1
|
Verma S, Koppula S, Kumar V. Familial Cleidocranial Dysplasia: A Diagnostic Challenge. Indian J Otolaryngol Head Neck Surg 2024; 76:1161-1163. [PMID: 38440484 PMCID: PMC10908767 DOI: 10.1007/s12070-023-04194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/24/2023] [Indexed: 03/06/2024] Open
Abstract
Cleidocranial dysplasia (CCD) is a rare genetic disorder affecting primarily the cranium, clavicle, and dental tissues. The expression of this disorder can vary widely in severity, even within the same family. Here we present a case report of an affected mother and son with classical manifestations of the disease.
Collapse
Affiliation(s)
- Sugandha Verma
- Oral Medicine and Radiology, Dental Institute, Rajendra Institute of Medical Sciences (RIMS), Bariatu, 834009 Ranchi India
| | - Srikrishna Koppula
- Oral Medicine and Radiology, Hazaribagh College of Dental sciences And Hospital, Demotand, Hazaribagh, 825301 India
| | - Vikas Kumar
- Oral Medicine and Radiology, Dental Institute, Rajendra Institute of Medical Sciences (RIMS), Bariatu, 834009 Ranchi India
- Department of Neurosurgery, Rajendra Institute of Medical Sciences (RIMS), Bariatu, 834009 Ranchi India
| |
Collapse
|
2
|
Xiong N, An JS, Yoon H, Ryoo HM, Lim WH. Runx2 heterozygosity alters homeostasis of the periodontal complex. J Periodontal Res 2024; 59:151-161. [PMID: 37882070 DOI: 10.1111/jre.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND AND OBJECTIVE Haploinsufficiency of Runx2 (Runx2+/- ) causes dental anomalies. However, little is known about the involvement of Runx2 in the maintenance of dentin, cementum, and the periodontal ligament (PDL) during adulthood. This study aimed to observe the effects of Runx2+/- on homeostasis of the periodontal complex. MATERIALS AND METHODS A total of 14 three-month-old Runx2+/- mice and their wild-type littermates were examined using micro-computed tomography, histology, and immunohistochemistry. Phenotypic alterations in the dentin, cementum, and PDL were characterized and quantified. RESULTS Haploinsufficiency of Runx2 caused cellular changes in the PDL space including reduction of cell proliferation and apoptosis, and irregular attachment of the collagen fibers in the PDL space into the cementum. Absence of continuous thickness of cementum was also observed in Runx2+/- mice. CONCLUSION Runx2 is critical for cementum integrity and attachment of periodontal fibers. Because of its importance to cementum homeostasis, Runx2 is essential for homeostasis of periodontal complex.
Collapse
Affiliation(s)
- Ni Xiong
- Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jung-Sub An
- Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Heein Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Won Hee Lim
- Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
3
|
Arai Y, English JD, Ono N, Ono W. Effects of antiresorptive medications on tooth root formation and tooth eruption in paediatric patients. Orthod Craniofac Res 2023; 26 Suppl 1:29-38. [PMID: 36714970 PMCID: PMC10864015 DOI: 10.1111/ocr.12637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Tooth eruption is a pivotal milestone for children's growth and development. This process involves with the formation of the tooth root, the periodontal ligament (PDL) and the alveolar bone, as the tooth crown penetrates the bone and gingiva to enter the oral cavity. This review aims to outline current knowledge of the adverse dental effects of antiresorptive medications. Recently, paediatric indications for antiresorptive medications, such as bisphosphonates (BPs), have emerged, and these agents are increasingly used in children and adolescents to cure pathological bone resorption associated with bone diseases and cancers. Since tooth eruption is accompanied by osteoclastic bone resorption, it is expected that the administration of antiresorptive medications during this period affects tooth development. Indeed, several articles studying human patient cohorts and animal models report the dental defects associated with the use of these antiresorptive medications. This review shows the summary of the possible factors related to tooth eruption and introduces the future research direction to understand the mechanisms underlying the dental defects caused by antiresorptive medications.
Collapse
Affiliation(s)
- Yuki Arai
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Noriaki Ono
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| |
Collapse
|
4
|
Agarwal N, Daigavane P, Kamble R, Suchak D. A Clinical Odyssey Involving Cleidocranial Dysplasia: Report of a Rare Case. Cureus 2023; 15:e51024. [PMID: 38264393 PMCID: PMC10804171 DOI: 10.7759/cureus.51024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/24/2023] [Indexed: 01/25/2024] Open
Abstract
Cleidocranial dysplasia (CCD) is a rare genetic disorder that causes cranial and skeletal abnormalities. This case report presents a comprehensive analysis of a rare instance of CCD, highlighting its clinical manifestations through an orthodontic lens shedding light on the challenges and complexities associated with managing this uncommon condition. The patient, an 18-year-old female, presented with a variety of symptoms, including delayed eruption of permanent teeth, abnormal facial features, and prominent cranial abnormalities. Multiple teeth in both the arches were missing including over-retention of primary teeth. Features of cleidocranial dysplasia were evident in her facial appearance. Treatment of CCD requires a multifaceted approach, often involving orthodontic interventions, dental extractions, and corrective surgeries to address cranial deformities and other skeletal anomalies. The report emphasizes the importance of multidisciplinary collaboration in diagnosing and managing such cases, shedding light on the distinctive features of CCD and their implications for orthodontic treatment on what kind of best treatment can be given to these patients. This case serves as a reminder of the importance of raising awareness about rare genetic disorders like CCD, as early diagnosis and intervention can significantly improve the patient's quality of life. Furthermore, it underscores the significance of a collaborative and holistic healthcare approach in managing such complex conditions. It emphasizes the need for continued research, awareness, and support for individuals affected by such conditions.
