1
|
Yao S, Yang B, Li J, Tang S, Tang S, Kim SC, Wang X. Phosphatidic acid signaling in modulating plant reproduction and architecture. PLANT COMMUNICATIONS 2024:101234. [PMID: 39722455 DOI: 10.1016/j.xplc.2024.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Phosphatidic acid (PA) is an important class of signaling lipids involved in various biological processes in plants. Functional characterization of mutants of PA-metabolizing enzymes, combined with lipidomics and protein-lipid interaction analyses, has revealed the key role of PA signaling in plant responses to biotic and abiotic stresses. Moreover, PA and its metabolizing enzymes influence several reproductive processes, including gametogenesis, pollen tube growth, self-incompatibility, haploid embryo formation, embryogenesis, and seed development. They also play a significant role in shaping plant reproductive and root architecture. Recent studies have shed light on the diverse mechanisms of PA's action, though much remains to be elucidated. Here, we summarize recent advances in the study of PA and its metabolizing enzymes, emphasizing their roles in plant sexual reproduction and architecture. We also explore potential mechanisms underlying PA's functions and discuss future research directions.
Collapse
Affiliation(s)
- Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Bao Yang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Jianwu Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Shan Tang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Shaohua Tang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Sang-Chul Kim
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
2
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
The Cytoskeleton in Plant Immunity: Dynamics, Regulation, and Function. Int J Mol Sci 2022; 23:ijms232415553. [PMID: 36555194 PMCID: PMC9779068 DOI: 10.3390/ijms232415553] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The plant cytoskeleton, consisting of actin filaments and microtubules, is a highly dynamic filamentous framework involved in plant growth, development, and stress responses. Recently, research has demonstrated that the plant cytoskeleton undergoes rapid remodeling upon sensing pathogen attacks, coordinating the formation of microdomain immune complexes, the dynamic and turnover of pattern-recognizing receptors (PRRs), the movement and aggregation of organelles, and the transportation of defense compounds, thus serving as an important platform for responding to pathogen infections. Meanwhile, pathogens produce effectors targeting the cytoskeleton to achieve pathogenicity. Recent findings have uncovered several cytoskeleton-associated proteins mediating cytoskeletal remodeling and defense signaling. Furthermore, the reorganization of the actin cytoskeleton is revealed to further feedback-regulate reactive oxygen species (ROS) production and trigger salicylic acid (SA) signaling, suggesting an extremely complex role of the cytoskeleton in plant immunity. Here, we describe recent advances in understanding the host cytoskeleton dynamics upon sensing pathogens and summarize the effectors that target the cytoskeleton. We highlight advances in the regulation of cytoskeletal remodeling associated with the defense response and assess the important function of the rearrangement of the cytoskeleton in the immune response. Finally, we propose suggestions for future research in this area.
Collapse
|
4
|
Cao L, Wang W, Zhang W, Staiger CJ. Lipid Signaling Requires ROS Production to Elicit Actin Cytoskeleton Remodeling during Plant Innate Immunity. Int J Mol Sci 2022; 23:ijms23052447. [PMID: 35269589 PMCID: PMC8910749 DOI: 10.3390/ijms23052447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 01/22/2023] Open
Abstract
In terrestrial plants a basal innate immune system, pattern-triggered immunity (PTI), has evolved to limit infection by diverse microbes. The remodeling of actin cytoskeletal arrays is now recognized as a key hallmark event during the rapid host cellular responses to pathogen attack. Several actin binding proteins have been demonstrated to fine tune the dynamics of actin filaments during this process. However, the upstream signals that stimulate actin remodeling during PTI signaling remain poorly characterized. Two second messengers, reactive oxygen species (ROS) and phosphatidic acid (PA), are elevated following pathogen perception or microbe-associated molecular pattern (MAMP) treatment, and the timing of signaling fluxes roughly correlates with actin cytoskeletal rearrangements. Here, we combined genetic analysis, chemical complementation experiments, and quantitative live-cell imaging experiments to test the role of these second messengers in actin remodeling and to order the signaling events during plant immunity. We demonstrated that PHOSPHOLIPASE Dβ (PLDβ) isoforms are necessary to elicit actin accumulation in response to flg22-associated PTI. Further, bacterial growth experiments and MAMP-induced apoplastic ROS production measurements revealed that PLDβ-generated PA acts upstream of ROS signaling to trigger actin remodeling through inhibition of CAPPING PROTEIN (CP) activity. Collectively, our results provide compelling evidence that PLDβ/PA functions upstream of RBOHD-mediated ROS production to elicit actin rearrangements during the innate immune response in Arabidopsis.
Collapse
Affiliation(s)
- Lingyan Cao
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA;
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (L.C.); (C.J.S.)
| | - Wenyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
| | - Weiwei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: (L.C.); (C.J.S.)
| |
Collapse
|
5
|
Kućko A, Florkiewicz AB, Wolska M, Miętki J, Kapusta M, Domagalski K, Wilmowicz E. Jasmonate-Dependent Response of the Flower Abscission Zone Cells to Drought in Yellow Lupine. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040527. [PMID: 35214860 PMCID: PMC8877524 DOI: 10.3390/plants11040527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 05/31/2023]
Abstract
Lipid membranes, as primary places of the perception of environmental stimuli, are a source of various oxygenated polyunsaturated fatty acids-oxylipins-functioning as modulators of many signal transduction pathways, e.g., phytohormonal. Among exogenous factors acting on plant cells, special attention is given to drought, especially in highly sensitive crop species, such as yellow lupine. Here, we used this species to analyze the contribution of lipid-related enzymes and lipid-derived plant hormones in drought-evoked events taking place in a specialized group of cells-the flower abscission zone (AZ)-which is responsible for organ detachment from the plant body. We revealed that water deficits in the soil causes lipid peroxidation in these cells and the upregulation of phospholipase D, lipoxygenase, and, concomitantly, jasmonic acid (JA) strongly accumulates in AZ tissue. Furthermore, we followed key steps in JA conjugation and signaling under stressful conditions by monitoring the level and tissue localization of enzyme providing JA derivatives (JASMONATE RESISTANT1) and the JA receptor (CORONATINE INSENSITIVE1). Collectively, drought-triggered AZ activation during the process of flower abscission is closely associated with the lipid modifications, leading to the formation of JA, its conjugation, and induction of signaling pathways.
Collapse
Affiliation(s)
- Agata Kućko
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159 Street, 02-776 Warsaw, Poland
| | - Aleksandra Bogumiła Florkiewicz
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (M.W.); (J.M.); (E.W.)
| | - Magdalena Wolska
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (M.W.); (J.M.); (E.W.)
| | - Jakub Miętki
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (M.W.); (J.M.); (E.W.)
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, University of Gdańsk, 59 Wita Stwosza, 80-308 Gdańsk, Poland;
| | - Krzysztof Domagalski
- Department of Immunology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland;
| | - Emilia Wilmowicz
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (M.W.); (J.M.); (E.W.)
| |
Collapse
|
6
|
Chang YC, Chang PMH, Li CH, Chan MH, Lee YJ, Chen MH, Hsiao M. Aldolase A and Phospholipase D1 Synergistically Resist Alkylating Agents and Radiation in Lung Cancer. Front Oncol 2022; 11:811635. [PMID: 35127525 PMCID: PMC8813753 DOI: 10.3389/fonc.2021.811635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Exposure to alkylating agents and radiation may cause damage and apoptosis in cancer cells. Meanwhile, this exposure involves resistance and leads to metabolic reprogramming to benefit cancer cells. At present, the detailed mechanism is still unclear. Based on the profiles of several transcriptomes, we found that the activity of phospholipase D (PLD) and the production of specific metabolites are related to these events. Comparing several particular inhibitors, we determined that phospholipase D1 (PLD1) plays a dominant role over other PLD members. Using the existing metabolomics platform, we demonstrated that lysophosphatidylethanolamine (LPE) and lysophosphatidylcholine (LPC) are the most critical metabolites, and are highly dependent on aldolase A (ALDOA). We further demonstrated that ALDOA could modulate total PLD enzyme activity and phosphatidic acid products. Particularly after exposure to alkylating agents and radiation, the proliferation of lung cancer cells, autophagy, and DNA repair capabilities are enhanced. The above phenotypes are closely related to the performance of the ALDOA/PLD1 axis. Moreover, we found that ALDOA inhibited PLD2 activity and enzyme function through direct protein–protein interaction (PPI) with PLD2 to enhance PLD1 and additional carcinogenic features. Most importantly, the combination of ALDOA and PLD1 can be used as an independent prognostic factor and is correlated with several clinical parameters in lung cancer. These findings indicate that, based on the PPI status between ALDOA and PLD2, a combination of radiation and/or alkylating agents with regulating ALDOA-PLD1 may be considered as a new lung cancer treatment option.
