1
|
Nath S. Symmetry breaking and mismatch in the torsional mechanism of ATP synthesis by F OF 1-ATP synthase: mathematical number theory proof and its chemical and biological implications. Theory Biosci 2024:10.1007/s12064-024-00434-3. [PMID: 39709580 DOI: 10.1007/s12064-024-00434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Can mathematical proofs be employed for the solution of fundamental molecular-level problems in biology? Recently, I mathematically tackled complex mechanistic problems arising during the synthesis of the universal biological currency, adenosine triphosphate (ATP) by the FOF1-ATP synthase, nature's smallest rotary molecular motor, using graph-theoretical and combinatorial approaches for the membrane-bound FO and water-soluble F1 domains of this fascinating molecule (see Nath in Theory Biosci 141:249‒260, 2022 and Theory Biosci 143:217‒227, 2024). In the third part of this trilogy, I investigate another critical aspect of the molecular mechanism-that of coupling between the FO and F1 domains of the ATP synthase mediated by the central γ-subunit of ∼ 1 nanometer diameter. According to Nath's torsional mechanism of energy transduction and ATP synthesis the γ-subunit twists during ATP synthesis and the release of stored torsional energy in the central γ-stalk causes conformational changes in the catalytic sites that lead to ATP synthesis, with 1 ATP molecule synthesized per discrete 120° rotation. The twisted γ-subunit breaks the symmetry of the molecule, and its residual torsional strain is shown to readily accommodate any symmetry mismatch existing between FO and F1. A mathematical number theory proof is developed to quantify the extent of symmetry mismatch at any angular position during rotation and derive the conditions for the regaining of symmetry at the end of a 360° rotation. The many chemical and biological implications of the mechanism and the mathematical proof are discussed in detail. Finally, suggestions for further mathematical development of the subject based on ideas from symmetry and group theory have been made. In sum, the answer to the question posed at the beginning of the Abstract is a resounding YES. There exists new, relatively unexplored territory at the interface of mathematics and molecular biology, especially at the level of molecular mechanism. It is hoped that more mathematicians and scientists interested in interdisciplinary work are encouraged to include in their research program approaches of this type-a mathematical proofs-inspired molecular biology-that have the power to lead to new vistas. Such molecular-scale mechanistic problems in biology have proved extraordinarily difficult to solve definitively using conventional experimental, theoretical, and computational approaches.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
2
|
Riera Aroche R, Ortiz García YM, Sánchez Moreno EC, Enriquez Cervantes JS, Machado Sulbaran AC, Riera Leal A. DNA Gene's Basic Structure as a Nonperturbative Circuit Quantum Electrodynamics: Is RNA Polymerase II the Quantum Bus of Transcription? Curr Issues Mol Biol 2024; 46:12152-12173. [PMID: 39590315 PMCID: PMC11592512 DOI: 10.3390/cimb46110721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Previously, we described that Adenine, Thymine, Cytosine, and Guanine nucleobases were superconductors in a quantum superposition of phases on each side of the central hydrogen bond acting as a Josephson Junction. Genomic DNA has two strands wrapped helically around one another, but during transcription, they are separated by the RNA polymerase II to form a molecular condensate called the transcription bubble. Successive steps involve the bubble translocation along the gene body. This work aims to modulate DNA as a combination of n-nonperturbative circuits quantum electrodynamics with nine Radio-Frequency Superconducting Quantum Interference Devices (SQUIDs) inside. A bus can be coupled capacitively to a single-mode microwave resonator. The cavity mode and the bus can mediate long-range, fast interaction between neighboring and distant DNA SQUID qubits. RNA polymerase II produces decoherence during transcription. This enzyme is a multifunctional biomolecular machine working like an artificially engineered device. Phosphorylation catalyzed by protein kinases constitutes the driving force. The coupling between n-phosphorylation pulses and any particular SQUID qubit can be obtained selectively via frequency matching.
Collapse
Affiliation(s)
- Raul Riera Aroche
- Department of Research in Physics, Division of Natural Sciences and Mathematics, University of Sonora, Hermosillo 83000, Mexico;
- Research and Higher Education Center of UNEPROP, Hermosillo 83105, Mexico; (Y.M.O.G.); (E.C.S.M.); (J.S.E.C.); (A.C.M.S.)
| | - Yveth M. Ortiz García
- Research and Higher Education Center of UNEPROP, Hermosillo 83105, Mexico; (Y.M.O.G.); (E.C.S.M.); (J.S.E.C.); (A.C.M.S.)
- Institute of Research in Dentistry, Department of Integral Dental Clinics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico
| | - Esli C. Sánchez Moreno
- Research and Higher Education Center of UNEPROP, Hermosillo 83105, Mexico; (Y.M.O.G.); (E.C.S.M.); (J.S.E.C.); (A.C.M.S.)
- Department of Dermatology, General Hospital of the State of Sonora, Hermosillo 83000, Mexico
| | - José S. Enriquez Cervantes
- Research and Higher Education Center of UNEPROP, Hermosillo 83105, Mexico; (Y.M.O.G.); (E.C.S.M.); (J.S.E.C.); (A.C.M.S.)
- Department of Dermatology, General Hospital of the State of Sonora, Hermosillo 83000, Mexico
| | - Andrea C. Machado Sulbaran
- Research and Higher Education Center of UNEPROP, Hermosillo 83105, Mexico; (Y.M.O.G.); (E.C.S.M.); (J.S.E.C.); (A.C.M.S.)
- Childhood and Adolescence Cancer Research Institute, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico
| | - Annie Riera Leal
- Research and Higher Education Center of UNEPROP, Hermosillo 83105, Mexico; (Y.M.O.G.); (E.C.S.M.); (J.S.E.C.); (A.C.M.S.)
- Department of Dermatology, General Hospital of the State of Sonora, Hermosillo 83000, Mexico
| |
Collapse
|
3
|
Nath S. 2-Site versus 3-site models of ATP hydrolysis by F 1-ATPase: definitive mathematical proof using combinatorics and conservation equations. Theory Biosci 2024; 143:217-227. [PMID: 39078560 DOI: 10.1007/s12064-024-00421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024]
Abstract
The F1-ATPase enzyme is the smallest-known molecular motor that rotates in 120° steps, driven by the hydrolysis of ATP. It is a multi-subunit enzyme that contains three catalytic sites. A central question is how the elementary chemical reactions that occur in the three sites are coupled to mechanical rotation. Various models and coupling schemes have been formulated in an attempt to answer this question. They can be classified as 2-site (bi-site) models, exemplified by Boyer's binding change mechanism first proposed 50 years ago, and 3-site (tri-site) models such as Nath's torsional mechanism, first postulated 25 years ago and embellished 1 year back. Experimental data collated using diverse approaches have conclusively shown that steady-state ATP hydrolysis by F1-ATPase occurs in tri-site mode. Hence older models have been continually modified to make them conform to the new facts. Here, we have developed a pure mathematical approach based on combinatorics and conservation laws to test if proposed models are 2-site or 3-site. Based on this novel combinatorial approach, we have proved that older and modified models are effectively bi‒site models in that catalysis and rotation in F1-ATPase occurs in these models with only two catalytic sites occupied by bound nucleotide. Hence these models contradict consensus experimental data. The recent 2023 model of ATP hydrolysis by F1-ATPase has been proved to be a true tri-site model based on our novel mathematical approach. Such pure mathematical proofs constitute an important step forward for ATP mechanism. However, in what must be considered an aspect with great scientific potential, the power of such mathematical proofs has not been fully exploited to solve molecular biological problems, in our opinion. We believe that the creative application of pure mathematical proofs (for another example see Nath in Theory Biosci 141:249-260, 2022) can help resolve with finality various longstanding molecular-level issues that arise as a matter of course in the analysis of fundamental biological problems. Such issues have proved extraordinarily difficult to resolve by standard experimental, theoretical, or computational approaches.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
4
|
Marutyan S, Karapetyan H, Khachatryan L, Muradyan A, Marutyan S, Poladyan A, Trchounian K. The antimicrobial effects of silver nanoparticles obtained through the royal jelly on the yeasts Candida guilliermondii NP-4. Sci Rep 2024; 14:19163. [PMID: 39160246 PMCID: PMC11333486 DOI: 10.1038/s41598-024-70197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
The effect of silver nanoparticles (Ag NPs) obtained in the presence of royal jelly (RJ) on the growth of yeast Candida guilliermondii NP-4, on the total and H+-ATPase activity, as well as lipid peroxidation process and antioxidant enzymes (superoxide dismutase (SOD), catalase) activity was studied. It has been shown that RJ-mediated Ag NPs have a fungicide and fungistatic effects at the concentrations of 5.4 µg mL-1 and 27 µg mL-1, respectively. Under the influence of RJ-mediated Ag NPs, a decrease in total and H+-ATPase activity in yeast homogenates by ~ 90% and ~ 80% was observed, respectively. In yeast mitochondria total and H+-ATPase activity depression was detected by ~ 80% and ~ 90%, respectively. The amount of malondialdehyde in the Ag NPs exposed yeast homogenate increased ~ 60%, the catalase activity increased ~ 70%, and the SOD activity-~ 30%. The obtained data indicate that the use of RJ-mediated Ag NPs have a diverse range of influence on yeast cells. This approach may be important in the field of biomedical research aimed at evaluating the development of oxidative stress in cells. It may also contribute to a more comprehensive understanding of antimicrobial properties of RJ-mediated Ag NPs and help control the proliferation of pathogenic fungi.
