1
|
Restoration of Cyclo-Gly-Pro-induced salivary hyposecretion and submandibular composition by naloxone in mice. PLoS One 2020; 15:e0229761. [PMID: 32155179 PMCID: PMC7064257 DOI: 10.1371/journal.pone.0229761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
Cyclo-Gly-Pro (CGP) attenuates nociception, however its effects on salivary glands remain unclear. In this study, we investigated the acute effects of CGP on salivary flow and composition, and on the submandibular gland composition, compared with morphine. Besides, we characterized the effects of naloxone (a non-selective opioid receptor antagonist) on CGP- and morphine-induced salivary and glandular alterations in mice. After that, in silico analyses were performed to predict the interaction between CGP and opioid receptors. Morphine and CGP significantly reduced salivary flow and total protein concentration of saliva and naloxone restored them to the physiological levels. Morphine and CGP also reduced several infrared vibrational modes (Amide I, 1687-1594cm-1; Amide II, 1594-1494cm-1; CH2/CH3, 1488-1433cm-1; C = O, 1432-1365cm-1; PO2 asymmetric, 1290-1185cm-1; PO2 symmetric, 1135-999cm-1) and naloxone reverted these alterations. The in silico docking analysis demonstrated the interaction of polar contacts between the CGP and opioid receptor Cys219 residue. Altogether, we showed that salivary hypofunction and glandular changes elicited by CGP may occur through opioid receptor suggesting that the blockage of opioid receptors in superior cervical and submandibular ganglions may be a possible strategy to restore salivary secretion while maintaining antinociceptive action due its effects on the central nervous system.
Collapse
|
2
|
Endoh T, Nobushima H, Tazaki M. Neuropeptide Y modulates calcium channels in hamster submandibular ganglion neurons. Neurosci Res 2012; 73:275-81. [PMID: 22613697 DOI: 10.1016/j.neures.2012.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 11/28/2022]
Abstract
It is established that neuropeptide Y (NPY) is a transmitter of parasympathetic secretory impulses in submandibular gland. The neuropeptides substance P, vasoactive intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP) are likely mediators of secretory parasympathetic responses of the gland. Previously, we have shown that substance P, VIP and CGRP modulate voltage-dependent Ca(2+) channels (VDCCs) in hamster submandibular ganglion (SMG) neurons. In this study, we attempt to characterize the effect of NPY on VDCCs current using Ba(2+) (I(Ba)) in SMG neurons. Application of NPY caused both facilitation and inhibition of L-type and N/P/Q-type I(Ba), respectively. Intracellular dialysis of the Gα(s)-protein antibody attenuated the NPY-induced facilitation of I(Ba). The adenylate cyclase (AC) inhibitor, as well as protein kinase A (PKA) inhibitor attenuated the NPY-induced facilitation of I(Ba). Intracellular dialysis of the Gα(i)-protein antibody attenuated the NPY-induced inhibition of I(Ba). Application of a strong depolarizing voltage prepulse attenuated the NPY-induced inhibition of I(Ba). These results indicate that NPY facilitates L-type VDCCs via Gα(s)-protein involving AC and PKA. On the other hand, NPY also inhibits N/P/Q-type VDCCs via Gα(i)-protein βγ subunits in the SMG neurons.
Collapse
Affiliation(s)
- Takayuki Endoh
- Department of Physiology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan.
| | | | | |
Collapse
|
3
|
Calcitonin gene-related peptide- and adrenomedullin-induced facilitation of calcium current in submandibular ganglion. Arch Oral Biol 2010; 56:187-93. [PMID: 20951369 DOI: 10.1016/j.archoralbio.2010.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/27/2010] [Accepted: 09/19/2010] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The control of saliva secretion is mainly under parasympathetic control. The submandibular ganglion (SMG) is a parasympathetic ganglion which receives inputs from preganglionic cholinergic neurons, and innervates the submandibular salivary gland to control saliva secretion. The aim of this study was to investigate if adrenomedullin (ADM) and/or calcitonin gene-related peptide (CGRP) modulate voltage-dependent calcium channel (VDCCs) current (I(Ca)) in SMG. DESIGN The profile of CGRP and ADM actions in SMG was studied using the whole-cell configuration of the patch-clamp technique. RESULTS Both ADM and CGRP facilitated I(Ca). These facilitations were attenuated by intracellular dialysis of the anti-Gα(s)-protein and pretreatment of SQ22536 (an adenylate cyclase inhibitor). CONCLUSIONS ADM and CGRP facilitates VDCCs mediated by Gα(s)-protein and adenylate cyclase in SMG.