Collapse
Affiliation(s)
- Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Peter Mu-Hsin Chang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Huang Chen
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Michael Hsiao,
| |
Collapse
|
7
|
Zhang G, Yang J, Chen X, Zhao D, Zhou X, Zhang Y, Wang X, Zhao J. Phospholipase D- and phosphatidic acid-mediated phospholipid metabolism and signaling modulate symbiotic interaction and nodulation in soybean (Glycine max). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:142-158. [PMID: 33377234 DOI: 10.1111/tpj.15152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/22/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Symbiotic rhizobium-legume interactions, such as root hair curling, rhizobial invasion, infection thread expansion, cell division and proliferation of nitrogen-fixing bacteroids, and nodule formation, involve extensive membrane synthesis, lipid remodeling and cytoskeleton dynamics. However, little is known about these membrane-cytoskeleton interfaces and related genes. Here, we report the roles of a major root phospholipase D (PLD), PLDα1, and its enzymatic product, phosphatidic acid (PA), in rhizobium-root interaction and nodulation. PLDα1 was activated and the PA content transiently increased in roots after rhizobial infection. Levels of PLDα1 transcript and PA, as well as actin and tubulin cytoskeleton-related gene expression, changed markedly during root-rhizobium interactions and nodule development. Pre-treatment of the roots of soybean seedlings with n-butanol suppressed the generation of PLD-derived PA, the expression of early nodulation genes and nodule numbers. Overexpression or knockdown of GmPLDα1 resulted in changes in PA levels, glycerolipid profiles, nodule numbers, actin cytoskeleton dynamics, early nodulation gene expression and hormone levels upon rhizobial infection compared with GUS roots. The transcript levels of cytoskeleton-related genes, such as GmACTIN, GmTUBULIN, actin capping protein 1 (GmCP1) and microtubule-associating protein (GmMAP1), were modified in GmPLDα1-altered hairy roots compared with those of GUS roots. Phosphatidic acid physically bound to GmCP1 and GmMAP1, which could be related to cytoskeletal changes in rhizobium-infected GmPLDα1 mutant roots. These data suggest that PLDα1 and PA play important roles in soybean-rhizobium interaction and nodulation. The possible underlying mechanisms, including PLDα1- and PA-mediated lipid signaling, membrane remodeling, cytoskeleton dynamics and related hormone signaling, are discussed herein.
Collapse
Affiliation(s)
- Gaoyang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Jihong Yang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xiangli Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dandan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xiuhong Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yuliang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St Louis, St Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
8
|
Phosphatidic acid homeostasis regulated by a type-2 phosphatidic acid phosphatase represents a novel druggable target in malaria intervention. Cell Death Discov 2019; 5:107. [PMID: 31263575 PMCID: PMC6591222 DOI: 10.1038/s41420-019-0187-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 12/18/2022] Open
Abstract
Type-2 phosphatidic acid phosphatase (PAP2) a member of PAP2 superfamily mediates the conversion of phosphatidic acid (PA) to diacylglycerol (DAG) and thus plays a pivotal role in numerous cellular signaling processes in diverse organisms. An elevated level of intracellular PA is detrimental for the cell and induces cell death. In this study we identified and characterized a PAP2 homologue in Plasmodium falciparum, PfPAP2 and further elucidated its significance in regulation of PA homeostasis in parasite life cycle. PfPAP2 is expressed in the blood stage and harbors the canonical acid phosphatase domain (APD) with signature motifs. PfPAP2 catalyzes the dephosphorylation of PA to produce DAG and inorganic phosphate (Pi). Propranolol, a generic inhibitor of PAP2, inhibited the phosphatase activity of PfPAP2 by binding to the active site of APD domain as evident by in silico docking and confirmed by surface plasmon resonance (SPR) analysis. Inhibition of native PfPAP2 by propranolol led to rise in intracellular PA mediating disruption of intracellular PA homeostasis in parasites. The propranolol mediated inhibition of PfPAP2 directed early secretion of a micronemal Perforin like Protein, PfPLP1 leading to untimely permeabilization and host cell egress. The merozoites following premature egress were non-invasive and were attenuated to invade erythrocytes and cannot continue next cycle growth. This study demonstrates that disruption of PA homeostasis can cause growth retardation in malaria parasites, and thus its master regulator, PfPAP2, can serve as a very good molecular target for antimalarial chemotherapeutic interventions.
Collapse
|
9
|
Lee HJ, Park OK. Lipases associated with plant defense against pathogens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:51-58. [PMID: 30709493 DOI: 10.1016/j.plantsci.2018.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/07/2018] [Accepted: 07/06/2018] [Indexed: 06/09/2023]
Abstract
When facing microbe invaders, plants activate genetic and metabolic defense mechanisms and undergo extracellular and intracellular changes to obtain a certain level of host resistance. Dynamic adjustment and adaptation occur in structures containing lipophilic compounds and cellular metabolites. Lipids encompassing fatty acids, fatty acid-based polymers, and fatty acid derivatives are part of the fundamental architecture of cells and tissues and are essential compounds in numerous biological processes. Lipid-associated plant defense responses are mostly facilitated by the activation of lipases (lipid hydrolyzing proteins), which cleave or transform lipid substrates in various subcellular compartments. In this review, several types of plant defense-associated lipases are described, including their molecular aspects, enzymatic actions, cellular functions, and possible functional relevance in plant defense. Defensive roles are discussed considering enzyme properties, lipid metabolism, downstream regulation, and phenotypic traits in loss-of-function mutants.
Collapse
Affiliation(s)
- Hye-Jung Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Ohkmae K Park
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
10
|
Li J, Wang X. Phospholipase D and phosphatidic acid in plant immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:45-50. [PMID: 30709492 DOI: 10.1016/j.plantsci.2018.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 05/20/2023]
Abstract
Phospholipase D (PLD) hydrolyzes membrane phospholipids to generate phosphatidic acid (PA). Both PLD and its lipid product PA are involved in various physiological processes, including plant response to pathogens. The PLD family is comprised of multiple members in higher plants, and PLDs have been reported to play positive and/or negative roles in plant immunity, depending on the types of pathogens and specific PLDs involved. Individual PLDs have distinguishable biochemical properties, such as Ca2+ and phosphatidylinositide requirements. In addition, PLDs and PA are found to interact with various proteins in hormone and stress signaling. The different biochemical and regulatory properties of PLDs and PA shed light on the mechanisms for the functional diversity of PLDs in plant defense signaling and response.
Collapse
Affiliation(s)
- Jianwu Li
- Henan Agricultural University, Henan, 450002, China; Department of Biology, University of Missouri, St. Louis, MO 63121, United States; Donald Danforth Plant Science Center, St. Louis, MO 63132, United States.
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO 63121, United States; Donald Danforth Plant Science Center, St. Louis, MO 63132, United States.
| |
Collapse
|
11
|
Yao HY, Xue HW. Phosphatidic acid plays key roles regulating plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:851-863. [PMID: 29660254 DOI: 10.1111/jipb.12655] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/11/2018] [Indexed: 05/28/2023]
Abstract
Phospholipids, including phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylserine (PS) and phosphoinositides, have emerged as an important class of cellular messenger molecules in various cellular and physiological processes, of which PA attracts much attention of researchers. In addition to its effect on stimulating vesicle trafficking, many studies have demonstrated that PA plays a crucial role in various signaling pathways by binding target proteins and regulating their activity and subcellular localization. Here, we summarize the functional mechanisms and target proteins underlying PA-mediated regulation of cellular signaling, development, hormonal responses, and stress responses in plants.
