genes are related to cell communication, recruitment and differentiation, respectively. Across cell treatments, SPOCK1, Blimp1 and CCL2 mRNA levels were highly correlated (P<0.001) with MafB. ChIP assays demonstrated increased MafB protein binding to MARE elements in the promoter regions of SPOCK1, Blimp1 and CCL2 in RA and TNFα-treated cells, as well as acetylation of histone-H4 in MARE-containing regions, indicative of chromatin activation. Conversely, reducing MafB protein by microRNA silencing significantly decreased the expression of SPOCK1, Blimp1 and CCL2 (P<0.01). Moreover, the reduction in MafB expression and these downstream targets correlated with decreased cell differentiation as determined by cell-surface CD11b expression and phagocytic activity. We conclude that MafB may be a key factor in mediating the ability of RA and TNFα to regulate monocytic cell communication, recruitment and differentiation through regulation of MafB target genes including SPOCK1, CCL2 and Blimp1.
Collapse
Affiliation(s)
- Y Zhang
- The Pennsylvania State University, Department of Nutritional Sciences, 110 Chandlee Laboratory, University Park, PA 16802, United States
| | | | | |
Collapse
|
21
|
Abstract
Quiescent hepatic stellate cells (HSCs) in healthy liver store 80% of total liver retinols and release them depending on the extracellular retinol status. However, HSCs activated by liver injury lose their retinols and produce a considerable amount of extracellular matrix, subsequently leading to liver fibrosis. Emerging evidence suggests that retinols and their metabolites such as retinoic acids (RAs) contribute to liver regeneration, fibrosis and tumor. However, it is not clear yet why HSCs lose retinol, which enzymes are involved in the retinol metabolism of HSCs and what function of retinol metabolites on HSCs upon liver injury. Recently, our group and collaborators have demonstrated that during activation, HSCs not only lose retinols but also metabolize them into RAs by alcohol dehydrogenases and retinaldehyde dehydrogenases. As transcriptional factors, metabolized RAs induce retinoic acid early inducible-1 and suppressor of cytokine signaling 1 in HSCs, which plays an important role in the interaction between HSCs and natural killer cells. In addition, RAs released from HSCs may induce hepatic cannabinoid receptor 1 expression in alcoholic liver steatosis or regulate immune responses upon liver inflammation. The present review summarizes the role of endogenous metabolized RAs on HSCs themselves and on other liver cells including hepatocytes and immune cells. Moreover, the effects of exogenous retinol and RA treatments on HSCs and liver disease are discussed.
Collapse
Affiliation(s)
- Young-Sun Lee
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | |
Collapse
|
22
|
Raglow Z, Thoma-Perry C, Gilroy R, Wan YJY. The interaction between HCV and nuclear receptor-mediated pathways. Pharmacol Ther 2011; 132:30-8. [PMID: 21620888 DOI: 10.1016/j.pharmthera.2011.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/03/2011] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) is presently the leading indication for liver transplantation in Western countries. Treatment for HCV infection includes a combination of pegylated interferon and ribavirin, which produces highly variable response rates. This reflects the lack of information regarding the roles of host and viral components during viral pathogenesis. Vital processes regulated by the liver, including metabolism, lipid homeostasis, cellular proliferation, and the immune response, are known to be systematically dysregulated as a result of persistent HCV infection. Nuclear receptors and their ligands are recognized as indispensable regulators of liver homeostasis. Pathways mediated by the nuclear receptor superfamily have been shown to be profoundly disrupted during HCV infection, leading to an increased importance in elucidating the exact nature of this complex relationship. Expanded understanding of the role of nuclear receptors in HCV infection may therefore be an essential step in the search for a more universally effective treatment.