Collapse
|
4
|
Cell-specific loss of kappa-opioid receptors in oligodendrocytes of the dysmyelinating jimpy mouse. Neurosci Lett 2008; 451:114-8. [PMID: 19110031 DOI: 10.1016/j.neulet.2008.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/09/2008] [Accepted: 12/12/2008] [Indexed: 11/24/2022]
Abstract
Jimpy is a murine mutation in myelin proteolipid protein, leading to premature death of oligodendrocytes and severe central nervous system hypomyelination. Jimpy is a bona fide model of human Pelizaeus-Merzbacher disease. This paper describes a severe reduction in expression of kappa-opioid receptors (KOP) in oligodendrocytes of jimpy mice. A cell-specific reduction of >90% is apparent by 5 days of age. Expression is not reduced in neurons, and mu-opioid receptor expression is normal. Mechanism(s) leading to deficient KOP expression in jimpy mice remain unclear. We speculate that loss of KOP may be related to increased [Ca(2+)](i) and premature death of jimpy oligodendrocytes.
Collapse
|
5
|
Endoh T. Pharmacological characterization of inhibitory effects of postsynaptic opioid and cannabinoid receptors on calcium currents in neonatal rat nucleus tractus solitarius. Br J Pharmacol 2006; 147:391-401. [PMID: 16402042 PMCID: PMC1616990 DOI: 10.1038/sj.bjp.0706623] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 11/15/2005] [Indexed: 12/19/2022] Open
Abstract
1. The profile of opioid and cannabinoid receptors in neurons of the nucleus tractus solitarius (NTS) has been studied using the whole-cell configuration of the patch clamp technique. 2. Experiments with selective agonists and antagonists of opioid, ORL and cannabinoid receptors indicated that mu-opioid, kappa-opioid, ORL-1 and CB1, but not delta-opioid, receptors inhibit VDCCs in NTS. 3. Application of [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO; mu-opioid receptor agonist), Orphanin FQ (ORL-1 receptor agonist) and WIN55,122 (CB1 receptor agonist) caused inhibition of I(Ba) in a concentration-dependent manner, with IC50's of 390 nM, 220 nM and 2.2 microM, respectively. 4. Intracellular dialysis of the G(i)-protein antibody attenuated DAMGO-, Orphanin FQ- and WIN55,122-induced inhibition of I(Ba). 5. Both pretreatment with adenylate cyclase inhibitor and intracellular dialysis of the protein kinase A (PKA) inhibitor attenuated WIN55,122-induced inhibition of I(Ba) but not DAMGO- and Orphanin FQ-induced inhibition. 6. Mainly N- and P/Q-type VDCCs were inhibited by both DAMGO and Orphanin FQ, while L-type VDCCs were inhibited by WIN55,122. 7. These results suggest that mu- and kappa-opioid receptors and ORL-1 receptor inhibit N- and P/Q-type VDCCs via G alpha(i)-protein betagamma subunits, whereas CB1 receptors inhibit L-type VDCCs via G alpha(i)-proteins involving PKA in NTS.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Calcium/physiology
- Calcium Channels/classification
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Calcium Channels, P-Type/drug effects
- Calcium Channels, P-Type/metabolism
- Calcium Channels, Q-Type/drug effects
- Calcium Channels, Q-Type/metabolism
- Cannabinoid Receptor Antagonists
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Kinetics
- Narcotic Antagonists
- Opioid Peptides/pharmacology
- Patch-Clamp Techniques
- Rats
- Rats, Wistar
- Receptors, Cannabinoid/drug effects
- Receptors, Cannabinoid/genetics
- Receptors, Opioid/agonists
- Receptors, Opioid/drug effects
- Receptors, Opioid/genetics
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/drug effects
- Solitary Nucleus/cytology
- Solitary Nucleus/metabolism
- Nociceptin
Collapse
Affiliation(s)
- Takayuki Endoh
- Department of Physiology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan.