Collapse
Affiliation(s)
- Seda Marutyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia.
| | - Hasmik Karapetyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Lusine Khachatryan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Anna Muradyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Syuzan Marutyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Anna Poladyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia.
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia.
- Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 1 A. Manoogian, 0025, Yerevan, Armenia.
| |
Collapse
|
5
|
Mudryk K, Lee C, Tomaník L, Malerz S, Trinter F, Hergenhahn U, Neumark DM, Slavíček P, Bradforth S, Winter B. How Does Mg 2+(aq) Interact with ATP (aq)? Biomolecular Structure through the Lens of Liquid-Jet Photoemission Spectroscopy. J Am Chem Soc 2024; 146:16062-16075. [PMID: 38802319 PMCID: PMC11177255 DOI: 10.1021/jacs.4c03174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Liquid-jet photoemission spectroscopy (LJ-PES) allows for a direct probing of electronic structure in aqueous solutions. We show the applicability of the approach to biomolecules in a complex environment, exploring site-specific information on the interaction of adenosine triphosphate in the aqueous phase (ATP(aq)) with magnesium (Mg2+(aq)), highlighting the synergy brought about by the simultaneous analysis of different regions in the photoelectron spectrum. In particular, we demonstrate intermolecular Coulombic decay (ICD) spectroscopy as a new and powerful addition to the arsenal of techniques for biomolecular structure investigation. We apply LJ-PES assisted by electronic-structure calculations to study ATP(aq) solutions with and without dissolved Mg2+. Valence photoelectron data reveal spectral changes in the phosphate and adenine features of ATP(aq) due to interactions with the divalent cation. Chemical shifts in Mg 2p, Mg 2s, P 2p, and P 2s core-level spectra as a function of the Mg2+/ATP concentration ratio are correlated to the formation of [Mg(ATP) 2]6-(aq), [MgATP]2-(aq), and [Mg2ATP](aq) complexes, demonstrating the element sensitivity of the technique to Mg2+-phosphate interactions. The most direct probe of the intermolecular interactions between ATP(aq) and Mg2+(aq) is delivered by the emerging ICD electrons following ionization of Mg 1s electrons. ICD spectra are shown to sensitively probe ligand exchange in the Mg2+-ATP(aq) coordination environment. In addition, we report and compare P 2s data from ATP(aq) and adenosine mono- and diphosphate (AMP(aq) and ADP(aq), respectively) solutions, probing the electronic structure of the phosphate chain and the local environment of individual phosphate units in ATP(aq). Our results provide a comprehensive view of the electronic structure of ATP(aq) and Mg2+-ATP(aq) complexes relevant to phosphorylation and dephosphorylation reactions that are central to bioenergetics in living organisms.
Collapse
Affiliation(s)
- Karen Mudryk
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Chin Lee
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Lukáš Tomaník
- Department
of Physical Chemistry, University of Chemistry
and Technology, Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Sebastian Malerz
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Florian Trinter
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straße
1, 60438 Frankfurt
am Main, Germany
| | - Uwe Hergenhahn
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Daniel M. Neumark
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Petr Slavíček
- Department
of Physical Chemistry, University of Chemistry
and Technology, Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Stephen Bradforth
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Bernd Winter
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
6
|
Burton-Smith RN, Song C, Ueno H, Murata T, Iino R, Murata K. Six states of Enterococcus hirae V-type ATPase reveals non-uniform rotor rotation during turnover. Commun Biol 2023; 6:755. [PMID: 37507515 PMCID: PMC10382590 DOI: 10.1038/s42003-023-05110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The vacuolar-type ATPase from Enterococcus hirae (EhV-ATPase) is a thus-far unique adaptation of V-ATPases, as it performs Na+ transport and demonstrates an off-axis rotor assembly. Recent single molecule studies of the isolated V1 domain have indicated that there are subpauses within the three major states of the pseudo three-fold symmetric rotary enzyme. However, there was no structural evidence for these. Herein we activate the EhV-ATPase complex with ATP and identified multiple structures consisting of a total of six states of this complex by using cryo-electron microscopy. The orientations of the rotor complex during turnover, especially in the intermediates, are not as perfectly uniform as expected. The densities in the nucleotide binding pockets in the V1 domain indicate the different catalytic conditions for the six conformations. The off-axis rotor and its' interactions with the stator a-subunit during rotation suggests that this non-uniform rotor rotation is performed through the entire complex.
Collapse
Affiliation(s)
- Raymond N Burton-Smith
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Chihong Song
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institute for Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Kazuyoshi Murata
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
7
|
Pérez I, Heitkamp T, Börsch M. Mechanism of ADP-Inhibited ATP Hydrolysis in Single Proton-Pumping F oF 1-ATP Synthase Trapped in Solution. Int J Mol Sci 2023; 24:ijms24098442. [PMID: 37176150 PMCID: PMC10178918 DOI: 10.3390/ijms24098442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
FoF1-ATP synthases in mitochondria, in chloroplasts, and in most bacteria are proton-driven membrane enzymes that supply the cells with ATP made from ADP and phosphate. Different control mechanisms exist to monitor and prevent the enzymes' reverse chemical reaction of fast wasteful ATP hydrolysis, including mechanical or redox-based blockade of catalysis and ADP inhibition. In general, product inhibition is expected to slow down the mean catalytic turnover. Biochemical assays are ensemble measurements and cannot discriminate between a mechanism affecting all enzymes equally or individually. For example, all enzymes could work more slowly at a decreasing substrate/product ratio, or an increasing number of individual enzymes could be completely blocked. Here, we examined the effect of increasing amounts of ADP on ATP hydrolysis of single Escherichia coli FoF1-ATP synthases in liposomes. We observed the individual catalytic turnover of the enzymes one after another by monitoring the internal subunit rotation using single-molecule Förster resonance energy transfer (smFRET). Observation times of single FRET-labeled FoF1-ATP synthases in solution were extended up to several seconds using a confocal anti-Brownian electrokinetic trap (ABEL trap). By counting active versus inhibited enzymes, we revealed that ADP inhibition did not decrease the catalytic turnover of all FoF1-ATP synthases equally. Instead, increasing ADP in the ADP/ATP mixture reduced the number of remaining active enzymes that operated at similar catalytic rates for varying substrate/product ratios.
Collapse
Affiliation(s)
- Iván Pérez
- Single-Molecule Microscopy Group, Jena University Hospital, 07743 Jena, Germany
| | - Thomas Heitkamp
- Single-Molecule Microscopy Group, Jena University Hospital, 07743 Jena, Germany
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, 07743 Jena, Germany
| |
Collapse
|
8
|
Li A, Fan J, Jia Y, Tang X, Chen J, Shen C. Phenotype and metabolism alterations in PCB-degrading Rhodococcus biphenylivorans TG9 T under acid stress. J Environ Sci (China) 2023; 127:441-452. [PMID: 36522076 DOI: 10.1016/j.jes.2022.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/17/2023]
Abstract
Environmental acidification impairs microorganism diversity and their functions on substance transformation. Rhodococcus is a ubiquitously distributed genus for contaminant detoxification in the environment, and it can also adapt a certain range of pH. This work interpreted the acid responses from both phenotype and metabolism in strain Rhodococcus biphenylivorans TG9T (TG9) induced at pH 3. The phenotype alterations were described with the number of culturable and viable cells, intracellular ATP concentrations, cell shape and entocyte, degradation efficiency of polychlorinated biphenyl (PCB) 31 and biphenyl. The number of culturable cells maintained rather stable within the first 10 days, even though the other phenotypes had noticeable alterations, indicating that TG9 possesses certain capacities to survive under acid stress. The metabolism responses were interpreted based on transcription analyses with four treatments including log phase (LP), acid-induced (PER), early recovery after removing acid (RE) and later recovery (REL). With the overview on the expression regulations among the 4 treatments, the RE sample presented more upregulated and less downregulated genes, suggesting that its metabolism was somehow more active after recovering from acid stress. In addition, the response mechanism was interpreted on 10 individual metabolism pathways mainly covering protein modification, antioxidation, antipermeability, H+ consumption, neutralization and extrusion. Furthermore, the transcription variations were verified with RT-qPCR on 8 genes with 24-hr, 48-hr and 72-hr acid treatment. Taken together, TG9 possesses comprehensive metabolism strategies defending against acid stress. Consequently, a model was built to provide an integrate insight to understand the acid resistance/tolerance metabolisms in microorganisms.