Collapse
Affiliation(s)
- Nishu Agarwal
- Orthodontics and Dentofacial Orthopaedics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pallavi Daigavane
- Orthodontics and Dentofacial Orthopaedics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ranjit Kamble
- Orthodontics and Dentofacial Orthopaedics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Dhwani Suchak
- Orthodontics and Dentofacial Orthopaedics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
5
|
Saharudin S, Sanusi SY, Ponnuraj KT. Sequencing analysis of exons 5 and 6 in RUNX2 in non-syndromic patients with supernumerary tooth in Kelantan, Malaysia. Clin Oral Investig 2021; 26:1261-1268. [PMID: 34453594 DOI: 10.1007/s00784-021-04098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of this study is to do a sequencing analysis of RUNX2 in non-syndromic patients with supernumerary tooth. MATERIALS AND METHODS Fifty-three patients with supernumerary tooth were identified retrospectively from 1,275 radiographic reviews who attended the Hospital Universiti Sains Malaysia (USM) Dental Clinic. Informed consent was obtained from the patients prior to the study. Blood samples were collected from 41 patients and DNA extractions were performed out of which 10 samples were chosen randomly for PCR amplification using designated primers for RUNX2 followed by DNA sequencing analysis. RESULTS This study involved 28 male patients (68.3%) and 13 female patients (31.7%) with a gender ratio of 2.2:1 and mean age of 15.9 ± 6.2 years. DNA extraction yielded ~ 40 ng/μl of concentrated DNA, and each DNA sample had more than 1500 bp of DNA length. The purity ranged between 1.8 and 2.0. DNA sequencing analysis did not reveal any mutations in exons 5 and 6 of RUNX2. CONCLUSION This study did not reveal any mutations in exons 5 and 6 of RUNX2 in non-syndromic patients with supernumerary tooth. CLINICAL RELEVANCE Analysis of mutations in RUNX2 is important to enhance the understanding of tooth development in humans.
Collapse
Affiliation(s)
- Suhailiza Saharudin
- Department of Pediatric Dentistry, Hospital Raja Permaisuri Bainun, 30450, Ipoh, Perak, Malaysia
| | - Sarliza Yasmin Sanusi
- School of Dental Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Kannan Thirumulu Ponnuraj
- School of Dental Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia. .,Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
6
|
4-Hexylresorcinol Administration Increases Dental Hard Tissue Formation and Incisor Eruption Rate in Rats. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dental hard tissue formation and bone turnover are required for tooth eruption. 4-Hexylresorcinol (4HR) accelerates tooth movement by increasing bone turnover in orthodontic treatment. This study aimed to evaluate the following: (1) the effect of 4HR application on the expression of proteins associated with tooth formation, and (2) the effect of 4HR application on mandibular incisor eruption rate in a rat model. Primary cultured pulp cells received either 4HR (1 to 100 µM) or solvent only; western blotting was performed for transforming growth factor-beta 1 (TGF-β1), bone morphogenic protein-2/4 (BMP-2/4), runt-related transcription factor 2 (Runx2), osterix (OSX), dentin sialophosphoprotein (DSPP), and parathyroid hormone-related protein receptor (PTHrP-R). In in vivo study, rats (15 males and 15 females) received either solvent or 0.128 mg/kg or 12.8 mg/kg of 4HR via subcutaneous injection; mandibular incisor eruption rate was subsequently recorded. Immunohistochemical staining and western blotting for TGF-β1, BMP-2/4, Runx2, OSX, DSPP, and PTHrP-R were performed in the mandibular tissue samples. 4HR administration was found to increase TGF-β1, BMP-2/4, Runx2, OSX, DSPP, and PTHrP-R expression in both cell culture and tissue samples. Immunohistochemical staining of some markers showed site-specific expression, thereby indicating programmed differentiation of odontoblasts and ameloblasts. The eruption rate was significantly higher in the 12.8 mg/kg 4HR-administered group than in the untreated control (p = 0.001 and 0.010 for males and females, respectively). Collectively, 4HR administration increased the expression of markers related to dental hard tissue formation and accelerated the eruption rate of incisors in rats.
Collapse
|
7
|
Bae JM, Clarke JC, Rashid H, Adhami MD, McCullough K, Scott JS, Chen H, Sinha KM, de Crombrugghe B, Javed A. Specificity Protein 7 Is Required for Proliferation and Differentiation of Ameloblasts and Odontoblasts. J Bone Miner Res 2018; 33:1126-1140. [PMID: 29405385 PMCID: PMC6002875 DOI: 10.1002/jbmr.3401] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/22/2018] [Accepted: 01/27/2018] [Indexed: 12/13/2022]
Abstract
The Sp7/Osterix transcription factor is essential for bone development. Mutations of the Sp7 gene in humans are associated with craniofacial anomalies and osteogenesis imperfecta. However, the role of Sp7 in embryonic tooth development remains unknown. Here we identified the functional requirement of Sp7 for dentin synthesis and tooth development. Sp7-null mice exhibit craniofacial dysmorphogenesis and are completely void of alveolar bone. Surprisingly, initial tooth morphogenesis progressed normally in Sp7-null mice. Thus the formation of alveolar bone is not a prerequisite for tooth morphogenesis. Sp7 is required for mineralization of palatal tissue but is not essential for palatal fusion. The reduced proliferative capacity of Sp7-deficient ectomesenchyme results in small and misshapen teeth with randomly arranged cuboidal preodontoblasts and preameloblasts. Sp7 promotes functional maturation and polarization of odontoblasts. Markers of mature odontoblast (Col1a, Oc, Dspp, Dmp1) and ameloblast (Enam, Amelx, Mmp20, Amtn, Klk4) are barely expressed in incisors and molar tissues of Sp7-null mice. Consequently, dentin and enamel matrix are absent in the Sp7-null littermates. Interestingly, the Sp7 expression is restricted to cells of the dental mesenchyme indicating the effect on oral epithelium-derived ameloblasts is cell-nonautonomous. Abundant expression of Fgf3 and Fgf8 ligand was noted in the developing tooth of wild-type mice. Both ligands were remarkably absent in the Sp7-null incisor and molar, suggesting cross-signaling between mesenchyme and epithelium is disrupted. Finally, promoter-reporter assays revealed that Sp7 directly controls the expression of Fgf-ligands. Together, our data demonstrate that Sp7 is obligatory for the differentiation of both ameloblasts and odontoblasts but not for the initial tooth morphogenesis. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ji-Myung Bae
