1
|
Qi Y, Cheng X, Gong G, Yan T, Du Y, Wu B, Bi K, Jia Y. Synergistic neuroprotective effect of schisandrin and nootkatone on regulating inflammation, apoptosis and autophagy via the PI3K/AKT pathway. Food Funct 2021; 11:2427-2438. [PMID: 32129354 DOI: 10.1039/c9fo02927c] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that seriously threatens elderly health. Schisandrin (SCH) and nootkatone (NKT) are two core components derived from Alpinia oxyphylla-Schisandra chinensis herb pair (ASHP), a traditional Chinese medicine formulation. Previous studies demonstrated that the combination of NKT and SCH exerted a neuroprotective effect in AD mouse models. The present study was undertaken to investigate whether there was a synergistic effect between NKT and SCH and the possible mechanism in Aβ1-42 induced PC12 cells. SCH (50 μM) and NKT (10 μM) had the most notable inhibitory effect on the level of Aβ secreted by cells. Treatment with NKT + SCH activated the PI3K/AKT/Gsk-3β/mTOR pathway. Inflammation related proteins such as NF-κB, IKK, IL-1β, IL-6 and TNF-α were decreased. The levels of cleaved-Caspase3 and LC3-II were reduced, indicating that apoptosis and autophagy were inhibited. These results revealed that NKT + SCH exerted a neuroprotective effect via the PI3K/AKT pathway, inhibiting inflammation, apoptosis and autophagy.
Collapse
Affiliation(s)
- Yu Qi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Xinhui Cheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Yiyang Du
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shengyang 110016, China.
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
2
|
Yu J, Adapala NS, Doherty L, Sanjay A. Cbl-PI3K interaction regulates Cathepsin K secretion in osteoclasts. Bone 2019; 127:376-385. [PMID: 31299383 PMCID: PMC6708784 DOI: 10.1016/j.bone.2019.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
Effective bone resorption by osteoclasts is critical for balanced bone remodeling. We have previously reported that mice harboring a substitution mutation of tyrosine 737 to phenylalanine in the adapter protein Cbl (CblY737F, YF) have increased bone volume partly due to decreased osteoclast-mediated bone resorption. The CblY737F mutation abrogates interaction between Cbl and the p85 subunit of PI3K. Here, we studied the mechanism for defective resorptive function of YF mutant osteoclasts. The YF osteoclasts had intact actin cytoskeletons and sealing zones. Expression and localization of proteins needed for acidification of the resorptive lacunae were also comparable between the WT and YF osteoclasts. In contrast, secretion of Cathepsin K, a major protease needed to degrade collagen, was diminished in the conditioned media derived from YF osteoclasts. The targeting of Cathepsin K into LAMP2-positive vesicles was also compromised due to decreased number of LAMP2-positive vesicles in YF osteoclasts. Further, we found that in contrast to WT, conditioned media derived from YF osteoclasts promoted increased numbers of alkaline phosphatase positive colonies, and increased expression of osteogenic markers in WT calvarial cultures. Cumulatively, our results suggest that the Cbl-PI3K interaction regulates Cathepsin K secretion required for proper bone resorption, and secretion of factors which promote osteogenesis.
Collapse
Affiliation(s)
- Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America
| | - Naga Suresh Adapala
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America
| | - Laura Doherty
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America
| | - Archana Sanjay
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America.
| |
Collapse
|
3
|
Adapala NS, Root S, Lorenzo J, Aguila H, Sanjay A. PI3K activation increases SDF-1 production and number of osteoclast precursors, and enhances SDF-1-mediated osteoclast precursor migration. Bone Rep 2019; 10:100203. [PMID: 30989092 PMCID: PMC6449702 DOI: 10.1016/j.bonr.2019.100203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 01/07/2023] Open
Abstract
Our previous studies showed that in a mouse model in which PI3K-AKT activation was increased (YF mice), osteoclast numbers and levels of SDF-1, a chemokine, were augmented. The purpose of this study was to delineate the role of PI3K activation in regulating SDF-1 production and examine whether SDF-1 can stimulate differentiation and/or migration of osteoclast precursors. Using flow cytometric analysis, we demonstrated that compared to wild type mice, bone marrow of YF mice had increased numbers of CXCL12 abundant reticular (CAR) cells, that are a major cell type responsible for producing SDF-1. At the molecular level, transcription factor specificity protein 1 (Sp1) induced an increased transcription of SDF-1 that was dependent on PI3K/AKT activation. YF mice also contained an increased number of osteoclast precursors, in which expression of CXCR4, a major receptor for SDF-1, was increased. SDF-1 did not induce differentiation of osteoclast precursors into mature osteoclasts; compared to cells derived from WT mice, cells obtained from YF mice were more responsive to SDF-1. In conclusion, we demonstrate that PI3K activation resulted in increased SDF-1, increased the number of osteoclast precursors, and enhanced osteoclast precursor migration in response to SDF-1. PI3K activation regulates the number of CAR cells in mouse bone marrow. PI3K activation regulates SDF-1/CXCL12 production by CAR cells in bone marrow. PI3K/AKT activation mediates transcription of SDF-1 by regulating transcription factor Sp1. SDF-1 enhances migration of osteoclast precursors via CXCR4.