Collapse
Affiliation(s)
- Aili Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahui Fan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yangyang Jia
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianjin Tang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingwen Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Kinetic Mathematical Modeling of Oxidative Phosphorylation in Cardiomyocyte Mitochondria. Cells 2022; 11:cells11244020. [PMID: 36552784 PMCID: PMC9777548 DOI: 10.3390/cells11244020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Oxidative phosphorylation (OXPHOS) is an oxygen-dependent process that consumes catabolized nutrients to produce adenosine triphosphate (ATP) to drive energy-dependent biological processes such as excitation-contraction coupling in cardiomyocytes. In addition to in vivo and in vitro experiments, in silico models are valuable for investigating the underlying mechanisms of OXPHOS and predicting its consequences in both physiological and pathological conditions. Here, we compare several prominent kinetic models of OXPHOS in cardiomyocytes. We examine how their mathematical expressions were derived, how their parameters were obtained, the conditions of their experimental counterparts, and the predictions they generated. We aim to explore the general landscape of energy production mechanisms in cardiomyocytes for future in silico models.
Collapse
|
10
|
Domin R, Pytka M, Niziński J, Żołyński M, Zybek-Kocik A, Wrotkowska E, Zieliński J, Guzik P, Ruchała M. ATPase Inhibitory Factor 1-A Novel Marker of Cellular Fitness and Exercise Capacity? Int J Mol Sci 2022; 23:15303. [PMID: 36499630 PMCID: PMC9741029 DOI: 10.3390/ijms232315303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
ATPase inhibitory factor 1 is a myokine inhibiting the hydrolytic activity of mitochondrial adenosine triphosphate synthase and ecto-F1-ATPase on the surface of many cells. IF1 affects ATP metabolism in mitochondria and the extracellular space and upregulates glucose uptake in myocytes; these processes are essential in physical activity. It is unknown whether the IF1 serum concentration is associated with exercise capacity. This study explored the association between resting IF1 serum concentration and exercise capacity indices in healthy people. IF1 serum concentration was measured in samples collected at rest in 97 healthy amateur cyclists. Exercise capacity was assessed on a bike ergometer at the successive stages of the progressive cardiopulmonary exercise test (CPET). IF1 serum concentration was negatively and significantly correlated with oxygen consumption, oxygen pulse, and load at various CPET stages. A better exercise capacity was associated with lower circulating IF1. IF1 may reflect better cellular/mitochondrial energetic fitness, but there is uncertainty regarding how IF1 is released into the intravascular space. We speculate that lower IF1 concentration may reflect a better cellular/mitochondrial integrity, as this protein is bound more strongly with ATPases in mitochondria and cellular surfaces in people with higher exercise capacity.
Collapse
Affiliation(s)
- Remigiusz Domin
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
- University Centre for Sport and Medical Studies, Poznan University of Medical Sciences, 60-802 Poznan, Poland
| | - Michał Pytka
- University Centre for Sport and Medical Studies, Poznan University of Medical Sciences, 60-802 Poznan, Poland
- Department of Cardiology, Intensive Therapy, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Jan Niziński
- University Centre for Sport and Medical Studies, Poznan University of Medical Sciences, 60-802 Poznan, Poland
| | - Mikołaj Żołyński
- University Centre for Sport and Medical Studies, Poznan University of Medical Sciences, 60-802 Poznan, Poland
| | - Ariadna Zybek-Kocik
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Elżbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Jacek Zieliński
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, 61-871 Poznan, Poland
| | - Przemysław Guzik
- University Centre for Sport and Medical Studies, Poznan University of Medical Sciences, 60-802 Poznan, Poland
- Department of Cardiology, Intensive Therapy, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
- University Centre for Sport and Medical Studies, Poznan University of Medical Sciences, 60-802 Poznan, Poland
| |
Collapse
|
11
|
Zharova TV, Kozlovsky VS, Grivennikova VG. Interaction of Venturicidin and F o·F 1-ATPase/ATP Synthase of Tightly Coupled Subbacterial Particles of Paracoccus denitrificans in Energized Membranes. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:742-751. [PMID: 36171655 DOI: 10.1134/s0006297922080065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/16/2023]
Abstract
Proton-translocating Fo×F1-ATPase/synthase that catalyzes synthesis and hydrolysis of ATP is commonly considered to be a reversibly functioning complex. We have previously shown that venturicidin, a specific Fo-directed inhibitor, blocks the synthesis and hydrolysis of ATP with a significant difference in the affinity [Zharova, T. V. and Vinogradov, A. D. (2017) Biochim. Biophys. Acta, 1858, 939-944]. In this paper, we have studied in detail inhibition of Fo×F1-ATPase/synthase by venturicidin in tightly coupled membranes of Paracoccus denitrificans under conditions of membrane potential generation. ATP hydrolysis was followed by the ATP-dependent succinate-supported NAD+ reduction (potential-dependent reverse electron transfer) catalyzed by the respiratory chain complex I. It has been demonstrated that membrane energization did not affect the affinity of Fo×F1-ATPase/synthase for venturicidin. The dependence of the residual ATP synthase activity on the concentration of venturicidin approximated a linear function, whereas the dependence of ATP hydrolysis was sigmoidal: at low inhibitor concentrations venturicidin strongly inhibited ATP synthesis without decrease in the rate of ATP hydrolysis. A model is proposed suggesting that ATP synthesis and ATP hydrolysis are catalyzed by two different forms of Fo×F1.
Collapse
Affiliation(s)
- Tatyana V Zharova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Vladimir S Kozlovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vera G Grivennikova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
12
|
Li Y, Valdez NA, Mnatsakanyan N, Weber J. The nucleotide binding affinities of two critical conformations of Escherichia coli ATP synthase. Arch Biochem Biophys 2021; 707:108899. [PMID: 33991499 PMCID: PMC8278868 DOI: 10.1016/j.abb.2021.108899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
ATP synthase is essential in aerobic energy metabolism, and the rotary catalytic mechanism is one of the core concepts to understand the energetic functions of ATP synthase. Disulfide bonds formed by oxidizing a pair of cysteine mutations halted the rotation of the γ subunit in two critical conformations, the ATP-waiting dwell (αE284C/γQ274C) and the catalytic dwell (αE284C/γL276C). Tryptophan fluorescence was used to measure the nucleotide binding affinities for MgATP, MgADP and MgADP-AlF4 (a transition state analog) to wild-type and mutant F1 under reducing and oxidizing conditions. In the reduced state, αE284C/γL276C F1 showed a wild-type-like nucleotide binding pattern; after oxidation to lock the enzyme in the catalytic dwell state, the nucleotide binding parameters remained unchanged. In contrast, αE284C/γQ274C F1 showed significant differences in the affinities of the oxidized versus the reduced state. Locking the enzyme in the ATP-waiting dwell reduced nucleotide binding affinities of all three catalytic sites. Most importantly, the affinity of the low affinity site was reduced to such an extent that it could no longer be detected in the binding assay (Kd > 5 mM). The results of the present study allow to present a model for the catalytic mechanism of ATP synthase under consideration of the nucleotide affinity changes during a 360° cycle of the rotor.
Collapse
Affiliation(s)
- Yunxiang Li
- Department of Chemistry and Biochemistry, Texas Woman's University, Denton, TX, 76204, USA; Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Neydy A Valdez
- Department of Biology, Texas Woman's University, Denton, TX, 76204, USA
| | - Nelli Mnatsakanyan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA; School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Joachim Weber
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA; Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
13
|
Fu J, Gong Z, Bae S. Ecotoxicogenomic analysis of zebrafish embryos exposed to triclosan and mixture triclosan and methyl triclosan using suppression subtractive hybridization and next-generation sequencing. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125450. [PMID: 33676256 DOI: 10.1016/j.jhazmat.2021.125450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Triclosan (TCS) and methyl-triclosan (MTCS), an environmental transformation product of biocide of TCS, have been detected in water, sediment, fish, and invertebrates. In this study, the key pathway perturbation in zebrafish (Danio rerio) embryos exposed to TCS (300 μg/L) and TCS/MTCS mixture (300 μg/L TCS + 30 μg/L MTCS) was assessed by integrating the metabolomic and transcriptomic dysregulation. The differential expressed genes (DEGs) were obtained from the subtracted cDNA libraries by using the suppression subtractive hybridization and next-generation sequencing approach. The dysregulation of twenty-eight GO terms and four KEGG pathways, including oxidative phosphorylation and cardiac muscle contraction, were shown in the TCS treatment group, indicating that TCS could disrupt the mitochondrial inner membrane function by downshifting the electrochemical gradient. Meanwhile, the addition of MTCS in the exposure would cause fourteen additional significant KEGG pathway changes, demonstrating the different effects between two exposure. A pathway-based analysis using the identified DEGs and the altered metabolites in zebrafish embryos treated with TCS and TCS/MTCS mixture, collectively, has been applied. This study demonstrated that the integration of SSH-NGS and metabolomics could reveal toxic effects and potential diseases associated with the exposures of TCS and MTCS in aquatic environments.