Collapse
Affiliation(s)
- Hong-Yan Yao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
12
|
Liu X, Liu X, Chen D, Jiang X, Ma W. PLD2 regulates microtubule stability and spindle migration in mouse oocytes during meiotic division. PeerJ 2017; 5:e3295. [PMID: 28533957 PMCID: PMC5436581 DOI: 10.7717/peerj.3295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/11/2017] [Indexed: 01/26/2023] Open
Abstract
Phospholipase D2 (PLD2) is involved in cytoskeletal reorganization, cell migration, cell cycle progression, transcriptional control and vesicle trafficking. There is no evidence about PLD2 function in oocytes during meiosis. Herein, we analyzed PLD2 expression and its relationship with spindle formation and positioning in mouse oocyte meiosis. High protein level of PLD2 was revealed in oocytes by Western blot, which remained consistently stable from prophase I with intact germinal vesicle (GV) up to metaphase II (MII) stage. Immunofluorescence showed that PLD2 appeared and gathered around the condensed chromosomesafter germinal vesicle breakdown (GVBD), and co-localized with spindle from pro-metaphase I (pro-MI) to metaphase I (MI) and at MII stage. During anaphase I (Ana I) to telophase I (Tel I) transition, PLD2 was concentrated in the spindle polar area but absent from the midbody. In oocytes incubated with NFOT, an allosteric and catalytic inhibitor to PLD2, the spindle was enlarged and center-positioned, microtubules were resistant to cold-induced depolymerization and, additionally, the meiotic progression was arrested at MI stage. However, spindle migration could not be totally prevented by PLD2 catalytic specific inhibitors, FIPI and 1-butanol, implying at least partially, that PLD2 effect on spindle migration needs non-catalytic domain participation. NFOT-induced defects also resulted in actin-related molecules’ distribution alteration, such as RhoA, phosphatidylinosital 4, 5- biphosphate (PIP2), phosphorylated Colifin and, consequently, unordered F-actin dynamics. Taken together, these data indicate PLD2 is required for the regulation of microtubule dynamics and spindle migration toward the cortex in mammalian oocytes during meiotic progression.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoyun Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dandan Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiuying Jiang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Krtková J, Benáková M, Schwarzerová K. Multifunctional Microtubule-Associated Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:474. [PMID: 27148302 PMCID: PMC4838777 DOI: 10.3389/fpls.2016.00474] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/24/2016] [Indexed: 05/21/2023]
Abstract
Microtubules (MTs) are involved in key processes in plant cells, including cell division, growth and development. MT-interacting proteins modulate MT dynamics and organization, mediating functional and structural interaction of MTs with other cell structures. In addition to conventional microtubule-associated proteins (MAPs) in plants, there are many other MT-binding proteins whose primary function is not related to the regulation of MTs. This review focuses on enzymes, chaperones, or proteins primarily involved in other processes that also bind to MTs. The MT-binding activity of these multifunctional MAPs is often performed only under specific environmental or physiological conditions, or they bind to MTs only as components of a larger MT-binding protein complex. The involvement of multifunctional MAPs in these interactions may underlie physiological and morphogenetic events, e.g., under specific environmental or developmental conditions. Uncovering MT-binding activity of these proteins, although challenging, may contribute to understanding of the novel functions of the MT cytoskeleton in plant biological processes.
Collapse
Affiliation(s)
- Jana Krtková
- Department of Biology, University of WashingtonSeattle, WA, USA
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Martina Benáková
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
- Department of Biology, Faculty of Science, University of Hradec KrálovéRokitanského, Czech Republic
| | - Kateřina Schwarzerová
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| |
Collapse
|
14
|
Hong Y, Zhao J, Guo L, Kim SC, Deng X, Wang G, Zhang G, Li M, Wang X. Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 2016; 62:55-74. [DOI: 10.1016/j.plipres.2016.01.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 12/23/2015] [Accepted: 01/01/2016] [Indexed: 12/25/2022]
|
15
|
Zhao J. Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1721-36. [PMID: 25680793 PMCID: PMC4669553 DOI: 10.1093/jxb/eru540] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 05/05/2023]
Abstract
Phospholipase Ds (PLDs) and PLD-derived phosphatidic acids (PAs) play vital roles in plant hormonal and environmental responses and various cellular dynamics. Recent studies have further expanded the functions of PLDs and PAs into plant-microbe interaction. The molecular diversities and redundant functions make PLD-PA an important signalling complex regulating lipid metabolism, cytoskeleton dynamics, vesicle trafficking, and hormonal signalling in plant defence through protein-protein and protein-lipid interactions or hormone signalling. Different PLD-PA signalling complexes and their targets have emerged as fast-growing research topics for understanding their numerous but not yet established roles in modifying pathogen perception, signal transduction, and downstream defence responses. Meanwhile, advanced lipidomics tools have allowed researchers to reveal further the mechanisms of PLD-PA signalling complexes in regulating lipid metabolism and signalling, and their impacts on jasmonic acid/oxylipins, salicylic acid, and other hormone signalling pathways that essentially mediate plant defence responses. This review attempts to summarize the progress made in spatial and temporal PLD/PA signalling as well as PLD/PA-mediated modification of plant defence. It presents an in-depth discussion on the functions and potential mechanisms of PLD-PA complexes in regulating actin filament/microtubule cytoskeleton, vesicle trafficking, and hormonal signalling, and in influencing lipid metabolism-derived metabolites as critical signalling components in plant defence responses. The discussion puts PLD-PA in a broader context in order to guide future research.
Collapse
Affiliation(s)
- Jian Zhao
- National Key Laboratory for Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
16
|
Pleskot R, Pejchar P, Staiger CJ, Potocký M. When fat is not bad: the regulation of actin dynamics by phospholipid signaling molecules. FRONTIERS IN PLANT SCIENCE 2014; 5:5. [PMID: 24478785 PMCID: PMC3899574 DOI: 10.3389/fpls.2014.00005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/04/2014] [Indexed: 05/21/2023]
Abstract
The actin cytoskeleton plays a key role in the plant morphogenesis and is involved in polar cell growth, movement of subcellular organelles, cell division, and plant defense. Organization of actin cytoskeleton undergoes dynamic remodeling in response to internal developmental cues and diverse environmental signals. This dynamic behavior is regulated by numerous actin-binding proteins (ABPs) that integrate various signaling pathways. Production of the signaling lipids phosphatidylinositol 4,5-bisphosphate and phosphatidic acid affects the activity and subcellular distribution of several ABPs, and typically correlates with increased actin polymerization. Here we review current knowledge of the inter-regulatory dynamics between signaling phospholipids and the actin cytoskeleton in plant cells.
Collapse
Affiliation(s)
- Roman Pleskot
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | | | - Martin Potocký
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
| |
Collapse
|
17
|
Pleskot R, Li J, Zárský V, Potocký M, Staiger CJ. Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid. TRENDS IN PLANT SCIENCE 2013; 18:496-504. [PMID: 23664415 DOI: 10.1016/j.tplants.2013.04.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/02/2013] [Accepted: 04/08/2013] [Indexed: 05/20/2023]
Abstract
Plants respond to diverse biotic and abiotic stimuli as well as to endogenous developmental cues. Many of these stimuli result in altered activity of phospholipase D (PLD), an enzyme that hydrolyzes structural phospholipids producing phosphatidic acid (PA). PA is a key signaling intermediate in animals, but its targets in plants are relatively uncharacterized. Recent studies have demonstrated that the cytoskeleton is a major target of PLD-PA signaling and identified a positive feedback loop between actin turnover and PLD activity. Moreover, two cytoskeletal proteins, capping protein and MAP65-1, have been identified as PA-binding proteins regulating actin and microtubule organization and dynamics. In this review, we highlight the role of the PLD-PA module as an important hub for housekeeping and stress-induced regulation of membrane-associated cytoskeletal dynamics.
Collapse
Affiliation(s)
- Roman Pleskot
- Institute of Experimental Botany v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
18
|
Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 2013; 14:5036-129. [PMID: 23455471 PMCID: PMC3634480 DOI: 10.3390/ijms14035036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023] Open
Abstract
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions.
Collapse
|
19
|
Li J, Pleskot R, Henty-Ridilla JL, Blanchoin L, Potocký M, Staiger CJ. Arabidopsis capping protein senses cellular phosphatidic acid levels and transduces these into changes in actin cytoskeleton dynamics. PLANT SIGNALING & BEHAVIOR 2012; 7:1727-1730. [PMID: 23072985 PMCID: PMC3578921 DOI: 10.4161/psb.22472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plants respond rapidly and precisely to a broad spectrum of developmental, biotic and abiotic cues. In many instances, signaling cascades involved in transducing this information result in changes to the cellular architecture and cytoskeletal rearrangements. Based originally on paradigms for animal cell signaling, phospholipids have received increased scrutiny as key intermediates for transmitting information to the actin cytoskeleton. Significantly, a wealth of biochemical data for plant actin-binding proteins (ABPs) demonstrates that many of these interact with phosphoinositide lipids in vitro. Moreover, phosphatidic acid (PA) has been identified not only as an abundant structural lipid in plants, but also as an intermediary in developmental and stress signaling pathways that lead to altered actin organization. Several years ago, the heterodimeric capping protein (CP) from Arabidopsis was demonstrated to bind PA and is negatively regulated by this lipid in vitro. Whether this form of regulation occurs in cells, however, remained a mystery. A new study, that combines live-cell imaging of cytoskeletal dynamics with reverse-genetic analyses in Arabidopsis, provides compelling new evidence that CP is inhibited from binding filament ends in the presence of PA in vivo. This allows rapid actin polymerization and increases in filament abundance following stimulation and could be one key factor in the physiological responses of plant cells to environmental stimuli.
Collapse
Affiliation(s)
- Jiejie Li
- Department of Biological Sciences; Purdue University; West Lafayette, IN USA
| | - Roman Pleskot
- Institute of Experimental Botany v.v.i.; Academy of Sciences of the Czech Republic; Prague, Czech Republic
| | | | - Laurent Blanchoin
- Institut de Recherches en Technologie et Sciences pour le Vivant; Laboratoire de Physiologie Cellulaire and Végétale; Commissariat á l’Energie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche; Agronomique/Université Joseph Fourier; Grenoble, France
| | - Martin Potocký
- Institute of Experimental Botany v.v.i.; Academy of Sciences of the Czech Republic; Prague, Czech Republic
| | | |
Collapse
|
20
|
Testerink C, Munnik T. Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2349-61. [PMID: 21430291 DOI: 10.1093/jxb/err079] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phosphatidic acid (PA) is an essential phospholipid involved in membrane biosynthesis and signal transduction in all eukaryotes. This review focuses on its role as lipid second messenger during plant stress, metabolism, and development. The contribution of different individual isoforms of enzymes that generate and break down PA will be discussed and the downstream responses highlighted, with particular focus on proteins that bind PA. Through characterization of several of these PA targets, a molecular and genetic basis for PA's role in plant stress and development is emerging.