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John C Clarke
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harunur Rashid
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mitra D Adhami
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kayla McCullough
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jordan S Scott
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Haiyan Chen
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Krishna M Sinha
- M.D. Anderson Cancer Center, University of Texas, Houston, TX, USA
| | | | - Amjad Javed
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
8
|
Zeng L, Wei J, Han D, Liu H, Liu Y, Zhao N, Sun S, Wang Y, Feng H. Functional analysis of novel RUNX2 mutations in cleidocranial dysplasia. Mutagenesis 2018; 32:437-443. [PMID: 28505335 DOI: 10.1093/mutage/gex012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cleidocranial dysplasia (CCD) is a rare autosomal dominant skeletal disorder caused by mutation of runt-related transcription factor 2 (RUNX2) gene. The purpose of this study was to explore novel RUNX2 mutations in seven individuals with CCD and investigate the function of the mutant RUNX2 proteins. DNA samples were prepared from the peripheral blood of the CCD individuals, and then subjected to DNA sequencing. Conservation and secondary structure analysis were performed based on RUNX2 sequencing results. pEGFP-C1 plasmids containing GFP-tagged wild-type RUNX2 and three novel RUNX2 mutations expression cassettes were constructed, and then transfected into HEK293T cells. Cell fluorescence, luciferase assay and western blotting were used to analyse the subcellular distribution and function of the mutant RUNX2 proteins. Three novel mutations (R193G, 258fs, Y400X) were found in the seven CCD patients. Conservation and structure analysis show one novel mutation (R193G) in Runt domain and two novel mutations (258fs and Y400X) in PST domain of RUNX2. Western blotting confirmed that the 258fs and Y400X mutations produced truncated proteins. Fluorescence detection showed that the three novel mutants localised exclusively in the nucleus. However, luciferase assay indicated all mutants severely impaired the transactivation activities of RUNX2 on osteocalcin promoter. Our results broaden the spectrum of RUNX2 mutations in CCD individuals and demonstrated that loss of function in RUNX2 is responsible for CCD.
Collapse
Affiliation(s)
- Li Zeng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Jiahui Wei
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Na Zhao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Shichen Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| |
Collapse
|
9
|
Ao M, Chavez MB, Chu EY, Hemstreet KC, Yin Y, Yadav MC, Millán JL, Fisher LW, Goldberg HA, Somerman MJ, Foster BL. Overlapping functions of bone sialoprotein and pyrophosphate regulators in directing cementogenesis. Bone 2017; 105:134-147. [PMID: 28866368 PMCID: PMC5730356 DOI: 10.1016/j.bone.2017.08.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022]
Abstract
Although acellular cementum is essential for tooth attachment, factors directing its development and regeneration remain poorly understood. Inorganic pyrophosphate (PPi), a mineralization inhibitor, is a key regulator of cementum formation: tissue-nonspecific alkaline phosphatase (Alpl/TNAP) null mice (increased PPi) feature deficient cementum, while progressive ankylosis protein (Ank/ANK) null mice (decreased PPi) feature increased cementum. Bone sialoprotein (Bsp/BSP) and osteopontin (Spp1/OPN) are multifunctional extracellular matrix components of cementum proposed to have direct and indirect effects on cell activities and mineralization. Studies on dentoalveolar development of Bsp knockout (Bsp-/-) mice revealed severely reduced acellular cementum, however underlying mechanisms remain unclear. The similarity in defective cementum phenotypes between Bsp-/- mice and Alpl-/- mice (the latter featuring elevated PPi and OPN), prompted us to examine whether BSP is operating by modulating PPi-associated genes. Genetic ablation of Bsp caused a 2-fold increase in circulating PPi, altered mRNA expression of Alpl, Spp1, and Ank, and increased OPN protein in the periodontia. Generation of a Bsp knock-out (KO) cementoblast cell line revealed significantly decreased mineralization capacity, 50% increased PPi in culture media, and increased Spp1 and Ank mRNA expression. While addition of 2μg/ml recombinant BSP altered Spp1, Ank, and Enpp1 expression in cementoblasts, changes resulting from this dose were not dependent on the integrin-binding RGD motif or MAPK/ERK signaling pathway. Decreasing PPi by genetic ablation of Ank on the Bsp-/- mouse background reestablished cementum formation, allowing >3-fold increased acellular cementum volume compared to wild-type (WT). However, deleting Ank did not fully compensate for the absence of BSP. Bsp-/-; Ank-/- double-deficient mice exhibited mean 20-27% reduced cementum thickness and volume compared to Ank-/- mice. From these data, we conclude that the perturbations in PPi metabolism are not solely driving the cementum pathology in Bsp-/- mice, and that PPi is more potent than BSP as a cementum regulator, as shown by the ability to override loss of BSP by lowering PPi. We propose that BSP and PPi work in concert to direct mineralization in cementum and likely other mineralized tissues.