Collapse
Affiliation(s)
- Jing Fu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore.
| |
Collapse
|
14
|
Liu Y, Yu J, Wang M, Zeng Q, Fu X, Chang Z. A high-throughput genetically directed protein crosslinking analysis reveals the physiological relevance of the ATP synthase 'inserted' state. FEBS J 2021; 288:2989-3009. [PMID: 33128817 DOI: 10.1111/febs.15616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/07/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022]
Abstract
ATP synthase, a highly conserved protein complex that has a subunit composition of α3 β3 γδεab2 c8-15 for the bacterial enzyme, is a key player in supplying energy to living organisms. This protein complex consists of a peripheral F1 sector (α3 β3 γδε) and a membrane-integrated Fo sector (ab2 c8-15 ). Structural analyses of the isolated protein components revealed that, remarkably, the C-terminal domain of its ε-subunit seems to adopt two dramatically different structures, but the physiological relevance of this conformational change remains largely unknown. In an attempt to decipher this, we developed a high-throughput in vivo protein photo-cross-linking analysis pipeline based on the introduction of the unnatural amino acid into the target protein via the scarless genome-targeted site-directed mutagenesis technique, and probing the cross-linked products via the high-throughput polyacrylamide gel electrophoresis technique. Employing this pipeline, we examined the interactions involving the C-terminal helix of the ε-subunit in cells living under a variety of experimental conditions. These studies enabled us to uncover that the bacterial ATP synthase exists as an equilibrium between the 'inserted' and 'noninserted' state in cells, maintaining a moderate but significant level of net ATP synthesis when shifting to the former upon exposing to unfavorable energetically stressful conditions. Such a mechanism allows the bacterial ATP synthases to proportionally and instantly switch between two reversible functional states in responding to changing environmental conditions. Importantly, this high-throughput approach could allow us to decipher the physiological relevance of protein-protein interactions identified under in vitro conditions or to unveil novel physiological context-dependent protein-protein interactions that are unknown before.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Protein Science, Peking University, Beijing, China
| | - Jiayu Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Protein Science, Peking University, Beijing, China
| | - Mengyuan Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Protein Science, Peking University, Beijing, China
| | - Qingfang Zeng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Protein Science, Peking University, Beijing, China
| | - Xinmiao Fu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Protein Science, Peking University, Beijing, China
| | - Zengyi Chang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Protein Science, Peking University, Beijing, China
| |
Collapse
|
15
|
Mehta R, Singh J, Nath S. Time-Resolved Oxygen Exchange Measurements Offer Novel Mechanistic Insights into Enzyme-Catalyzed ATP Synthesis during Photophosphorylation. J Phys Chem B 2020; 124:5139-5148. [PMID: 32484674 DOI: 10.1021/acs.jpcb.0c03505] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Techniques to probe molecular mechanistic events occurring at a single catalytic site of multi-subunit enzymes in real time are few and are still under development. Here time-resolved information is extracted from measurements of the extensive oxygen exchange that occurs at an intermediate stage of adenosine triphosphate (ATP) synthesis during photophosphorylation by chloroplast thylakoids. A stochastic process-based approach for modeling exchange reactions is formulated that provides a physical basis for the kinetic theory. Compatible with the assumptions made in such a model of randomness, the formulation is shown to lead to a Poisson-type theory that enables kinetic analysis of oxygen-exchange data and offers novel physical insights. Parameters such as the apparent rate constant of exchange and the average lifetime of the exchanging intermediates during the synthesis of ATP by the chloroplast F1FO-ATP synthase have been determined over a 5000-fold range of ADP concentration. Experimental isotopomer distributions of [18O]ATP at high (0.5 mM), intermediate (10 μM), and low (0.2 μM) ADP concentrations have been quantified and compared to expected distributions from the theory. The observed distributions are shown to closely match the predicted distributions. A wealth of novel mechanistic insights such as the number of sites/pathways of oxygen exchange, the order of substrate binding steps at the enzyme catalytic site, and regulation of the process of energy coupling have been deduced, and the results are interpreted with the help of available high-resolution X-ray structures. The various biological implications for models of energy coupling have been discussed. Permutation of oxygen ligands about the phosphorus center is proposed as a possible and general but not well-recognized mechanism for oxygen exchange that is consistent with the principal results of this work, and several suggestions for future research are offered.
Collapse
Affiliation(s)
- Ritu Mehta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jitendra Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
16
|
Insights into the origin of the high energy-conversion efficiency of F 1-ATPase. Proc Natl Acad Sci U S A 2019; 116:15924-15929. [PMID: 31341091 DOI: 10.1073/pnas.1906816116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Our understanding of the rotary-coupling mechanism of F1-ATPase has been greatly enhanced in the last decade by advances in X-ray crystallography, single-molecular imaging, and theoretical models. Recently, Volkán-Kacsó and Marcus [S. Volkán-Kacsó, R. A. Marcus, Proc. Natl. Acad. Sci. U.S.A. 112, 14230 (2015)] presented an insightful thermodynamic model based on the Marcus reaction theory coupled with an elastic structural deformation term to explain the observed γ-rotation angle dependence of the adenosine triphosphate (ATP)/adenosine diphosphate (ADP) exchange rates of F1-ATPase. Although the model is successful in correlating single-molecule data, it is not in agreement with the available theoretical results. We describe a revision of the model, which leads to consistency with the simulation results and other experimental data on the F1-ATPase rotor compliance. Although the free energy liberated on ATP hydrolysis by F1-ATPase is rapidly dissipated as heat and so cannot contribute directly to the rotation, we show how, nevertheless, F1-ATPase functions near the maximum possible efficiency. This surprising result is a consequence of the differential binding of ATP and its hydrolysis products ADP and Pi along a well-defined pathway.
Collapse
|
17
|
Sumi T, Klumpp S. Is F 1-ATPase a Rotary Motor with Nearly 100% Efficiency? Quantitative Analysis of Chemomechanical Coupling and Mechanical Slip. NANO LETTERS 2019; 19:3370-3378. [PMID: 31017791 DOI: 10.1021/acs.nanolett.9b01181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a chemomechanical network model of the rotary molecular motor F1-ATPase which quantitatively describes not only the rotary motor dynamics driven by ATP hydrolysis but also the ATP synthesis caused by forced reverse rotations. We observe a high reversibility of F1-ATPase, that is, the main cycle of ATP synthesis corresponds to the reversal of the main cycle in the hydrolysis-driven motor rotation. However, our quantitative analysis indicates that torque-induced mechanical slip without chemomechanical coupling occurs under high external torque and reduces the maximal efficiency of the free energy transduction to 40-80% below the optimal efficiency. Heat irreversibly dissipates not only through the viscous friction of the probe but also directly from the motor due to torque-induced mechanical slip. Such irreversible heat dissipation is a crucial limitation for achieving a 100% free-energy transduction efficiency with biological nanomachines because biomolecules are easily deformed by external torque.
Collapse
Affiliation(s)
| | - Stefan Klumpp
- Institute for the Dynamics of Complex Systems , University of Göttingen , Friedrich-Hund-Platz 1 , 37077 Göttingen , Germany
- Department Theory and Bio-Systems , Max Planck Institute of Colloids and Interfaces , 14424 Potsdam , Germany
| |
Collapse
|
18
|
Singh D, Grüber G. Crystallographic and enzymatic insights into the mechanisms of Mg-ADP inhibition in the A 1 complex of the A 1A O ATP synthase. J Struct Biol 2017; 201:26-35. [PMID: 29074108 DOI: 10.1016/j.jsb.2017.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/19/2017] [Accepted: 10/21/2017] [Indexed: 01/02/2023]
Abstract
F-ATP synthases are described to have mechanisms which regulate the unnecessary depletion of ATP pool during an energy limited state of the cell. Mg-ADP inhibition is one of the regulatory features where Mg-ADP gets entrapped in the catalytic site, preventing the binding of ATP and further inhibiting ATP hydrolysis. Knowledge about the existence and regulation of the related archaeal-type A1AO ATP synthases (A3B3CDE2FG2ac) is limited. We demonstrate MgADP inhibition of the enzymatically active A3B3D- and A3B3DF complexes of Methanosarcina mazei Gö1 A-ATP synthase and reveal the importance of the amino acids P235 and S238 inside the P-loop (GPFGSGKTV) of the catalytic A subunit. Substituting these two residues by the respective P-loop residues alanine and cysteine (GAFGCGKTV) of the related eukaryotic V-ATPase increases significantly the ATPase activity of the enzyme variant and abolishes MgADP inhibition. The atomic structure of the P235A, S238C double mutant of subunit A of the Pyrococcus horikoshii OT3 A-ATP synthase provides details of how these critical residues affect nucleotide-binding and ATP hydrolysis in this molecular engine. The qualitative data are confirmed by quantitative results derived from fluorescence correlation spectroscopy experiments.