Collapse
Affiliation(s)
- Christa Testerink
- University of Amsterdam, Swammerdam Institute for Life Sciences, Section of Plant Physiology, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | |
Collapse
|
21
|
Canonne J, Froidure-Nicolas S, Rivas S. Phospholipases in action during plant defense signaling. PLANT SIGNALING & BEHAVIOR 2011; 6:13-8. [PMID: 21248491 PMCID: PMC3121997 DOI: 10.4161/psb.6.1.14037] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 05/20/2023]
Abstract
Eukaryotic organisms rely on intricate signaling networks to connect recognition of microbes with the activation of efficient defense reactions. Accumulating evidence indicates that phospholipids are more than mere structural components of biological membranes. Indeed, phospholipid-based signal transduction is widely used in plant cells to relay perception of extracellular signals. Upon perception of the invading microbe, several phospholipid hydrolyzing enzymes are activated that contribute to the establishment of an appropriate defense response. Activation of phospholipases is at the origin of the production of important defense signaling molecules, such as oxylipins and jasmonates, as well as the potent second messenger phosphatidic acid (PA), which has been shown to modulate the activity of a variety of proteins involved in defense signaling. Here, we provide an overview of recent reports describing the different plant phospholipase pathways that are activated during the establishment of plant defense reactions in response to pathogen attack.
Collapse
Affiliation(s)
- Joanne Canonne
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Castanet Tolosan, France
| | | | | |
Collapse
|
22
|
Pleskot R, Potocký M, Pejchar P, Linek J, Bezvoda R, Martinec J, Valentová O, Novotná Z, Zárský V. Mutual regulation of plant phospholipase D and the actin cytoskeleton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:494-507. [PMID: 20149133 DOI: 10.1111/j.1365-313x.2010.04168.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Membrane lipids and cytoskeleton dynamics are intimately inter-connected in the eukaryotic cell; however, only recently have the molecular mechanisms operating at this interface in plant cells been addressed experimentally. Phospholipase D (PLD) and its product phosphatidic acid (PA) were discovered to be important regulators in the membrane-cytoskeleton interface in eukaryotes. Here we report the mechanistic details of plant PLD-actin interactions. Inhibition of PLD by n-butanol compromises pollen tube actin, and PA rescues the detrimental effect of n-butanol on F-actin, showing clearly the importance of the PLD-PA interaction for pollen tube F-actin dynamics. From various candidate tobacco PLDs isoforms, we identified NtPLDbeta1 as a regulatory partner of actin, by both activity and in vitro interaction assays. Similarly to published data, the activity of tobacco PIP(2)-dependent PLD (PLDbeta) is specifically enhanced by F-actin and inhibited by G-actin. We then identified the NtPLDbeta1 domain responsible for actin interactions. Using sequence- and structure-based analysis, together with site-directed mutagenesis, we identified Asn323 and Thr382 of NtPLDbeta1 as the crucial amino acids in the actin-interacting fold. The effect of antisense-mediated suppression of NtPLDbeta1 or NtPLDdelta on pollen tube F-actin dynamics shows that NtPLDbeta1 is the active partner in PLD-actin interplay. The positive feedback loop created by activation of PLDbeta by F-actin and of F-actin by PA provides an important mechanism to locally increase membrane-F-actin dynamics in the cortex of plant cells.
Collapse
Affiliation(s)
- Roman Pleskot
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 263, 165 02 Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Deeks MJ, Fendrych M, Smertenko A, Bell KS, Oparka K, Cvrčková F, Žárský V, Hussey PJ. The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain. J Cell Sci 2010; 123:1209-15. [PMID: 20332108 DOI: 10.1242/jcs.065557] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The dynamic behaviour of the actin cytoskeleton in plants relies on the coordinated action of several classes of actin-binding proteins (ABPs). These ABPs include the plant-specific subfamilies of actin-nucleating formin proteins. The model plant species Arabidopsis thaliana has over 20 formin proteins, all of which contain plant-specific regions in place of the GTPase-binding domain, formin homology (FH)3 domain, and DAD and DID motifs found in many fungal and animal formins. We have identified for the first time a plant-specific region of the membrane-integrated formin AtFH4 that mediates an association with the microtubule cytoskeleton. In vitro analysis shows that this region (named the GOE domain) binds directly to microtubules. Overexpressed AtFH4 accumulates at the endoplasmic reticulum membrane and co-aligns the endoplasmic reticulum with microtubules. The FH1 and FH2 domains of formins are conserved in plants, and we show that these domains of AtFH4 nucleate F-actin. Together, these data suggest that the combination of plant-specific and conserved domains enables AtFH4 to function as an interface between membranes and both major cytoskeletal networks.
Collapse
Affiliation(s)
- Michael J. Deeks
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Matyáš Fendrych
- Department of Plant Physiology, Faculty of Sciences, Charles University, Prague 12844, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 16502, Czech Republic
| | - Andrei Smertenko
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Kenneth S. Bell
- Institute of Molecular Plant Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Karl Oparka
- Institute of Molecular Plant Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Fatima Cvrčková
- Department of Plant Physiology, Faculty of Sciences, Charles University, Prague 12844, Czech Republic
| | - Viktor Žárský
- Department of Plant Physiology, Faculty of Sciences, Charles University, Prague 12844, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 16502, Czech Republic
| | - Patrick J. Hussey
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| |
Collapse
|
24
|
|
25
|
Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:927-35. [DOI: 10.1016/j.bbalip.2009.02.017] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/24/2009] [Accepted: 02/26/2009] [Indexed: 12/12/2022]
|
26
|
Andreeva Z, Ho AYY, Barthet MM, Potocký M, Bezvoda R, Žárský V, Marc J. Phospholipase D family interactions with the cytoskeleton: isoform delta promotes plasma membrane anchoring of cortical microtubules. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:600-612. [PMID: 32688673 DOI: 10.1071/fp09024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 04/25/2009] [Indexed: 05/06/2023]
Abstract
Phospholipase D (PLD) is a key enzyme in signal transduction - mediating plant responses to various environmental stresses including drought and salinity. Isotype PLDδ interacts with the microtubule cytoskeleton, although it is unclear if, or how, each of the 12 PLD isotypes in Arabidopsis may be involved mechanistically. We employed RNA interference in epidermal cells of Allium porrum L. (leek) leaves, in which the developmental reorientation of cortical microtubule arrays to a longitudinal direction is highly sensitive to experimental manipulation. Using particle bombardment and transient transformation with synthetic siRNAs targeting AtPLDα, β, γ, δ, ॉ and ζ, we examined the effect of 'cross-target' silencing orthologous A. porrum genes on microtubule reorientation dynamics during cell elongation. Co-transformation of individual siRNAs together with a GFP-MBD microtubule-reporter gene revealed that siRNAs targeting AtPLDδ promoted, whereas siRNAs targeting AtPLDβ and γ reduced, longitudinal microtubule orientation in A. porrum. These PLD isotypes, therefore, interact, directly or indirectly, with the cytoskeleton and the microtubule-plasma membrane interface. The unique response of PLDδ to silencing, along with its exclusive localisation to the plasma membrane, indicates that this isotype is specifically involved in promoting microtubule-membrane anchorage.
Collapse
Affiliation(s)
- Zornitza Andreeva
- School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney, NSW 2006, Australia
| | - Angela Y Y Ho
- School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney, NSW 2006, Australia
| | - Michelle M Barthet
- School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney, NSW 2006, Australia
| | - Martin Potocký
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Radek Bezvoda
- Department of Plant Physiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Viktor Žárský
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Jan Marc
- School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
27
|
Abstract
As an important metabolic pathway, phosphatidylinositol metabolism generates both constitutive and signalling molecules that are crucial for plant growth and development. Recent studies using genetic and molecular approaches reveal the important roles of phospholipid molecules and signalling in multiple processes of higher plants, including root growth, pollen and vascular development, hormone effects and cell responses to environmental stimuli plants. The present review summarizes the current progress in our understanding of the functional mechanism of phospholipid signalling, with an emphasis on the regulation of Ins(1,4,5)P3-Ca2+ oscillation, the second messenger molecule phosphatidic acid and the cytoskeleton.