Collapse
Affiliation(s)
- Zoe Raglow
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | |
Collapse
|
23
|
Wang Z, Xu J, Zheng Y, Chen W, Sun Y, Wu Z, Luo M. Effect of the regulation of retinoid X receptor-α gene expression on rat hepatic fibrosis. Hepatol Res 2011; 41:475-83. [PMID: 21518404 DOI: 10.1111/j.1872-034x.2011.00794.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM To study the effect of retinoid X receptor-α (RXR-α) expression on rat hepatic fibrosis. METHODS Rat hepatic fibrosis was induced by CCl(4) , and the rats were randomly divided into an early-phase hepatic fibrosis group (2 weeks) and a sustained hepatic fibrosis group (8 weeks). They were then divided into four groups (normal control, hepatic fibrosis, negative control and RXR-α groups). A recombinant lentiviral expression vector carrying the rat RXR-α gene was injected into the rats to induce RXR-α expression by intraportal infusion, hepatic tissue pathological examination was performed, and hydroxyproline content was detected. Hepatic stellate cells (HSC) were cultured in vitro, an RXR-α lentivirus vector was used to activate HSC, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) activation was assayed to detect HSC proliferation. RESULTS In vivo experiments indicated that in the sustained hepatic fibrosis group, there were significant differences in the hydroxyproline content, and expression of RXR-α, α-smooth muscle actin (α-SMA) and type I collagen (P < 0.01). However, in the early-phase hepatic fibrosis group, hydroxyproline content and the protein level of RXR-α showed no significant difference compared with the normal control group (P > 0.05). In vitro studies revealed that expression of RXR-α significantly inhibited expression of α-SMA and type I collagen in activated HSC (P < 0.01), as well as HSC proliferation (P < 0.01). CONCLUSION The increased RXR-α gene expression inhibited HSC activation and proliferation and the degree of hepatic fibrosis.
Collapse
Affiliation(s)
- Zheng Wang
- Department of General Surgery, Renji Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Additive inhibitory effect of experimentally induced hepatic cirrhosis by agonists of peroxisome proliferator activator receptor gamma and retinoic acid receptor. Dig Dis Sci 2009; 54:292-9. [PMID: 18594976 DOI: 10.1007/s10620-008-0336-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 05/06/2008] [Indexed: 01/09/2023]
Abstract
Peroxisome proliferator activator receptor (PPAR) ligands prevent liver fibrosis, while the role of all-trans retinoic acid (ATRA) and its metabolite 9-cis retinoic acid (9-cis RA) is less clear. We have investigated the ability of the combination of PPAR gamma ligand rosiglitazone (RSG) and of ATRA to prevent liver fibrosis. In vivo treatment with RSG or ATRA reduced fibrotic nodules, spleen weight, and hydroxyproline levels in rat model of thioacetamide-induced liver fibrosis. The combination of ATRA + RSG caused the strongest inhibition, accompanied by decreased expression of collagen I, alpha-smooth muscle actin, TGF beta 1, and TNFalpha. In vitro studies showed that PPAR gamma ligand 15-deoxy-Delta 12,14-prostaglandin J(2)[PJ(2)] and RXR ligand 9-cis RA or PJ(2) and ATRA inhibited proliferation of hepatic stellate cells HSC-T6. 9-cis RA inhibited c-jun levels and also inhibited expression of its receptor RXR alpha in HSC-T6 cells. The combination of PPAR-gamma and RAR agonists demonstrated an additive effect in the inhibition of TAA-induced hepatic fibrosis, due to inhibition of HSC proliferation and reduction of profibrotic TGF beta 1 and proinflammatory TNFalpha.
