1
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. Endoplasmic reticulum stress and alterations of peroxiredoxins in aged hearts. Mech Ageing Dev 2023; 215:111859. [PMID: 37661065 PMCID: PMC11103240 DOI: 10.1016/j.mad.2023.111859] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Aging-related cardiovascular disease is influenced by multiple factors, with oxidative stress being a key contributor. Aging-induced endoplasmic reticulum (ER) stress exacerbates oxidative stress by impairing mitochondrial function. Furthermore, a decline in antioxidants, including peroxiredoxins (PRDXs), augments the oxidative stress during aging. To explore if ER stress leads to PRDX degradation during aging, young adult (3 mo.) and aged (24 mo.) male mice were studied. Treatment with 4-phenylbutyrate (4-PBA) was used to alleviate ER stress in young adult and aged mice. Aged hearts showed elevated oxidative stress levels compared to young hearts. However, treatment with 4-PBA to attenuate ER stress reduced oxidative stress in aged hearts, indicating that ER stress contributes to increased oxidative stress in aging. Moreover, aging resulted in reduced levels of peroxiredoxin 3 (PRDX3) in mitochondria and peroxiredoxin 4 (PRDX4) in myocardium. While 4-PBA treatment improved PRDX3 content in aged hearts, it did not restore PRDX4 content in aged mice. These findings suggest that ER stress not only leads to mitochondrial dysfunction and increased oxidant stress but also impairs a vital antioxidant defense through decreased PRDX3 content. Additionally, the results suggest that PRDX4 may contribute an upstream role in inducing ER stress during aging.
Collapse
Affiliation(s)
- Qun Chen
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jeremy Thompson
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ying Hu
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Edward J Lesnefsky
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA; Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA; Richmond Department of Veterans Affairs Medical Center, Richmond, VA 23249, USA.
| |
Collapse
|
2
|
Wang H, Wang B, Wei J, Zheng Z, Su J, Bian C, Xin Y, Jiang X. Sulforaphane regulates Nrf2-mediated antioxidant activity and downregulates TGF-β1/Smad pathways to prevent radiation-induced muscle fibrosis. Life Sci 2022; 311:121197. [PMID: 36400201 DOI: 10.1016/j.lfs.2022.121197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
AIMS This study aimed to examine the efficacy of sulforaphane (SFN) in preventing radiation-induced muscle fibrosis (RIMF) and the potential role in nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant stress. MAIN METHODS The RIMF model was established by a single irradiation of the left thigh of C57BL/6 J mice, and the mice were then randomly divided into control, SFN, irradiation (IR), and IR + SFN (IR/SFN) groups. The serum and skeletal muscle were collected eight weeks after irradiation, and changes in oxidative stress and muscle fibrosis were detected. KEY FINDINGS The IR group showed a more obvious skeletal muscle fiber atrophy, significantly higher number of collagen fibers, and higher inflammatory cell infiltration compared to control group. Compared to the IR group, the IR/SFN group had orderly arranged muscle fibers, decreased collagen fibers, and infiltration of inflammatory cells. In addition, compared with the control group, the expression of oxidative stress-related indexes was significantly increased, accompanied by activation of the transforming growth factor (TGF-β)/Smad pathway and its downstream fibrogenic molecules in the skeletal muscle of the IR group. After SFN intervention, the above indices were significantly restored. Furthermore, SFN induced the upregulation of Nrf2, activation of AKT, and inhibition of GSK-3β and Fyn accumulation. SIGNIFICANCE These results revealed that Nrf2 plays a central role in protecting against RIMF. Furthermore, SFN prevents RIMF by activating Nrf2 via the AKT/GSK-3β/Fyn pathway.
Collapse
Affiliation(s)
- Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Bin Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Jinlong Wei
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Graham C, Stefanatos R, Yek AEH, Spriggs RV, Loh SHY, Uribe AH, Zhang T, Martins LM, Maddocks ODK, Scialo F, Sanz A. Mitochondrial ROS signalling requires uninterrupted electron flow and is lost during ageing in flies. GeroScience 2022; 44:1961-1974. [PMID: 35355221 PMCID: PMC9616974 DOI: 10.1007/s11357-022-00555-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial reactive oxygen species (mtROS) are cellular messengers essential for cellular homeostasis. In response to stress, reverse electron transport (RET) through respiratory complex I generates high levels of mtROS. Suppression of ROS production via RET (ROS-RET) reduces survival under stress, while activation of ROS-RET extends lifespan in basal conditions. Here, we demonstrate that ROS-RET signalling requires increased electron entry and uninterrupted electron flow through the electron transport chain (ETC). We find that in old fruit flies, ROS-RET is abolished when electron flux is decreased and that their mitochondria produce consistently high levels of mtROS. Finally, we demonstrate that in young flies, limiting electron exit, but not entry, from the ETC phenocopies mtROS generation observed in old individuals. Our results elucidate the mechanism by which ROS signalling is lost during ageing.
Collapse
Affiliation(s)
- Charlotte Graham
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Rhoda Stefanatos
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
- Faculty of Medical Sciences, Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Angeline E H Yek
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Ruth V Spriggs
- MRC Toxicology Unit, University of Cambridge, Cambridge, CB2 1QR, UK
- Hearing Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Samantha H Y Loh
- MRC Toxicology Unit, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Alejandro Huerta Uribe
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, UK
| | - Tong Zhang
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, UK
- Novartis Institutes for BioMedical Research, Shanghai, 201203, China
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Oliver D K Maddocks
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, UK
| | - Filippo Scialo
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
- Dipartimento Di Scienze Mediche Traslazionali, Università Degli Studi Della Campania "Luigi Vanvitelli", 80131, Naples, Italy.
| | - Alberto Sanz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
4
|
Shakeri F, Bibak B, Safdari MR, Keshavarzi Z, Jamialahmadi T, Sathyapalan T, Sahebkar A. Cellular and molecular mechanisms of curcumin on thyroid gland disorders. Curr Med Chem 2022; 29:2878-2890. [PMID: 35142266 DOI: 10.2174/0929867329666220210145033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/13/2021] [Accepted: 11/21/2021] [Indexed: 11/22/2022]
Abstract
There is growing literature on the positive therapeutic potentials of curcumin. Curcumin or diferuloylmethane is a polyphenol obtained from the plant Curcuma longa. Curcumin has been used widely in Ayurvedic and Chinese medicine for various conditions. The role of curcumin on thyroid glands has been shown by its effects on various biological pathways, including anti-inflammatory, antioxidant, anti-proliferative, apoptosis, angiogenesis, cell cycle and metastasis. We reviewed the recent literature on curcumin applications for thyroid dysfunction, including hyperthyroidism and hypothyroidism, and discussed the molecular mechanisms of these effects. This review aims to summarize the wealth of research related to the thyroid gland therapeutic effect of curcumin.
Collapse
Affiliation(s)
- Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Reza Safdari
- Department of Orthopedic Surgery, Imam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
The Role of Oxidative Stress in the Aging Heart. Antioxidants (Basel) 2022; 11:antiox11020336. [PMID: 35204217 PMCID: PMC8868312 DOI: 10.3390/antiox11020336] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022] Open
Abstract
Medical advances and the availability of diagnostic tools have considerably increased life expectancy and, consequently, the elderly segment of the world population. As age is a major risk factor in cardiovascular disease (CVD), it is critical to understand the changes in cardiac structure and function during the aging process. The phenotypes and molecular mechanisms of cardiac aging include several factors. An increase in oxidative stress is a major player in cardiac aging. Reactive oxygen species (ROS) production is an important mechanism for maintaining physiological processes; its generation is regulated by a system of antioxidant enzymes. Oxidative stress occurs from an imbalance between ROS production and antioxidant defenses resulting in the accumulation of free radicals. In the heart, ROS activate signaling pathways involved in myocyte hypertrophy, interstitial fibrosis, contractile dysfunction, and inflammation thereby affecting cell structure and function, and contributing to cardiac damage and remodeling. In this manuscript, we review recent published research on cardiac aging. We summarize the aging heart biology, highlighting key molecular pathways and cellular processes that underlie the redox signaling changes during aging. Main ROS sources, antioxidant defenses, and the role of dysfunctional mitochondria in the aging heart are addressed. As metabolism changes contribute to cardiac aging, we also comment on the most prevalent metabolic alterations. This review will help us to understand the mechanisms involved in the heart aging process and will provide a background for attractive molecular targets to prevent age-driven pathology of the heart. A greater understanding of the processes involved in cardiac aging may facilitate our ability to mitigate the escalating burden of CVD in older individuals and promote healthy cardiac aging.
Collapse
|
6
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. Reversing mitochondrial defects in aged hearts: role of mitochondrial calpain activation. Am J Physiol Cell Physiol 2022; 322:C296-C310. [PMID: 35044856 PMCID: PMC8836732 DOI: 10.1152/ajpcell.00279.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/03/2023]
Abstract
Aging chronically increases endoplasmic reticulum (ER) stress that contributes to mitochondrial dysfunction. Activation of calpain 1 (CPN1) impairs mitochondrial function during acute ER stress. We proposed that aging-induced ER stress led to mitochondrial dysfunction by activating CPN1. We posit that attenuation of the ER stress or direct inhibition of CPN1 in aged hearts can decrease cardiac injury during ischemia-reperfusion by improving mitochondrial function. Male young (3 mo) and aged mice (24 mo) were used in the present study, and 4-phenylbutyrate (4-PBA) was used to decrease the ER stress in aged mice. Subsarcolemmal (SSM) and interfibrillar mitochondria (IFM) were isolated. Chronic 4-PBA treatment for 2 wk decreased CPN1 activation as shown by the decreased cleavage of spectrin in cytosol and apoptosis inducing factor (AIF) and the α1 subunit of pyruvate dehydrogenase (PDH) in mitochondria. Treatment improved oxidative phosphorylation in 24-mo-old SSM and IFM at baseline compared with vehicle. When 4-PBA-treated 24-mo-old hearts were subjected to ischemia-reperfusion, infarct size was decreased. These results support that attenuation of the ER stress decreased cardiac injury in aged hearts by improving mitochondrial function before ischemia. To challenge the role of CPN1 as an effector of the ER stress, aged mice were treated with MDL-28170 (MDL, an inhibitor of calpain 1). MDL treatment improved mitochondrial function in aged SSM and IFM. MDL-treated 24-mo-old hearts sustained less cardiac injury following ischemia-reperfusion. These results support that age-induced ER stress augments cardiac injury during ischemia-reperfusion by impairing mitochondrial function through activation of CPN1.