Collapse
|
28
|
Kim IH, Lee HY, Lee HD, Jung YJ, Tendler SJB, Williams PM, Allen S, Ryu SH, Park JW. Interactions between signal-transducing proteins measured by atomic force microscopy. Anal Chem 2009; 81:3276-84. [PMID: 19323535 DOI: 10.1021/ac8024366] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atomic force microscopy (AFM) has been used to study the specific interactions between the signal-transducing proteins mammalian phospholipase D1 (PLD1), phospholipase C-gamma1 (PLC-gamma1), and Munc-18-1. To record the forces between them, the Phox homology (PX) domain of PLD1, the Src homology (SH3) domain of PLC-gamma1, and Munc-18-1 were fused with glutathione S-transferase (GST) and immobilized onto reduced glutathione (GSH)-tethered surfaces. In order to enhance the recognition efficiency and avoid undesirable complications, both AFM tips and substrates were first modified with dendrons of two different sizes. Under the employed conditions, the probability of observing an unbinding event increased, most force-distance curves showed the single rupture events, and the unbinding forces were 51 +/- 2 pN for PX-(Munc-18-1) and 42 +/- 2 pN for PX-SH3. To investigate dynamics of these biomolecular interactions, we measured the loading rate dependence of the unbinding forces. The unbinding forces increased linearly with the logarithm of the loading rate, indicating the presence of a single potential barrier in the dissociation energy landscape. The measured off-rate constants (k(off)) at 15 degrees C were 10(-3.4 +/- 0.3) s(-1) for PX-(Munc-18-1) and 10(-1.7 +/- 0.1) s(-1) for PX-SH3. Further, we elucidated the influence of free SH3 and Munc-18-1 on the specific PX-(Munc-18-1) and PX-SH3 interaction, respectively.
Collapse
Affiliation(s)
- Il Hong Kim
- National Core Research Center for Systems Bio-Dynamics, Department of Chemistry, Pohang University of Science and Technology, San 31 Hyoja-dong, Pohang, 790-784, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yamaguchi T, Kuroda M, Yamakawa H, Ashizawa T, Hirayae K, Kurimoto L, Shinya T, Shibuya N. Suppression of a phospholipase D gene, OsPLDbeta1, activates defense responses and increases disease resistance in rice. PLANT PHYSIOLOGY 2009; 150:308-19. [PMID: 19286937 PMCID: PMC2675732 DOI: 10.1104/pp.108.131979] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Phospholipase D (PLD) plays an important role in plants, including responses to abiotic as well as biotic stresses. A survey of the rice (Oryza sativa) genome database indicated the presence of 17 PLD genes in the genome, among which OsPLDalpha1, OsPLDalpha5, and OsPLDbeta1 were highly expressed in most tissues studied. To examine the physiological function of PLD in rice, we made knockdown plants for each PLD isoform by introducing gene-specific RNA interference constructs. One of them, OsPLDbeta1-knockdown plants, showed the accumulation of reactive oxygen species in the absence of pathogen infection. Reverse transcription-polymerase chain reaction and DNA microarray analyses revealed that the knockdown of OsPLDbeta1 resulted in the up-/down-regulation of more than 1,400 genes, including the induction of defense-related genes such as pathogenesis-related protein genes and WRKY/ERF family transcription factor genes. Hypersensitive response-like cell death and phytoalexin production were also observed at a later phase of growth in the OsPLDbeta1-knockdown plants. These results indicated that the OsPLDbeta1-knockdown plants spontaneously activated the defense responses in the absence of pathogen infection. Furthermore, the OsPLDbeta1-knockdown plants exhibited increased resistance to the infection of major pathogens of rice, Pyricularia grisea and Xanthomonas oryzae pv oryzae. These results suggested that OsPLDbeta1 functions as a negative regulator of defense responses and disease resistance in rice.
Collapse
Affiliation(s)
- Takeshi Yamaguchi
- National Agricultural Research Center, Joetsu, Niigata 943-0193, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ho AYY, Day DA, Brown MH, Marc J. Arabidopsis phospholipase Dδ as an initiator of cytoskeleton-mediated signalling to fundamental cellular processes. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:190-198. [PMID: 32688638 DOI: 10.1071/fp08222] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 12/10/2008] [Indexed: 06/11/2023]
Abstract
Phospholipase D (PLD), in combination with the cytoskeleton, plays a key role in plant signal transduction. One isotype of the multigene Arabidopsis PLD family, AtPLDδ, has been implicated in binding microtubules, although the molecular details of the mechanism and identities of potential interaction partners are unclear. We constructed a GFP-AtPLDδ reporter gene, stably transformed it into an Arabidopsis suspension cell line, and used epitope-tagged affinity pull-down assays to isolate a complex of co-purifying proteins. Mass spectrometry analysis of the complex revealed a set of proteins including β-tubulin, actin 7, HSP70, clathrin heavy chain, ATP synthase subunits, and a band 7-4/flotillin homologue. Sequence alignments with defined tubulin- and actin-binding regions from human HsPLD2 revealed highly homologous regions in all 12 AtPLD isotypes, suggesting direct interactions of AtPLDδ with tubulin and actin, while interactions with the remaining partners are likely to be mediated by the cytoskeleton. We propose that AtPLDδ acts through a complex of cytoskeletal and partner proteins to modulate fundamental cellular processes such as cytoskeletal rearrangements, vesicular trafficking, assembly of Golgi apparatus, mitosis and cytokinesis.
Collapse
Affiliation(s)
- Angela Y Y Ho
- School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney, NSW 2006, Australia
| | - David A Day
- School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney, NSW 2006, Australia
| | - Melissa H Brown
- School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney, NSW 2006, Australia
| | - Jan Marc
- School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
31
|
Abstract
The activation of lipid-modifying enzymes generally involves a physical change in their interactions with the membrane substrate. For sphingosine kinase, a predominantly cytosolic enzyme in resting cells, activation is accompanied by translocation to specific subsets of cellular membranes where catalysis occurs. As all eukaryotic membranes have a tightly associated filamentous actin skeleton, we investigated potential regulatory interactions between sphingosine kinase and actin. Sphingosine kinase 1 (SK1) exhibited constitutive- and stimulus-enhanced association with actin filaments and F-actin-enriched membrane fractions in both intact macrophages and an in vitro reconstitution assay, whereas SK1 bound G-actin only under stimulated conditions. Actin inhibitors disrupted SK1 localization and increased its enzymatic activity. Both the localization and the activity of SK1 were coordinately regulated with the actin cytoskeleton. The association of enzymes with the actin cytoskeleton and how this regulates their activities and functions are subjects of intense interest. Here, we describe the approach we used to investigate regulation of SK1. This provides general methods that can be used to examine the role of actin in regulating enzyme activity in macrophages and other myeloid cells.
Collapse
Affiliation(s)
- Shankar S Iyer
- Physiology and Biophysics, and the Graduate Program in Immunology, University of Iowa Carver College of Medicine and Iowa City Veterans Affairs Medical Centre, Iowa City, IA, USA
| | | |
Collapse
|
32
|
Sainsbury F, Collings DA, Mackun K, Gardiner J, Harper JDI, Marc J. Developmental reorientation of transverse cortical microtubules to longitudinal directions: a role for actomyosin-based streaming and partial microtubule-membrane detachment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:116-31. [PMID: 18557839 DOI: 10.1111/j.1365-313x.2008.03574.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Transversely oriented cortical microtubules in elongating cells typically reorient themselves towards longitudinal directions at the end of cell elongation. We have investigated the reorientation mechanism along the outer epidermal wall in maturing leek (Allium porrum L.) leaves using a GFP-MBD microtubule reporter gene and fluorescence microscopy. Incubating leaf segments for 14-18 h with the anti-actin or anti-actomyosin agents, 20 microm cytochalasin D or 20 mM 2,3-butanedione monoxime, inhibited the normal developmental reorientation of microtubules to the longitudinal direction. Observation of living cells revealed a small subpopulation of microtubules with their free ends swinging into oblique or longitudinal directions, before continuing to assemble in the new direction. Electron microscopy confirmed that longitudinal microtubules are partly detached from the plasma membrane. Incubating leaf segments with 0.2% 1 degree-butanol, an activator of phospholipase D, which has been implicated in plasma membrane-microtubule anchoring, promoted the reorientation, presumably by promoting microtubule detachment from the membrane. Stabilizing microtubules with 10 microm taxol also promoted longitudinal orientation, even in the absence of cytoplasmic streaming. These results were consistent with confocal microscopy of live cells before and after drug treatments, which also revealed that the slow (days) global microtubule reorientation is superimposed over short-term (hours) regional cycling in a clockwise and an anti-clockwise direction. We propose that partial detachment of transverse microtubules from the plasma membrane in maturing cells exposes them to hydrodynamic forces of actomyosin-driven cytoplasmic streaming, which bends or shifts pivoting microtubules into longitudinal directions, and thus provides an impetus to push microtubule dynamics in the new direction.