Collapse
|
25
|
Yamaguchi K, Yang L, McCall S, Huang J, Yu XX, Pandey SK, Bhanot S, Monia BP, Li YX, Diehl AM. Diacylglycerol acyltranferase 1 anti-sense oligonucleotides reduce hepatic fibrosis in mice with nonalcoholic steatohepatitis. Hepatology 2008; 47:625-35. [PMID: 18000880 DOI: 10.1002/hep.21988] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
UNLABELLED Retinyl ester (RE) stores decrease during hepatic stellate cell (HSC) activation and liver fibrosis. Although retinol esterification is mostly catalyzed by lecithin:retinol acyltransferase (LRAT), diacylglycerol acyltransferase (DGAT)1 also does this. In previous reports, LRAT(-/-) mice had reduced hepatic RE but neither excessive HSC activation nor liver fibrosis, and DGAT1(-/-) mice had increased liver levels of RE and retinol. We sought to clarify the role of DGAT1 in liver fibrosis. Expression of DGAT1/2 was compared by real time PCR in freshly isolated, primary mouse HSCs and hepatocytes. To induce nonalcoholic steatohepatitis (NASH) and liver fibrosis, adult male db/db mice were fed methionine choline-deficient (MCD) diets. Half were treated with DGAT1 antisense oligonucleotide (ASO); the rest were injected with saline. Results were compared with chow-fed controls. Inhibition of DGAT1 in liver had no effect on hepatic triglyceride content or liver necroinflammation but reduced HSC activation and liver fibrosis in mice with NASH. To evaluate the role of DGAT1 in HSC activation, HSC were isolated from healthy rats treated with DGAT1 ASO or saline. DGAT1 was expressed at relatively high levels in HSCs. HSC isolated from DGAT1 ASO-treated rats had reduced DGAT1 expression and increased messenger RNA (mRNA) levels of LRAT and cellular retinol binding protein-1. During culture, they retained more vitamin A, had repressed collagen a2 (I) transcriptional activity, and expressed less collagen a1 (I) and a2 (I) mRNA. CONCLUSION DGAT1 may be a therapeutic target in NASH because inhibiting DGAT1 favorably altered. HSC retinoid homeostasis and inhibited hepatic fibrosis in mice with NASH.
Collapse
Affiliation(s)
- Kanji Yamaguchi
- Division of Gastroenterology, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization. The paradigm in liver injury of activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation. Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for antigen presentation and induction of tolerance, as well as their emerging relationship to bone marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and treatment of liver disease.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| |
Collapse
|
27
|
Abstract
The identification of activated hepatic stellate cells and related cell types as key fibrogenic effectors during liver injury has led to intense evaluation of transcriptional events underlying their behavior. While initial studies focused on characterizing interactions between transcription factors and regulatory regions within gene promoters, epigenetic mechanisms have emerged as major determinants of gene activation and repression, in particular histone acetylation and promoter methylation, as well as other complex conditional interactions that underlie global changes in gene expression. Three examples are provided that illustrate how stellate cell activation may be controlled by widely divergent regulatory pathways, including alternative splicing of a growth inhibitory transcription factor (Kruppel-like factor-6), epigenetic regulation of a factor regulating stellate cell survival (nuclear factor kappaB), and regulation of a transcription factor whose expression maintains stellate cell quiescence (LIM homeobox gene 2 [Lhx2]). These complex cascades illustrate how clarifying the finely tuned interdependent layers of transcriptional, translational, post-translational and epigenetic gene regulation in stellate cells is raising new prospects for therapy of hepatic fibrosis.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
28
|
Wang L, Potter JJ, Rennie-Tankersley L, Novitskiy G, Sipes J, Mezey E. Effects of retinoic acid on the development of liver fibrosis produced by carbon tetrachloride in mice. Biochim Biophys Acta Mol Basis Dis 2006; 1772:66-71. [PMID: 17011172 DOI: 10.1016/j.bbadis.2006.08.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 07/27/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
Abstract
The role of retinoic acid (RA) in liver fibrogenesis was previously studied in cultured hepatic stellate cells (HSCs). RA suppresses the expression of alpha2(I) collagen by means of the activities of specific nuclear receptors RARalpha, RXRbeta and their coregulators. In this study, the effects of RA in fibrogenesis were examined in carbon tetrachloride (CCl4) induced liver fibrosis in mice. Mice were treated with CCl4 or RA and CCl4, along side control groups, for 12weeks. RA reduced the amount of histologically detectable fibrosis produced by CCl4. This was accompanied by a attenuation of the CCl4 induced increase in alpha2(I) collagen mRNA and a lower (2-fold versus 3-fold) increase in liver hydroxyproline. Furthermore, RA reduced the levels of 3-nitrotyrosine (3-NT) protein adducts and thiobarbituric acid (TBA) reactive substance (TBARS) in the liver, which are formed as results of oxidative stress induced by CCl4 treatment. These in vivo findings support our previous in vitro studies in cultured HSC of the inhibitory effect of RA on type I collagen expression. The data also provide evidence that RA reduces CCl4 induced oxidative stress in liver, suggesting that the anti-fibrotic role of RA is not limited to the inhibition of type I collagen expression.