| |
Collapse
|
6
|
Endoh T. Modulation of voltage-dependent calcium channels by neurotransmitters and neuropeptides in parasympathetic submandibular ganglion neurons. Arch Oral Biol 2004; 49:539-57. [PMID: 15126136 DOI: 10.1016/j.archoralbio.2004.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2004] [Indexed: 12/20/2022]
Abstract
The control of saliva secretion is mainly under parasympathetic control, although there also could be a sympathetic component. Sympathetic nerves are held to have a limited action in secretion in submandibular glands because, on electrical stimulation, only a very small increase to the normal background, basal secretion occurs. Parasympathetic stimulation, on the other hand, caused a good flow of saliva with moderate secretion of acinar mucin, plus an extensive secretion of granules from the granular tubules. The submandibular ganglion (SMG) is a parasympathetic ganglion which receives inputs from preganglionic cholinergic neurons, and innervates the submandibular salivary gland to control saliva secretion. Neurotransmitters and neuropeptides acting via G-protein coupled receptors (GPCRs) change the electrical excitability of neurons. In these neurons, many neurotransmitters and neuropeptides modulate voltage-dependent calcium channels (VDCCs). The modulation is mediated by a family of GPCRs acting either directly through the membrane delimited G-proteins or through second messengers. However, the mechanism of modulation and the signal transduction pathway linked to an individual GPCRs depend on the animal species. This review reports how neurotransmitters and neuropeptides modulate VDCCs and how these modulatory actions are integrated in SMG systems. The action of neurotransmitters and neuropeptides on VDCCs may provide a mechanism for regulating SMG excitability and also provide a cellular mechanism of a variety of neuronal Ca(2+)-dependent processes.
Collapse
Affiliation(s)
- Takayuki Endoh
- Department of Physiology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan.
| |
Collapse
|
7
|
Khasabova IA, Harding-Rose C, Simone DA, Seybold VS. Differential effects of CB1 and opioid agonists on two populations of adult rat dorsal root ganglion neurons. J Neurosci 2004; 24:1744-53. [PMID: 14973253 PMCID: PMC6730464 DOI: 10.1523/jneurosci.4298-03.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibition of primary afferent neurons contributes to the antihyperalgesic effects of opioid and CB1 receptor agonists. Two bioassays were used to compare the effects of the CB1 receptor agonist CP 55,940 and morphine on dissociated adult rat DRG neurons. Both agonists inhibited the increase in free intracellular Ca2+ concentration evoked by depolarization; however, effects of CP 55,940 occurred primarily in large neurons (cell area, >800 microm2), whereas morphine inhibited the response in smaller neurons. Cotreatment with selective blockers of L-, N-, and P/Q-type voltage-dependent Ca2+ channels indicated that CB1 receptors on DRG neurons couple solely with N-type channels but opioid receptors couple with multiple subtypes. Experiments with selective agonists and antagonists of opioid receptors indicated that mu and delta, but not kappa, receptors contributed to the inhibitory effect of morphine on voltage-dependent Ca2+ influx. Because Ca2+ channels underlie release of transmitters from neurons, the effects of opioid agonists and CP 55,940 on depolarization-evoked release of calcitonin gene-related peptide (CGRP) were compared. Morphine inhibited release through delta receptors but CP 55,940 had no effect. Colocalization of CGRP with delta-opioid but not mu-opioid or CB1 receptor immunoreactivity in superficial laminae of the dorsal horn of the spinal cord was consistent with the data for agonist inhibition of peptide release. Therefore, CB1 and opioid agonists couple with different voltage-dependent Ca2+ channels in different populations of DRG neurons. Furthermore, differences occur in the distribution of receptors between the cell body and terminals of DRG neurons. The complementary action of CB1 and opioid receptor agonists on populations of DRG neurons provides a rationale for their combined use in modulation of somatosensory input to the spinal cord.
Collapse
Affiliation(s)
- I A Khasabova
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
8
|
Kamaishi H, Endoh T, Suzuki T. Multiple signal pathways coupling VIP and PACAP receptors to calcium channels in hamster submandibular ganglion neurons. Auton Neurosci 2004; 111:15-26. [PMID: 15109935 DOI: 10.1016/j.autneu.2004.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 01/07/2004] [Accepted: 01/08/2004] [Indexed: 11/29/2022]
Abstract
The Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are two novel neuropeptides which produce particular biological effects caused by interaction with G-protein-coupled receptors. We have shown in a previous study where VIP and PACAP 38 inhibit voltage-dependent calcium channel (VDCC) currents (ICa) via G-proteins in hamster submandibular ganglion (SMG) neurons. In this study, we attempt to further characterize the signal transduction pathways of VIP-and PACAP 38-induced modulation of ICa. Application of 1 microM VIP and PACAP 38 inhibited ICa by 33.0 +/- 3.1% and 36.8 +/- 2.6%, respectively (mean +/- S.E.M., n = 8). Application of strong voltage prepulse attenuated PACAP 38-induced inhibition of ICa. Pretreatment of cAMP dependent protein kinase (PKA) activator attenuated VIP-induced inhibition, but not the PACAP 38-induced inhibition. Intracellular dialysis of the PKA inhibitor attenuated the VIP-induced inhibition, but not the PACAP 38-induced inhibition. Pretreatment of protein kinase C (PKC) activator and inhibitor attenuated VIP-induced inhibition, but not the PACAP 38-induced inhibition. Pretreatment of cholera toxin (CTX) attenuated PACAP 38-induced inhibition of ICa. These findings indicate that there are multiple signaling pathways in VIP and PACAP 38-induced inhibitions of ICa: one pathway would be the VPAC1/VPAC2 receptors-induced inhibition involving both the PKA and PKC, and another one concerns the PAC1 receptor-induced inhibition via Gs-protein betagamma subunits. The VIP-and PACAP 38-induced facilitation of ICa can be observed in the SMG neurons in addition to inhibiting of ICa.