Collapse
Affiliation(s)
- Dhirendra Singh
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
19
|
Ai G, Liu P, Ge H. Torque-coupled thermodynamic model for F_{o}F_{1}-ATPase. Phys Rev E 2017; 95:052413. [PMID: 28618520 DOI: 10.1103/physreve.95.052413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 01/23/2023]
Abstract
F_{o}F_{1}-ATPase is a motor protein complex that utilizes transmembrane ion flow to drive the synthesis of adenosine triphosphate (ATP) from adenosine diphosphate (ADP) and phosphate (Pi). While many theoretical models have been proposed to account for its rotary activity, most of them focus on the F_{o} or F_{1} portions separately rather than the complex as a whole. Here, we propose a simple but new torque-coupled thermodynamic model of F_{o}F_{1}-ATPase. Solving this model at steady state, we find that the monotonic variation of each portion's efficiency becomes much more robust over a wide range of parameters when the F_{o} and F_{1} portions are coupled together, as compared to cases when they are considered separately. Furthermore, the coupled model predicts the dependence of each portion's kinetic behavior on the parameters of the other. Specifically, the power and efficiency of the F_{1} portion are quite sensitive to the proton gradient across the membrane, while those of the F_{o} portion as well as the related Michaelis constants for proton concentrations respond insensitively to concentration changes in the reactants of ATP synthesis. The physiological proton gradient across the membrane in the F_{o} portion is also shown to be optimal for the Michaelis constants of ADP and phosphate in the F_{1} portion during ATP synthesis. Together, our coupled model is able to predict key dynamic and thermodynamic features of the F_{o}F_{1}-ATPase in vivo semiquantitatively, and suggests that such coupling approach could be further applied to other biophysical systems.
Collapse
Affiliation(s)
- Guangkuo Ai
- Beijing International Center for Mathematical Research and School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Pengfei Liu
- Applied and Computational Mathematics, California Institute of Technology, Pasadena, California 91125, USA
| | - Hao Ge
- Beijing International Center for Mathematical Research and Biodynamic Optical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
20
|
Abstract
FoF1-ATP synthase (FoF1) couples H+ flow in Fo domain and ATP synthesis/hydrolysis in F1 domain through rotation of the central rotor shaft, and the H+/ATP ratio is crucial to understand the coupling mechanism and energy yield in cells. Although H+/ATP ratio of the perfectly coupling enzyme can be predicted from the copy number of catalytic β subunits and that of H+ binding c subunits as c/β, the actual H+/ATP ratio can vary depending on coupling efficiency. Here, we report actual H+/ATP ratio of thermophilic Bacillus FoF1, whose c/β is 10/3. Proteoliposomes reconstituted with the FoF1 were energized with ΔpH and Δψ by the acid-base transition and by valinomycin-mediated diffusion potential of K+ under various [ATP]/([ADP]⋅[Pi]) conditions, and the initial rate of ATP synthesis/hydrolysis was measured. Analyses of thermodynamically equilibrated states, where net ATP synthesis/hydrolysis is zero, show linear correlation between the chemical potential of ATP synthesis/hydrolysis and the proton motive force, giving the slope of the linear function, that is, H+/ATP ratio, 3.3 ± 0.1. This value agrees well with the c/β ratio. Thus, chemomechanical coupling between Fo and F1 is perfect.
Collapse
|
21
|
Zhu X, Shi D, Li X, Gong W, Wu F, Guo X, Xiao H, Liu L, Zhou H. TLR signalling affects sperm mitochondrial function and motility via phosphatidylinositol 3-kinase and glycogen synthase kinase-3α. Cell Signal 2015; 28:148-156. [PMID: 26658093 DOI: 10.1016/j.cellsig.2015.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 02/08/2023]
Abstract
Infection in male and female genital tracts can lead to infertility. The underlying mechanisms of this process remain unclear. Toll-like receptors (TLRs) recognize conserved structures and respond to pathogens by initiating signals that activate inflammatory gene transcription. Here, we demonstrate that TLR activation in sperm reduces sperm motility via signalling through myeloid differentiation factor 88 (MyD88), phosphatidylinositol 3-kinase (PI3K), and glycogen synthase kinase (GSK)-3α. Upon TLR activation, phosphorylated forms of PI3K and GSK3α were detected in the mitochondria, and the mitochondrial membrane potential was impaired in sperm. In addition, mitochondrial ATP levels were decreased after TLR agonist stimulation. Furthermore, blocking PI3K or GSK3α activation abrogated these effects and reversed the TLR-induced reduction in sperm motility. These results identify a previously unrecognized TLR signalling pathway that leads to dysfunctional sperm mitochondria, which reduce sperm motility. Our study reveals a novel mechanism by which pathogenic infection affects sperm motility and possibly leads to infertility.
Collapse
Affiliation(s)
- Xingxing Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Dongyan Shi
- Department of Immunology, Nanjing Medical University, Nanjing 210029, China
| | - Xiaoqian Li
- Department of Immunology, Nanjing Medical University, Nanjing 210029, China
| | - Weijuan Gong
- Department of Microbiology & Immunology, Yangzhou University, Yangzhou 225009, China
| | - Fengjiao Wu
- Department of Immunology, Nanjing Medical University, Nanjing 210029, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Hui Xiao
- Institute of Pasteur Shanghai, Chinese Academy of Sciences, Shanghai 200025, China
| | - Lixin Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Hong Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
22
|
Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol Rev 2015; 95:1111-55. [PMID: 26269524 DOI: 10.1152/physrev.00001.2015] [Citation(s) in RCA: 420] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial permeability transition (PT) is a permeability increase of the inner mitochondrial membrane mediated by a channel, the permeability transition pore (PTP). After a brief historical introduction, we cover the key regulatory features of the PTP and provide a critical assessment of putative protein components that have been tested by genetic analysis. The discovery that under conditions of oxidative stress the F-ATP synthases of mammals, yeast, and Drosophila can be turned into Ca(2+)-dependent channels, whose electrophysiological properties match those of the corresponding PTPs, opens new perspectives to the field. We discuss structural and functional features of F-ATP synthases that may provide clues to its transition from an energy-conserving into an energy-dissipating device as well as recent advances on signal transduction to the PTP and on its role in cellular pathophysiology.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Michael Forte
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Giovanna Lippe
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| |
Collapse
|
23
|
Mechanism of the αβ conformational change in F1-ATPase after ATP hydrolysis: free-energy simulations. Biophys J 2015; 108:85-97. [PMID: 25564855 DOI: 10.1016/j.bpj.2014.11.1853] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 12/14/2022] Open
Abstract
One of the motive forces for F1-ATPase rotation is the conformational change of the catalytically active β subunit due to closing and opening motions caused by ATP binding and hydrolysis, respectively. The closing motion is accomplished in two steps: the hydrogen-bond network around ATP changes and then the entire structure changes via B-helix sliding, as shown in our previous study. Here, we investigated the opening motion induced by ATP hydrolysis using all-atom free-energy simulations, combining the nudged elastic band method and umbrella sampling molecular-dynamics simulations. Because hydrolysis requires residues in the α subunit, the simulations were performed with the αβ dimer. The results indicate that the large-scale opening motion is also achieved by the B-helix sliding (in the reverse direction). However, the sliding mechanism is different from that of ATP binding because sliding is triggered by separation of the hydrolysis products ADP and Pi. We also addressed several important issues: 1), the timing of the product Pi release; 2), the unresolved half-closed β structure; and 3), the ADP release mechanism. These issues are fundamental for motor function; thus, the rotational mechanism of the entire F1-ATPase is also elucidated through this αβ study. During the conformational change, conserved residues among the ATPase proteins play important roles, suggesting that the obtained mechanism may be shared with other ATPase proteins. When combined with our previous studies, these results provide a comprehensive view of the β-subunit conformational change that drives the ATPase.