Collapse
Affiliation(s)
- M Ao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - M B Chavez
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - E Y Chu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - K C Hemstreet
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Y Yin
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - M C Yadav
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - J L Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - L W Fisher
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - H A Goldberg
- Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - M J Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - B L Foster
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
TGF-β Signaling Regulates Cementum Formation through Osterix Expression. Sci Rep 2016; 6:26046. [PMID: 27180803 PMCID: PMC4867644 DOI: 10.1038/srep26046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
TGF-β/BMPs have widely recognized roles in mammalian development, including in bone and tooth formation. To define the functional relevance of the autonomous requirement for TGF-β signaling in mouse tooth development, we analyzed osteocalcin-Cre mediated Tgfbr2 (OC(Cre)Tgfbr2(fl/fl)) conditional knockout mice, which lacks functional TGF-β receptor II (TβRII) in differentiating cementoblasts and cementocytes. Strikingly, OC(Cre)Tgfbr2(fl/fl) mutant mice exhibited a sharp reduction in cellular cementum mass with reduced matrix secretion and mineral apposition rates. To explore the molecular mechanisms underlying the roles of TGF-β signaling through TβRII in cementogenesis, we established a mouse cementoblast model with decreased TβRII expression using OCCM-30 cells. Interestingly, the expression of osterix (Osx), one of the major regulators of cellular cementum formation, was largely decreased in OCCM-30 cells lacking TβRII. Consequently, in those cells, functional ALP activity and the expression of genes associated with cementogenesis were reduced and the cells were partially rescued by Osx transduction. We also found that TGF-β signaling directly regulates Osx expression through a Smad-dependent pathway. These findings strongly suggest that TGF-β signaling plays a major role as one of the upstream regulators of Osx in cementoblast differentiation and cementum formation.
Collapse
|
11
|
Abstract
Cleidocranial dysplasia (CCD) is an autosomal dominant disorder resulting in the skeletal and dental abnormalities due to the disturbance in ossification of the bones. Clavicle is the most commonly affected bone. The prevalence of CCD is one in millions of live births. In this report, we present a case of 10-years-old boy showing features of this condition.
Collapse
Affiliation(s)
- Neeraj Kumar Dhiman
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Akhilesh Kumar Singh
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Naresh Kumar Sharma
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Chandresh Jaiswara
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
12
|
|
13
|
Kolokitha OE, Ioannidou I. A 13-year-old Caucasian boy with cleidocranial dysplasia: a case report. BMC Res Notes 2013; 6:6. [PMID: 23289840 PMCID: PMC3551643 DOI: 10.1186/1756-0500-6-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 12/18/2012] [Indexed: 12/02/2022] Open
Abstract
Background Cleidocranial dysplasia (CCD) is a rare congenital autosomal dominant skeletal disorder. The disorder is caused by heterozygosity of mutations in human RUNX2, which is present on the short arm of chromosome 6p21. The incidence of CCD is one per million births. CCD appears spontaneously with no apparent genetic cause in approximately 40% of affected patients, and one in three patients has unaffected parents. The most prevalent features associated with CCD are aplastic or hypoplastic clavicles, supernumerary teeth, failed eruption of permanent teeth, and a hypoplastic maxilla. Case presentation A 13-year-old Caucasian boy presented with a chief complaint of delayed eruption of the permanent anterior teeth. The patient was subsequently diagnosed with CCD based on the clinical examination, panoramic X-ray, anterior-posterior and lateral cephalogram, and chest radiograph findings. The details of this case are herein reported because of the extremely low incidence of this disorder. Conclusions CCD is of clinical importance in dentistry and medicine because it affects the bones and teeth and is characterized by many changes in skeletal patterning and growth. Particularly in dentistry, CCD is of great clinical significance because is associated with delayed ossification of the skull sutures, delayed exfoliation of the primary teeth, lack of permanent teeth eruption, multiple supernumerary teeth, and morphological abnormalities of the maxilla and mandible. Patients with CCD seek treatment mainly for dental problems. Knowledge of the pathogenesis, clinical characteristics, and diagnostic tools of CCD will enable clinicians to render the appropriate treatment to improve function and aesthetics. Early diagnosis of CCD is crucial for timely initiation of an appropriate treatment approach.
Collapse
Affiliation(s)
- Olga-Elpis Kolokitha
- Department of Orthodontics, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki GR - 54124, Greece.
| | | |
Collapse
|
14
|
Catalán MA, Scott-Anne K, Klein MI, Koo H, Bowen WH, Melvin JE. Elevated incidence of dental caries in a mouse model of cystic fibrosis. PLoS One 2011; 6:e16549. [PMID: 21304986 PMCID: PMC3031584 DOI: 10.1371/journal.pone.0016549] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 12/23/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Dental caries is the single most prevalent and costly infectious disease worldwide, affecting more than 90% of the population in the U.S. The development of dental cavities requires the colonization of the tooth surface by acid-producing bacteria, such as Streptococcus mutans. Saliva bicarbonate constitutes the main buffering system which neutralizes the pH fall generated by the plaque bacteria during sugar metabolism. We found that the saliva pH is severely decreased in a mouse model of cystic fibrosis disease (CF). Given the close relationship between pH and caries development, we hypothesized that caries incidence might be elevated in the mouse CF model. METHODOLOGY/PRINCIPAL FINDINGS We induced carious lesions in CF and wildtype mice by infecting their oral cavity with S. mutans, a well-studied cariogenic bacterium. After infection, the mice were fed a high-sucrose diet for 5 weeks (diet 2000). The mice were then euthanized and their jaws removed for caries scoring and bacterial counting. A dramatic increase in caries and severity of lesions scores were apparent in CF mice compared to their wildtype littermates. The elevated incidence of carious lesions correlated with a striking increase in the S. mutans viable population in dental plaque (20-fold increase in CF vs. wildtype mice; p value < 0.003; t test). We also found that the pilocarpine-stimulated saliva bicarbonate concentration was significantly reduced in CF mice (16 ± 2 mM vs. 31 ± 2 mM, CF and wildtype mice, respectively; p value < 0.01; t test). CONCLUSIONS/SIGNIFICANCE Considering that bicarbonate is the most important pH buffering system in saliva, and the adherence and survival of aciduric bacteria such as S. mutans are enhanced at low pH values, we speculate that the decrease in the bicarbonate content and pH buffering of the saliva is at least partially responsible for the increased severity of lesions observed in the CF mouse.