Collapse
Affiliation(s)
- Naga Suresh Adapala
- Department of Orthopaedic Surgery, Farmington, CT, USA.,U Conn Health, Farmington, CT, USA
| | - Sierra Root
- Department of Immunology, Farmington, CT, USA.,U Conn Health, Farmington, CT, USA
| | - Joseph Lorenzo
- Department of Endocrinology and Metabolism, Farmington, CT, USA.,U Conn Health, Farmington, CT, USA
| | - Hector Aguila
- Department of Immunology, Farmington, CT, USA.,U Conn Health, Farmington, CT, USA
| | - Archana Sanjay
- Department of Orthopaedic Surgery, Farmington, CT, USA.,U Conn Health, Farmington, CT, USA
| |
Collapse
|
4
|
Dong W, Guan F, Zhang X, Gao S, Liu N, Chen W, Zhang L, Lu D. Dhcr24 activates the PI3K/Akt/HKII pathway and protects against dilated cardiomyopathy in mice. Animal Model Exp Med 2018; 1:40-52. [PMID: 30891546 PMCID: PMC6354314 DOI: 10.1002/ame2.12007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/16/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND 24-dehydrocholesterol reductase (Dhcr24) catalyzes the last step of cholesterol biosynthesis, which is required for normal development and anti-apoptotic activities of tissues. We found that Dhcr24 expression decreased in the cTnTR 141W dilated cardiomyopathy (DCM) transgenic mice. Therefore, we tested whether rescued expression of Dhcr24 could prevent the development of DCM and its possible mechanism. METHODS Heart tissue specific transgenic overexpression mice of Dhcr24 was generated, then was crossed to cTnTR 141W mouse to obtain the double transgenic mouse (DTG). The phenotypes were demonstrated by the survival, cardiac geometry and function analysis, as well as microstructural and ultrastructural observations based on echocardiography and histology examination. The pathway and apoptosis were analysed by western blotting and TUNEL assay in vivo and in vitro. RESULTS We find that Dhcr24 decreased in hearts tissues of cTnTR 141W and LMNAE 82K DCM mice. The transgenic overexpression of Dhcr24 significantly improves DCM phenotypes in cTnTR 141W mice, and activates PI3K/Akt/HKII pathway, followed by a reduction of the translocation of Bax and release of cytochrome c, caspase-9 and caspase-3 activation and myocyte apoptosis. Knockdown the expression of Dhcr24 reduces the activation of PI3K/Akt/HKII pathway and inhibition of the mitochondrial-dependent apoptosis. The anti-apoptotic effect of Dhcr24 could be completely removed by the inhibition of PI3K pathway and partly removed by the HKII inhibitor in H9c2 cell line. CONCLUSION Compensatory expression of Dhcr24 protect against DCM through activated PI3K/Akt/HKII pathway and reduce Bax translocation. This is the first investigation for the molecular mechanism of Dhcr24 participate in development of DCM.
Collapse
Affiliation(s)
- Wei Dong
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Fei‐fei Guan
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Xu Zhang
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Shan Gao
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Ning Liu
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Wei Chen
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Lian‐feng Zhang
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Dan Lu
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| |
Collapse
|
5
|
Cheung LW, Mills GB. Targeting therapeutic liabilities engendered by PIK3R1 mutations for cancer treatment. Pharmacogenomics 2016; 17:297-307. [PMID: 26807692 DOI: 10.2217/pgs.15.174] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The regulatory subunit of PI3K, p85α (encoded by PIK3R1), binds, stabilizes and inhibits the PI3K p110 catalytic subunit. Functional characterization of PIK3R1 mutations has identified not only hypomorphs with reduced inhibition of p110, but also hypomorphs and dominant negative mutants that disrupt a novel regulatory role of p85α on PTEN or neomorphs that activate unexpected signaling pathways. The diverse phenotypic spectrum of these PIK3R1 driver mutations underscores the need for different treatment strategies targeting tumors harboring these mutations. This article describes the functional consequences of the spectrum of PIK3R1 driver mutations and therapeutic liabilities they may engender.
Collapse
Affiliation(s)
- Lydia Wt Cheung
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Khalifa Bin Zayed Al Nahyan Institute of Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Jamaluddin JL, Huri HZ, Vethakkan SR, Mustafa N. Pancreatic gene variants potentially associated with dipeptidyl peptidase-4 inhibitor treatment response in Type 2 diabetes. Pharmacogenomics 2015; 15:235-49. [PMID: 24444412 DOI: 10.2217/pgs.13.234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the adult pancreas, the expression of the genes PAX4, KCNQ1, TCF7L2, KCNJ11, ABCC8, MTNR1B and WFS1 are mainly restricted to β cells to maintain glucose homeostasis. We have identified these genes as the main regulators of incretin-mediated actions, and therefore they may potentially influence the response of DPP-4 inhibitors. This review represents the first detailed exploration of pancreatic β-cell genes and their variant mechanisms, which could potentially affect the response of DPP-4 inhibitors in Type 2 diabetes. We have focused on the signaling pathways of these genes to understand their roles in gastrointestinal incretin-mediated effects; and finally, we sought to associate gene mechanisms with their Type 2 diabetes risk variants to predict the responses of DPP-4 inhibitors for this disease.