Collapse
Affiliation(s)
- Hideaki Kamaishi
- Department of Physiology, Tokyo Dental College, 1-2-2, Masago, Mihama, Chiba 261-8502, Japan
| | | | | |
Collapse
|
9
|
Abe M, Endoh T, Suzuki T. Angiotensin II-induced ionic currents and signalling pathways in submandibular ganglion neurons. Arch Oral Biol 2003; 48:401-13. [PMID: 12749912 DOI: 10.1016/s0003-9969(03)00041-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Angiotensin II (Ang II) is one of the most important vasoconstrictive hormones but is also known to act as a neuromodulator and a neurotransmitter in the central and peripheral nervous system. The submandibular ganglion (SMG) neuron is a parasympathetic ganglion which receives inputs from preganglionic cholinergic neurons, and innervates the submandibular salivary gland to control saliva secretion. In this study, the effects of Ang II on SMG neurons were investigated using the whole-cell patch clamp technique. Membrane currents evoked by a ramp pulse from +50 to -100 mV (-150 mV/500 ms) were compared in both the absence and presence of Ang II. In eight neurons tested, 1 microM Ang II increased inward currents by 42.0+/-8.2%. The reversal potentials of the Ang II-induced current were 0.2+/-0.6 mV. These increase of inward currents by Ang II were antagonized by losartan, a selective antagonist of AT(1) receptors. Intracellular dialysis with 0.1mM guanosin 5'-O-(2-thiodiphosphate) (GDP-beta-S), a G-proteins blocker, and anti-G(q/11) antibody attenuated Ang II-induced ionic current. In addition, pretreatment of neurons with 10 microM staurosporine (stauro), a protein kinase C (PKC) inhibitor, 0.5 microM PMA, a PKC activator, and 10 microM KN-93, a Ca2+/calmodulin-dependent protein kinase II (CaM K II) inhibitor, attenuated Ang II-induced ionic current in SMG neurons. The data presented here demonstrated that Ang II-induced ionic current via G(q/11)-proteins involving both PKC and CaM K II pathways in SMG neurons.
Collapse
Affiliation(s)
- Minako Abe
- Department of Physiology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, 261-8502, Chiba, Japan
| | | | | |
Collapse
|
10
|
Abe M, Endoh T, Suzuki T. Extracellular ATP-induced calcium channel inhibition mediated by P1/P2Y purinoceptors in hamster submandibular ganglion neurons. Br J Pharmacol 2003; 138:1535-43. [PMID: 12721109 PMCID: PMC1573793 DOI: 10.1038/sj.bjp.0705174] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The presence and profile of purinoceptors in neurons of the hamster submandibular ganglion (SMG) have been studied using the whole-cell configuration of the patch-clamp technique. 2. Extracellular application of adenosine 5'-triphosphate (ATP) reversibly inhibited voltage-dependent Ca(2+) channel (VDCC) currents (I(Ca)) via G(i/o)-protein in a voltage-dependent manner. 3. Extracellular application of uridine 5'-triphosphate (UTP), 2-methylthioATP (2-MeSATP), alpha,beta-methylene ATP (alpha,beta-MeATP) and adenosine 5'-diphosphate (ADP) also inhibited I(Ca). The rank order of potency was ATP=UTP>ADP>2-MeSATP=alpha,beta-MeATP. 4. The P2 purinoceptor antagonists, suramin and pyridoxal-5-phosphate-6-azophenyl-2', 4'-disulfonic acid (PPADS), partially antagonized the ATP-induced inhibition of I(Ca), while coapplication of suramin and the P1 purinoceptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), virtually abolished I(Ca) inhibition. DPCPX alone partially antagonized I(Ca) inhibition. 5. Suramin antagonized the UTP-induced inhibition of I(Ca), while DPCPX had no effect. 6. Extracellular application of adenosine (ADO) also inhibited I(Ca) in a voltage-dependent manner via G(i/o)-protein activation. 7. Mainly N- and P/Q-type VDCCs were inhibited by both ATP and ADO via G(i/o)-protein betagamma subunits in seemingly convergence pathways.