Collapse
|
24
|
He M, Zhu C, Dong K, Zhang T, Cheng Z, Li J, Yan Y. Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination. BMC PLANT BIOLOGY 2015; 15:97. [PMID: 25888100 PMCID: PMC4407426 DOI: 10.1186/s12870-015-0471-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/16/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Wheat seeds provide a staple food and an important protein source for the world's population. Seed germination is vital to wheat growth and development and directly affects grain yield and quality. In this study, we performed the first comparative proteomic analysis of wheat embryo and endosperm during seed germination. RESULTS The proteomic changes in embryo and endosperm during the four different seed germination stages of elite Chinese bread wheat cultivar Zhengmai 9023 were first investigated. In total, 74 and 34 differentially expressed protein (DEP) spots representing 63 and 26 unique proteins were identified in embryo and endosperm, respectively. Eight common DEP were present in both tissues, and 55 and 18 DEP were specific to embryo and endosperm, respectively. These identified DEP spots could be sorted into 13 functional groups, in which the main group was involved in different metabolism pathways, particularly in the reserves necessary for mobilization in preparation for seed germination. The DEPs from the embryo were mainly related to carbohydrate metabolism, proteometabolism, amino acid metabolism, nucleic acid metabolism, and stress-related proteins, whereas those from the endosperm were mainly involved in protein storage, carbohydrate metabolism, inhibitors, stress response, and protein synthesis. During seed germination, both embryo and endosperm had a basic pattern of oxygen consumption, so the proteins related to respiration and energy metabolism were up-regulated or down-regulated along with respiration of wheat seeds. When germination was complete, most storage proteins from the endosperm began to be mobilized, but only a small amount was degraded during germination. Transcription expression of six representative DEP genes at the mRNA level was consistent with their protein expression changes. CONCLUSION Wheat seed germination is a complex process with imbibition, stirring, and germination stages, which involve a series of physiological, morphological, and proteomic changes. The first process is a rapid water uptake, in which the seed coat becomes softer and the physical state of storage materials change gradually. Then the germinated seed enters the second process (a plateau phase) and the third process (the embryonic axes elongation). Seed embryo and endosperm display distinct differentially expressed proteins, and their synergistic expression mechanisms provide a basis for the normal germination of wheat seeds.
Collapse
Affiliation(s)
- Miao He
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Chong Zhu
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Kun Dong
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Ting Zhang
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Zhiwei Cheng
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Jiarui Li
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA.
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, 100048, China.
- Hubei Collaborative Innovation Center for Grain Industry, 434025, Jingzhou, China.
| |
Collapse
|
25
|
ATP synthase: the right size base model for nanomotors in nanomedicine. ScientificWorldJournal 2014; 2014:567398. [PMID: 24605056 PMCID: PMC3925597 DOI: 10.1155/2014/567398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/05/2013] [Indexed: 11/17/2022] Open
Abstract
Nanomedicine results from nanotechnology where molecular scale minute precise nanomotors can be used to treat disease conditions. Many such biological nanomotors are found and operate in living systems which could be used for therapeutic purposes. The question is how to build nanomachines that are compatible with living systems and can safely operate inside the body? Here we propose that it is of paramount importance to have a workable base model for the development of nanomotors in nanomedicine usage. The base model must placate not only the basic requirements of size, number, and speed but also must have the provisions of molecular modulations. Universal occurrence and catalytic site molecular modulation capabilities are of vital importance for being a perfect base model. In this review we will provide a detailed discussion on ATP synthase as one of the most suitable base models in the development of nanomotors. We will also describe how the capabilities of molecular modulation can improve catalytic and motor function of the enzyme to generate a catalytically improved and controllable ATP synthase which in turn will help in building a superior nanomotor. For comparison, several other biological nanomotors will be described as well as their applications for nanotechnology.
Collapse
|
26
|
Ito Y, Yoshidome T, Matubayasi N, Kinoshita M, Ikeguchi M. Molecular dynamics simulations of yeast F1-ATPase before and after 16° rotation of the γ subunit. J Phys Chem B 2013; 117:3298-307. [PMID: 23452086 DOI: 10.1021/jp312499u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have recently proposed the "packing exchange mechanism" for F1-ATPase, wherein the perturbation by a substrate binding/release or an ATP hydrolysis is followed by the reorganization of the asymmetric packing structure of the α3β3 complex, accompanying the γ subunit rotation. As part of a further investigation of this rotational mechanism, we performed all-atom molecular dynamics simulations for yeast F1-ATPase both before and after a 16° rotation of the γ subunit triggered by a Pi release. We analyzed the structural fluctuations, the subunit interface interactions, and the dynamics of the relative subunit arrangements before and after the rotation. We found that with the Pi release the αEβE subunit interface becomes looser, which also allosterically makes the αDPβDP subunit interface looser. This structural communication between these interfaces takes place through a tightening of the αTPβTP subunit interface. The γ subunit interacts less strongly with αDP and βDP and more strongly with αTP and βTP. After the Pi release, the tightly packed interfaces are reorganized from the interfaces around βDP to those around βTP, inducing the 16° rotation. These results, which are consistent with the packing exchange mechanism, allow us to deduce a view of the structural change during the 40° rotation.
Collapse
Affiliation(s)
- Yuko Ito
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29, Yokohama, 230-0045 Japan
| | | | | | | | | |
Collapse
|
27
|
Zhang J, Li Z, Zhang H, Wang J, Liu Y, Chen G. Rapid detection of several foodborne pathogens by F0F1-ATPase molecular motor biosensor. J Microbiol Methods 2013; 93:37-41. [PMID: 23361046 DOI: 10.1016/j.mimet.2013.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/20/2013] [Accepted: 01/20/2013] [Indexed: 11/16/2022]
Abstract
F0F1-ATPase within chromatophore was constructed as a molecular motor biosensor through ε-subunit antibody-biotin-streptavidin-biotin-AC5-Sulfo-Osu system. Based on probe-DNA specific binding, DNA of several foodborne pathogens Listeria monocytogenes, Salmonella typhimurium, Vibrio parahaemolyticus and Vibrio cholerae was specifically captured by F0F1-ATPase molecular motor biosensors. Loads of DNA decreased the rotation rate of F0F1-ATPase, and led to the decrease of ATP synthesis. The detection of pathogens based on proton flux change driven by ATP-synthesis of F0F1-ATPase, which was indicated by F-DHPE, was monitored by a fluorescence spectrometer. The results demonstrate that the F0F1-ATPase molecular motor biosensor can specifically detect bacterial DNA at low concentration level, and will be a convenient, quick, and promising tool for detecting pathogens.
Collapse
Affiliation(s)
- Jie Zhang
- Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing, China
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
In this article, I reflect on research on two ATPases. The first is F(1)F(0)-ATPase, also known as ATP synthase. It is the terminal enzyme in oxidative phosphorylation and famous as a nanomotor. Early work on mitochondrial enzyme involved purification in large amount, followed by deduction of subunit composition and stoichiometry and determination of molecular sizes of holoenzyme and individual subunits. Later work on Escherichia coli enzyme utilized mutagenesis and optical probes to reveal the molecular mechanism of ATP hydrolysis and detailed facets of catalysis. The second ATPase is P-glycoprotein, which confers multidrug resistance, notably to anticancer drugs, in mammalian cells. Purification of the protein in large quantity allowed detailed characterization of catalysis, formulation of an alternating sites mechanism, and recently, advances in structural characterization.
Collapse
Affiliation(s)
- Alan E Senior
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
29
|
Demerdash ONA, Mitchell JC. Density-cluster NMA: A new protein decomposition technique for coarse-grained normal mode analysis. Proteins 2012; 80:1766-79. [PMID: 22434479 DOI: 10.1002/prot.24072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/13/2012] [Accepted: 03/12/2012] [Indexed: 11/10/2022]
Abstract
Normal mode analysis has emerged as a useful technique for investigating protein motions on long time scales. This is largely due to the advent of coarse-graining techniques, particularly Hooke's Law-based potentials and the rotational-translational blocking (RTB) method for reducing the size of the force-constant matrix, the Hessian. Here we present a new method for domain decomposition for use in RTB that is based on hierarchical clustering of atomic density gradients, which we call Density-Cluster RTB (DCRTB). The method reduces the number of degrees of freedom by 85-90% compared with the standard blocking approaches. We compared the normal modes from DCRTB against standard RTB using 1-4 residues in sequence in a single block, with good agreement between the two methods. We also show that Density-Cluster RTB and standard RTB perform well in capturing the experimentally determined direction of conformational change. Significantly, we report superior correlation of DCRTB with B-factors compared with 1-4 residue per block RTB. Finally, we show significant reduction in computational cost for Density-Cluster RTB that is nearly 100-fold for many examples.