Collapse
Affiliation(s)
- Marcelo A. Catalán
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Kathleen Scott-Anne
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Marlise I. Klein
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hyun Koo
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - William H. Bowen
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - James E. Melvin
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
The significance of RUNX2 in postnatal development of the mandibular condyle. J Orofac Orthop 2010; 71:17-31. [PMID: 20135247 DOI: 10.1007/s00056-010-9929-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 12/02/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE RUNX2, in the Runt gene family, is one of the most important transcription factors in the development of the skeletal system. Research in recent decades has shown that this factor plays a major role in the development, growth and maturation of bone and cartilage. It is also important in tooth development, mechanotransduction and angiogenesis, and plays a significant role in various pathological processes, i.e. tumor metastasization. Mutations in the RUNX2 gene correlate with the cleidocranial dysplasia (CCD) syndrome, important to dentistry, particularly orthodontics because of its dental and orofacial symptoms. Current research on experimentally-induced mouse mutants enables us to study the etiology and pathogenesis of these malformations at the cellular and molecular biological level. This study's aim is to provide an overview of the RUNX2 gene's function especially in skeletal development, and to summarize our research efforts to date, which has focused on investigating the influence of RUNX2 on mandibular growth, which is slightly or not at all altered in many CCD patients. MATERIALS AND METHODS Immunohistochemical analyses were conducted to reveal RUNX2 in the condylar cartilage of normal mice and of heterozygous RUNX2 knockout mice in early and late growth phases; we also performed radiographic and cephalometric analyses. RESULTS We observed that RUNX2 is involved in normal condylar growth in the mouse and probably plays a significant role in osteogenesis and angiogenesis. The RUNX2 also has a biomechanical correlation in relation to cartilage compartmentalization. At the protein level, we noted no differences in the occurrence and distribution of RUNX2 in the condyle, except for a short phase during the 4th and 6th postnatal weeks, so that one allele might suffice for largely normal growth; other biological factors may have compensatory effects. However, we did observe small changes in a few cephalometric parameters concerning the mandibles of heterozygous knockout animals. We discuss potential correlations to our findings by relating them to the most current knowledge about the RUNX2 biology.
Collapse
|
16
|
Lossdörfer S, Abou Jamra B, Rath-Deschner B, Götz W, Abou Jamra R, Braumann B, Jäger A. The role of periodontal ligament cells in delayed tooth eruption in patients with cleidocranial dysostosis. J Orofac Orthop 2009; 70:495-510. [PMID: 19960292 DOI: 10.1007/s00056-009-9934-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 10/17/2009] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The clinical appearance of patients with cleidocranial dysplasia (CCD), which is caused by mutations in the RUNX2 gene, is characterized by anomalies of the clavicles, thorax, spine, pelvis and extremities and by disturbances of the skull and tooth development. Of orthodontic relevance are multiple supernumerary teeth associated with delayed tooth eruption. The present investigation is based on the hypothesis that an altered phenotypic expression of periodontal ligament (PDL) cells from CCD patients and a reduced ability of those cells to support the differentiation of bone-resorbing osteoclasts might contribute to delayed tooth eruption. MATERIALS AND METHODS To test this hypothesis, PDL cells from healthy donors and from two patients with clinically and molecular biologically diagnosed CCD were characterized for the basal and induced mRNA expression of osteoblast marker genes. The physiological relevance of the findings for the differentiation of osteoclasts was examined in an osteoclast assay, as well as in a co-culture model of PDL cells and osteoclast precursors. RESULTS Both CCD patients displayed missense mutations of the RUNX2 gene. The in vitro experiments revealed an unaltered expression of RUNX2 mRNA, however especially in CCD patient 2 there was a reduced basal expression of mRNA for the key regulatory gene for bone remodeling RANKL. Furthermore, compared to the control cells from healthy donors, these factors were less inducible by stimulation of the cultures with 1alpha,25(OH)(2)D(3). In the osteoclast assays as well as in the co-culture experiments, PDL cells from the CCD patients showed a reduced capacity to induce the differentiation of active osteoclasts. CONCLUSIONS These data indicate that PDL cells from CCD patients express a less distinctive osteoblastic phenotype resulting in an impaired ability to support osteoclastogenesis which might, in part, account for the delayed tooth eruption that can be observed clinically.
Collapse
|
17
|
Chen S, Gluhak-Heinrich J, Wang YH, Wu YM, Chuang HH, Chen L, Yuan GH, Dong J, Gay I, MacDougall M. Runx2, osx, and dspp in tooth development. J Dent Res 2009; 88:904-9. [PMID: 19783797 DOI: 10.1177/0022034509342873] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The transcription factors Runx2 and Osx are necessary for osteoblast and odontoblast differentiation, while Dspp is important for odontoblast differentiation. The relationship among Runx2, Osx, and Dspp during tooth and craniofacial bone development remains unknown. In this study, we hypothesized that the roles of Runx2 and Osx in the regulation of osteoblast and odontoblast lineages may be independent of one another. The results showed that Runx2 expression overlapped with Osx in dental and osteogenic mesenchyme from E12 to E16. At the later stages, from E18 to PN14, Runx2 and Osx expressions remained intense in alveolar bone osteoblasts. However, Runx2 expression was down-regulated, whereas Osx expression was clearly seen in odontoblasts. At later stages, Dspp transcription was weakly present in osteoblasts, but strong in odontoblasts where Osx was highly expressed. In mouse odontoblast-like cells, Osx overexpression increased Dspp transcription. Analysis of these data suggests differential biological functions of Runx2, Osx, and Dspp during odontogenesis and osteogenesis.