Collapse
Affiliation(s)
- Jazlina Liza Jamaluddin
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
7
|
Adapala NS, Barbe MF, Tsygankov AY, Lorenzo JA, Sanjay A. Loss of Cbl-PI3K interaction enhances osteoclast survival due to p21-Ras mediated PI3K activation independent of Cbl-b. J Cell Biochem 2015; 115:1277-89. [PMID: 24470255 DOI: 10.1002/jcb.24779] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/24/2014] [Indexed: 01/14/2023]
Abstract
Cbl family proteins, Cbl and Cbl-b, are E3 ubiquitin ligases and adaptor proteins, which play important roles in bone-resorbing osteoclasts. Loss of Cbl in mice decreases osteoclast migration, resulting in delayed bone development where as absence of Cbl-b decreases bone volume due to hyper-resorptive osteoclasts. A major structural difference between Cbl and Cbl-b is tyrosine 737 (in YEAM motif) only on Cbl, which upon phosphorylation interacts with the p85 subunit of phosphatidylinositol-3 Kinase (PI3K). In contrast to Cbl(-/-) and Cbl-b(-/-) , mice lacking Cbl-PI3K interaction due to a Y737F (tyrosine to phenylalanine, YF) mutation showed enhanced osteoclast survival, but defective bone resorption. To investigate whether Cbl-PI3K interaction contributes to distinct roles of Cbl and Cbl-b in osteoclasts, mice bearing CblY737F mutation in the Cbl-b(-/-) background (YF/YF;Cbl-b(-/-) ) were generated. The differentiation and survival were augmented similarly in YF/YF and YF/YF;Cbl-b(-/-) osteoclasts, associated with enhanced PI3K signaling suggesting an exclusive role of Cbl-PI3K interaction, independent of Cbl-b. In addition to PI3K, the small GTPase Ras also regulates osteoclast survival. In the absence of Cbl-PI3K interaction, increased Ras GTPase activity and Ras-PI3K binding were observed and inhibition of Ras activation attenuated PI3K mediated osteoclast survival. In contrast to differentiation and survival, increased osteoclast activity observed in Cbl-b(-/-) mice persisted even after introduction of the resorption-defective YF mutation in YF/YF;Cbl-b(-/-) mice. Hence, Cbl and Cbl-b play mutually exclusive roles in osteoclasts. Whereas Cbl-PI3K interaction regulates differentiation and survival, bone resorption is predominantly regulated by Cbl-b in osteoclasts.
Collapse
Affiliation(s)
- Naga Suresh Adapala
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, 06032
| | | | | | | | | |
Collapse
|
8
|
Deng Z, Liu Y, Wang C, Fan H, Ma J, Yu H. Involvement of PI3K/Akt pathway in rat condylar chondrocytes regulated by PTHrP treatment. Arch Oral Biol 2014; 59:1032-41. [DOI: 10.1016/j.archoralbio.2014.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/18/2014] [Accepted: 04/19/2014] [Indexed: 11/28/2022]
|
9
|
Li Z, Lu H, Li ZB. The PI3K/Akt signalling pathway may play an internal role related to abnormal condylar growth: a preliminary study. Int J Oral Maxillofac Surg 2014; 43:1477-83. [PMID: 24929453 DOI: 10.1016/j.ijom.2014.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/17/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
Abstract
Developmental deformity of the mandible is one of the most common craniofacial malformations and is closely related to abnormal condylar growth. In this study, the role of PI3K/Akt signalling in the regulation of chondrocyte proliferation and hypertrophic differentiation in the condylar cartilage was studied. Immunohistochemical staining was used to investigate the expression of PI3K and p-Akt in the rat condyle cartilage. Rat condylar chondrocytes were cultured for the investigation of chondrocyte proliferation and hypertrophic differentiation when PI3K/Akt was inhibited. In addition, organ culture of the rat mandibular condyle was performed to evaluate the condyle cartilage growth while PI3K/Akt was inhibited. PI3K-positive cells and p-Akt-positive cells showing cytoplasmic staining were found to be present in the condylar cartilage. Reduced cell proliferation was observed in the culture of rat condylar chondrocytes when PI3K/Akt was inhibited; however, the hypertrophic differentiation level was increased. The proliferative zone thickness of condylar cartilage in the experimental group was less than that in the control group (P=0.00185), but the hypertrophic zone was greater than that in the control group (P=0.01048). PI3K/Akt signalling exerts opposite influences on chondrocyte proliferation and hypertrophic differentiation of the condylar cartilage, and these data suggest that PI3K/Akt is a potential intracellular regulation signal pathway in condylar cartilage development.
Collapse
Affiliation(s)
- Z Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Engineering of the Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H Lu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Engineering of the Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Z-B Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Engineering of the Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Effects of eluted components from 4-META/MMA-TBB adhesive resin sealer on osteoblastic cell proliferation. J Dent Sci 2012. [DOI: 10.1016/j.jds.2012.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
11
|
Ilić N, Roberts TM. Comparing the roles of the p110α and p110β isoforms of PI3K in signaling and cancer. Curr Top Microbiol Immunol 2011; 347:55-77. [PMID: 20517719 DOI: 10.1007/82_2010_63] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphatidylinositol-3-kinases (PI3K) are a family of enzymes that act downstream of cell surface receptors leading to activation of multiple signaling pathways regulating cellular growth, proliferation, motility, and survival. To date, most research efforts have focused on a group of PI3K-family enzymes termed class I, of which the most studied member is PI3Kα. PI3Kα is an oncogene frequently mutated in human cancer, as is the chief negative regulator of the pathway, the tumor suppressor PTEN. Recently, it has been suggested that tumors deficient for PTEN might depend on the function of another class I member, PI3Kβ, to sustain their transformed phenotype. Taken together, these findings provide a significant medical rationale to study the signaling cascades regulated by PI3Kα and PI3Kβ particularly in the context of their role in the development and maintenance of human cancer. Here, we summarize the current understanding of the upstream receptor regulation of the two PI3K isoforms and their roles in cancer as well as their functional requirements in downstream signaling cascades.