Collapse
Affiliation(s)
- Qun Chen
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jeremy Thompson
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ying Hu
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
- McGuire Department of Veterans Affairs Medical Center, Richmond, Virginia
| |
Collapse
|
7
|
Gao M, Qin Y, Li A, Wei S, Liu B, Tian X, Gong G. Mitoflash generated at the Qo site of mitochondrial Complex III. J Cell Physiol 2021; 236:2920-2933. [PMID: 32930405 DOI: 10.1002/jcp.30059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/17/2020] [Accepted: 09/04/2020] [Indexed: 01/13/2023]
Abstract
The previous research has shown that mitochondrial flash (mitoflash) genesis are functionally and mechanistically integrated with mitochondrial electron transport chain (ETC) energy metabolism. However, the response of mitoflash to superoxide is not entirely consistent with the response of MitoSOX Red. The generation mechanism of mitoflash is still unclear. Here, we investigated mitoflash activities, using the different combinations of ETC substrates and inhibitors, in permeabilized cardiomyocytes or hearts. We found that blocking the complete electron flow, from Complex I to IV, with any one of ETC inhibitors including rotenone (Rot), antimycin A (AntA), myxothiazol (Myxo), stigmatellin, and sodium cyanide, will lead to the abolishment of mitoflashes triggered by substrates in adult permeabilized cardiomyocytes. However, Myxo boosted mitoflashes triggered by the reverse electron of N,N,N',N'-tetramethyl-p-phenylenediamine/ascorbate. Moreover, Rot and AntA furtherly enhanced mitoflash activity rather than depressed it, suggesting that mitoflashes generated at the Complex III Qo site. Meanwhile, the inhibition of Complex III protein expression resulted in the activity of Complex III decrease, which decreased mitoflash frequency. The function defect (no change of protein level) of the Qo site of Complex III in aging hearts augmented mitoflash generation confirmed the Qo site function was critical to mitoflash genesis. Thus, our results indicate that mitoflash detected by circularly permuted yellow fluorescent protein is generated at the Qo site of Complex III.
Collapse
Affiliation(s)
- Meng Gao
- Institute for Regenerative Medicine, Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuan Qin
- Department of Pharmacy, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Anqi Li
- Institute for Regenerative Medicine, Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Sailei Wei
- Institute for Regenerative Medicine, Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiangang Tian
- Institute for Regenerative Medicine, Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Cardiovascular Surgery, Daping Hospital, Army Medical Center of PLA, Chongqing, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Chronic metformin treatment decreases cardiac injury during ischemia-reperfusion by attenuating endoplasmic reticulum stress with improved mitochondrial function. Aging (Albany NY) 2021; 13:7828-7845. [PMID: 33746115 PMCID: PMC8034968 DOI: 10.18632/aging.202858] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
Aging impairs mitochondrial function that leads to greater cardiac injury during ischemia and reperfusion. Cardiac endoplasm reticulum (ER) stress increases with age and contributes to mitochondrial dysfunction. Metformin is an anti-diabetic drug that protects cardiac mitochondria during acute ER stress. We hypothesized that metformin treatment would improve preexisting mitochondrial dysfunction in aged hearts by attenuating ER stress, followed by a decrease in cardiac injury during subsequent ischemia and reperfusion. Male young (3 mo.) and aged mice (24 mo.) received metformin (300 mg/kg/day) dissolved in drinking water with sucrose (0.2 g/100 ml) as sweetener for two weeks versus sucrose vehicle alone. Cytosol, subsarcolemmal (SSM), and interfibrillar mitochondria (IFM) were isolated. In separate groups, cardioprotection was evaluated using ex vivo isolated heart perfusion with 25 min. global ischemia and 60 min. reperfusion. Infarct size was measured. The contents of CHOP and cleaved ATF6 were decreased in metformin-treated 24 mo. mice compared to vehicle, supporting a decrease in ER stress. Metformin treatment improved OXPHOS in IFM in 24 mo. using a complex I substrate. Metformin treatment decreased infarct size following ischemia-reperfusion. Thus, metformin feeding decreased cardiac injury in aged mice during ischemia-reperfusion by improving pre-ischemic mitochondrial function via inhibition of ER stress.
Collapse
|
9
|
Scialo F, Sanz A. Coenzyme Q redox signalling and longevity. Free Radic Biol Med 2021; 164:187-205. [PMID: 33450379 DOI: 10.1016/j.freeradbiomed.2021.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
Abstract
Mitochondria are the powerhouses of the cell. They produce a significant amount of the energy we need to grow, survive and reproduce. The same system that generates energy in the form of ATP also produces Reactive Oxygen Species (ROS). Mitochondrial Reactive Oxygen Species (mtROS) were considered for many years toxic by-products of metabolism, responsible for ageing and many degenerative diseases. Today, we know that mtROS are essential redox messengers required to determine cell fate and maintain cellular homeostasis. Most mtROS are produced by respiratory complex I (CI) and complex III (CIII). How and when CI and CIII produce ROS is determined by the redox state of the Coenzyme Q (CoQ) pool and the proton motive force (pmf) generated during respiration. During ageing, there is an accumulation of defective mitochondria that generate high levels of mtROS. This causes oxidative stress and disrupts redox signalling. Here, we review how mtROS are generated in young and old mitochondria and how CI and CIII derived ROS control physiological and pathological processes. Finally, we discuss why damaged mitochondria amass during ageing as well as methods to preserve mitochondrial redox signalling with age.
Collapse
Affiliation(s)
- Filippo Scialo
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "Luigi Vanvitelli", 80131, Napoli, Italy
| | - Alberto Sanz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, United Kingdom.
| |
Collapse
|
10
|
Preventing Myocardial Injury Following Non-Cardiac Surgery: A Potential Role for Preoperative Antioxidant Therapy with Ubiquinone. Antioxidants (Basel) 2021; 10:antiox10020276. [PMID: 33579045 PMCID: PMC7916807 DOI: 10.3390/antiox10020276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Over 240 million non-cardiac operations occur each year and are associated with a 15-20% incidence of adverse perioperative cardiovascular events. Unfortunately, preoperative therapies that have been useful for chronic ischemic heart diseases, such as coronary artery revascularization, antiplatelet agents, and beta-blockers have failed to improve outcomes. In a pre-clinical swine model of ischemic heart disease, we showed that daily administration of ubiquinone (coenzyme Q10, CoQ10) enhances the antioxidant status of mitochondria within chronically ischemic heart tissue, potentially via a PGC1α-dependent mechanism. In a randomized controlled trial, among high-risk patients undergoing elective vascular surgery, we showed that NT Pro-BNP levels are an important means of risk-stratification during the perioperative period and can be lowered with administration of CoQ10 (400 mg/day) for 3 days prior to surgery. The review provides background information for the role of oxidant stress and inflammation during high-risk operations and the potential novel application of ubiquinone as a preoperative antioxidant therapy that might reduce perioperative adverse cardiovascular outcomes.
Collapse
|
11
|
You J, Bragin A, Liu H, Li L. Preclinical studies of transcranial photobiomodulation in the neurological diseases. TRANSLATIONAL BIOPHOTONICS 2021. [DOI: 10.1002/tbio.202000024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Jing You
- Department of Biomedical Engineering University of North Texas Denton Texas USA
| | - Anatol Bragin
- Department of Neurology University of California Los Angeles Los Angeles California USA
- Brain Research Institute University of California Los Angeles Los Angeles California USA
| | - Hanli Liu
- Department of Bioengineering University of Texas at Arlington Arlington Texas USA
| | - Lin Li
- Department of Biomedical Engineering University of North Texas Denton Texas USA
- Department of Neurology University of California Los Angeles Los Angeles California USA
| |
Collapse
|
12
|
Pérez-Mejías G, Olloqui-Sariego JL, Guerra-Castellano A, Díaz-Quintana A, Calvente JJ, Andreu R, De la Rosa MA, Díaz-Moreno I. Physical contact between cytochrome c1 and cytochrome c increases the driving force for electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148277. [DOI: 10.1016/j.bbabio.2020.148277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023]
|
13
|
Thompson J, Maceyka M, Chen Q. Targeting ER stress and calpain activation to reverse age-dependent mitochondrial damage in the heart. Mech Ageing Dev 2020; 192:111380. [PMID: 33045249 DOI: 10.1016/j.mad.2020.111380] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Severity of cardiovascular disease increases markedly in elderly patients. In addition, many therapeutic strategies that decrease cardiac injury in adult patients are invalid in elderly patients. Thus, it is a challenge to protect the aged heart in the context of underlying chronic or acute cardiac diseases including ischemia-reperfusion injury. The cause(s) of this age-related increased damage remain unknown. Aging impairs the function of the mitochondrial electron transport chain (ETC), leading to decreased energy production and increased oxidative stress due to generation of reactive oxygen species (ROS). Additionally, ROS-induced oxidative stress can increase cardiac injury during ischemia-reperfusion by potentiating mitochondrial permeability transition pore (MPTP) opening. Aging leads to increased endoplasmic reticulum (ER) stress, which contributes to mitochondrial dysfunction, including reduced function of the ETC. The activation of both cytosolic and mitochondrial calcium-activated proteases termed calpains leads to mitochondrial dysfunction and decreased ETC function. Intriguingly, mitochondrial ROS generation also induces ER stress, highlighting the dynamic interaction between mitochondria and ER. Here, we discuss the role of ER stress in sensitizing and potentiating mitochondrial dysfunction in response to ischemia-reperfusion, and the promising potential therapeutic benefit of inhibition of ER stress and / or calpains to attenuate cardiac injury in elderly patients.