Collapse
Affiliation(s)
- Frank Sainsbury
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
33
|
Wright MH, Farquhar MJ, Aletrari MO, Ladds G, Hodgkin MN. Identification of caspase 3 motifs and critical aspartate residues in human phospholipase D1b and phospholipase D2a. Biochem Biophys Res Commun 2008; 369:478-84. [PMID: 18298948 DOI: 10.1016/j.bbrc.2008.02.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 02/09/2008] [Indexed: 11/24/2022]
Abstract
Stimulation of mammalian cells frequently initiates phospholipase D-catalyzed hydrolysis of phosphatidylcholine in the plasma membrane to yield phosphatidic acid (PA) a novel lipid messenger. PA plays a regulatory role in important cellular processes such as secretion, cellular shape change, and movement. A number of studies have highlighted that PLD-based signaling also plays a pro-mitogenic and pro-survival role in cells and therefore anti-apoptotic. We show that human PLD1b and PLD2a contain functional caspase 3 cleavage sites and identify the critical aspartate residues within PLD1b that affect its activation by phorbol esters and attenuate phosphatidylcholine hydrolysis during apoptosis.
Collapse
Affiliation(s)
- Michelle H Wright
- Department of Biological Sciences, University of Warwick, Coventry West Midlands CV4 7AL, UK
| | | | | | | | | |
Collapse
|
34
|
Peters NT, Logan KO, Miller AC, Kropf DL. Phospholipase D Signaling Regulates Microtubule Organization in the Fucoid Alga Silvetia compressa. ACTA ACUST UNITED AC 2007; 48:1764-74. [DOI: 10.1093/pcp/pcm149] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Li G, Lin F, Xue HW. Genome-wide analysis of the phospholipase D family in Oryza sativa and functional characterization of PLDβ1 in seed germination. Cell Res 2007; 17:881-94. [PMID: 17876344 DOI: 10.1038/cr.2007.77] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Phospholipase D (PLD) plays a critical role in plant growth and development, as well as in hormone and stress responses. PLD encoding genes constitute a large gene family that are present in higher plants. There are 12 members of the PLD family in Arabidopsis thaliana and several of them have been functionally characterized; however, the members of the PLD family in Oryza sativa remain to be fully described. Through genome-wide analysis, 17 PLD members found in different chromosomes have been identified in rice. Protein domain structural analysis reveals a novel subfamily, besides the C2-PLDs and PXPH-PLDs, that is present in rice - the SP-PLD. SP-PLD harbors a signal peptide instead of the C2 or PXPH domains at the N-terminus. Expression pattern analysis indicates that most PLD-encoding genes are differentially expressed in various tissues, or are induced by hormones or stress conditions, suggesting the involvement of PLD in multiple developmental processes. Transgenic studies have shown that the suppressed expression of rice PLD beta 1 results in reduced sensitivity to exogenous ABA during seed germination. Further analysis of the expression of ABA signaling-related genes has revealed that PLD beta 1 stimulates ABA signaling by activating SAPK, thus repressing GAmyb expression and inhibiting seed germination.
Collapse
Affiliation(s)
- Gang Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | |
Collapse
|
36
|
Kilaru A, Blancaflor EB, Venables BJ, Tripathy S, Mysore KS, Chapman KD. TheN-Acylethanolamine-Mediated Regulatory Pathway in Plants. Chem Biodivers 2007; 4:1933-55. [PMID: 17712835 DOI: 10.1002/cbdv.200790161] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
While cannabinoids are secondary metabolites synthesized by just a few plant species, N-acylethanolamines (NAEs) are distributed widely in the plant kingdom, and are recovered in measurable, bioactive quantities in many plant-derived products. NAEs in higher plants are ethanolamides of fatty acids with acyl-chain lenghts of C12-C(18) and zero to three C=C bonds. Generally, the most-abundant NAEs found in plants and vertebrates are similar, including NAE 16 : 0, 18 : 1, 18 : 2, and 18 : 3. Like in animal systems, NAEs are formed in plants from N-acylphosphatidylethanolamines (NAPEs), and they are hydrolyzed by an amidase to yield ethanolamine and free fatty acids (FFA). Recently, a homologue of the mammalian fatty acid amide hydrolase (FAAH-1) was identified in Arabidopsis thaliana and several other plant species. Overexpression of Arabidopsis FAAH (AtFAAH) resulted in plants that grew faster, but were more sensitive to biotic and abiotic insults, suggesting that the metabolism of NAEs in plants resides at the balance between growth and responses to environmental stresses. Similar to animal systems, exogenously applied NAEs have potent and varied effects on plant cells. Recent pharmacological approaches combined with molecular-genetic experiments revealed that NAEs may act in certain plant tissues via specific membrane-associated proteins or by interacting with phospholipase D-alpha, although other, direct targets for NAE action in plants are likely to be discovered. Polyunsaturated NAEs can be oxidized via the lipoxygenase pathway in plants, producing an array of oxylipin products that have received little attention so far. Overall, the conservation of NAE occurrence and metabolic machinery in plants, coupled with the profound physiological effects of elevating NAE content or perturbing endogenous NAE metabolism, suggest that an NAE-mediated regulatory pathway, sharing similarities with the mammalian endocannabinoid pathway, indeed exists.
Collapse
Affiliation(s)
- Aruna Kilaru
- University of North Texas, Department of Biological Sciences, Center for Plant Lipid Research, P.O. Box 305220, Denton, TX 76203-5220, USA
| | | | | | | | | | | |
Collapse
|
37
|
Kusner DJ, Thompson CR, Melrose NA, Pitson SM, Obeid LM, Iyer SS. The Localization and Activity of Sphingosine Kinase 1 Are Coordinately Regulated with Actin Cytoskeletal Dynamics in Macrophages. J Biol Chem 2007; 282:23147-62. [PMID: 17519232 DOI: 10.1074/jbc.m700193200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The physiologic and pathologic functions of sphingosine kinase (SK) require translocation to specific membrane compartments. We tested the hypothesis that interactions with actin filaments regulate the localization of SK1 to membrane surfaces, including the plasma membrane and phagosome. Macrophage activation is accompanied by a marked increase in association of SK1 with actin filaments. Catalytically-inactive (CI)- and phosphorylation-defective (PD)-SK1 mutants exhibited reductions in plasma membrane translocation, colocalization with cortical actin filaments, membrane ruffling, and lamellipodia formation, compared with wild-type (WT)-SK1. However, translocation of CI- and PD-SK1 to phagosomes were equivalent to WT-SK1. SK1 exhibited constitutive- and stimulus-enhanced association with actin filaments and F-actin-enriched membrane fractions in both intact macrophages and a novel in vitro assay. In contrast, SK1 bound G-actin only under stimulated conditions. Actin inhibitors disrupted SK1 localization and modulated its activity. Conversely, reduction of SK1 levels or activity via RNA interference or specific chemical inhibition resulted in dysregulation of actin filaments. Thus, the localization and activity of SK1 are coordinately regulated with actin dynamics during macrophage activation.
Collapse
Affiliation(s)
- David J Kusner
- Inflammation Program, Division of Infectious Diseases, Department of Internal Medicine, University of Iowa Carver College of Medicine and Veterans Affairs Medical Center, Iowa City, Iowa 52245, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Davis AJ, Im YJ, Dubin JS, Tomer KB, Boss WF. Arabidopsis phosphatidylinositol phosphate kinase 1 binds F-actin and recruits phosphatidylinositol 4-kinase beta1 to the actin cytoskeleton. J Biol Chem 2007; 282:14121-31. [PMID: 17379598 DOI: 10.1074/jbc.m611728200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The actin cytoskeleton can be influenced by phospholipids and lipid-modifying enzymes. In animals the phosphatidylinositol phosphate kinases (PIPKs) are associated with the cytoskeleton through a scaffold of proteins; however, in plants such an interaction was not clear. Our approach was to determine which of the plant PIPKs interact with actin and determine whether the PIPK-actin interaction is direct. Our results indicate that AtPIPK1 interacts directly with actin and that the binding is mediated through a predicted linker region in the lipid kinase. AtPIPK1 also recruits AtPI4Kbeta1 to the cytoskeleton. Recruitment of AtPI4Kbeta1 to F-actin was dependent on the C-terminal catalytic domain of phosphatidylinositol-4-phosphate 5-kinase but did not require the presence of the N-terminal 251 amino acids, which includes 7 putative membrane occupation and recognition nexus motifs. In vivo studies confirm the interaction of plant lipid kinases with the cytoskeleton and suggest a role for actin in targeting PIPKs to the membrane.