Collapse
Affiliation(s)
- Nina Ilić
- Department of Cancer Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
12
|
Ulici V, Hoenselaar KD, Agoston H, McErlain DD, Umoh J, Chakrabarti S, Holdsworth DW, Beier F. The role of Akt1 in terminal stages of endochondral bone formation: angiogenesis and ossification. Bone 2009; 45:1133-45. [PMID: 19679212 DOI: 10.1016/j.bone.2009.08.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 07/28/2009] [Accepted: 08/02/2009] [Indexed: 02/04/2023]
Abstract
Longitudinal bone growth is the result of endochondral bone formation which takes place in the growth plate. The rate of chondrocyte proliferation and hypertrophy, vascular invasion with the formation of primary ossification centers and cartilage replacement by bone tissue are all important processes required for normal growth. We have shown a role for the PI3K signaling pathway in chondrocyte hypertrophy and bone growth in tibia explant cultures. In this current study, we aimed to investigate the role of Akt1, an important target of PI3K, in endochondral ossification. Akt1 KO mice showed reduced size compared to their littermates throughout life, but the largest difference in body size was observed around 1 week of age. Focusing on this specific developmental stage, we discovered delayed secondary ossification in the long bones of Akt1 KO mice. A delay in formation of a structure resembling a secondary ossification center was also seen in tibia organ cultures treated with the PI3K inhibitor LY294002. The expression of matrix metalloproteinase-14 (MMP-14), the main protease responsible for development of secondary ossification centers, was decreased in the epiphysis of Akt1 KO mice, possibly explaining the delay in secondary ossification centers seen in the Akt1 KO mice. Bone mineral density (BMD) and bone mineral content (BMC) measured in the proximal tibia of 1-year-old mice were decreased in Akt1 KO mice, suggesting that the original delay in ossification might affect bone quality in older animals.
Collapse
Affiliation(s)
- Veronica Ulici
- CIHR Group in Skeletal Development and Remodeling, Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada N6A 5C1
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Biological actions resulting from phosphoinositide synthesis trigger multiple downstream signalling cascades by recruiting proteins with pleckstrin homology domains, including phosphoinositide-dependent kinase-1 and protein kinase B (also known as Akt). Retrospectively, more attention has been focused on the plasma membrane-associated interactions of these molecules and resulting cytoplasmic target activation. The complex biological activities exerted by Akt activation suggest, however, that more subtle and complex subcellular control mechanisms are involved. This review examines the regulation of Akt activity from the perspective of subcellular compartmentalization and focuses specifically upon the actions of Akt activation downstream from phosphoinositide synthesis that influence cell biology by altering nuclear signalling leading to Pim-1 kinase induction as well as hexokinase phosphorylation that, together with Akt, serves to preserve mitochondrial integrity.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, La Jolla, San Diego, CA 92093-0636, USA
| | - Marta Rubio
- Department of Biology, SDSU Heart Institute, San Diego State University, NLS 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mark A. Sussman
- Department of Biology, SDSU Heart Institute, San Diego State University, NLS 426, 5500 Campanile Drive, San Diego, CA 92182, USA
- Corresponding author. Tel: +1 619 594 2983; +1 619 594 2610. E-mail address:
| |
Collapse
|
14
|
Rubio M, Avitabile D, Fischer K, Emmanuel G, Gude N, Miyamoto S, Mishra S, Schaefer EM, Brown JH, Sussman MA. Cardioprotective stimuli mediate phosphoinositide 3-kinase and phosphoinositide dependent kinase 1 nuclear accumulation in cardiomyocytes. J Mol Cell Cardiol 2009; 47:96-103. [PMID: 19269295 DOI: 10.1016/j.yjmcc.2009.02.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 02/04/2009] [Accepted: 02/20/2009] [Indexed: 12/20/2022]
Abstract
The phosphoinositide 3-kinase (PI3K)/phosphoinositide dependent kinase 1 (PDK1) signaling pathway exerts cardioprotective effects in the myocardium through activation of key proteins including Akt. Activated Akt accumulates in nuclei of cardiomyocytes suggesting that biologically relevant targets are located in that subcellular compartment. Nuclear Akt activity could be potentiated in both intensity and duration by the presence of a nuclear-associated PI3K/PDK1 signaling cascade as has been described in other non-myocyte cell types. PI3K/PDK1 distribution was determined in vitro and in vivo by immunostaining and nuclear extraction of cultured rat neonatal cardiomyocytes or transgenic mouse hearts. Results show that PI3K and PDK1 are present at a basal level in cardiomyocytes nuclei and that cardioprotective stimulation with atrial natriuretic peptide (ANP) increases their nuclear localization. In comparison, overexpression of nuclear-targeted Akt does not mediate increased translocation of either PI3K or PDK1 indicating that accumulation of Akt does not drive PI3K or PDK1 into the nuclear compartment. Furthermore, PI3K and phospho-Akt(473) show parallel temporal accumulation in the nucleus following (MI) infarction challenge. These findings demonstrate the presence of a dynamically regulated nuclear-associated signaling cascade involving PI3K and PDK that presumably influences nuclear Akt activation.