Collapse
Affiliation(s)
- Jeremy Thompson
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Michael Maceyka
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Qun Chen
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, United States.
| |
Collapse
|
14
|
Chen Q, Samidurai A, Thompson J, Hu Y, Das A, Willard B, Lesnefsky EJ. Endoplasmic reticulum stress-mediated mitochondrial dysfunction in aged hearts. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165899. [PMID: 32698045 DOI: 10.1016/j.bbadis.2020.165899] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022]
Abstract
Aging impairs the mitochondrial electron transport chain (ETC), especially in interfibrillar mitochondria (IFM). Mitochondria are in close contact with the endoplasmic reticulum (ER). Induction of ER stress leads to ETC injury in adult heart mitochondria. We asked if ER stress contributes to the mitochondrial dysfunction during aging. Subsarcolemmal mitochondria (SSM) and IFM were isolated from 3, 18, and 24 mo. C57Bl/6 mouse hearts. ER stress progressively increased with age, especially in 24 mo. mice that manifest mitochondrial dysfunction. OXPHOS was decreased in 24 mo. IFM oxidizing complex I and complex IV substrates. Proteomic analysis showed that the content of multiple complex I subunits was decreased in IFM from 24 mo. hearts, but remained unchanged in in 18 mo. IFM without a decrease in OXPHOS. Feeding 24 mo. old mice with 4-phenylbutyrate (4-PBA) for two weeks attenuated the ER stress and improved mitochondrial function. These results indicate that ER stress contributes to the mitochondrial dysfunction in aged hearts. Attenuation of ER stress is a potential approach to improve mitochondrial function in aged hearts.
Collapse
Affiliation(s)
- Qun Chen
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Arun Samidurai
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Jeremy Thompson
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Ying Hu
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Anindita Das
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Belinda Willard
- Proteomics Core, Cleveland Clinic, Cleveland, OH 44106, United States of America
| | - Edward J Lesnefsky
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America; Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, United States of America; McGuire Department of Veterans Affairs Medical Center, Richmond, VA 23249, United States of America.
| |
Collapse
|
15
|
Kelm NQ, Beare JE, Weber GJ, LeBlanc AJ. Thrombospondin-1 mediates Drp-1 signaling following ischemia reperfusion in the aging heart. FASEB Bioadv 2020; 2:304-314. [PMID: 32395703 PMCID: PMC7211039 DOI: 10.1096/fba.2019-00090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/07/2019] [Accepted: 02/19/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Ischemia reperfusion (IR) injury leads to activation of dynamin-related protein (Drp-1), causing mitochondrial fission and generation of reactive oxygen species (ROS), but the molecular mechanisms that activate Drp-1 are not known. The purpose of this study was to establish a link between Thbs-1 and fission protein (Drp-1) through Pgc-1α following IR in advancing age. METHODS Female Fischer-344 rats were divided into four groups: Young Control, Young + IR, Old Control, and Old + IR. Heart function and coronary flow were evaluated at baseline and 72 hours after IR, hearts were explanted and mitochondrial ROS generation was measured using MitoPY1, as well as protein levels of Thbs-1, Pgc-1α, and Drp-1. In vitro, rat aortic endothelial cells (RAEC) were treated with siRNA or plasmid for Pgc-1α to evaluate Pgc-1α effect on Drp-1. RESULTS Mitochondrial ROS generation in heart tissue increased in both age groups following IR. Old animals exhibited diastolic dysfunction at baseline; after IR they displayed reduced systolic function and exacerbated diastolic dysfunction compared to young controls. IR increased Thbs-1 and Drp-1 expression in young and old hearts compared to control. siRNA to Pgc-1α enhanced levels of Drp-1 in RAECs and increased ROS generation after hypoxia, while Pgc-1α plasmid ameliorates Drp-1 expression in the presence of exogenous Thbs-1. CONCLUSION These results highlight a novel signaling pathway by which Thbs-1 regulates mitochondrial fission protein (Drp-1) and ROS generation during hypoxia, and presumably, following IR. Inhibiting Thbs-1 immediately after IR may prevent Drp-1-mediated mitochondrial fission and is likely to improve the diastolic function of the heart by reducing ROS-mediated cardiomyocyte damage in the aged population.
Collapse
Affiliation(s)
- Natia Q. Kelm
- Cardiovascular Innovation InstituteUniversity of LouisvilleLouisvilleKYUSA
| | - Jason E. Beare
- Cardiovascular Innovation InstituteUniversity of LouisvilleLouisvilleKYUSA
- Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKYUSA
| | | | - Amanda J. LeBlanc
- Cardiovascular Innovation InstituteUniversity of LouisvilleLouisvilleKYUSA
- Department of PhysiologyUniversity of LouisvilleLouisvilleKYUSA
| |
Collapse
|
16
|
Kaplán P, Tatarková Z, Lichardusová L, Kmeťová Sivoňová M, Tomašcová A, Račay P, Lehotský J. Age-Associated Changes in Antioxidants and Redox Proteins of Rat Heart. Physiol Res 2019; 68:883-892. [PMID: 31647296 DOI: 10.33549/physiolres.934170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress and decline in cellular redox regulation have been hypothesized to play a key role in cardiovascular aging; however, data on antioxidant and redox regulating systems in the aging heart are controversial. The aim of the present study was to examine the effect of aging on critical antioxidant enzymes and two major redox-regulatory systems glutathione (GSH) and thioredoxin (Trx) system in hearts from adult (6-month-old), old (15-month-old), and senescent (26-month-old) rats. Aging was associated with a non-uniform array of changes, including decline in contents of reduced GSH and total mercaptans in the senescent heart. The activities of Mn-superoxide dismutase (SOD2), glutathione peroxidase (GPx), glutathione reductase (GR), and thioredoxin reductase (TrxR) exhibited an age-related decline, whereas catalase was unchanged and Cu,Zn-superoxide dismutase (SOD1) displayed only slight decrease in old heart and was unchanged in the senescent heart. GR, Trx, and peroxiredoxin levels were significantly reduced in old and/or senescent hearts, indicating a diminished expression of these proteins. In contrast, SOD2 level was unchanged in the old heart and was slightly elevated in the senescent heart. Decline in GPx activity was accompanied by a loss of GPx level only in old rats, the level in senescent heart was unchanged. These results indicate age-related posttranslational protein modification of SOD2 and GPx. In summary, our data suggest that changes are more pronounced in senescent than in old rat hearts and support the view that aging is associated with disturbed redox balance that could alter cellular signaling and regulation.
Collapse
Affiliation(s)
- P Kaplán
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
17
|
Chen Q, Lesnefsky EJ. A new strategy to decrease cardiac injury in aged heart following ischaemia-reperfusion: enhancement of the interaction between AMPK and SIRT1. Cardiovasc Res 2019; 114:771-772. [PMID: 29596586 DOI: 10.1093/cvr/cvy062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Qun Chen
- Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Edward J Lesnefsky
- Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.,Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.,Medical Service, McGuire VA Medical Center, Richmond, VA 23249, USA
| |
Collapse
|
18
|
Koutakis P, Ismaeel A, Farmer P, Purcell S, Smith RS, Eidson JL, Bohannon WT. Oxidative stress and antioxidant treatment in patients with peripheral artery disease. Physiol Rep 2019; 6:e13650. [PMID: 29611350 PMCID: PMC5880878 DOI: 10.14814/phy2.13650] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/12/2018] [Accepted: 02/22/2018] [Indexed: 12/27/2022] Open
Abstract
Peripheral artery disease is an atherosclerotic disease of arterial vessels that mostly affects arteries of lower extremities. Effort induced cycles of ischemia and reperfusion lead to increased reactive oxygen species production by mitochondria. Therefore, the pathophysiology of peripheral artery disease is a consequence of metabolic myopathy, and oxidative stress is the putative major operating mechanism behind the structural and metabolic changes that occur in muscle. In this review, we discuss the evidence for oxidative damage in peripheral artery disease and discuss management strategies related to antioxidant supplementation. We also highlight the major pathways governing oxidative stress in the disease and discuss their implications in disease progression. Potential therapeutic targets and diagnostic methods related to these mechanisms are explored, with an emphasis on the Nrf2 pathway.
Collapse
Affiliation(s)
- Panagiotis Koutakis
- Department of Health Human Performance and Recreation, Baylor University, Waco, Texas
| | - Ahmed Ismaeel
- Department of Health Human Performance and Recreation, Baylor University, Waco, Texas
| | - Patrick Farmer
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas
| | - Seth Purcell
- Department of Surgery, Baylor Scott and White Medical Center, Temple, Texas
| | - Robert S Smith
- Department of Surgery, Baylor Scott and White Medical Center, Temple, Texas
| | - Jack L Eidson
- Department of Surgery, Baylor Scott and White Medical Center, Temple, Texas
| | - William T Bohannon
- Department of Surgery, Baylor Scott and White Medical Center, Temple, Texas
| |
Collapse
|
19
|
Chen Q, Salloum FN. "Mighty-chondrial" DNA repair for mitigation of cardiac injury: focus on "A novel mtDNA repair fusion protein attenuates maladaptive remodeling and preserves cardiac function in heart failure". Am J Physiol Heart Circ Physiol 2018; 314:H268-H269. [PMID: 29146615 DOI: 10.1152/ajpheart.00661.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qun Chen
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University , Richmond, Virginia
| | - Fadi N Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
20
|
Musci RV, Hamilton KL, Miller BF. Targeting mitochondrial function and proteostasis to mitigate dynapenia. Eur J Appl Physiol 2018; 118:1-9. [PMID: 28986697 PMCID: PMC5756099 DOI: 10.1007/s00421-017-3730-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/30/2017] [Indexed: 12/25/2022]
Abstract
Traditionally, interventions to treat skeletal muscle aging have largely targeted sarcopenia-the age-related loss of skeletal muscle mass. Dynapenia refers to the age-related loss in skeletal muscle function due to factors outside of muscle mass, which helps to inform treatment strategies for aging skeletal muscle. There is evidence that mechanisms to maintain protein homeostasis and proteostasis, deteriorate with age. One key mechanism to maintain proteostasis is protein turnover, which is an energetically costly process. When there is a mismatch between cellular energy demands and energy provision, inelastic processes related to metabolism are maintained, but there is competition for the remaining energy between the elastic processes of somatic maintenance and growth. With aging, mitochondrial dysfunction reduces ATP generation capacity, constraining the instantaneous supply of energy, thus compromising growth and somatic maintenance processes. Further, with age the need for somatic maintenance increases because of the accumulation of protein damage. In this review, we highlight the significant role mitochondria have in maintaining skeletal muscle proteostasis through increased energy provision, protein turnover, and substrate flux. In addition, we provide evidence that improving mitochondrial function could promote a cellular environment that is conducive to somatic maintenance, and consequently for mitigating dynapenia. Finally, we highlight interventions, such as aerobic exercise, that could be used to improve mitochondrial function and improve outcomes related to dynapenia.