Collapse
Affiliation(s)
- S Chen
- Department of Pediatric Dentistry, TheUniversity of Texas Health Science Center at San Antonio,7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Asher RJ, Lehmann T. Dental eruption in afrotherian mammals. BMC Biol 2008; 6:14. [PMID: 18366669 PMCID: PMC2292681 DOI: 10.1186/1741-7007-6-14] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 03/18/2008] [Indexed: 11/29/2022] Open
Abstract
Background Afrotheria comprises a newly recognized clade of mammals with strong molecular evidence for its monophyly. In contrast, morphological data uniting its diverse constituents, including elephants, sea cows, hyraxes, aardvarks, sengis, tenrecs and golden moles, have been difficult to identify. Here, we suggest relatively late eruption of the permanent dentition as a shared characteristic of afrotherian mammals. This characteristic and other features (such as vertebral anomalies and testicondy) recall the phenotype of a human genetic pathology (cleidocranial dysplasia), correlations with which have not been explored previously in the context of character evolution within the recently established phylogeny of living mammalian clades. Results Although data on the absolute timing of eruption in sengis, golden moles and tenrecs are still unknown, craniometric comparisons for ontogenetic series of these taxa show that considerable skull growth takes place prior to the complete eruption of the permanent cheek teeth. Specimens showing less than half (sengis, golden moles) or two-thirds (tenrecs, hyraxes) of their permanent cheek teeth reach or exceed the median jaw length of conspecifics with a complete dentition. With few exceptions, afrotherians are closer to median adult jaw length with fewer erupted, permanent cheek teeth than comparable stages of non-afrotherians. Manatees (but not dugongs), elephants and hyraxes with known age data show eruption of permanent teeth late in ontogeny relative to other mammals. While the occurrence of delayed eruption, vertebral anomalies and other potential afrotherian synapomorphies resemble some symptoms of a human genetic pathology, these characteristics do not appear to covary significantly among mammalian clades. Conclusion Morphological characteristics shared by such physically disparate animals such as elephants and golden moles are not easy to recognize, but are now known to include late eruption of permanent teeth, in addition to vertebral anomalies, testicondy and other features. Awareness of their possible genetic correlates promises insight into the developmental basis of shared morphological features of afrotherians and other vertebrates.
Collapse
Affiliation(s)
- Robert J Asher
- Department of Zoology, University of Cambridge, Downing St,, Cambridge CB2 3EJ, UK
| | | |
Collapse
|
19
|
Ach T, Baumert U, Morsczeck C, Dahse R, Reichert TE, Driemel O. [Immunohistochemical study on collagen I content in the gingiva in cleidocranial dysplasia]. ACTA ACUST UNITED AC 2007; 11:349-54. [PMID: 17992545 DOI: 10.1007/s10006-007-0088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Patients with cleidocranial dysplasia (CCD) present a thickend and fibrotic gingiva. PURPOSE To the best of our knowledge it was analysed for the first time, whether this is correlated with an increased rate of collagen I in oral mucosa. PATIENTS AND METHODS 27 soft tissue biopsies of six CCD-patients and 17 tissue samples of 12 healthy persons were labled with a monoclonal antibody against collagen I and the bound antibodies were detected with alkaline phosphatase-anti-alkaline phophatase-kit. The histological slices were analysed by a digital image recognition software under a fully automated microscope and the rate of collagen I was converted into amounts of grey tones. RESULTS The amount of grey tones reached from 11.909 to 15.319 in the CCD-group, and from 2752 to 12.556 in the control group. The U-Test of Mann, Whitney and Wilcoxon for two independent samples generated a rank sum of 91,50 for CCD-patients, and of 79,50 for the control group. The Z-value was 3,246, the p-value 0,005. "Fisher's exact test" identified a p-value of 0,0003. CONCLUSIONS The rate of collagen I in the oral mucosa seems to be increased significantly in CCD. This could explain the typical thick and fibrotic consistency of the gingiva and could be one reason for the delayed or missing dentition.
Collapse
Affiliation(s)
- Tobias Ach
- Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Klinikum der Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Tomohiro T, Yamane A, Asada Y. Characterization of excess hard tissue occurring in the mesio-buccal surface of the mandibular first molar in microphthalmic mouse. Arch Oral Biol 2007; 52:828-35. [PMID: 17442258 DOI: 10.1016/j.archoralbio.2007.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 02/07/2007] [Accepted: 02/28/2007] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of the present study was to characterize the excess hard tissue on the mandible of the microphthalmic mouse having a mutation at the mitf locus. DESIGN Homozygous mutant (mi/mi) and wild-type (+/+) mice were obtained by mating a breeding pair (strain name, B6C3Fe a/a-Mitf(mi)/J). We used mi/mi and +/+ mice at ages 6, 7, 8, 9, 28, and 49 days for micro-computed tomographic and histologic analyses. RESULTS Excess hard tissue was found on the mesio-buccal surface of the mandibular first molar in all 11mi/mi mice, but none was found in the 8mi/+ or 14 +/+ mice. The excess hard tissue was located in the mental foramen connected to the mandibular canal. The mandibular canal passed near the basal part of the incisor and the root of the mandibular first molar due to aberrant development of the teeth and mandible. The excess hard tissue contained predentine immunostained for dentine sialoprotein, a marker for early stages of dentinogenesis, which was first observed at about 7 days of age. Dentine, predentine, pulp, and root-like structures were observed in the excess hard tissue, but neither enamel nor enamel organ was observed. CONCLUSION Odontogenic cells in the basal part of the incisor and/or the mandibular first molar with the ability to develop into odontoblasts and pulp cells appeared to migrate through the mandibular canal to the mental foramen, where they developed into odontoblasts and pulp-like cells, and then formed dentine and predentine-like structures.