Collapse
Affiliation(s)
- Marta Rubio
- SDSU Heart Institute, Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Syudo M, Yamada S, Yanagiguchi K, Matsunaga T, Hayashi Y. Early gene expression analyzed by a genome microarray and real-time PCR in osteoblasts cultured with a 4-META/MMA-TBB adhesive resin sealer. ACTA ACUST UNITED AC 2009; 107:e77-81. [PMID: 19157924 DOI: 10.1016/j.tripleo.2008.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/23/2008] [Accepted: 10/21/2008] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Adhesive resin sealer systems have been applied in endodontics to seal the root canal system. This study was designed to confirm the mechanism of intracellular molecular events in an in vitro cell culture system with a 4-methacryloxyethyl trimellitate anhydride/methylmethacrylate-tri-n-butyl borane (4-META/MMA-TBB) adhesive resin sealer. STUDY DESIGN The gene expression patterns relating to cell growth and differentiation were examined using a human genome expression microarray and real-time polymerase chain reaction analyses in hard tissue-forming osteoblasts cultured with and without a 4-META/MMA-TBB resin sealer. RESULTS There was no significant difference in the cell number between the control and adhesive sealer groups. An increased expression of integrin beta, transforming growth factor beta-related protein, craniofacial development protein 1, and PI3K genes was demonstrated. The integrin beta and PI3K genes showed extremely high ratios. CONCLUSIONS The signal transduction pathway, at least through the PI3K/Akt cascade for cell proliferation and differentiation, can be controlled by some components of this type of adhesive resin sealer.
Collapse
Affiliation(s)
- Minoru Syudo
- Department of Cariology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | |
Collapse
|
16
|
Ulici V, Hoenselaar KD, Gillespie JR, Beier F. The PI3K pathway regulates endochondral bone growth through control of hypertrophic chondrocyte differentiation. BMC DEVELOPMENTAL BIOLOGY 2008; 8:40. [PMID: 18405384 PMCID: PMC2329617 DOI: 10.1186/1471-213x-8-40] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 04/11/2008] [Indexed: 02/07/2023]
Abstract
Background The majority of our bones develop through the process of endochondral ossification that involves chondrocyte proliferation and hypertrophic differentiation in the cartilage growth plate. A large number of growth factors and hormones have been implicated in the regulation of growth plate biology, however, less is known about the intracellular signaling pathways involved. PI3K/Akt has been identified as a major regulator of cellular proliferation, differentiation and death in multiple cell types. Results and Discussion Employing an organ culture system of embryonic mouse tibiae and LY294002, a pharmacological inhibitor of PI3K, we show that inhibition of the pathway results in significant growth reduction, demonstrating that PI3K is required for normal endochondral bone growth in vitro. PI3K inhibition reduces the length of the proliferating and particularly of the hypertrophic zone. Studies with organ cultures and primary chondrocytes in micromass culture show delayed hypertrophic differentiation of chondrocytes and increased apoptosis in the presence of LY294002. Surprisingly, PI3K inhibition had no strong effect on IGF1-induced bone growth, but partially blocked the anabolic effects of C-type natriuretic peptide. Conclusion Our data demonstrate an essential role of PI3K signaling in chondrocyte differentiation and as a consequence of this, in the endochondral bone growth process.
Collapse
Affiliation(s)
- Veronica Ulici
- CIHR Group in Skeletal Development and Remodeling, Department of Physiology & Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | | | | | | |
Collapse
|
17
|
Vogt PK, Bader AG, Kang S. Phosphoinositide 3-kinase: from viral oncoprotein to drug target. Virology 2006; 344:131-8. [PMID: 16364744 DOI: 10.1016/j.virol.2005.09.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 09/10/2005] [Indexed: 11/26/2022]
Abstract
The catalytic subunit p110alpha of the phosphoinositide 3-kinase (PI3K) and the serine-threonine protein kinase Akt have been extensively studied as retroviral oncoproteins. The experimental tools developed with the retroviral vectors are now being applied to PI3K mutations in human cancer. The most frequently occurring mutants of p110alpha are oncogenic in vitro and in vivo, show gain of enzymatic function, activate Akt, and their oncogenic activity is sensitive to rapamycin. The related isoforms p110beta, gamma and delta induce oncogenic transformation as wild-type proteins. Mutated p110alpha proteins are ideal drug targets. Identification of small molecule inhibitors that specifically target these mutant proteins is a realistic and urgent goal.
Collapse
Affiliation(s)
- Peter K Vogt
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road BCC 239, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
18
|
Covell DG, Wallqvist A, Huang R, Thanki N, Rabow AA, Lu XJ. Linking tumor cell cytotoxicity to mechanism of drug action: an integrated analysis of gene expression, small-molecule screening and structural databases. Proteins 2006; 59:403-33. [PMID: 15778971 DOI: 10.1002/prot.20392] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An integrated, bioinformatic analysis of three databases comprising tumor-cell-based small molecule screening data, gene expression measurements, and PDB (Protein Data Bank) ligand-target structures has been developed for probing mechanism of drug action (MOA). Clustering analysis of GI50 profiles for the NCI's database of compounds screened across a panel of tumor cells (NCI60) was used to select a subset of unique cytotoxic responses for about 4000 small molecules. Drug-gene-PDB relationships for this test set were examined by correlative analysis of cytotoxic response and differential gene expression profiles within the NCI60 and structural comparisons with known ligand-target crystallographic complexes. A survey of molecular features within these compounds finds thirteen conserved Compound Classes, each class exhibiting chemical features important for interactions with a variety of biological targets. Protein targets for an additional twelve Compound Classes could be directly assigned using drug-protein interactions observed in the crystallographic database. Results from the analysis of constitutive gene expressions established a clear connection between chemo-resistance and overexpression of gene families associated with the extracellular matrix, cytoskeletal organization, and xenobiotic metabolism. Conversely, chemo-sensitivity implicated overexpression of gene families involved in homeostatic functions of nucleic acid repair, aryl hydrocarbon metabolism, heat shock response, proteasome degradation and apoptosis. Correlations between chemo-responsiveness and differential gene expressions identified chemotypes with nonselective (i.e., many) molecular targets from those likely to have selective (i.e., few) molecular targets. Applications of data mining strategies that jointly utilize tumor cell screening, genomic, and structural data are presented for hypotheses generation and identifying novel anticancer candidates.