Collapse
Affiliation(s)
- Robert V Musci
- Translational Research on Aging and Chronic Disease Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523-1582, USA
| | - Karyn L Hamilton
- Translational Research on Aging and Chronic Disease Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523-1582, USA
| | - Benjamin F Miller
- Translational Research on Aging and Chronic Disease Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523-1582, USA.
| |
Collapse
|
21
|
Nam HS, Izumchenko E, Dasgupta S, Hoque MO. Mitochondria in chronic obstructive pulmonary disease and lung cancer: where are we now? Biomark Med 2017; 11:475-489. [PMID: 28598223 DOI: 10.2217/bmm-2016-0373] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent advances in mitochondrial biogenesis have provided the emerging recognition that mitochondria do much more than 'simply providing energy for cellular function'. Currently, a constantly improving understanding of the mitochondrial structure and function has been providing valuable insights into the contribution of defects in mitochondrial metabolism to various human diseases, including chronic obstructive pulmonary disease and lung cancer. The growing interest in mitochondria research led to development of new biomedical fields in the two main smoking-related lung diseases. However, there is considerable paucity in our understanding of mechanisms by which mitochondrial dynamics regulate lung diseases. In this review, we will discuss our current knowledge on the role of mitochondrial dysfunction in the pathogenesis of chronic obstructive pulmonary disease and non-small-cell lung cancer.
Collapse
Affiliation(s)
- Hae-Seong Nam
- Department of Otolaryngology & Head & Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Division of Pulmonology, Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon 22332, South Korea
| | - Evgeny Izumchenko
- Department of Otolaryngology & Head & Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Santanu Dasgupta
- Department of Cellular & Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Mohammad O Hoque
- Department of Otolaryngology & Head & Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
22
|
Lesnefsky EJ, Chen Q, Hoppel CL. Mitochondrial Metabolism in Aging Heart. Circ Res 2017; 118:1593-611. [PMID: 27174952 DOI: 10.1161/circresaha.116.307505] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area, there is ≈50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction.
Collapse
Affiliation(s)
- Edward J Lesnefsky
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Qun Chen
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Charles L Hoppel
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH.
| |
Collapse
|
23
|
Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL. Mitochondrial Dysfunction and Myocardial Ischemia-Reperfusion: Implications for Novel Therapies. Annu Rev Pharmacol Toxicol 2017; 57:535-565. [PMID: 27860548 PMCID: PMC11060135 DOI: 10.1146/annurev-pharmtox-010715-103335] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria have emerged as key participants in and regulators of myocardial injury during ischemia and reperfusion. This review examines the sites of damage to cardiac mitochondria during ischemia and focuses on the impact of these defects. The concept that mitochondrial damage during ischemia leads to cardiac injury during reperfusion is addressed. The mechanisms that translate ischemic mitochondrial injury into cellular damage, during both ischemia and early reperfusion, are examined. Next, we discuss strategies that modulate and counteract these mechanisms of mitochondrial-driven injury. The new concept that mitochondria are not merely stochastic sites of oxidative and calcium-mediated injury but that they activate cellular responses of mitochondrial remodeling and cellular reactions that modulate the balance between cell death and recovery is reviewed, and the therapeutic implications of this concept are discussed.
Collapse
Affiliation(s)
- Edward J Lesnefsky
- Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia 23298; ,
- Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249;
| | - Qun Chen
- Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia 23298; ,
| | - Bernard Tandler
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio 44106;
| | - Charles L Hoppel
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106;
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
- Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
24
|
Mitochondrial Dysfunction in Cardiovascular Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:451-464. [PMID: 28551802 DOI: 10.1007/978-3-319-55330-6_24] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria are the prime source of ATP in cardiomyocytes. Impairment of mitochondrial metabolism results in damage to existing proteins and DNA. Such deleterious effects are part and parcel of the aging process, reducing the ability of cardiomyocytes to counter stress, such as myocardial infarction and consequent reperfusion. In such conditions, mitochondria in the heart of aged individuals exhibit decreased oxidative phosphorylation, decreased ATP production, and increased net reactive oxygen species production; all of these effects are independent of the decrease in number of mitochondria that occurs in these situations. Rather than being associated with the mitochondrial population in toto, these defects are almost exclusively confined to those organelles positioned between myofibrils (interfibrillar mitochondria). It is in complex III and IV where these dysfunctional aspects are manifested. In an apparent effort to correct mitochondrial metabolic defects, affected organelles are to some extent eliminated by mitophagy; at the same time, new, unaffected organelles are generated by fission of mitochondria. Because these cardiac health issues are localized to specific mitochondria, these organelles offer potential targets for therapeutic approaches that could favorably affect the aging process in heart.
Collapse
|
25
|
Samarasinghe KTG, Munkanatta Godage DNP, Zhou Y, Ndombera FT, Weerapana E, Ahn YH. A clickable glutathione approach for identification of protein glutathionylation in response to glucose metabolism. MOLECULAR BIOSYSTEMS 2016; 12:2471-80. [PMID: 27216279 PMCID: PMC4955733 DOI: 10.1039/c6mb00175k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glucose metabolism and mitochondrial function are closely interconnected with cellular redox-homeostasis. Although glucose starvation, which mimics ischemic conditions or insufficient vascularization, is known to perturb redox-homeostasis, global and individual protein glutathionylation in response to glucose metabolism or mitochondrial activity remains largely unknown. In this report, we use our clickable glutathione approach, which forms clickable glutathione (azido-glutathione) by using a mutant of glutathione synthetase (GS M4), for detection and identification of protein glutathionylation in response to glucose starvation. We found that protein glutathionylation is readily induced in HEK293 cells in response to low glucose concentrations when mitochondrial reactive oxygen species (ROS) are elevated in cells, and glucose is the major determinant for inducing reversible glutathionylation. Proteomic and biochemical analysis identified over 1300 proteins, including SMYD2, PP2Cα, and catalase. We further showed that PP2Cα is glutathionylated at C314 in a C-terminal domain, and PP2Cα C314 glutathionylation disrupts the interaction with mGluR3, an important glutamate receptor associated with synaptic plasticity.
Collapse
Affiliation(s)
| | | | - Yani Zhou
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Fidelis T Ndombera
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Eranthie Weerapana
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Young-Hoon Ahn
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| |
Collapse
|
26
|
Terzi A, Iraz M, Sahin S, Ilhan A, Idiz N, Fadillioglu E. Protective effects of erdosteine on rotenone-induced oxidant injury in liver tissue. Toxicol Ind Health 2016; 20:141-7. [PMID: 15941011 DOI: 10.1191/0748233704th208oa] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Rotenone, an insecticide of botanical origin, causes toxicity through inhibition of complex I of the respiratory chain in mitochondria. This study was undertaken to determine whether rotenone-induced liver oxidant injury is prevented by erdosteine, a mucolytic agent showing antioxidant properties. There were four groups of Male Wistar Albino rats: group one was untreated as control; the other groups were treated with erdosteine (50 mg/kg per day, orally), rotenone (2.5 mg/mL once and 1 mL/kg per day for 60 days, i.p.) or rotenone plus erdosteine, respectively. Rotenone treatment without erdosteine increased xanthine oxidase (XO) enzyme activity and also increased lipid peroxidation in liver tissue P < 0.05). The rats treated with rotenone plus erdosteine produced a significant decrease in lipid peroxidation and XO activities in comparison with rotenone group PB/0.05). Erdosteine treatment with rotenone led to an increase in catalase (CAT) and superoxide dismutase (SOD) activities in comparison with the rotenone group PB/0.05). There was no significant difference in nitric oxide (NO) level between groups. There were negative correlations between CAT activity and malondialdehyde (MDA) level (r= -0.934, P <0.05) with between CAT and SOD activities (r= -0.714, P <0.05), and a positive correlation between SOD activity and MDA level (r= 0.828, P <0.05) in rotenone group. In the rotenone plus erdosteine group, there was a negative correlation between XO activity and NO level in liver tissue (r= -0.833, P -0.05). In the light of these findings, erdosteine may be a protective agent for rotenone-induced liver oxidative injury in rats.
Collapse
Affiliation(s)
- Alpaslan Terzi
- Department of General Surgery, Medical Faculty of Inonu University, Malatya, Turkey
| | | | | | | | | | | |
Collapse
|
27
|
Acetyl-L-carnitine increases mitochondrial protein acetylation in the aged rat heart. Mech Ageing Dev 2015; 145:39-50. [PMID: 25660059 DOI: 10.1016/j.mad.2015.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 11/24/2014] [Accepted: 01/27/2015] [Indexed: 12/30/2022]
Abstract
Previously we showed that in vivo treatment of elderly Fisher 344 rats with acetylcarnitine abolished the age-associated defect in respiratory chain complex III in interfibrillar mitochondria and improved the functional recovery of the ischemic/reperfused heart. Herein, we explored mitochondrial protein acetylation as a possible mechanism for acetylcarnitine's effect. In vivo treatment of elderly rats with acetylcarnitine restored cardiac acetylcarnitine content and increased mitochondrial protein lysine acetylation and increased the number of lysine-acetylated proteins in cardiac subsarcolemmal and interfibrillar mitochondria. Enzymes of the tricarboxylic acid cycle, mitochondrial β-oxidation, and ATP synthase of the respiratory chain showed the greatest acetylation. Acetylation of isocitrate dehydrogenase, long-chain acyl-CoA dehydrogenase, complex V, and aspartate aminotransferase was accompanied by decreased catalytic activity. Several proteins were found to be acetylated only after treatment with acetylcarnitine, suggesting that exogenous acetylcarnitine served as the acetyl-donor. Two-dimensional fluorescence difference gel electrophoresis analysis revealed that acetylcarnitine treatment also induced changes in mitochondrial protein amount; a two-fold or greater increase/decrease in abundance was observed for thirty one proteins. Collectively, our data provide evidence for the first time that in the aged rat heart in vivo administration of acetylcarnitine provides acetyl groups for protein acetylation and affects the amount of mitochondrial proteins.