Collapse
Affiliation(s)
- Tadafumi Tomohiro
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | | | | |
Collapse
|
21
|
Abstract
The Runx2 gene is a master transcription factor of bone and plays a role in all stages of bone formation. It is essential for the initial commitment of mesenchymal cells to the osteoblastic lineage and also controls the proliferation, differentiation, and maintenance of these cells. Control is complex, with involvement of a multitude of factors, thereby regulating the expression and activity of this gene both temporally and spatially. The use of multiple promoters and alternative splicing of exons further extends its diversity of actions. RUNX2 is also essential for the later stages of tooth formation, is intimately involved in the development of calcified tooth tissue, and exerts an influence on proliferation of the dental lamina. Furthermore, RUNX2 regulates the alveolar remodelling process essential for tooth eruption and may play a role in the maintenance of the periodontal ligament. In this article, the structure of Runx2 is described. The control and function of the gene and its product are discussed, with special reference to developing tooth tissues, in an attempt to elucidate the role of this gene in the development of the teeth and supporting structures.
Collapse
Affiliation(s)
- Simon Camilleri
- Department of Orthodontics, Dental Institute of Kings College London, London, UK.
| | | |
Collapse
|
22
|
Proff P, Bayerlein T, Fanghänel J, Allegrini S, Gedrange T. Morphological and clinical considerations of first and second permanent molar eruption disorders. Ann Anat 2006; 188:353-61. [PMID: 16856600 DOI: 10.1016/j.aanat.2006.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Tooth eruption is a complex biological process which starts from the site of development in the jaw bone until the teeth reach their final functional position in the chewing plane. Various factors can disturb this process. Besides mechanical obstacles on the eruption path, a pathological position or axial orientation of the tooth germ, morphological aberrations of the tooth or pathological alterations of the periodontium, primary disorders of the eruption mechanism may lead to complete or partial retention of the tooth in the jaw bone. These morphological features bear upon the prognosis of orthodontic correction which is dependent upon the underlying cause. First and second molars are rarely affected by eruption disorders, with a prevalence of 0.01 to 0.08 per cent, however, marked consequences for function such as posterior open bite or elongation of the antagonists may result. Following an overview of pathogenetic factors of tooth eruption disorders, selected cases of impacted first and second permanent molars are presented with respect to their morphological causes.
Collapse
Affiliation(s)
- Peter Proff
- Poliklinik für Kieferorthopädie, Präventive Zahnmedizin und Kinderzahnheilkunde, Ernst-Moritz-Arndt-Universität Greifswald, Rotgerberstrasse 8, 17487 Greifswald, Germany.
| | | | | | | | | |
Collapse
|
23
|
Kobayashi I, Kiyoshima T, Wada H, Matsuo K, Nonaka K, Honda JY, Koyano K, Sakai H. Type II/III Runx2/Cbfa1 is required for tooth germ development. Bone 2006; 38:836-44. [PMID: 16377268 DOI: 10.1016/j.bone.2005.10.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 09/21/2005] [Accepted: 10/24/2005] [Indexed: 11/20/2022]
Abstract
Runx2/Cbfa1 is an essential transcription factor for osteoblast differentiation and bone formation. Runx2/Cbfa1 knockout mice showed both a complete lack of ossification and the developmental arrest of tooth germ. We here report Runx2/Cbfa1 isoform-type specific functional roles in the development of tooth germ by the administration of antisense phosphorothioate oligodioxynucleotides (S-ODNs) into cultured mouse mandibles. The administration of type II/III Runx2/Cbfa1 antisense S-ODNs into the culture media resulted in an arrest of tooth germ growth at the bud-like stage in cultured mandible taken from the 11-day-old embryos, while also causing the inhibition of the differentiation of odontogenic cells into ameloblast and odontoblast in cultured tooth germs taken from the 15-day-old embryos. The expression of dentin matrix protein 1, dentin sialophosphoprotein, amelogenin, and ameloblastin was shown to be markedly suppressed in cultured tooth germ by the semi-quantitative RT-PCR. Meanwhile, no developmental arrest of tooth germ, no inhibition of gene expression, or differentiation of odontogenic cells was observed in samples treated with the type I Runx2/Cbfa1 antisense S-ODNs. The same findings were also observed in either the control or the sense and random sequence S-ODNs-treated samples. These data indicate that the type II/III Runx2/Cbfa1 isoform is closely related to the development and differentiation of tooth germ.
Collapse
Affiliation(s)
- Ieyoshi Kobayashi
- Laboratory of Oral Pathology and Medicine, Faculty of Oral Science, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zheng Q, Sebald E, Zhou G, Chen Y, Wilcox W, Lee B, Krakow D. Dysregulation of chondrogenesis in human cleidocranial dysplasia. Am J Hum Genet 2005; 77:305-12. [PMID: 15952089 PMCID: PMC1224532 DOI: 10.1086/432261] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 05/26/2005] [Indexed: 12/27/2022] Open
Abstract
Cleidocranial dysplasia (CCD) is an autosomal dominant skeletal dysplasia caused by heterozygosity of mutations in human RUNX2. The disorder is characterized by delayed closure of the fontanel and hypoplastic clavicles that result from defective intramembranous ossification. However, additional features, such as short stature and cone epiphyses, also suggest an underlying defect in endochondral ossification. Here, we report observations of growth-plate abnormalities in a patient with a novel RUNX2 gene mutation, a single C insertion (1228insC), which is predicted to lead to a premature termination codon and thus to haploinsufficiency of RUNX2 and the CCD phenotype. Histological analysis of the rib and long-bone cartilages showed a markedly diminished zone of hypertrophy. Quantitative real-time reverse transcription-polymerase chain reaction analysis of limb cartilage RNA showed a 5-10-fold decrease in the hypertrophic chondrocyte molecular markers VEGF, MMP13, and COL10A1. Together, these data show that humans with CCD have altered endochondral ossification due to altered RUNX2 regulation of hypertrophic chondrocyte-specific genes during chondrocyte maturation.