Collapse
Affiliation(s)
- Mitsuhiro Abe
- Department of Physiology, Tokyo Dental College, 1-2-2, Masago, Mihama-ku, Chiba 261-8502, Japan
| | - Takayuki Endoh
- Department of Physiology, Tokyo Dental College, 1-2-2, Masago, Mihama-ku, Chiba 261-8502, Japan
- Author for correspondence:
| | - Takashi Suzuki
- Department of Physiology, Tokyo Dental College, 1-2-2, Masago, Mihama-ku, Chiba 261-8502, Japan
| |
Collapse
|
11
|
Endoh T, Kamaishi H, Suzuki T. Constitution of calcium channel current in hamster submandibular ganglion neurons. THE BULLETIN OF TOKYO DENTAL COLLEGE 2002; 43:251-6. [PMID: 12687731 DOI: 10.2209/tdcpublication.43.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The submandibular ganglion (SMG) neuron has been well established as the parasympathetic ganglion that innervates the submandibular and sublingual salivary glands. Thus this neuron plays a key role in salivary secretion. In a previous study, we reported that SMG possessed T-, L-, N-, P/Q- and R-type voltage-dependent calcium channels (VDCCs). In this study, we analyzed the contribution of the distinct subtypes of VDCCs currents (ICa) using the whole-cell configuration of the patch clamp technique in SMG neurons. In addition, we also investigated the effects of a strong voltage prepulse on the contributions of the subtypes of VDCCs. In SMG neuronal ICa without a prepulse, the mean percentages of L-, N-, P-, Q- and R-type were 39.7, 31.5, 10.6, 7.1 and 7.9%. In SMG neuronal ICa with prepulse, the mean percentages of L-, N-, P-, Q- and R-type were 37.2, 34.0, 14.0, 7.6 and 7.0%. Thus, these results showed that SMG possess multiple types of VDCCs and that N- and P-type VDCCs are facilitated by a prepulse in SMG neurons.
Collapse
Affiliation(s)
- Takayuki Endoh
- Department of Physiology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan
| | | | | |
Collapse
|
12
|
Hayashi K, Endoh T, Shibukawa Y, Yamamoto T, Suzuki T. VIP and PACAP inhibit L-, N- and P/Q-type Ca2+ channels of parasympathetic neurons in a voltage independent manner. THE BULLETIN OF TOKYO DENTAL COLLEGE 2002; 43:31-9. [PMID: 12013823 DOI: 10.2209/tdcpublication.43.31] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study, we investigated the effects of vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide 1-38 (PACAP) on the voltage-gated calcium currents in hamster submandibular ganglion neurons. VIP and PACAP inhibited the high threshold voltage-gated calcium current in a voltage-independent and a concentration-dependent manner via the G protein-mediated pathway. L-, N- and P/Q-type components of the total maximum voltage-gated calcium current accounted for 48.0 +/- 3.1% (n = 4), 35.1 +/- 4.7% (n = 4), and 13.5 +/- 2.3% (n = 3) of the total peak amplitude, respectively. VIP at a concentration of 1 microM inhibited the L-type calcium current by 33.2% +/- 1.4% (n = 4), the N-type current by 31.0 +/- 3.6%, and the P/Q-type current by 3.2 +/- 1.1% (n = 3). PACAP at a concentration of 1 microM inhibited the L-type current by 35.6 +/- 5.7%, the N-type current by 34.4 +/- 3.1% (n = 4), and the P/Q-type current by 6.4 +/- 2.1% (n = 2). However, VIP and PACAP did not inhibit the low threshold voltage-gated (T-type) calcium current. The rank order of potency was PACAP > VIP. In experiments replacing GTP with GDP-beta-S, the inhibitory effects of VIP and PACAP were prevented. In experiments of double-pulse protocol, depolarizing conditioning pulses could not relieve the inhibition of total high threshold voltage-gated calcium currents produced by VIP and PACAP. Therefore, the inhibition of the high threshold voltage-gated calcium channels produced by VIP and PACAP in hamster parasympathetic neurons differed in its mechanisms from that of N-type calcium channels in rat sympathetic neurons.