Collapse
|
28
|
New insights into the chemical and biochemical basis of the "yang-invigorating" action of chinese yang-tonic herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:856273. [PMID: 25610483 PMCID: PMC4295141 DOI: 10.1155/2014/856273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/07/2014] [Accepted: 06/21/2014] [Indexed: 12/23/2022]
Abstract
In the practice of traditional Chinese medicine, many Yang-tonic herbs have been used for retarding the decline in bodily function and delaying the onset of age-related diseases. Our earlier studies have demonstrated that Yang-invigorating herbs/formulations protect against oxidative injury in various organs and also extend the median lifespan in mice. This lifespan extension was associated with an upregulation of cellular antioxidant status including that of mitochondria whose functional capacity is also increased by “Yang-invigorating” herbs/formulations. In this paper, we propose that triterpenes and phytosterols, which are ubiquitously found in Yang-tonic herbs, may be the chemical entities responsible for enhancing mitochondrial functional and antioxidant capacity and thus the “Yang-invigorating” action. The biochemical mechanism underlying this “Yang-invigorating” action may involve a sustained production of low levels of mitochondrial reactive oxygen species (ROS) secondary to an increased activity of the electron transport chain, with the possible involvement of mitochondrial uncoupling. The increase in mitochondrial functional capacity can retard the decline in bodily function during aging, whereas the mitochondrial ROS production is instrumental in eliciting a glutathione antioxidant response via redox-sensitive signaling pathways, which can delay the onset of age-related diseases.
Collapse
|
29
|
Karamanlidis G, Garcia-Menendez L, Kolwicz SC, Lee CF, Tian R. Promoting PGC-1α-driven mitochondrial biogenesis is detrimental in pressure-overloaded mouse hearts. Am J Physiol Heart Circ Physiol 2014; 307:H1307-16. [PMID: 25172896 DOI: 10.1152/ajpheart.00280.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondrial dysfunction in animal models of heart failure is associated with downregulation of the peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α pathway. To test whether PGC-1α is an appropriate therapeutic target for increasing mitochondrial biogenesis and improving function in heart failure, we used a transgenic (TG) mouse model of moderate overexpression of PGC-1α (∼3-fold) in the heart. TG mice had small increases in citrate synthase activity and mitochondria size in the heart without alterations in myocardial energetics or cardiac function at baseline. In vivo dobutamine stress increased fractional shortening in wild-type mice, but this increase was attenuated in TG mice, whereas ex vivo isolated perfused TG hearts demonstrated normal functional and energetic response to high workload challenge. When subjected to pressure overload by transverse aortic constriction (TAC), TG mice displayed a significantly greater acute mortality for both male and female mice; however, long-term survival up to 8 wk was similar between the two groups. TG mice also showed a greater decrease in fractional shortening and a greater increase in left ventricular chamber dimension in response to TAC. Mitochondrial gene expression and citrate synthase activity were mildly increased in TG mice compared with wild-type mice, and this difference was also maintained after TAC. Our data suggest that a moderate level of PGC-1α overexpression in the heart compromises acute survival and does not improve cardiac function during chronic pressure overload in mice.
Collapse
Affiliation(s)
- Georgios Karamanlidis
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Lorena Garcia-Menendez
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Stephen C Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Chi Fung Lee
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
30
|
Hollander JM, Thapa D, Shepherd DL. Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies. Am J Physiol Heart Circ Physiol 2014; 307:H1-14. [PMID: 24778166 DOI: 10.1152/ajpheart.00747.2013] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cardiac tissue contains discrete pools of mitochondria that are characterized by their subcellular spatial arrangement. Subsarcolemmal mitochondria (SSM) exist below the cell membrane, interfibrillar mitochondria (IFM) reside in rows between the myofibrils, and perinuclear mitochondria are situated at the nuclear poles. Microstructural imaging of heart tissue coupled with the development of differential isolation techniques designed to sequentially separate spatially distinct mitochondrial subpopulations have revealed differences in morphological features including shape, absolute size, and internal cristae arrangement. These findings have been complemented by functional studies indicating differences in biochemical parameters and, potentially, functional roles for the ATP generated, based upon subcellular location. Consequently, mitochondrial subpopulations appear to be influenced differently during cardiac pathologies including ischemia/reperfusion, heart failure, aging, exercise, and diabetes mellitus. These influences may be the result of specific structural and functional disparities between mitochondrial subpopulations such that the stress elicited by a given cardiac insult differentially impacts subcellular locales and the mitochondria contained within. The goal of this review is to highlight some of the inherent structural and functional differences that exist between spatially distinct cardiac mitochondrial subpopulations as well as provide an overview of the differential impact of various cardiac pathologies on spatially distinct mitochondrial subpopulations. As an outcome, we will instill a basis for incorporating subcellular spatial location when evaluating the impact of cardiac pathologies on the mitochondrion. Incorporation of subcellular spatial location may offer the greatest potential for delineating the influence of cardiac pathology on this critical organelle.
Collapse
|
31
|
Electron flow into cytochrome c coupled with reactive oxygen species from the electron transport chain converts cytochrome c to a cardiolipin peroxidase: role during ischemia-reperfusion. Biochim Biophys Acta Gen Subj 2014; 1840:3199-207. [PMID: 25092652 DOI: 10.1016/j.bbagen.2014.07.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/07/2014] [Accepted: 07/28/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cytochrome c (Cyt c) is a mobile component of the electron transport chain (ETC.) which contains a tightly coordinated heme iron. In pathologic settings, a key ligand of the cyt c's heme iron, methionine (Met80), is oxidized allowing cyt c to participate in reactions as a peroxidase with cardiolipin as a target. Myocardial ischemia (ISC) results in ETC. blockade and increased production of reactive oxygen species (ROS). We hypothesized that during ischemia-reperfusion (ISC-REP); ROS generation coupled with electron flow into cyt c would oxidize Met80 and contribute to mitochondrial-mediated ETC. damage. METHODS Mitochondria were incubated with specific substrates and inhibitors to test the contributions of ROS and electron flow into cyt c. Subsequently, cyt c and cardiolipin were analyzed. To test the pathophysiologic relevance, mouse hearts that underwent ISC-REP were tested for methionine oxidation in cyt c. RESULTS The combination of substrate/inhibitor showed that ROS production and electron flux through cyt c are essential for the oxidation of methionine residues that lead to cardiolipin depletion. The content of cyt c methionine oxidation increases following ISC-REP in the intact heart. CONCLUSIONS Increase in intra-mitochondrial ROS coupled with electron flow into cyt c, oxidizes cyt c followed by depletion of cardiolipin. ISC-REP increases methionine oxidation, supporting that cyt c peroxidase activity can form in the intact heart. GENERAL SIGNIFICANCE This study identifies a new site in the ETC. that is damaged during cardiac ISC-REP. Generation of a neoperoxidase activity of cyt c favors the formation of a defective ETC. that activates signaling for cell death.
Collapse
|
32
|
Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol 2014; 171:2029-50. [PMID: 24117165 PMCID: PMC3976620 DOI: 10.1111/bph.12461] [Citation(s) in RCA: 366] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/06/2013] [Accepted: 10/01/2013] [Indexed: 12/16/2022] Open
Abstract
A decline in energy is common in aging, and the restoration of mitochondrial bioenergetics may offer a common approach for the treatment of numerous age-associated diseases. Cardiolipin is a unique phospholipid that is exclusively expressed on the inner mitochondrial membrane where it plays an important structural role in cristae formation and the organization of the respiratory complexes into supercomplexes for optimal oxidative phosphorylation. The interaction between cardiolipin and cytochrome c determines whether cytochrome c acts as an electron carrier or peroxidase. Cardiolipin peroxidation and depletion have been reported in a variety of pathological conditions associated with energy deficiency, and cardiolipin has been identified as a target for drug development. This review focuses on the discovery and development of the first cardiolipin-protective compound as a therapeutic agent. SS-31 is a member of the Szeto-Schiller (SS) peptides known to selectively target the inner mitochondrial membrane. SS-31 binds selectively to cardiolipin via electrostatic and hydrophobic interactions. By interacting with cardiolipin, SS-31 prevents cardiolipin from converting cytochrome c into a peroxidase while protecting its electron carrying function. As a result, SS-31 protects the structure of mitochondrial cristae and promotes oxidative phosphorylation. SS-31 represents a new class of compounds that can recharge the cellular powerhouse and restore bioenergetics. Extensive animal studies have shown that targeting such a fundamental mechanism can benefit highly complex diseases that share a common pathogenesis of bioenergetics failure. This review summarizes the mechanisms of action and therapeutic potential of SS-31 and provides an update of its clinical development programme.
Collapse
Affiliation(s)
- Hazel H Szeto
- Research Program in Mitochondrial Therapeutics, Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell UniversityNew York, NY, USA
| |
Collapse
|
33
|
Colom B, Oliver J, Garcia-Palmer FJ. Sexual Dimorphism in the Alterations of Cardiac Muscle Mitochondrial Bioenergetics Associated to the Ageing Process. J Gerontol A Biol Sci Med Sci 2014; 70:1360-9. [PMID: 24682352 DOI: 10.1093/gerona/glu014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 01/16/2014] [Indexed: 12/11/2022] Open
Abstract
The incidence of cardiac disease is age and sex dependent, but the mechanisms governing these associations remain poorly understood. Mitochondria are the organelles in charge of producing energy for the cells, and their malfunction has been linked to cardiovascular disease and heart failure. Interestingly, heart mitochondrial content and functionality are also age and sex dependent. Here we investigated the combinatory effects of age and sex in mitochondrial bioenergetics that could help to understand their role on cardiac disease. Cardiac mitochondria from 6- and 24-month-old male and female Wistar rats were isolated, and the enzymatic activities of the oxidative-phosphorylative complexes I, III, and IV and ATPase, as well as the protein levels of complex IV, β-ATPase, and mitochondrial transcription factor A (TFAM), were measured. Furthermore, heart DNA content, citrate synthase activity, mitochondrial protein content, oxygen consumption, and H2O2 generation were also determined. Results showed a reduction in heart mitochondrial mass and functionality with age that correlated with increased H2O2 generation. Moreover, sex-dependent differences were found in several of these parameters. In particular, old females exhibited a significant loss of mitochondrial function and increased relative H2O2 production compared with their male counterparts. The results demonstrate a sex dimorphism in the age-associated defects on cardiac mitochondrial function.