Collapse
Affiliation(s)
- Amanda J Davis
- Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
39
|
Farquhar MJ, Powner DJ, Levine BA, Wright MH, Ladds G, Hodgkin MN. Interaction of PLD1b with actin in antigen-stimulated mast cells. Cell Signal 2007; 19:349-58. [PMID: 16978840 DOI: 10.1016/j.cellsig.2006.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 06/16/2006] [Accepted: 07/19/2006] [Indexed: 11/26/2022]
Abstract
Phosphatidic acid, the product of phospholipase D catalysed phosphatidylcholine hydrolysis is an important signalling molecule that has been implicated in regulation of actin cytoskeleton remodelling and secretion from mast cells. We show that human PLD1b (hPLD1b) is an actin-binding protein and the N-terminus is predominantly involved in this interaction. Protein kinase C (PKC) is a major upstream regulator of PLD activity and PKC phosphorylation sites have been identified within the N-terminus of PLD1b at serine 2 and threonine 147. Over-expression of wild type hPLD1b in mast cells showed that antigen stimulation significantly enhanced co-localisation of PLD1b with actin structures. Mutation of serine 2 to alanine abolished antigen-induced co-localisation whereas mutation of threonine 147 had less dramatic effects on co-localisation. The absence of co-localisation of PLD1b (S2A) with actin coincides with a significant decrease in PLD activity in cells expressing the PLD1b (S2A) mutant. In resting RBL-2H3 cells, mutation of serine 2 to aspartate resulted in constitutive co-localisation of PLD with the actin cytoskeleton, coincident with restored PLD activity. These results reveal that serine 2 is an important regulatory site involved in controlling PLD enzyme activity and the interaction between PLD and actin.
Collapse
Affiliation(s)
- M J Farquhar
- Molecular Physiology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | |
Collapse
|
40
|
Kim MJ, Choi MU, Kim CW. Activation of phospholipase D1 by surface roughness of titanium in MG63 osteoblast-like cell. Biomaterials 2006; 27:5502-11. [PMID: 16857255 DOI: 10.1016/j.biomaterials.2006.06.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 06/29/2006] [Indexed: 01/31/2023]
Abstract
Although it is recognized that the surface roughness of titanium (Ti) promotes the osteogenic differentiation, the related mechanisms and factors remain elusive. The purpose of this study was to explore the potential correlation among phospholipase D (PLD) activity, Ti surface roughness and subsequent osteoblast differentiation. The machined Ti disks were sandblasted with aluminum oxide particles to produce surfaces of varying roughness (n = 160). Normal or transfected MG63cells with PLD genes were cultured on roughened Ti specimens and assayed for PLD, alkaline phosphatase (ALP) and osteocalcin. The statistical significance was evaluated by analysis of variance. The activity, mRNA and protein levels of PLD significantly increased in MG63 cells with a roughness-dependent pattern (P < 0.05). The ALP activity and osteocalcin production, promoted by Ti surface roughness, were enhanced by the PLD activator and inhibited by the PLD blocker. It was also found that the PLD1 isoform responds to Ti surface roughness and regulates selectively the ALP activity. These observations strongly suggest that PLD1 mediates the cellular signaling of and modulates osteoblast differentiation induced by Ti surface roughness in MG63 osteoblast-like cell.
Collapse
Affiliation(s)
- Myung-Joo Kim
- Department of Prosthodontics and Dental Research Institute, Colleage of Dentistry, Seoul National University, Chongro-gu, Seoul 110-749, South Korea
| | | | | |
Collapse
|
41
|
Snyder MD, Pierce SK. A mutation in Epstein-Barr virus LMP2A reveals a role for phospholipase D in B-Cell antigen receptor trafficking. Traffic 2006; 7:993-1006. [PMID: 16882041 DOI: 10.1111/j.1600-0854.2006.00450.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Epstein-Barr virus (EBV) latent infection of B cells blocks the interrelated signaling and antigen-trafficking functions of the BCR through the activity of its latent membrane protein 2A (LMP2A). At present, the molecular mechanisms by which LMP2A exerts its control of BCR functions are only poorly understood. Earlier studies showed that in B cells expressing LMP2A containing a tyrosine mutation at position 112 in its cytoplasmic domain (Y112-LMP2A), the BCR could initiate signaling but could not properly traffic antigen for processing. Here, we show that BCR signaling in Y112-LMP2A-expressing cells is attenuated with a reduction in both the degree and duration of phosphorylation of key components of the BCR signaling cascade including Syk, BLNK, PI3K, and Btk. Notably, Y112-LMP2A expression completely blocked the BCR-induced activation of phospholipase D (PLD), a lipase implicated in the intracellular trafficking of a variety of surface receptors. We show that blocking PLD activity, by expressing Y112-LMP2A, treating cells with the PLD inhibitor 1-butanol or reducing PLD expression by siRNA, blocked BCR trafficking to class II-containing compartments. Moreover, Y112-LMP2A expression blocked the recruitment of phosphorylated forms of the downstream BCR signaling components, Erk and JNK, through both PLD-dependent and PLD-independent mechanisms. Thus, the investigation of the mechanism by which Y112-LMP2A blocks BCR function revealed an essential role for PLD in BCR trafficking for antigen processing.
Collapse
Affiliation(s)
- Michelle D Snyder
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | |
Collapse
|
42
|
Bargmann BO, Munnik T. The role of phospholipase D in plant stress responses. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:515-22. [PMID: 16877031 DOI: 10.1016/j.pbi.2006.07.011] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 07/17/2006] [Indexed: 05/11/2023]
Abstract
Phospholipase D (PLD) has been implicated in multiple plant stress responses. Its gene transcription and activity increase upon exposure to various stresses, and manipulation of PLD protein levels leads to altered stress tolerance. The plant PLD family is relatively large and heterogeneous, and different PLD isoforms are involved in separate stress responses. PLD and its product, phosphatidic acid, exert their effects by functioning in signal transduction cascades and by influencing the biophysical state of lipid membranes.
Collapse
Affiliation(s)
- Bastiaan O Bargmann
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| | | |
Collapse
|
43
|
Edwards JL, Apicella MA. Neisseria gonorrhoeae PLD directly interacts with Akt kinase upon infection of primary, human, cervical epithelial cells. Cell Microbiol 2006; 8:1253-71. [PMID: 16882030 DOI: 10.1111/j.1462-5822.2006.00707.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neisseria gonorrhoeae secrets a phospholipase D (NgPLD), which augments complement receptor 3 (CR3)-mediated invasion of cervical epithelial cells. To elucidate the signalling pathways triggered with gonococcus CR3-engagement and the putative function of NgPLD in these events, we analysed the contribution of the phosphoinositide-Akt pathway to cervical infection. Our data indicated that Akt plays a critical role in cervical infection. Inhibition of myosin light chain kinase, PtdIns(4,5)P2, and Akt functions resulted in decreased gonococcus invasion of primary, human, cervical epithelial cells as well as Akt kinase activity. Akt activity was similarly impaired when cervical cells were challenged with NgPLD-mutant gonococci. Conversely, the PI3-kinase inhibitor, LY294002, enhanced gonococcal invasion of, and Akt activity within, primary cervical cells. We demonstrated that NgPLD directly binds to the Akt PH domain and can compete with a natural Akt ligand, PtdIns(3,4,5)P3, for Akt binding. Collectively, our data suggested that NgPLD augments gonococcus invasion of cervical epithelia by interacting with Akt kinase in a PI3-kinase-independent manner, which results in subversion of normal cervical cell signalling.
Collapse
Affiliation(s)
- Jennifer L Edwards
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
44
|
Huang S, Gao L, Blanchoin L, Staiger CJ. Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol Biol Cell 2006; 17:1946-58. [PMID: 16436516 PMCID: PMC1415281 DOI: 10.1091/mbc.e05-09-0840] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 12/13/2005] [Accepted: 01/17/2006] [Indexed: 11/11/2022] Open
Abstract
The cytoskeleton is a key regulator of morphogenesis, sexual reproduction, and cellular responses to extracellular stimuli. Changes in the cellular architecture are often assumed to require actin-binding proteins as stimulus-response modulators, because many of these proteins are regulated directly by binding to intracellular second messengers or signaling phospholipids. Phosphatidic acid (PA) is gaining widespread acceptance as a major, abundant phospholipid in plants that is required for pollen tube tip growth and mediates responses to osmotic stress, wounding, and phytohormones; however, the number of identified effectors of PA is rather limited. Here we demonstrate that exogenous PA application leads to significant increases in filamentous actin levels in Arabidopsis suspension cells and poppy pollen grains. To investigate further these lipid-induced changes in polymer levels, we analyzed the properties of a key regulator of actin filament polymerization, the heterodimeric capping protein from Arabidopsis thaliana (AtCP). AtCP binds to PA with a K(d) value of 17 muM and stoichiometry of approximately 1:2. It also binds well to PtdIns(4,5)P(2), but not to several other phosphoinositide or acidic phospholipids. The interaction with PA inhibited the actin-binding activity of CP. In the presence of PA, CP is unable to block the barbed or rapidly growing and shrinking end of actin filaments. Precapped filament barbed ends can also be uncapped by addition of PA, allowing rapid filament assembly from an actin monomer pool that is buffered with profilin. The findings support a model in which the inhibition of CP activity in cells by elevated PA results in the stimulation of actin polymerization from a large pool of profilin-actin. Such regulation may be important for the response of plant cells to extracellular stimuli as well as for the normal process of pollen tube tip growth.