Collapse
Affiliation(s)
- David G Covell
- National Cancer Institute-Frederick, Developmental Therapeutics Program, Screening Technologies Branch, Laboratory of Computational Technologies, Frederick, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Singleton PA, Dudek SM, Chiang ET, Garcia JGN. Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and alpha-actinin. FASEB J 2006; 19:1646-56. [PMID: 16195373 DOI: 10.1096/fj.05-3928com] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cell (EC) barrier dysfunction results in increased vascular permeability observed in inflammation, tumor angiogenesis, and atherosclerosis. The platelet-derived phospholipid sphingosine-1-phosphate (S1P) decreases EC permeability in vitro and in vivo and thus has obvious therapeutic potential. We examined S1P-mediated human pulmonary artery EC signaling and barrier regulation in caveolin-enriched microdomains (CEM). Immunoblotting from S1P-treated EC revealed S1P-mediated rapid recruitment (1 microM, 5 min) to CEMs of the S1P receptors S1P1 and S1P3, p110 PI3 kinase alpha and beta catalytic subunits, the Rac1 GEF, Tiam1, and alpha-actinin isoforms 1 and 4. Immunoprecipitated p110 PI3 kinase catalytic subunits from S1P-treated EC exhibited PIP3 production in CEMs. Immunoprecipitation of S1P receptors from CEM fractions revealed complexes containing Tiam1 and S1P1. PI3 kinase inhibition (LY294002) attenuated S1P-induced Tiam1 association with S1P1, Tiam1/Rac1 activation, alpha-actinin-1/4 recruitment, and EC barrier enhancement. Silencing of either S1P1 or Tiam1 expression resulted in the loss of S1P-mediated Rac1 activation and alpha-actinin-1/4 recruitment to CEM. Finally, silencing S1P1, Tiam1, or both alpha-actinin isoforms 1/4 inhibits S1P-induced cortical F-actin rearrangement and S1P-mediated barrier enhancement. Taken together, these results suggest that S1P-induced recruitment of S1P1 to CEM fractions promotes PI3 kinase-mediated Tiam1/Rac1 activation required for alpha-actinin-1/4-regulated cortical actin rearrangement and EC barrier enhancement.
Collapse
MESH Headings
- Actinin/metabolism
- Actinin/physiology
- Catalytic Domain
- Caveolin 1/chemistry
- Cells, Cultured
- Cholesterol/chemistry
- Chromones/pharmacology
- Cytoskeleton/metabolism
- Electrophoresis, Polyacrylamide Gel
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation, Enzymologic
- Guanine Nucleotide Exchange Factors/metabolism
- Guanine Nucleotide Exchange Factors/physiology
- Humans
- Immunoblotting
- Immunoprecipitation
- Inflammation
- Microfilament Proteins/metabolism
- Microscopy, Fluorescence
- Models, Biological
- Morpholines/pharmacology
- Neoplasm Proteins/physiology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol 3-Kinases/physiology
- Protein Isoforms
- Protein Structure, Tertiary
- Pulmonary Artery/pathology
- RNA, Small Interfering/metabolism
- Receptors, Lysosphingolipid/physiology
- Signal Transduction
- T-Lymphoma Invasion and Metastasis-inducing Protein 1
- Transfection
- rac1 GTP-Binding Protein/physiology
Collapse
Affiliation(s)
- Patrick A Singleton
- Division of Pulmonary and Critical Care Medicine, Center for Translational Respiratory Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
20
|
Kang S, Denley A, Vanhaesebroeck B, Vogt PK. Oncogenic transformation induced by the p110beta, -gamma, and -delta isoforms of class I phosphoinositide 3-kinase. Proc Natl Acad Sci U S A 2006; 103:1289-94. [PMID: 16432180 PMCID: PMC1360601 DOI: 10.1073/pnas.0510772103] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Class I phosphoinositide 3-kinase contains four isoforms of the catalytic subunit, p110alpha, -beta, -gamma, and -delta. At physiological levels of expression, the wild-type p110alpha isoform lacks oncogenic potential, but gain-of-function mutations and overexpression of p110alpha are correlated with oncogenicity. The p110beta, -gamma, and -delta isoforms induce transformation of cultured cells as wild-type proteins. This oncogenic potential requires kinase activity and can be suppressed by the target of rapamycin inhibitor rapamycin. The p110delta isoform constitutively activates the Akt signaling pathway; p110gamma activates Akt only in the presence of serum. The isoforms differ in their requirements for upstream signaling. The transforming activity of the p110gamma isoform depends on rat sarcoma viral oncogene homolog (Ras) binding; preliminary data suggest the same for p110beta and indicate Ras-independent oncogenic potential of p110delta. The surprising oncogenic potential of the wild-type non-alpha isoforms of class I phosphoinositide 3-kinase may explain the dearth of cancer-specific mutations in these proteins, because these non-alpha isoforms could contribute to the oncogenic phenotype of the cell by differential expression.