Collapse
Affiliation(s)
- Bartomeu Colom
- Grup de Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain. Present address: Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Jordi Oliver
- Grup de Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain. CIBERobn Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Palma de Mallorca, Spain
| | - Francisco J Garcia-Palmer
- Grup de Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain. CIBERobn Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Palma de Mallorca, Spain
| |
Collapse
|
34
|
Bonini MG, Consolaro MEL, Hart PC, Mao M, de Abreu ALP, Master AM. Redox control of enzymatic functions: The electronics of life's circuitry. IUBMB Life 2014; 66:167-181. [PMID: 24668617 DOI: 10.1002/iub.1258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/06/2014] [Indexed: 12/22/2022]
Abstract
The field of redox biology has changed tremendously over the past 20 years. Formerly regarded as bi-products of the aerobic metabolism exclusively involved in tissue damage, reactive oxygen species (ROS) are now recognized as active participants of cell signaling events in health and in disease. In this sense, ROS and the more recently defined reactive nitrogen species (RNS) are, just like hormones and second messengers, acting as fundamental orchestrators of cell signaling pathways. The chemical modification of enzymes by ROS and RNS (that result in functional enzymatic alterations) accounts for a considerable fraction of the transient and persistent perturbations imposed by variations in oxidant levels. Upregulation of ROS and RNS in response to stress is a common cellular response that foments adaptation to a variety of physiologic alterations (hypoxia, hyperoxia, starvation, and cytokine production). Frequently, these are beneficial and increase the organisms' resistance against subsequent acute stress (preconditioning). Differently, the sustained ROS/RNS-dependent rerouting of signaling produces irreversible alterations in cellular functioning, often leading to pathogenic events. Thus, the duration and reversibility of protein oxidations define whether complex organisms remain "electronically" healthy. Among the 20 essential amino acids, four are particularly susceptible to oxidation: cysteine, methionine, tyrosine, and tryptophan. Here, we will critically review the mechanisms, implications, and repair systems involved in the redox modifications of these residues in proteins while analyzing well-characterized prototypic examples. Occasionally, we will discuss potential consequences of amino acid oxidation and speculate on the biologic necessity for such events in the context of adaptative redox signaling. © 2014 IUBMB Life, 66(3):167-181, 2014.
Collapse
Affiliation(s)
- Marcelo G Bonini
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Programa de Biociencias Aplicadas a Farmacia (PBF), Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Marcia E L Consolaro
- Programa de Biociencias Aplicadas a Farmacia (PBF), Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Peter C Hart
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mao Mao
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Andre Luelsdorf Pimenta de Abreu
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Programa de Biociencias Aplicadas a Farmacia (PBF), Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Alyssa M Master
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
35
|
Anuranjani, Bala M. Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines - implication in modification of radiation damage. Redox Biol 2014; 2:832-46. [PMID: 25009785 PMCID: PMC4085347 DOI: 10.1016/j.redox.2014.02.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 12/30/2022] Open
Abstract
Whole body exposure to low linear energy transfer (LET) ionizing radiations (IRs) damages vital intracellular bio-molecules leading to multiple cellular and tissue injuries as well as pathophysiologies such as inflammation, immunosuppression etc. Nearly 70% of damage is caused indirectly by radiolysis of intracellular water leading to formation of reactive oxygen species (ROS) and free radicals and producing a state of oxidative stress. The damage is also caused by direct ionization of biomolecules. The type of radiation injuries is dependent on the absorbed radiation dose. Sub-lethal IR dose produces more of DNA base damages, whereas higher doses produce more DNA single strand break (SSBs), and double strand breaks (DSBs). The Nrf2-ARE pathway is an important oxidative stress regulating pathway. The DNA DSBs repair regulated by MRN complex, immunomodulation and inflammation regulated by HMGB1 and various types of cytokines are some of the key pathways which interact with each other in a complex manner and modify the radiation response. Because the majority of radiation damage is via oxidative stress, it is essential to gain in depth understanding of the mechanisms of Nrf2-ARE pathway and understand its interactions with MRN complex, HMGB1 and cytokines to increase our understanding on the radiation responses. Such information is of tremendous help in development of medical radiation countermeasures, radioprotective drugs and therapeutics. Till date no approved and safe countermeasure is available for human use. This study reviews the Nrf2-ARE pathway and its crosstalk with MRN-complex, HMGB1 and cytokines (TNF-a, IL-6, IFN-? etc.). An attempt is also made to review the modification of some of these pathways in presence of selected antioxidant radioprotective compounds or herbal extracts. Exposure to low linear energy transfer (LET) ionizing radiation (IR) causes intracellular oxidative stress and activate the Nrf2-ARE antioxidant pathway. Irradiation also causes inflammation and DNA damage which affect other pathways related to MRN complex and HMGB1 proteins. The antioxidant Keap1-Nrf2-ARE pathway most importantly regulates intracellular oxidative stress. The interaction of Keap1-Nrf2-ARE pathway with HMGB1 regulated inflammation; MRN complex regulated DNA repair is reviewed.
Collapse
Key Words
- .OH, hydroxyl radical
- AP1, activator protein-1
- ARE, antioxidant response element
- ATM, ataxia telangiectasia mutagenesis
- Bcl-2, B cell lymphoma-2 protein
- CBP, CREB-binding protein
- Chk-2, checkpoint kinase-2 protein
- DAMP, death associated molecular pattern
- DDR, DNA damage response
- DGR, double glycine repeats
- DSB, double strands break
- FGF, fibroblast growth factor
- FGF2, fibroblast growth factor-2
- GM-CSF, granulocytes macrophages colony stimulating factor
- GPx, glutathione peroxidase
- GSH, glutathione (reduced)
- GSK-3ß, glycogen synthase kinase 3 beta
- HMGB1
- HMGB1, high mobility group Box 1
- HR, homologous recombination
- IR, ionizing radiation
- Keap1, Kelch like ECH associated protein 1
- LET, linear energy transfer
- MDA, malondialdehyde
- MIP, macrophages inflammatory proteins
- MRN complex
- MRN, Mre11, Rad50 and Nbs1 subunits
- MRP, multidrug resistance protein
- NADPH, nicotinamide adenine dinucleotide phosphate
- NES, nuclear export sequence
- NHEJ, non-homologous end joining
- NLS, nuclear localization sequence
- Nrf2-ARE pathway
- PKC, protein kinase C
- RAGE, receptor for advance glycation end products
- RIF, radiation induced foci
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- Radio-modification
- SOD, superoxide dismutase
- SSBs, single strand DNA breaks
- TRAIL, TNF related apoptosis inducing ligand
- TWEAK
- TWEAK, tumour necrosis factor weak inducer of apoptosis
- VEGF, vascular endothelial growth factor
- VSMC, vascular smooth muscle cells
- bFGF, basal fibroblast growth factor
- t-BHQ, tert butyl hydroquinone
Collapse
Affiliation(s)
- Anuranjani
- Radiation Biology Department, Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Delhi -110054, India
| | - Madhu Bala
- Radiation Biology Department, Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Delhi -110054, India
| |
Collapse
|
36
|
Gao XH, Qanungo S, Pai HV, Starke DW, Steller KM, Fujioka H, Lesnefsky EJ, Kerner J, Rosca MG, Hoppel CL, Mieyal JJ. Aging-dependent changes in rat heart mitochondrial glutaredoxins--Implications for redox regulation. Redox Biol 2013; 1:586-98. [PMID: 25126518 PMCID: PMC4127417 DOI: 10.1016/j.redox.2013.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 12/17/2022] Open
Abstract
Clinical and animal studies have documented that hearts of the elderly are more susceptible to ischemia/reperfusion damage compared to young adults. Recently we found that aging-dependent increase in susceptibility of cardiomyocytes to apoptosis was attributable to decrease in cytosolic glutaredoxin 1 (Grx1) and concomitant decrease in NF-κB-mediated expression of anti-apoptotic proteins. Besides primary localization in the cytosol, Grx1 also exists in the mitochondrial intermembrane space (IMS). In contrast, Grx2 is confined to the mitochondrial matrix. Here we report that Grx1 is decreased by 50–60% in the IMS, but Grx2 is increased by 1.4–2.6 fold in the matrix of heart mitochondria from elderly rats. Determination of in situ activities of the Grx isozymes from both subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria revealed that Grx1 was fully active in the IMS. However, Grx2 was mostly in an inactive form in the matrix, consistent with reversible sequestration of the active-site cysteines of two Grx2 molecules in complex with an iron–sulfur cluster. Our quantitative evaluations of the active/inactive ratio for Grx2 suggest that levels of dimeric Grx2 complex with iron–sulfur clusters are increased in SSM and IFM in the hearts of elderly rats. We found that the inactive Grx2 can be fully reactivated by sodium dithionite or exogenous superoxide production mediated by xanthine oxidase. However, treatment with rotenone, which generates intramitochondrial superoxide through inhibition of mitochondrial respiratory chain Complex I, did not lead to Grx2 activation. These findings suggest that insufficient ROS accumulates in the vicinity of dimeric Grx2 to activate it in situ. Glutaredoxins play key roles in cellular redox regulation, which is sensitive to aging-dependent dysregulation. Grx1 is diminished in the intermembrane space of mitochondria from aged heart; matrix Grx2 is increased but mostly in an inactive form. The inactive Grx2 is selectively activated by superoxide. Mitochondrial glutaredoxin changes may contribute to dysregulation of redox homeostasis during aging. Changes in in situ activities of heart mitochondrial Grx1 and Grx2 with aging provide mechanistic insights for future studies.