Collapse
Affiliation(s)
- Shanjin Huang
- Department of Biological Sciences and The Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907-2064, USA
| | | | | | | |
Collapse
|
45
|
Iyer SS, Agrawal RS, Thompson CR, Thompson S, Barton JA, Kusner DJ. Phospholipase D1 Regulates Phagocyte Adhesion. THE JOURNAL OF IMMUNOLOGY 2006; 176:3686-96. [PMID: 16517737 DOI: 10.4049/jimmunol.176.6.3686] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adhesion is a fundamental cellular response that is essential to the physiologic processes of development, differentiation, proliferation, and motility, as well as to the pathology of inflammation, transformation, and metastasis. Adhesion of phagocytic leukocytes is a critical modulator of antimicrobial and cytotoxic functions, including the respiratory burst, secretion, and apoptosis. Because phospholipase D (PLD) is linked to several signaling pathways implicated in these processes, we tested the hypothesis that PLD regulates phagocyte adhesion. Adhesion of primary human neutrophils and monocyte-derived macrophages to fibronectin was accompanied by marked stimulation of PLD activity. Similarly, adhesion of both human (PLB, THP-1) and murine (RAW) myeloid-macrophage cell lines to fibronectin, fibrinogen, collagen, or plastic resulted in significant activation of PLD. Stimulation of PLD activity was rapid and persisted for at least 90 min. Confocal microscopy indicated that PLD1 exhibited partial colocalization with actin filaments at the adherent interface, in proximity to the focal adhesion protein, paxillin. Reductions in PLD activity by chemical inhibitors or specific short-interfering RNA-induced knockdown of PLD1 resulted in significant inhibition of phagocyte adhesion and was accompanied by reductions in total cellular F-actin. These data support the hypotheses that adhesion stimulates PLD activity, and that PLD1 regulates the initial stages of phagocyte adhesion. Stimulation of PLD activity may promote adhesion-dependent phagocyte effector responses.
Collapse
Affiliation(s)
- Shankar S Iyer
- Inflammation Program, Division of Infectious Diseases, Department of Internal Medicine, University of Iowa Carver College of Medicine, 2501 Crosspark Road, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
46
|
Bargmann BOR, Laxalt AM, Riet BT, Schouten E, van Leeuwen W, Dekker HL, de Koster CG, Haring MA, Munnik T. LePLDbeta1 activation and relocalization in suspension-cultured tomato cells treated with xylanase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:358-68. [PMID: 16412083 DOI: 10.1111/j.1365-313x.2005.02631.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Phospholipase D (PLD) has been implicated in various cellular processes including membrane degradation, vesicular trafficking and signal transduction. Previously, we described a PLD gene family in tomato (Lycopersicon esculentum) and showed that expression of one of these genes, LePLDbeta1, was induced by treatment with the fungal elicitor xylanase. To further investigate the function of this PLD, a gene-specific RNAi construct was used to knock down levels of LePLDbeta1 transcript in suspension-cultured tomato cells. Silenced cells exhibited a strong decrease in xylanase-induced PLD activity and responded to xylanase treatment with a disproportionate oxidative burst. Furthermore, LePLDbeta1-silenced cell-suspension cultures were found to have increased polyphenol oxidase activity, to secrete less of the beta-d-xylosidase LeXYL2 and to secrete and express more of the xyloglucan-specific endoglucanase inhibitor protein XEGIP. Using an LePLDbeta1-green fluorescent protein (GFP) fusion protein for confocal laser scanning microscopy-mediated localization studies, untreated cells displayed a cytosolic localization, whereas treatment with xylanase induced relocalization to punctuate structures within the cytosol. Possible functions for PLDbeta in plant-pathogen interactions are discussed.
Collapse
Affiliation(s)
- Bastiaan O R Bargmann
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, NL-1098 SM, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Motes CM, Pechter P, Yoo CM, Wang YS, Chapman KD, Blancaflor EB. Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth. PROTOPLASMA 2005; 226:109-23. [PMID: 16333570 DOI: 10.1007/s00709-005-0124-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 05/27/2005] [Indexed: 05/05/2023]
Abstract
Plant development is regulated by numerous chemicals derived from a multitude of metabolic pathways. However, we know very little about the biological effects and functions of many of these metabolites in the cell. N-Acylethanolamines (NAEs) are a group of lipid mediators that play important roles in mammalian physiology. Despite the intriguing similarities between animals and plants in NAE metabolism and perception, not much is known about the precise function of these metabolites in plant physiology. In plants, NAEs have been shown to inhibit phospholipase Dalpha (PLDalpha) activity, interfere with abscisic acid-induced stomatal closure, and retard Arabidopsis seedling development. 1-Butanol, an antagonist of PLD-dependent phosphatidic acid production, was reported to induce defects in Arabidopsis seedling development that were somewhat similar to effects induced by elevated levels of NAE. This raised the possibility that the impact of NAE on seedling growth could be mediated in part via its influence on PLD activity. To begin to address this possibility, we conducted a detailed, comparative analysis of the effects of 1-butanol and N-lauroylethanolamine (NAE 12:0) on Arabidopsis root cell division, in vivo cytoskeletal organization, seed germination, and seedling growth. Although both NAE 12:0 and 1-butanol induced profound cytoskeletal and morphological alterations in seedlings, there were distinct differences in their overall effects. 1-Butanol induced more pronounced modifications in cytoskeletal organization, seedling growth, and cell division at concentrations severalfold higher than NAE 12:0. We propose that these compounds mediate their differential effects on cellular organization and seedling growth, in part through the differential modulation of specific PLD isoforms.
Collapse
Affiliation(s)
- Christy M Motes
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | | | | | |
Collapse
|
48
|
Wang X. Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. PLANT PHYSIOLOGY 2005; 139:566-73. [PMID: 16219918 PMCID: PMC1255977 DOI: 10.1104/pp.105.068809] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, 63121, USA.
| |
Collapse
|
49
|
Testerink C, Munnik T. Phosphatidic acid: a multifunctional stress signaling lipid in plants. TRENDS IN PLANT SCIENCE 2005; 10:368-75. [PMID: 16023886 DOI: 10.1016/j.tplants.2005.06.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 04/22/2005] [Accepted: 06/28/2005] [Indexed: 05/03/2023]
Abstract
Phosphatidic acid (PA) has only recently been identified as an important signaling molecule in both plants and animals. Nonetheless, it already promises to rival the importance of the classic second messengers Ca(2+) and cAMP. In plants, its formation is triggered in response to various biotic and abiotic stress factors, including pathogen infection, drought, salinity, wounding and cold. In general, PA signal production is fast (minutes) and transient. Recently, our understanding of the role of PA formation in stress responses as a result of phospholipases C and D activity has greatly increased. Moreover, the first protein targets of PA have been identified. Based on this recent work, potential mechanisms by which PA provokes downstream effects are emerging.
Collapse
Affiliation(s)
- Christa Testerink
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | | |
Collapse
|
50
|
Ziembicki J, Tandon R, Schelling JR, Sedor JR, Miller RT, Huang C. Mechanical force-activated phospholipase D is mediated by Galpha12/13-Rho and calmodulin-dependent kinase in renal epithelial cells. Am J Physiol Renal Physiol 2005; 289:F826-34. [PMID: 15914773 DOI: 10.1152/ajprenal.00412.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renal glomerulus, the site of plasma ultrafiltration, is exposed to mechanical force in vivo arising from capillary blood pressure and fluid flow. Studies of cultured podocytes demonstrate that they respond to stretch by altering the structure of the actin cytoskeleton, but the mechanisms by which physical force triggers this architectural change and the signaling pathways that lead to generation of second messengers are not defined. In the present study, we found that in renal epithelial cells [podocytes and Madin-Darby canine kidney (MDCK) cells], application of mechanical force to the cell surface through fibronectin-coated ferric beads and exposure of the cells to magnetic force lead to Rho translocation and actin cytoskeleton reorganization. This application of force recruited Rho and filamentous actin (F-actin) to bead loci and subsequently stimulated phospholipase D (PLD), a downstream effector of Rho. Using MDCK cells that stably express regulators of G protein-signaling (RGS) proteins [RGS4 attenuates Galpha(i) and Galpha(q), and the p115RhoGEF-RGS domain (p115-RGS) attenuates Galpha(12/13)] to define the signaling pathway, we found that mechanical force induced Galpha(12/13)-Rho activation and increased F-actin to stimulate PLD activity. The activation can be partially prevented by the C(3) exoenzyme. Pretreatment of the cells with chemical inhibitors of several kinases showed that calmodulin-dependent kinase is also involved in stretch-induced PLD activation by a separate pathway. Taken together, our data demonstrate that in cultured podocytes and MDCK cells, mechanical force leads to actin cytoskeleton reorganization and PLD activation. The signaling pathways for PLD activation involve Galpha(12/13)/Rho/F-actin and calmodulin-dependent kinase.
Collapse
Affiliation(s)
- Jenny Ziembicki
- Dept. of Medicine, Case Western Reserve Univ., Louis Stokes Veterans Affairs Medical Ctr., 10701 East Blvd., 151W, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|