Collapse
Affiliation(s)
- Kentarou Hayashi
- Department of Physiology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan
| | | | | | | | | |
Collapse
|
13
|
Abdollahi M, Safarhamidi H. Protection by nitric oxide of morphine-induced inhibition of rat submandibular gland function. Pharmacol Res 2002; 45:87-92. [PMID: 11846618 DOI: 10.1006/phrs.2001.0910] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of morphine, l -arginine (nitric oxide precursor) and l -NAME (nitric oxide synthesis inhibitor ) and their concurrent therapy on rat submandibular secretory function were studied. Pure submandibular saliva was collected intraorally by micro polyethylene cannula from anaesthetized rats using pilocarpine as secretagogue. Single intraperitoneal injection of morphine (6 mg kg(-1)) to rats induced significant (P< 0.01) inhibition of salivary flow rate (28%), total protein (12%) and calcium concentrations (27%). Sodium output was increased (23%, P< 0.01). Single intraperitoneal administration of l -arginine (100 mg kg(-1)) and l -NAME (10 mg kg(-1)) affected salivary gland function. Saliva flow rate was reduced by l -NAME (23%, P< 0.01). The total protein concentration of saliva was increased by l -arginine (21%, P< 0.05) and decreased by l -NAME (19%, P< 0.01). Calcium concentration of saliva was increased by l -arginine (25%, P< 0.01) and reduced by l -NAME (21%, P< 0.01). In combination treatment, l -arginine prevented (P< 0.01) morphine-induced reduction of flow rate while l -NAME potentiated it (P< 0.01). The secretion of total protein and calcium were influenced in a similar trend by concurrent therapy. l -NAME potentiated morphine-induced decrease of total protein and calcium concentrations (P< 0.01) while l -arginine restored (P< 0.01) them to levels close to control and morphine groups respectively. It is concluded that morphine inhibits salivary gland function and nitric oxide (NO) plays a positive role in this system. Also it is confirmed that morphine inhibitory effects on submandibular function are somewhat restored by l -arginine and expanded by l -NAME. The modulatory effect of the l -arginine/NO system on salivary gland function is suggested.
Collapse
Affiliation(s)
- Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
14
|
Endoh T, Abe M, Suzuki T. Decay in prepulse facilitation of calcium channel currents by Gi/o-protein attenuation in hamster submandibular ganglion neurons, but not Gq/11. THE BULLETIN OF TOKYO DENTAL COLLEGE 2001; 42:235-41. [PMID: 11915300 DOI: 10.2209/tdcpublication.42.235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The calcium ion influx through voltage-dependent calcium channels (VDCCs) has a vital role in the control of neurotransmitter release and membrane excitability. Prepulse facilitation is a phenomenon in which a strong depolarizing pulse induces a form of the VDCCs that exhibits an increased opening probability in response to a given test potential; this persists for several seconds after repolarization. It has been reported that prepulse facilitation occurs via dissociation of the guanosine triphosphate (GTP)-binding proteins (G-proteins) from the VDCCs and that recovery from facilitation involves rebinding of the G-proteins. The heterotrimeric G-proteins act as switches that regulate information processing circuits connecting cell surface G-protein-coupled-receptors to a variety of effectors. In this study, we have studied the characterization of G-protein subtypes in prepulse facilitation of VDCCs currents (Ica) in hamster submandibular ganglion (SMG) neurons, using whole-cell patch clamp recordings. Under control conditions, with GTP (0.1 mM) in the recording pipette, the rate of prepulse facilitation was 19.0 +/- 1.9% (n = 13). Intracellular dialysis with GDP-beta-S (0.1 mM), G-protein blocker, and pretreatment of neurons with N-ethylmaleimide (NEM) (100 microM for 2 min), Gi/o blocker, attenuated the rate of prepulse facilitation. Intracellular dialysis of anti-Gq/11-antibody did not alter it. These results suggest that prepulse facilitation of VDCCs is due to Gi/o-types of G-protein, but not to the Gq/11-type, in SMG neurons.
Collapse
Affiliation(s)
- T Endoh
- Department of Physiology, Tokyo Dental College, 1-2-2, Masago, Mihama-ku, Chiba 261-8502, Japan
| | | | | |
Collapse
|
15
|
Ikegami H, Endoh T, Suzuki T. Angiotensin II-induced inhibition of calcium currents in hamster submandibular ganglion neurons. Neurosci Res 2001; 41:227-32. [PMID: 11672835 DOI: 10.1016/s0168-0102(01)00279-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Angiotensin II (Ang II) is one of the most important vasoconstrictive hormones but is also known to act as a neuromodulator and a neurotransmitter in the central and peripheral nervous systems. In a previous study, we have shown that Ang II, via AT1 receptors, induced depolarization by inhibition of M-type K(+) channels and SK channels in submandibular ganglion (SMG) neurons. In this study, we investigated the effects of Ang II on calcium channel current (I(Ca)) in acutely dissociated SMG neurons by the patch-clamp technique using the whole-cell configuration. Ang II inhibited total I(Ca) by 32.1+/-2.7%. The half-maximum inhibitory concentration (IC(50)) of Ang II for inhibiting I(Ca) was 0.8 microM. In the presence of 1 microM losartan, which is a selective antagonist of AT1 receptors, the effect of Ang II was attenuated (7.6+/-1.5%). Application of a strong depolarizing voltage prepulse did not affect the Ang II-induced inhibition of I(Ca) (32.8+/-2.8%). Intracellular dialysis of GDP-beta-S attenuated the inhibition of I(Ca) (6.8+/-2.1%). The mean percentage inhibitions of L-, N- and P/Q-type VDCCs by Ang II were 29.1+/-1.7, 16.3+/-6.0 and 1.2+/-0.8%, respectively, of the total I(Ca).