Collapse
Key Words
- Aging
- Cys-SSG, l-cysteine–glutathione mixed disulfide
- DT, sodium dithionite
- GSH, reduced glutathione
- GSSG, glutathione disulfide
- Glutaredoxin
- Glutathionylation
- Grx, glutaredoxin
- IFM, Heart interfibrillar mitochondria
- Iron–sulfur cluster
- Mitochondria
- Mn-TMPyP, Mn(III) tetrakis (1-methyl-4-pyridyl) porphyrin
- Reactive oxygen species (ROS)
- Redox regulation
- SSM, heart subsarcolemmal mitochondria
- t-Bid, caspase-8-cleaved human BID
- tetratosylate, hydroxide
Collapse
Affiliation(s)
- Xing-Huang Gao
- Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Suparna Qanungo
- Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Harish V Pai
- Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - David W Starke
- Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Kelly M Steller
- Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, OH 44106, USA
| | - Hisashi Fujioka
- Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Edward J Lesnefsky
- Department of Medicine, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Janos Kerner
- Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Mariana G Rosca
- Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Charles L Hoppel
- Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Department of Medicine, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - John J Mieyal
- Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, OH 44106, USA
| |
Collapse
|
37
|
Hardeland R. Melatonin and the theories of aging: a critical appraisal of melatonin's role in antiaging mechanisms. J Pineal Res 2013; 55:325-56. [PMID: 24112071 DOI: 10.1111/jpi.12090] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 02/06/2023]
Abstract
The classic theories of aging such as the free radical theory, including its mitochondria-related versions, have largely focused on a few specific processes of senescence. Meanwhile, numerous interconnections have become apparent between age-dependent changes previously thought to proceed more or less independently. Increased damage by free radicals is not only linked to impairments of mitochondrial function, but also to inflammaging as it occurs during immune remodeling and by release of proinflammatory cytokines from mitotically arrested, DNA-damaged cells that exhibit the senescence-associated secretory phenotype (SASP). Among other effects, SASP can cause mutations in stem cells that reduce the capacity for tissue regeneration or, in worst case, lead to cancer stem cells. Oxidative stress has also been shown to promote telomere attrition. Moreover, damage by free radicals is connected to impaired circadian rhythmicity. Another nexus exists between cellular oscillators and metabolic sensing, in particular to the aging-suppressor SIRT1, which acts as an accessory clock protein. Melatonin, being a highly pleiotropic regulator molecule, interacts directly or indirectly with all the processes mentioned. These influences are critically reviewed, with emphasis on data from aged organisms and senescence-accelerated animals. The sometimes-controversial findings obtained either in a nongerontological context or in comparisons of tumor with nontumor cells are discussed in light of evidence obtained in senescent organisms. Although, in mammals, lifetime extension by melatonin has been rarely documented in a fully conclusive way, a support of healthy aging has been observed in rodents and is highly likely in humans.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
38
|
Karamanlidis G, Lee CF, Garcia-Menendez L, Kolwicz SC, Suthammarak W, Gong G, Sedensky MM, Morgan PG, Wang W, Tian R. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab 2013; 18:239-50. [PMID: 23931755 PMCID: PMC3779647 DOI: 10.1016/j.cmet.2013.07.002] [Citation(s) in RCA: 357] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/22/2013] [Accepted: 07/02/2013] [Indexed: 01/04/2023]
Abstract
Mitochondrial respiratory dysfunction is linked to the pathogenesis of multiple diseases, including heart failure, but the specific mechanisms for this link remain largely elusive. We modeled the impairment of mitochondrial respiration by the inactivation of the Ndufs4 gene, a protein critical for complex I assembly, in the mouse heart (cKO). Although complex I-supported respiration decreased by >40%, the cKO mice maintained normal cardiac function in vivo and high-energy phosphate content in isolated perfused hearts. However, the cKO mice developed accelerated heart failure after pressure overload or repeated pregnancy. Decreased NAD(+)/NADH ratio by complex I deficiency inhibited Sirt3 activity, leading to an increase in protein acetylation and sensitization of the permeability transition in mitochondria (mPTP). NAD(+) precursor supplementation to cKO mice partially normalized the NAD(+)/NADH ratio, protein acetylation, and mPTP sensitivity. These findings describe a mechanism connecting mitochondrial dysfunction to the susceptibility to diseases and propose a potential therapeutic target.
Collapse
Affiliation(s)
- Georgios Karamanlidis
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ross T, Szczepanek K, Bowler E, Hu Y, Larner A, Lesnefsky EJ, Chen Q. Reverse electron flow-mediated ROS generation in ischemia-damaged mitochondria: role of complex I inhibition vs. depolarization of inner mitochondrial membrane. Biochim Biophys Acta Gen Subj 2013; 1830:4537-42. [PMID: 23747300 DOI: 10.1016/j.bbagen.2013.05.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/17/2013] [Accepted: 05/27/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND The reverse electron flow-induced ROS generation (RFIR) is decreased in ischemia-damaged mitochondria. Cardiac ischemia leads to decreased complex I activity and depolarized inner mitochondrial membrane potential (ΔΨ) that are two key factors to affect the RFIR in isolated mitochondria. We asked if a partial inhibition of complex I activity without alteration of the ΔΨ is able to decrease the RFIR. METHODS Cardiac mitochondria were isolated from mouse heart (C57BL/6) with and without ischemia. The rate of H2O2 production from mitochondria was determined using amplex red coupled with horseradish peroxidase. Mitochondria were isolated from the mitochondrial-targeted STAT3 overexpressing mouse (MLS-STAT3E) to clarify the role of partial complex I inhibition in RFIR production. RESULTS The RFIR was decreased in ischemia-damaged mouse heart mitochondria with decreased complex I activity and depolarized ΔΨ. However, the RFIR was not altered in the MLS-STAT3E heart mitochondria with complex I defect but without depolarization of the ΔΨ. A slight depolarization of the ΔΨ in wild type mitochondria completely eliminated the RFIR. CONCLUSIONS The mild uncoupling but not the partially decreased complex I activity contributes to the observed decrease in RFIR in ischemia-damaged mitochondria. GENERAL SIGNIFICANCE The RFIR is less likely to be a key source of cardiac injury during reperfusion.
Collapse
Affiliation(s)
- Thomas Ross
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Duicu OM, Mirica SN, Gheorgheosu DE, Privistirescu AI, Fira-Mladinescu O, Muntean DM. Ageing-induced decrease in cardiac mitochondrial function in healthy rats. Can J Physiol Pharmacol 2013; 91:593-600. [PMID: 23889593 DOI: 10.1139/cjpp-2012-0422] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It is widely recognized that mitochondrial dysfunction is a key component of the multifactorial process of ageing. The effects of age on individual components of mitochondrial function vary across species and strains. In this study we investigated the oxygen consumption, the mitochondrial membrane potential (Δψ), the sensitivity of mitochondrial permeability transition pore (mPTP) to calcium overload, and the production of reactive oxygen species (ROS) in heart mitochondria isolated from old compared with adult healthy Sprague-Dawley rats. Respirometry studies and Δψ measurements were performed with an Oxygraph-2k equipped with a tetraphenylphosphonium electrode. ROS production and calcium retention capacity were measured spectrofluorimetrically. Our results show an important decline for all bioenergetic parameters for both complex I and complex II supported-respiration, a decreased Δψ in mitochondria energized with complex I substrates, and an increased mitochondrial ROS production in the old compared with the adult group. Mitochondrial sensitivity to Ca²⁺-induced mPTP opening was also increased in the old compared with the adult animals. Moreover, the protective effect of cyclosporine A on mPTP opening was significantly reduced in the old group. We conclude that healthy ageing is associated with a decrease in heart mitochondria function in Sprague-Dawley rats.
Collapse
Affiliation(s)
- Oana M Duicu
- Department of Pathophysiology, Victor Babeş University of Medicine and Pharmacy Timisoara, 14 Tudor Vladimirescu Street, 300173 Timişoara, Timiş, Romania
| | | | | | | | | | | |
Collapse
|
41
|
Lesnefsky EJ, Hoppel CL. Aged rat heart: Modulation of age-related respiratory defects decreases ischemic-reflow injury. Health (London) 2013. [DOI: 10.4236/health.2013.51001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Musatov A, Robinson NC. Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radic Res 2012; 46:1313-26. [PMID: 22856385 DOI: 10.3109/10715762.2012.717273] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) are associated with a number of mitochondrial disorders. These include: ischemia/reperfusion injury, Parkinson's disease, Alzheimer's disease, neurodegenerative diseases, and other age-related degenerative changes. ROS can be generated at numerous sites within the cell, but the mitochondrial electron transport chain is recognized as the major source of intracellular ROS. Two mitochondrial electron-transfer complexes are major sources of ROS: complex I and complex III. Oxidative damage to either of these complexes, or to electron transport complexes that are in close proximity to these ROS sources, e.g., cytochrome c oxidase, would be expected to inhibit electron transport. Such inhibition would lead to increased electron leakage and more ROS production, much like the well-known effect of adding electron transport inhibitors. Recent studies reveal that ROS and lipid peroxidation products are effective inhibitors of the electron-transport complexes. In some cases, inactivation of enzymes correlates with chemical modification of only a small number of unusually reactive amino acids. In this article, we review current knowledge of ROS-induced alterations within three complexes: (1) complex IV; (2) complex III; and (3) complex I. Our goal is to identify "hot spots" within each complex that are easily chemically modified and could be responsible for ROS-induced inhibition of the individual complexes. Special attention has been placed on ROS-induced damage to cardiolipin that is tightly bound to each of the inner membrane protein complexes. Peroxidation of the bound cardiolipin is thought to be particularly important since its close proximity and long residence time on the protein make it an especially effective reagent for subsequent ROS-induced damage to these proteins.