Collapse
Affiliation(s)
- Sohye Kang
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC 239, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
21
|
Glassford J, Vigorito E, Soeiro I, Madureira PA, Zoumpoulidou G, Brosens JJ, Turner M, Lam EWF. Phosphatidylinositol 3-kinase is required for the transcriptional activation of cyclin D2 in BCR activated primary mouse B lymphocytes. Eur J Immunol 2005; 35:2748-61. [PMID: 16114097 DOI: 10.1002/eji.200425812] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Induction of cyclin D2 is essential for mediating cell cycle entry in B cells activated by BCR cross-linking. In the present study we show that, like B lymphocytes lacking cyclin D2, the p85alpha subunit of phosphatidylinositol 3-kinase (PI3K) or other components of the B cell signalosome, p110delta-null B cells fail to induce cyclin D2 and enter early G1 but not S phase of the cell cycle. The inhibitors of PI3K activity, LY294002 and Wortmannin, also abrogate cyclin D2 induction by BCR cross-linking, confirming that the class IA PI3K is necessary for cyclin D2 induction in response to BCR stimulation. Furthermore, using both p85alpha-null and p110delta-null B cells and inhibitors of PI3K, this study demonstrates for the first time, that BCR cross-linking induces cyclin D2 mRNA expression via transcriptional activation of the cyclin D2 promoter and that this transcriptional activation of cyclin D2 requires PI3K activity. Moreover, we identify a region between nucleotides -1624 and -1303 of the cyclin D2 promoter containing elements responsive to anti-IgM, which are PI3K dependent. Further characterisation of signalling intermediates downstream of the BCR revealed a perturbation of MAPK signalling pathways in p85alpha-null and p110delta-null B cells, and our data suggests that cross-talk exists between the PI3K and JNK pathways.
Collapse
Affiliation(s)
- Janet Glassford
- Cancer Research-UK laboratories, Department of Cancer Medicine, MRC Cyclotron Building, Imperial College London, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Thomas MJ, Smith A, Head DH, Milne L, Nicholls A, Pearce W, Vanhaesebroeck B, Wymann MP, Hirsch E, Trifilieff A, Walker C, Finan P, Westwick J. Airway inflammation: chemokine-induced neutrophilia and the class I phosphoinositide 3-kinases. Eur J Immunol 2005; 35:1283-91. [PMID: 15739165 DOI: 10.1002/eji.200425634] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Class I phosphoinositide 3-kinases (PI3K) are known to play a significant role in neutrophil chemotaxis. However, the relative contributions of different PI3K isoforms, and how these impact on lung inflammation, have not been addressed. In vitro studies using wild-type and PI3Kgamma knockout neutrophils demonstrated the major role of the gamma isoform in chemotactic but not chemokinetic events. This was confirmed by a model of direct chemokine instillation into the airways in vivo. Within all studies, a low yet significant degree of neutrophil movement in the absence of PI3Kgamma could be observed. No role for the delta isoform was demonstrated both in vitro and in vivo using PI3Kdelta kinase-dead knock-in mice. Moreover, further studies using the broad-spectrum PI3K inhibitors wortmannin or LY294002 showed no other class I PI3K isoforms to be involved in these chemotactic processes. Here, we identify a contributory PI3K-independent mechanism of neutrophil movement, yet demonstrate PI3Kgamma as the pivotal mediator through which the majority of neutrophils migrate into the lung in response to chemokines. These data resolve the complexities of chemokine-induced neutrophilia and PI3K signaling and define the gamma isoform as a promising target for new therapeutics to treat airway inflammatory diseases.
Collapse
|
23
|
Shah BH, Neithardt A, Chu DB, Shah FB, Catt KJ. Role of EGF receptor transactivation in phosphoinositide 3-kinase-dependent activation of MAP kinase by GPCRs. J Cell Physiol 2005; 206:47-57. [PMID: 15920762 DOI: 10.1002/jcp.20423] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many G protein coupled receptors (GPCRs) cause phosphorylation of MAP kinases through transactivation of the epidermal growth factor receptor (EGF-R), leading to increased cell survival and growth, motility, and migration. Phosphoinositide 3-kinase (PI3K) is one of the important cell survival signaling molecules activated by EGF-R stimulation. However, the extent to which EGF-R transactivation is essential for GPCR agonist-stimulated PI3K activation is not known. Here we examined the mechanism of PI3K activation that elicits GPCR-mediated ERK1/2 activation by pathways dependent and/or independent of EGF-R transactivation in specific cell types. Immortalized hypothalamic neurons (GT1-7 cells) express endogenous gonadotropin-releasing hormone receptors (GnRH-R) and their stimulation causes marked phosphorylation of ERK1/2 and Akt (Ser 473) through transactivation of the EGF-R and recruitment of PI3K. In C9 hepatocytes, agonist activation of AT1 angiotensin II (AT1-R), lysophosphatidic acid (LPA), and EGF receptors caused phosphorylation of Akt through activation of the EGF-R in a PI3K-dependent manner. However, ERK1/2 activation by these agonists in these cells was independent of PI3K activation. In contrast, agonist stimulation of HEK 293 cells stably expressing AT1-R caused ERK1/2 phosphorylation that was independent of EGF-R transactivation but required PI3K activation. LPA signaling in these cells showed partial and complete dependence on EGF-R and PI3K, respectively. These data indicate that GPCR-induced ERK1/2 phosphorylation is dependent or independent of PI3K in specific cell types, and that the involvement of PI3K during ERK1/2 activation is not dependent solely on agonist-induced transactivation of the EGF-R.