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Calcium Channels/drug effects
- Calcium Channels/physiology
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/physiology
- Calcium Channels, N-Type/drug effects
- Calcium Channels, N-Type/physiology
- Calcium Channels, P-Type/drug effects
- Calcium Channels, P-Type/physiology
- Calcium Channels, Q-Type/drug effects
- Calcium Channels, Q-Type/physiology
- Cricetinae
- Electric Conductivity
- GTP-Binding Proteins/physiology
- Ganglia, Parasympathetic/cytology
- Ganglia, Parasympathetic/metabolism
- Male
- Neurons/metabolism
- Submandibular Gland/innervation
Collapse
Affiliation(s)
- H Ikegami
- Department of Physiology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, 261-8502, Chiba, Japan
| | | | | |
Collapse
|
16
|
Endoh T, Yamada E, Suzuki T. Kinetic analysis of prepulse facilitation of calcium currents in hamster submandibular ganglion neurons. THE BULLETIN OF TOKYO DENTAL COLLEGE 2001; 42:185-92. [PMID: 11806153 DOI: 10.2209/tdcpublication.42.185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The calcium ion influx through voltage-dependent calcium channels (VDCCs) has a vital role in the control of neurotransmitter release and membrane excitability. The modulation of VDCCs controls the extent of calcium entry and thus provides a way of regulating neuronal function. Prepulse facilitation is a phenomenon in which a strong depolarizing pulse induces a form of the VDCCs that exhibits an increased opening probability in response to a given test potential that persists for several seconds after repolarization. In this study, we have studied the characterization of prepulse facilitation of VDCCs currents (Ica) in hamster submandibular ganglion (SMG) neurons, using whole-cell patch clamp recordings. In SMG neurons, application of a strong depolarizing prepulse caused a Ica. In 8 SMG neurons, rate of facilitation was 1.1 +/- 0.1. The greatest value of prepulse facilitation was obtained with prepulse to +100 mV, 10 ms duration in this neuron. The magnitude of facilitation was dependent on changing the interval between the -prepulse and the +prepulse and reached a maximum at a interval of 500 ms.
Collapse
Affiliation(s)
- T Endoh
- Department of Physiology, Tokyo Dental College, 1-2-2, Masago, Mihama-ku, Chiba 261-8502, Japan
| | | | | |
Collapse
|
17
|
Keren O, Gafni M, Sarne Y. Potentiation of transmitter release from NMB human neuroblastoma cells by kappa-opioids is mediated by N-type voltage-dependent calcium channels. Brain Res 1999; 843:193-8. [PMID: 10528125 DOI: 10.1016/s0006-8993(99)01904-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The selective kappa-opioid agonist trans-(+/-)-3, 4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl) cyclohexyl] benzenacetamidemethansulfonate (U50,488) potentiates both basal and depolarization-evoked [3H]dopamine release from NMB cells. The potentiation of dopamine release by U50,488 is mediated by N-type voltage-dependent calcium channels since it is blocked by omega-conotoxin, and is resistant to pertussis toxin (PTX)-treatment. When the stimulation of release by U50,488 is blocked by the N-channel antagonist omega-conotoxin, an inhibitory effect on dopamine release is revealed, suggesting that stimulatory and inhibitory effects of U50,488 are exerted in parallel.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels, N-Type/drug effects
- Calcium Channels, N-Type/physiology
- Dopamine/metabolism
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Enkephalin, Leucine/analogs & derivatives
- Enkephalin, Leucine/pharmacology
- Humans
- Neuroblastoma
- Pertussis Toxin
- Potassium Cyanide/pharmacology
- Receptors, Opioid, kappa/agonists
- Tumor Cells, Cultured
- Virulence Factors, Bordetella/pharmacology
- omega-Conotoxins/pharmacology
Collapse
Affiliation(s)
- O Keren
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | |
Collapse
|
18
|
Soejima T, Endoh T, Suzuki T. Tachykinin-induced responses via neurokinin-1 and -3 receptors in hamster submandibular ganglion neurones. Arch Oral Biol 1999; 44:455-63. [PMID: 10401523 DOI: 10.1016/s0003-9969(99)00031-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both substance P and neurokinin A are known as neurotransmitters of the submandibular ganglion cell. In this study, the effects of neurokinin (NK) receptor-subtype agonists on hamster submandibular ganglion cells were investigated using the whole-cell patch-clamp technique. Membrane currents evoked by a ramp pulse from +50 to -100 mV (-150 mV/1000 msec) were compared in both the absence and presence of NK receptor agonist. The NK-1 receptor agonist [Sar9, Met (O2)11]-substance P, the NK-2 receptor agonist [Ala5, beta-Ala8]-alpha-neurokinin fragment 4-10, and the NK-3 receptor agonist senktide were used. The three agonists dose-dependently increased the amplitude of the inward current with a reversal potential near 0 mV. Their rank order was NK-1 = NK-3 > NK-2. Even when the external solution was replaced with Cs+ or N-methyl-D-glucamine+ instead of Na+, the NK receptor agonists also increased the amplitude of the inward current. Thus, NK-1 and NK-3 receptors are apparently coupled with non-selective cation channels in submandibular ganglion cells.