Collapse
Affiliation(s)
- Qiping Zheng
- Department of Molecular and Human Genetics and Howard Hughes Medical Institute, Baylor College of Medicine, Houston; and Medical Genetics Institute, Department of Pediatrics, Cedars-Sinai Medical Center, and David Geffen School of Medicine at University of California–Los Angeles, Los Angeles
| | - Eiman Sebald
- Department of Molecular and Human Genetics and Howard Hughes Medical Institute, Baylor College of Medicine, Houston; and Medical Genetics Institute, Department of Pediatrics, Cedars-Sinai Medical Center, and David Geffen School of Medicine at University of California–Los Angeles, Los Angeles
| | - Guang Zhou
- Department of Molecular and Human Genetics and Howard Hughes Medical Institute, Baylor College of Medicine, Houston; and Medical Genetics Institute, Department of Pediatrics, Cedars-Sinai Medical Center, and David Geffen School of Medicine at University of California–Los Angeles, Los Angeles
| | - Yuqing Chen
- Department of Molecular and Human Genetics and Howard Hughes Medical Institute, Baylor College of Medicine, Houston; and Medical Genetics Institute, Department of Pediatrics, Cedars-Sinai Medical Center, and David Geffen School of Medicine at University of California–Los Angeles, Los Angeles
| | - William Wilcox
- Department of Molecular and Human Genetics and Howard Hughes Medical Institute, Baylor College of Medicine, Houston; and Medical Genetics Institute, Department of Pediatrics, Cedars-Sinai Medical Center, and David Geffen School of Medicine at University of California–Los Angeles, Los Angeles
| | - Brendan Lee
- Department of Molecular and Human Genetics and Howard Hughes Medical Institute, Baylor College of Medicine, Houston; and Medical Genetics Institute, Department of Pediatrics, Cedars-Sinai Medical Center, and David Geffen School of Medicine at University of California–Los Angeles, Los Angeles
| | - Deborah Krakow
- Department of Molecular and Human Genetics and Howard Hughes Medical Institute, Baylor College of Medicine, Houston; and Medical Genetics Institute, Department of Pediatrics, Cedars-Sinai Medical Center, and David Geffen School of Medicine at University of California–Los Angeles, Los Angeles
| |
Collapse
|
25
|
Chen S, Santos L, Wu Y, Vuong R, Gay I, Schulze J, Chuang HH, MacDougall M. Altered gene expression in human cleidocranial dysplasia dental pulp cells. Arch Oral Biol 2005; 50:227-36. [PMID: 15721154 DOI: 10.1016/j.archoralbio.2004.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 10/07/2004] [Indexed: 11/13/2022]
Abstract
Cleidocranial dysplasia (CCD) is an autosomal dominant disorder characterised by defects of bone and tooth development. The dental manifestations in CCD patients include supernumerary teeth, delayed tooth eruption, tooth hypoplasia and absence of cellular cementum formation. This disorder is associated with mutations in the osteoblast-specific transcription factor Runx2. To identify morphological and molecular alterations associated with CCD dental tissues, human primary dental pulp cell cultures were established from age- and sex-matched CCD and normal patients. Dental pulp cells were compared for general morphology, proliferation rates, and gene expression profiles using cDNA microarray technology. CCD pulp cells were about four-fold larger than normal cells, however the normal pulp proliferation rates were two- and three-fold greater at time points tested than the CCD cells. Of the 226 genes analysed by blot microarray, 18.6% displayed significant differences at least two-fold in expression levels. This includes 25 genes (11.1%) that were up-regulated, while 17 (7.5%) that were down-regulated in the CCD cells as compared to the normal cells. Expression of selected genes was further verified by quantitative real-time polymerase chain reaction (qRT-PCR). Comparison between the CDD and normal cells revealed that gene expression of cytokines and growth factors, such as leukemia inhibitory factor (LIF), interleukin-6 (IL-6) and transforming growth factor beta receptor II (TGF-betaRII) and vascular endothelial growth factor B (VEGFB) were higher while bone morphogenetic protein 2 (BMP2) was lower in the CCD cells. Furthermore, potential Runx2 binding sites were found in all putative target gene promoters. This study suggests that in addition to bone and tooth cell differentiation, Runx2 may be involved in controlling cell growth during tooth development.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yoda S, Suda N, Kitahara Y, Komori T, Ohyama K. Delayed tooth eruption and suppressed osteoclast number in the eruption pathway of heterozygous Runx2/Cbfa1 knockout mice. Arch Oral Biol 2004; 49:435-42. [PMID: 15099800 DOI: 10.1016/j.archoralbio.2004.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2004] [Indexed: 11/24/2022]
Abstract
Genetic studies have recently identified a mutation of one allele of runt-related gene 2 (RUNX2/CBFA1) as the cause for an autosomal-dominant skeletal disorder, cleidocranial dysplasia (CCD), which is characterised by hypoplasia of the clavicles and calvariae and widened sutures and fontanelles. In addition, CCD is frequently affected with multiple supernumerary teeth and the impaction and delayed eruption of teeth, the causes of all these dental abnormalities are still unknown. To clarify the cellular mechanism of the delayed tooth eruption in CCD, the process of tooth eruption was examined in heterozygous Runx2/Cbfa1 (mouse homolog of RUNX2/CBFA1) knockout mice, known to mimic most of the bone abnormalities of CCD. The timing of the appearance of maxillary and mandibular teeth into the oral cavity was significantly delayed in heterozygous mutant mice compared with wild-type mice. From postnatal days 8 to 10, an active alveolar bone resorption and a marked increase of the osteoclast surfaces was observed in the eruption pathway of both genotypes, but this increase was significantly suppressed in the mutant mice. In contrast, the osteoclast surfaces did not show a significant difference between the two genotypes in the future cortical area of femora. These results suggest that haploinsufficiency of Runx2/Cbfa1 does not effect the femoral bone remodelling but is insufficient for the active alveolar bone resorption essential for the prompt timing of tooth eruption. These results also suggest the possibility that impaired recruitment of osteoclasts is one of the cellular mechanisms of delayed tooth eruption in CCD patients.
Collapse
Affiliation(s)
- Shuichi Yoda
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | | | |
Collapse
|