Collapse
Affiliation(s)
- Omar N A Demerdash
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
30
|
Blum DJ, Ko YH, Pedersen PL. Mitochondrial ATP Synthase Catalytic Mechanism: A Novel Visual Comparative Structural Approach Emphasizes Pivotal Roles for Mg2+ and P-Loop Residues in Making ATP. Biochemistry 2012; 51:1532-46. [DOI: 10.1021/bi201595v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David J. Blum
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725
North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Young H. Ko
- Cancer Cure Med, LLC, 300 Redland Court, Suite 212, Owings Mills, Maryland
21117, United States
| | - Peter L. Pedersen
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725
North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| |
Collapse
|
31
|
Buchachenko AL, Kuznetsov DA, Breslavskaya NN. Chemistry of enzymatic ATP synthesis: an insight through the isotope window. Chem Rev 2012; 112:2042-58. [PMID: 22277055 DOI: 10.1021/cr200142a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anatoly L Buchachenko
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119991 Moscow, Russian Federation.
| | | | | |
Collapse
|
32
|
Okazaki KI, Takada S. Structural comparison of F1-ATPase: interplay among enzyme structures, catalysis, and rotations. Structure 2011; 19:588-98. [PMID: 21481781 DOI: 10.1016/j.str.2011.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/13/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
F(1)-ATPase, a rotary motor powered by adenosine triphosphate hydrolysis, has been extensively studied by various methods. Here, we performed a systematic comparison of 29 X-ray crystal structures of F(1)-complexes, finding fine interplay among enzyme structures, catalysis, and rotations. First, analyzing the 87 structures of enzymatic αβ-subunits, we confirmed that the two modes, the hinge motion of β-subunit and the loose/tight motion of the αβ-interface, dominate the variations. The structural ensemble was nearly contiguous bridging three clusters, αβ(TP), αβ(DP), and αβ(E). Second, the catalytic site analysis suggested the correlation between the phosphate binding and the tightening of the αβ-interface. Third, addressing correlations of enzymatic structures with the orientations of the central stalk γ, we found that the γ rotation highly correlates with loosening of αβ(E)-interface and β(DP) hinge motions. Finally, calculating the helix 6 angle of β, we identified the recently observed partially closed conformation being consistent with β(HC).
Collapse
Affiliation(s)
- Kei-ichi Okazaki
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
33
|
Ahmad Z, Okafor F, Laughlin TF. Role of Charged Residues in the Catalytic Sites of Escherichia coli ATP Synthase. JOURNAL OF AMINO ACIDS 2011; 2011:785741. [PMID: 22312470 PMCID: PMC3268026 DOI: 10.4061/2011/785741] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/21/2011] [Indexed: 11/21/2022]
Abstract
Here we describe the role of charged amino acids at the catalytic sites of Escherichia coli ATP synthase. There are four positively charged and four negatively charged residues in the vicinity of of E. coli ATP synthase catalytic sites. Positive charges are contributed by three arginine and one lysine, while negative charges are contributed by two aspartic acid and two glutamic acid residues. Replacement of arginine with a neutral amino acid has been shown to abrogate phosphate binding, while restoration of phosphate binding has been accomplished by insertion of arginine at the same or a nearby location. The number and position of positive charges plays a critical role in the proper and efficient binding of phosphate. However, a cluster of many positive charges inhibits phosphate binding. Moreover, the presence of negatively charged residues seems a requisite for the proper orientation and functioning of positively charged residues in the catalytic sites. This implies that electrostatic interactions between amino acids are an important constituent of initial phosphate binding in the catalytic sites. Significant loss of function in growth and ATPase activity assays in mutants generated through charge modulations has demonstrated that precise location and stereochemical interactions are of paramount importance.
Collapse
Affiliation(s)
- Zulfiqar Ahmad
- Department of Biology, Alabama A&M University, P.O. Box 610, Normal, AL 35762, USA
| | | | | |
Collapse
|
34
|
Qian J, Liang J. Monte Carlo simulation from proton slip to "coupled" proton flow in ATP synthase based on the bi-site mechanism. Biosystems 2011; 105:233-7. [PMID: 21664229 DOI: 10.1016/j.biosystems.2011.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 03/04/2011] [Accepted: 05/05/2011] [Indexed: 11/17/2022]
Abstract
ATP synthase couples proton flow to ATP synthesis, but is leaky to protons at very low nucleotide concentration. Based on the bi-site mechanism, we simulated the proton conduction from proton slip to "coupled" proton flow in ATP synthase using the Monte Carlo method. Good agreement is obtained between the simulated and available experimental results. Our model provides deeper insight into the nucleotide dependence of ATP catalysis, and the kinetic cooperativity in three catalysis subunits. The results of simulation support the bi-site mechanism in ATP synthesis.
Collapse
Affiliation(s)
- Jun Qian
- School of Physics, Nankai University, No. 94 Weijing Road, Nankai District, Tianjin, China.
| | | |
Collapse
|
35
|
Residue propensities, discrimination and binding site prediction of adenine and guanine phosphates. BMC BIOCHEMISTRY 2011; 12:20. [PMID: 21569447 PMCID: PMC3113737 DOI: 10.1186/1471-2091-12-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 05/13/2011] [Indexed: 11/15/2022]
Abstract
Background Adenine and guanine phosphates are involved in a number of biological processes such as cell signaling, metabolism and enzymatic cofactor functions. Binding sites in proteins for these ligands are often detected by looking for a previously known motif by alignment based search. This is likely to miss those where a similar binding site has not been previously characterized and when the binding sites do not follow the rule described by predefined motif. Also, it is intriguing how proteins select between adenine and guanine derivative with high specificity. Results Residue preferences for AMP, GMP, ADP, GDP, ATP and GTP have been investigated in details with additional comparison with cyclic variants cAMP and cGMP. We also attempt to predict residues interacting with these nucleotides using information derived from local sequence and evolutionary profiles. Results indicate that subtle differences exist between single residue preferences for specific nucleotides and taking neighbor environment and evolutionary context into account, successful models of their binding site prediction can be developed. Conclusion In this work, we explore how single amino acid propensities for these nucleotides play a role in the affinity and specificity of this set of nucleotides. This is expected to be helpful in identifying novel binding sites for adenine and guanine phosphates, especially when a known binding motif is not detectable.
Collapse
|
36
|
Mesbah NM, Wiegel J. The Na(+)-translocating F₁F₀-ATPase from the halophilic, alkalithermophile Natranaerobius thermophilus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1133-42. [PMID: 21600188 DOI: 10.1016/j.bbabio.2011.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 04/30/2011] [Accepted: 05/03/2011] [Indexed: 11/18/2022]
Abstract
Natranaerobius thermophilus is an unusual anaerobic extremophile, it is halophilic and alkalithermophilic; growing optimally at 3.3-3.9M Na(+), pH(50°C) 9.5 and 53°C. The ATPase of N. thermophilus was characterized at the biochemical level to ascertain its role in life under hypersaline, alkaline, thermal conditions. The partially purified enzyme (10-fold purification) displayed the typical subunit pattern for F-type ATPases, with a 5-subunit F(1) portion and 3-subunit-F(O) portion. ATP hydrolysis by the purified ATPase was stimulated almost 4-fold by low concentrations of Na(+) (5mM); hydrolysis activity was inhibited by higher Na(+) concentrations. Partially purified ATPase was alkaliphilic and thermophilic, showing maximal hydrolysis at 47°C and the alkaline pH(50°C) of 9.3. ATP hydrolysis was sensitive to the F-type ATPase inhibitor N,N'-dicylohexylcarbodiimide and exhibited inhibition by both free Mg(2+) and free ATP. ATP synthesis by inverted membrane vesicles proceeded slowly and was driven by a Na(+)-ion gradient that was sensitive to the Na(+)-ionophore monensin. Analysis of the atp operon showed the presence of the Na(+)-binding motif in the c subunit (Q(33), E(66), T(67), T(68), Y(71)), and a complete, untruncated ε subunit; suggesting that ATP hydrolysis by the enzyme is regulated. Based on these properties, the F(1)F(O)-ATPase of N. thermophilus is a Na(+)-translocating ATPase used primarily for expelling cytoplasmic Na(+) that accumulates inside cells of N. thermophilus during alkaline stress. In support of this theory are the presence of the c subunit Na(+)-binding motif and the low rates of ATP synthesis observed. The complete ε subunit is hypothesized to control excessive ATP hydrolysis and preserve intracellular Na(+) needed by electrogenic cation/proton antiporters crucial for cytoplasmic acidification in the obligately alkaliphilic N. thermophilus.