Collapse
Affiliation(s)
- T Soejima
- Department of Physiology, Tokyo Dental College, Chiba, Japan
| | | | | |
Collapse
|
19
|
Hayashi K, Endoh T, Suzuki T. VIP inhibits high voltage-gated calcium channel currents of hamster submandibular ganglion neurons. THE BULLETIN OF TOKYO DENTAL COLLEGE 1999; 40:93-7. [PMID: 10825819 DOI: 10.2209/tdcpublication.40.93] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study, we investigated the modulation of calcium channels by vasoactive intestinal polypeptide (VIP) in hamster submandibular ganglion (SMG) cells using the whole-cell patch clamp technique. VIP (1 microM) inhibited the high voltage-gated calcium channels in the SMG neurons via activation of VIP receptors and G-protein coupled to these receptors, but did not affect the low voltage-gated calcium channels. VIP at 1 microM reduced the peak amplitude of the maximum high voltage-gated calcium current by 26.0 +/- 6.2% (mean +/- S.E., n = 5) and slowed the rising phase of the calcium current. The time to peak of the maximum high voltage-gated calcium current was prolonged from 16.8 msec to 22.4 msec. In a representative cell, 1 microM VIP reduced the peak amplitude of maximum high voltage-gated calcium current by 50.5% and the amplitude at the end of voltage step after 300 msec by 51.9%. The VIP-induced inhibition of the calcium current was produced in a voltage-dependent manner. Inhibition was maximal (50.5%) at the level of -20 mV. Therefore, VIP inhibits both transient and sustained types of high voltage-gated calcium channels in the hamster SMG neuron.
Collapse
Affiliation(s)
- K Hayashi
- Department of Physiology, Tokyo Dental College, Chiba, Japan
| | | | | |
Collapse
|
20
|
Yamada T, Endoh T, Suzuki T. Inhibition of calcium channels by neurokinin receptor and signal transduction in hamster submandibular ganglion cells. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1999; 76:1-8. [PMID: 10323301 DOI: 10.1016/s0165-1838(98)00183-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Both substance P (SP) and neurokinin A (NKA) are known as neurotransmitters of the submandibular ganglion (SMG) neurons. SP released from collaterals of the sensory nerves also regulates the excitability of SMG neurons. It has recently been shown that neurokinins (NK) inhibit calcium channels in various neurons. In this study, the effects of NK on voltage-dependent calcium channel current (I(Ca)) in SMG cells were investigated using the whole-cell patch-clamp recording method. NK-1 receptor agonist and SP caused inhibition of I(Ca) in SMG cells in a dose-dependent manner. NK-1 receptor agonist inhibited L-, N- and P/Q-type I(Ca) components. GDP-beta-S included in the pipette solution reduced the NK-1 receptor agonist-induced inhibition of I(Ca). In addition, NK-1 receptor agonist-induced inhibition of I(Ca) was reduced by stimulation of protein kinase C (PKC) but not cyclic AMP-dependent protein kinase (PKA). The results provided evidence for a signal transduction pathway in which calcium channel inhibition by NK receptors required activation of G-protein and PKC-affected step phosphorylation in SMG neurons.
Collapse
Affiliation(s)
- T Yamada
- Department of Physiology, Tokyo Dental College, Chiba, Japan
| | | | | |
Collapse
|