Collapse
Affiliation(s)
- Bukhtiar H Shah
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA.
| | | | | | | | | |
Collapse
|
24
|
Kondo Y, Shen L, Yan PS, Huang THM, Issa JPJ. Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Proc Natl Acad Sci U S A 2004; 101:7398-403. [PMID: 15123805 PMCID: PMC409930 DOI: 10.1073/pnas.0306641101] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Switching from acetylation to methylation at histone H3 lysine 9 (K9) has recently been shown to contribute to euchromatin gene silencing. To identify genes silenced by K9 modifications, we probed a human CpG island microarray with DNA obtained by chromatin immunoprecipitation (ChIP) in a cancer cell line using an anti-H3-K9 methylated antibody or an anti-H3-K9 acetylated antibody. Of the 27 clones with the highest signal ratio of K9 methylation over acetylation (Me/Ac), 13 contained repetitive sequences. Among 14 nonrepetitive clones, we identified 11 genes (seven known and four previously undescribed), one EST, and two unknown fragments. Using ChIP-PCR, all 18 examined clones showed higher ratios of H3-K9 Me/Ac than the active gene control, P21, thus confirming the microarray data. In addition, we found a strong correlation between the K9 Me/Ac ratio and CpG island DNA methylation (R = 0.92, P < 0.01), and five of seven genes examined (megalin, thrombospondin-4, KR18, latrophilin-3, and phosphatidylinositol-3-OH kinase P101 subunit) showed lack of expression by RT-PCR and reactivation by DNA methylation and/or histone deacetylase inhibition, suggesting that these genes are true targets of silencing through histone modifications. All five genes also showed significant DNA methylation in a cell line panel and in primary colon cancers. Our data suggest that CpG island microarray coupled with ChIP can identify novel targets of gene silencing in cancer. This unbiased approach confirms the tight coupling between DNA methylation and histone modifications in cancer and could be used to probe gene silencing in nonneoplastic conditions as well.
Collapse
Affiliation(s)
- Yutaka Kondo
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
25
|
Sawyers CL. Opportunities and challenges in the development of kinase inhibitor therapy for cancer. Genes Dev 2004; 17:2998-3010. [PMID: 14701871 DOI: 10.1101/gad.1152403] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Charles L Sawyers
- Howard Hughes Medical Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
26
|
Lee JS, Hmama Z, Mui A, Reiner NE. Stable gene silencing in human monocytic cell lines using lentiviral-delivered small interference RNA. Silencing of the p110alpha isoform of phosphoinositide 3-kinase reveals differential regulation of adherence induced by 1alpha,25-dihydroxycholecalciferol and bacterial lipopolysaccharide. J Biol Chem 2003; 279:9379-88. [PMID: 14672955 DOI: 10.1074/jbc.m310638200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Studying mononuclear phagocyte cell biology through genetic manipulation by non-viral transfection methods has been challenging due to the dual problems of low transfection efficiency and the difficulty in obtaining stable transfection. To overcome this problem, we developed a system for mediating RNA interference in monocytic cells. The p110alpha isoform of phosphoinositide 3-kinases (PI3Ks) was silenced using a lentiviral vector expressing short hairpin RNA (shRNA). This resulted in the generation of stable THP-1 and U-937 monocytic cell lines deficient in p110alpha. Notably, p110alpha was silenced without affecting levels of either the other class I(A) PI3K catalytic subunits p110beta and p110delta, or the p85alpha regulatory subunit. The role of p110alpha in mediating cell adherence was examined. Monocyte adherence induced in response to either lipopolysaccharide (LPS) or 1alpha,25-dihydroxycholecalciferol (D(3)) was blocked by the PI3K inhibitor LY294002. However, although adherence induced in response to D(3) was sensitive to silencing of p110alpha, LPS-induced adherence was not. Expression of the monocyte differentiation marker CD11b was also induced by D(3) in a PI3K-dependent manner and gene silencing using shRNA showed that p110alpha was also required for this effect. Taken together, these findings demonstrate that LPS and D(3) use distinct isoforms of class I(A) PI3K to induce functional responses and that lentiviral-mediated delivery of shRNA is a powerful approach to study monocyte biology.
Collapse
Affiliation(s)
- Jimmy S Lee
- Department of Medicine (Division of Infectious Diseases), University of British Columbia, Vancouver, British Columbia V5Z 3J5, Canada
| | | | | | | |
Collapse
|
27
|
Bock HH, Jossin Y, Liu P, Förster E, May P, Goffinet AM, Herz J. Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to Reelin signaling and is required for normal cortical lamination. J Biol Chem 2003; 278:38772-9. [PMID: 12882964 DOI: 10.1074/jbc.m306416200] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reelin is a large secreted signaling protein that binds to two members of the low density lipoprotein receptor family, the apolipoprotein E receptor 2 and the very low density lipoprotein receptor, and regulates neuronal positioning during brain development. Reelin signaling requires activation of Src family kinases as well as tyrosine phosphorylation of the intracellular adaptor protein Disabled-1 (Dab1). This results in activation of phosphatidylinositol 3-kinase (PI3K), the serine/threonine kinase Akt, and the inhibition of glycogen synthase kinase 3beta, a protein that is implicated in the regulation of axonal transport. Here we demonstrate that PI3K activation by Reelin requires Src family kinase activity and depends on the Reelin-triggered interaction of Dab1 with the PI3K regulatory subunit p85alpha. Because the Dab1 phosphotyrosine binding domain can interact simultaneously with membrane lipids and with the intracellular domains of apolipoprotein E receptor 2 and very low density lipoprotein receptor, Dab1 is preferentially recruited to the neuronal plasma membrane, where it is phosphorylated. Efficient Dab1 phosphorylation and activation of the Reelin signaling cascade is impaired by cholesterol depletion of the plasma membrane. Using a neuronal migration assay, we also show that PI3K signaling is required for the formation of a normal cortical plate, a step that is dependent upon Reelin signaling.
Collapse
Affiliation(s)
- Hans H Bock
- Department of Molecular Genetics and Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9046, USA
| | | | | | | | | | | | | |
Collapse
|