Collapse
Affiliation(s)
- Andrej Musatov
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
43
|
Blockade of electron transport before ischemia protects mitochondria and decreases myocardial injury during reperfusion in aged rat hearts. Transl Res 2012; 160:207-16. [PMID: 22698829 PMCID: PMC3423471 DOI: 10.1016/j.trsl.2012.01.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/25/2012] [Accepted: 01/26/2012] [Indexed: 12/29/2022]
Abstract
Myocardial injury is increased in the aged heart following ischemia and reperfusion (I-R) in both humans and experimental models. Hearts from aged 24-month-old Fischer 344 rats sustain greater cell death and decreased contractile recovery after I-R compared with 6-month-old adult controls. Cardiac mitochondria incur damage during I-R contributing to cell death. Aged rats have a defect in complex III of the mitochondrial electron transport chain (ETC) localized to the interfibrillar population of cardiac mitochondria (IFM), situated in the interior of the cardiomyocyte among the myofibrils. The defect involves the quinol oxidation site (Qo) and increases the production of reactive oxygen species (ROS) in the baseline state. Ischemia further decreases complex III activity via functional inactivation of the iron-sulfur subunit. We studied the contribution of ischemia-induced defects in complex III with the increased cardiac injury in the aged heart. The reversible blockade of the ETC proximal to complex III during ischemia using amobarbital protects mitochondria against ischemic damage, removing the ischemia component of mitochondrial dysfunction. Reperfusion of the aged heart in the absence of ischemic mitochondrial damage decreases net ROS production from mitochondria and reduces cell death. Thus, even despite the persistence of the age-related defects in electron transport, protection against ischemic damage to mitochondria can reduce injury in the aged heart. The direct therapeutic targeting of mitochondria protects against ischemic damage and decreases cardiac injury during reperfusion in the high risk elderly heart.
Collapse
|
44
|
Blockade of electron transport at the onset of reperfusion decreases cardiac injury in aged hearts by protecting the inner mitochondrial membrane. J Aging Res 2012; 2012:753949. [PMID: 22619720 PMCID: PMC3347723 DOI: 10.1155/2012/753949] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/23/2011] [Accepted: 12/27/2011] [Indexed: 12/23/2022] Open
Abstract
Myocardial injury is increased in the aged heart following ischemia-reperfusion (ISC-REP) compared to adult hearts. Intervention at REP with ischemic postconditioning decreases injury in the adult heart by attenuating mitochondrial driven cell injury. Unfortunately, postconditioning is ineffective in aged hearts. Blockade of electron transport at the onset of REP with the reversible inhibitor amobarbital (AMO) decreases injury in adult hearts. We tested if AMO treatment at REP protects the aged heart via preservation of mitochondrial integrity. Buffer-perfused elderly Fischer 344 24 mo. rat hearts underwent 25 min global ISC and 30 min REP. AMO (2.5 mM) or vehicle was given for 3 min at the onset of REP. Subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria were isolated after REP. Oxidative phosphorylation (OXPHOS) and mitochondrial inner membrane potential were measured. AMO treatment at REP decreased cardiac injury. Compared to untreated ISC-REP, AMO improved inner membrane potential in SSM and IFM during REP, indicating preserved inner membrane integrity. Thus, direct pharmacologic modulation of electron transport at REP protects mitochondria and decreases cardiac injury in the aged heart, even when signaling-induced pathways of postconditioning that are upstream of mitochondria are ineffective.
Collapse
|
45
|
Gómez LA, Hagen TM. Age-related decline in mitochondrial bioenergetics: does supercomplex destabilization determine lower oxidative capacity and higher superoxide production? Semin Cell Dev Biol 2012; 23:758-67. [PMID: 22521482 DOI: 10.1016/j.semcdb.2012.04.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 03/31/2012] [Accepted: 04/04/2012] [Indexed: 12/17/2022]
Abstract
Mitochondrial decay plays a central role in the aging process. Although certainly multifactorial in nature, defective operation of the electron transport chain (ETC) constitutes a key mechanism involved in the age-associated loss of mitochondrial energy metabolism. Primarily, mitochondrial dysfunction affects the aging animal by limiting bioenergetic reserve capacity and/or increasing oxidative stress via enhanced electron leakage from the ETC. Even though the important aging characteristics of mitochondrial decay are known, the molecular events underlying inefficient electron flux that ultimately leads to higher superoxide appearance and impaired respiration are not completely understood. This review focuses on the potential role(s) that age-associated destabilization of the macromolecular organization of the ETC (i.e. supercomplexes) may be important for development of the mitochondrial aging phenotype, particularly in post-mitotic tissues.
Collapse
Affiliation(s)
- Luis A Gómez
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | | |
Collapse
|
46
|
|
47
|
Lam PY, Wong HS, Chen J, Ko KM. A Hypothetical Anti-Aging Mechanism of “Yang-Invigorating” Chinese Tonic Herbs. Chin Med 2012. [DOI: 10.4236/cm.2012.31012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Hirasaka K, Lago CU, Kenaston MA, Fathe K, Nowinski SM, Nikawa T, Mills EM. Identification of a redox-modulatory interaction between uncoupling protein 3 and thioredoxin 2 in the mitochondrial intermembrane space. Antioxid Redox Signal 2011; 15:2645-61. [PMID: 21619484 PMCID: PMC3183655 DOI: 10.1089/ars.2011.3888] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED Uncoupling protein 3 (UCP3) is a member of the mitochondrial solute carrier superfamily that is enriched in skeletal muscle and controls mitochondrial reactive oxygen species (ROS) production, but the mechanisms underlying this function are unclear. AIMS The goal of this work focused on the identification of mechanisms underlying UCP3 functions. RESULTS Here we report that the N-terminal, intermembrane space (IMS)-localized hydrophilic domain of mouse UCP3 interacts with the N-terminal mitochondrial targeting signal of thioredoxin 2 (Trx2), a mitochondrial thiol reductase. Cellular immunoprecipitation and in vitro pull-down assays show that the UCP3-Trx2 complex forms directly, and that the Trx2 N-terminus is both necessary and sufficient to confer UCP3 binding. Mutation studies show that neither a catalytically inactivated Trx2 mutant, nor a mutant Trx2 bearing the N-terminal targeting sequence of cytochrome c oxidase (COXMTS-Trx2) bind UCP3. Biochemical analyses using permeabilized mitochondria, and live cell experiments using bimolecular fluorescence complementation show that the UCP3-Trx2 complex forms specifically in the IMS. Finally, studies in C2C12 myocytes stably overexpressing UCP3 (2.5-fold) and subjected to Trx2 knockdown show that Trx2 is required for the UCP3-dependent mitigation of complex III-driven mitochondrial ROS generation. UCP3 expression was increased in mice fed a high fat diet, leading to increased localization of Trx2 to the IMS. UCP3 overexpression also increased expression of the glucose transporter GLUT4 in a Trx2-dependent fashion. INNOVATION This is the first report of a mitochondrial protein-protein interaction with UCP3 and the first demonstration that UCP3 binds directly, and in cells and tissues with mitochondrial thioredoxin 2. CONCLUSION These studies identify a novel UCP3-Trx2 complex, a novel submitochondrial localization of Trx2, and a mechanism underlying UCP3-regulated mitochondrial ROS production.
Collapse
Affiliation(s)
- Katsuya Hirasaka
- Division of Pharmacology/Toxicology, University of Texas at Austin, Austin, Texas 78714, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Ischemic preconditioning: the role of mitochondria and aging. Exp Gerontol 2011; 47:1-7. [PMID: 22100642 DOI: 10.1016/j.exger.2011.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/24/2011] [Accepted: 11/02/2011] [Indexed: 11/22/2022]
Abstract
Aging represents a triple threat for myocardial infarction (MI). Not only does the incidence of MI increase with age, but the heart becomes more susceptible to MI induced damage and protective interventions such as ischemic preconditioning (IPC) become less effective. Therefore, any rational therapeutic strategy must be built around the ability to combat the detrimental effects of ischemia in aged individuals. To accomplish this, we need to develop a better understanding of how ischemic damage, protection, and aging are linked. In this regard, mitochondria have emerged as a common theme. First, mitochondria contribute to cell damage during ischemia-reperfusion (IR) and are central to cell death. Second, the protective signaling pathways activated by IPC converge on mitochondria, and the opening of mitochondrial ion channels alone is sufficient to elicit protection. Finally, mitochondria clearly influence the aging process, and specific defects in mitochondrial activity are associated with age-related functional decline. This review will summarize the effects of aging on myocardial IR injury and discuss relevant and emerging strategies to protect against MI with an emphasis on mitochondrial function.
Collapse
|
50
|
Kurtz B, Thibault HB, Raher MJ, Popovich JR, Cawley S, Atochin DN, Hayton S, Shakartzi HR, Huang PL, Bloch KD, Buys E, Scherrer-Crosbie M. Nitric oxide synthase 3 deficiency limits adverse ventricular remodeling after pressure overload in insulin resistance. Am J Physiol Heart Circ Physiol 2011; 301:H2093-101. [PMID: 21856905 DOI: 10.1152/ajpheart.00744.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Insulin resistance (IR) and systemic hypertension are independently associated with heart failure. We reported previously that nitric oxide synthase 3 (NOS3) has a beneficial effect on left ventricular (LV) remodeling and function after pressure-overload in mice. The aim of our study was to investigate the interaction of IR and NOS3 in pressure-overload-induced LV remodeling and dysfunction. Wild-type (WT) and NOS3-deficient (NOS3(-/-)) mice were fed either a standard diet (SD) or a high-fat diet (HFD) to induce IR. After 9 days of diet, mice underwent transverse aortic constriction (TAC). LV structure and function were assessed serially using echocardiography. Cardiomyocytes were isolated, and levels of oxidative stress were evaluated using 2',7'-dichlorodihydrofluorescein diacetate. Cardiac mitochondria were isolated, and mitochondrial respiration and ATP production were measured. TAC induced LV remodeling and dysfunction in all mice. The TAC-induced decrease in LV function was greater in SD-fed NOS3(-/-) mice than in SD-fed WT mice. In contrast, HFD-fed NOS3(-/-) developed less LV remodeling and dysfunction and had better survival than did HFD-fed WT mice. Seven days after TAC, oxidative stress levels were lower in cardiomyocytes from HFD-fed NOS3(-/-) than in those from HFD-fed WT. N(ω)-nitro-L-arginine methyl ester and mitochondrial inhibitors (rotenone and 2-thenoyltrifluoroacetone) decreased oxidative stress levels in cardiomyocytes from HFD-fed WT mice. Mitochondrial respiration was altered in NOS3(-/-) mice but did not worsen after HFD and TAC. In contrast with its protective role in SD, NOS3 increases LV adverse remodeling after pressure overload in HFD-fed, insulin resistant mice. Interactions between NOS3 and mitochondria may be responsible for increased oxidative stress levels in HFD-fed WT mice hearts.
Collapse
Affiliation(s)
- Baptiste Kurtz
- Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|