Collapse
Affiliation(s)
- Lan Wang
- Department of Medicine, The Johns Hopkins University School of Medicine, The Johns Hopkins University, Baltimore, MD 21205-2195, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Marín MP, Esteban-Pretel G, Alonso R, Sado Y, Barber T, Renau-Piqueras J, Timoneda J. Vitamin A deficiency alters the structure and collagen IV composition of rat renal basement membranes. J Nutr 2005; 135:695-701. [PMID: 15795420 DOI: 10.1093/jn/135.4.695] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Retinoids can modulate the expression of extracellular matrix (ECM) proteins with variable results depending on other contributing factors. Because changes in these proteins may alter the composition and impair the function of specialized ECM structures such as basement membranes (BMs), we studied the effects of vitamin A deficiency on renal BMs during the growing period. Newborn male rats were fed a vitamin A-deficient (VAD) diet for 50 d. The ultrastructure of renal BMs was analyzed by electron microscopy. Total collagen IV, the different alpha(IV) chains, matrix degrading metalloproteinases (MMP), and tissue inhibitors of metalloproteinases (TIMP) were quantified by immunocytochemistry and/or Western blotting. Tumor necrosis factor-alpha and interleukin-1beta were measured by ELISA. Semiquantitative RT-PCR was used for determining the steady-state levels for each alpha(IV) chain mRNA. VAD renal BMs showed an irregular thickening, particularly tubular BM. The total collagen IV content was increased, but there was a differential expression of the collagen IV chains. The protein amounts for alpha1(IV), alpha4(IV), and alpha5(IV) were similarly increased, whereas alpha2(IV) and alpha3(IV) were decreased. The levels of mRNA for each collagen IV chain changed in parallel with those of the corresponding protein. Both MMP2 and MMP9 were diminished, but no change was detected in TIMP1 or TIMP2. Our data indicate that nutritional VAD leads to alterations in the structure of renal BMs and to quantitative and qualitative variations in its collagen IV composition. These changes may be a factor predisposing to or resulting in kidney malfunction and renal disease.
Collapse
Affiliation(s)
- M Pilar Marín
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Flentke GR, Baker MW, Docterman KE, Power S, Lough J, Smith SM. Microarray analysis of retinoid-dependent gene activity during rat embryogenesis: increased collagen fibril production in a model of retinoid insufficiency. Dev Dyn 2004; 229:886-98. [PMID: 15042712 DOI: 10.1002/dvdy.10489] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Retinoic acid (RA) is an essential mediator of embryogenesis. Some, but not all, of its targets have been identified. We previously developed a rat model of gestational retinoid deficiency (RAD; Power et al. [1999] Dev. Dyn. 216:469-480) and generated embryos with developmental impairments that closely resemble genetic and dietary models of retinoid insufficiency. Here, we used microarray analysis and expression profiling to identify 88 transcripts whose abundance was altered under conditions of retinoid insufficiency, as compared with normal embryos. Among these, the induction by RAD of genes involved in collagen I synthesis (COL1A1, IA2 and VA2, prolyl-4-hydroxylase-alpha1) and protein galactosylation (galactokinase, ABO galactosyltransferase, UDP-galactose transporter-related protein) was especially noteworthy because extracellular matrix regulates many developmental events. We also identified several genes involved with stress responses (cathepsin H, UBC2E, IGFBP3, smoothelin). Real-time polymerase chain reaction analysis of selected candidates revealed excellent agreement with the array findings. Further validation came from the demonstration that these genes were similarly dysregulated in two genetic models of retinoid insufficiency, the retinol binding protein null-mutant embryo and the Raldh2 null-mutant embryo. In situ hybridization of RAD embryos found increased collagen IA1 and IGFBP3 mRNA within the connective mesenchyme and vasculature, respectively, and a failure to repress the growth factor midkine within the RAD neural tube. Many of the identified genes were not known previously to respond to retinoid status and will provide new insights to retinoid roles and to the consequences of retinoid insufficiency.
Collapse
Affiliation(s)
- George R Flentke
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
31
|
Wang L, Tankersley LR, Tang M, Potter JJ, Mezey E. Regulation of alpha 2(I) collagen expression in stellate cells by retinoic acid and retinoid X receptors through interactions with their cofactors. Arch Biochem Biophys 2004; 428:92-8. [PMID: 15234273 DOI: 10.1016/j.abb.2004.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 05/10/2004] [Indexed: 10/26/2022]
Abstract
Retinoic acid (RA) suppresses alpha 2(I) collagen expression in hepatic stellate cells through the binding of retinoic acid receptor beta (RAR beta) and retinoid X receptor alpha (RXR alpha) to RA response elements (RAREs) in the alpha 2(I) collagen promoter. This study determined the influence of coactivators and corepressors to RAR beta and RXR alpha on the regulation of the alpha 2(I) collagen promoter. The coactivators, steroid receptor coactivator-1 (SRC-1) and growth hormone receptor interacting protein-1 (GRIP-1), enhanced, while the nuclear receptor corepressor (N-CoR) abolished the inhibitory effect of RAR beta and RXR alpha on the promoter activity. In the presence of RA, the coactivators SRC-1 and GRIP-1 formed complexes with RAR beta and RXR alpha which are bound to an oligonucleotide specifying a RARE site in the promoter. In conclusion, this study shows that in the presence of retinoic acid, the coactivators SRC-1 and GRIP-1 augment, while the corepressor N-CoR abolishes, the suppressive effects of RAR beta and RXR alpha on alpha 2(I) collagen promoter activity.
Collapse
Affiliation(s)
- Lan Wang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
32
|
Hellemans K, Verbuyst P, Quartier E, Schuit F, Rombouts K, Chandraratna RAS, Schuppan D, Geerts A. Differential modulation of rat hepatic stellate phenotype by natural and synthetic retinoids. Hepatology 2004; 39:97-108. [PMID: 14752828 DOI: 10.1002/hep.20015] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Activation of hepatic stellate cells (HSC) is a central event in the pathogenesis of liver fibrosis during chronic liver injury. We examined the expression of retinoic acid (RAR) and retinoid X receptors (RXR) during HSC activation and evaluated the influence of natural and synthetic retinoic acids (RA) on the phenotype of culture-activated HSC. The expression of the major RAR/RXR subtypes and isoforms was analyzed by Northern hybridization. Presence of functional receptor proteins was established by gel shift analysis. Retinoic acids, RAR, and RXR selective agonists and an RAR antagonist were used to evaluate the effects of retinoid signalling on matrix synthesis by Northern blotting and immunoprecipitation, and on cell proliferation by BrdU incorporation. The 9-cisRA and synthetic RXR agonists reduced HSC proliferation and synthesis of collagen I and fibronectin. All-trans RA and RAR agonists both reduced the synthesis of collagen I, collagen III, and fibronectin, but showed a different effect on cell proliferation. Synthetic RAR agonists did not affect HSC proliferation, indicating that ATRA inhibits cell growth independent of its interaction with RARs. In contrast, RAR specific antagonists enhance HSC proliferation and demonstrate that RARs control proliferation in a negative way. In conclusion, natural RAs and synthetic RAR or RXR specific ligands exert differential effects on activated HSC. Our observations may explain prior divergent results obtained following retinoid administration to cultured stellate cells or to animals subjected to fibrogenic stimuli.
Collapse
Affiliation(s)
- Karine Hellemans
- Lab. Molecular Liver Cell Biology, Free University Brussels, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|