Collapse
Affiliation(s)
- Noha M Mesbah
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
37
|
Kutzner C, Czub J, Grubmüller H. Keep It Flexible: Driving Macromolecular Rotary Motions in Atomistic Simulations with GROMACS. J Chem Theory Comput 2011; 7:1381-1393. [PMID: 21566696 PMCID: PMC3091370 DOI: 10.1021/ct100666v] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Indexed: 11/28/2022]
Abstract
We describe a versatile method to enforce the rotation of subsets of atoms, e.g., a protein subunit, in molecular dynamics (MD) simulations. In particular, we introduce a "flexible axis" technique that allows realistic flexible adaptions of both the rotary subunit as well as the local rotation axis during the simulation. A variety of useful rotation potentials were implemented for the GROMACS 4.5 MD package. Application to the molecular motor F(1)-ATP synthase demonstrates the advantages of the flexible axis approach over the established fixed axis rotation technique.
Collapse
Affiliation(s)
- Carsten Kutzner
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|
38
|
Ito Y, Oroguchi T, Ikeguchi M. Mechanism of the conformational change of the F1-ATPase β subunit revealed by free energy simulations. J Am Chem Soc 2011; 133:3372-80. [PMID: 21341660 DOI: 10.1021/ja1070152] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
F(1)-ATPase is an ATP-driven rotary motor enzyme. The β subunit changes its conformation from an open to a closed form upon ATP binding. The motion in the β subunit is regarded as a major driving force for rotation of the central stalk. In this Article, we explore the conformational change of the β subunit using all-atom free energy simulations with explicit solvent and propose a detailed mechanism for the conformational change. The β subunit conformational change is accomplished roughly in two characteristic steps: changing of the hydrogen-bond network around ATP and the dynamic movement of the C-terminal domain via sliding of the B-helix. The details of the former step agree well with experimental data. In the latter step, sliding of the B-helix enhances the hydrophobic stabilization due to the exclusion of water molecules from the interface and improved packing in the hydrophobic core. This step contributes to a decrease in free energy, leading to the generation of torque in the F(1)-ATPase upon ATP binding.
Collapse
Affiliation(s)
- Yuko Ito
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | |
Collapse
|
39
|
Ito Y, Ikeguchi M. Structural fluctuation and concerted motions in F(1)-ATPase: A molecular dynamics study. J Comput Chem 2010; 31:2175-85. [PMID: 20336770 DOI: 10.1002/jcc.21508] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
F(1)-ATPase is an adenosine tri-phosphate (ATP)-driven rotary motor enzyme. We investigated the structural fluctuations and concerted motions of subunits in F(1)-ATPase using molecular dynamics (MD) simulations. An MD simulation for the alpha(3)beta(3)gamma complex was carried out for 30 ns. Although large fluctuations of the N-terminal domain observed in simulations of the isolated beta(E) subunit were suppressed in the complex simulation, the magnitude of fluctuations in the C-terminal domain was clearly different among the three beta subunits (beta(E), beta(TP), and beta(DP)). Despite fairly similar conformations of the beta(TP) and beta(DP) subunits, the beta(DP) subunit exhibits smaller fluctuations in the C-terminal domain than the beta(TP) subunit due to their dissimilar interface configurations. Compared with the beta(TP) subunit, the beta(DP) subunit stably interacts with both the adjacent alpha(DP) and alpha(E) subunits. This sandwiched configuration in the beta(DP) subunit leads to strongly correlated motions between the beta(DP) and adjacent alpha subunits. The beta(DP) subunit exhibits an extensive network of highly correlated motions with bound ATP and the gamma subunit, as well as with the adjacent alpha subunits, suggesting that the structural changes occurring in the catalytically active beta(DP) subunit can effectively induce movements of the gamma subunit.
Collapse
Affiliation(s)
- Yuko Ito
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | |
Collapse
|
40
|
Shimo-Kon R, Muneyuki E, Sakai H, Adachi K, Yoshida M, Kinosita K. Chemo-mechanical coupling in F(1)-ATPase revealed by catalytic site occupancy during catalysis. Biophys J 2010; 98:1227-36. [PMID: 20371322 DOI: 10.1016/j.bpj.2009.11.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 11/04/2009] [Accepted: 11/18/2009] [Indexed: 11/18/2022] Open
Abstract
F(1)-ATPase is a rotary molecular motor in which the central gamma subunit rotates inside a cylinder made of alpha(3)beta(3) subunits. To clarify how ATP hydrolysis in three catalytic sites cooperate to drive rotation, we measured the site occupancy, the number of catalytic sites occupied by a nucleotide, while assessing the hydrolysis activity under identical conditions. The results show hitherto unsettled timings of ADP and phosphate releases: starting with ATP binding to a catalytic site at an ATP-waiting gamma angle defined as 0 degrees , phosphate is released at approximately 200 degrees , and ADP is released during quick rotation between 240 degrees and 320 degrees that is initiated by binding of a third ATP. The site occupancy remains two except for a brief moment after the ATP binding, but the third vacant site can bind a medium nucleotide weakly.
Collapse
Affiliation(s)
- Rieko Shimo-Kon
- Department of Physics, Faculty of Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
First partial proteome of the poultry pathogen Mycoplasma synoviae. Vet Microbiol 2010; 145:134-41. [DOI: 10.1016/j.vetmic.2010.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/03/2010] [Accepted: 03/08/2010] [Indexed: 02/04/2023]
|
42
|
Proton transport coupled ATP synthesis by the purified yeast H+ -ATP synthase in proteoliposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1828-37. [PMID: 20691145 DOI: 10.1016/j.bbabio.2010.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/27/2010] [Accepted: 07/29/2010] [Indexed: 11/20/2022]
Abstract
The H(+)/ATP synthase from yeast mitochondria, MF₀F₁, was purified and reconstituted into liposomes prepared from phosphatidylcholine and phosphatidic acid. Analysis by mass spectrometry revealed the presence of all subunits of the yeast enzyme with the exception of the K-subunit. The MF₀F₁ liposomes were energized by acid-base transitions (DeltapH) and a K(+)/valinomycin diffusion potential (Deltaphi). ATP synthesis was completely abolished by the addition of uncouplers as well as by the inhibitor oligomycin. The rate of ATP synthesis was optimized as a function of various parameters and reached a maximum value (turnover number) of 120s⁻¹ at a transmembrane pH difference of 3.2 units (at pH(in)=4.8 and pH(out)=8.0) and a Deltaphi of 133mV (Nernst potential). Functional studies showed that the monomeric MF₀F₁, was fully active in ATP synthesis. The turnover increased in a sigmoidal way with increasing internal and decreasing external proton concentration. The dependence of the turnover on the phosphate concentration and the dependence of K(M) on pH(out) indicated that the substrate for ATP synthesis is the monoanionic phosphate species H₂PO⁻₄.
Collapse
|
43
|
Abstract
F(o)F(1)-ATPase is an amazing molecular rotary motor at the nanoscale. Single molecule technologies have contributed much to the understanding of the motor. For example, fluorescence imaging and spectroscopy revealed the physical rotation of isolated F(1) and F(o), or F(o)F(1) holoenzyme. Magnetic tweezers were employed to manipulate the ATP synthesis/hydrolysis in F(1), and proton translation in F(o). Here, we briefly review our recent works including a systematic kinetics study of the holoenzyme, the mechanochemical coupling mechanism, reconstituting the delta-free F(o)F(1)-ATPase, direct observation of F(o) rotation at single molecule level and activity regulation through external links on the stator.
Collapse
Affiliation(s)
- Yao-Gen Shu
- Institute of Theoretical Physics, CAS, Beijing, 100190, China.
| | | | | |
Collapse
|
44
|
Pulido NO, Salcedo G, Pérez-Hernández G, José-Núñez C, Velázquez-Campoy A, García-Hernández E. Energetic effects of magnesium in the recognition of adenosine nucleotides by the F(1)-ATPase beta subunit. Biochemistry 2010; 49:5258-68. [PMID: 20518490 DOI: 10.1021/bi1006767] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nucleotide-induced conformational changes of the catalytic beta subunits play a crucial role in the rotary mechanism of F(1)-ATPase. To gain insights into the energetic bases that govern the recognition of nucleotides by the isolated beta subunit from thermophilic Bacillus PS3 (Tbeta), the binding of this monomer to Mg(II)-free and Mg(II)-bound adenosine nucleotides was characterized using high-precision isothermal titration calorimetry. The interactions of Mg(II) with free ATP or ADP were also measured calorimetrically. A model that considers simultaneously the interactions of Tbeta with Mg.ATP or with ATP and in which ATP is able to bind two Mg(II) atoms sequentially was used to determine the formation parameters of the Tbeta-Mg.ATP complex from calorimetric data. This analysis yielded significantly different DeltaH(b) and DeltaS(b) values in relation to those obtained using a single-binding site model, while DeltaG(b) was almost unchanged. Published calorimetric data for the titration of Tbeta with Mg.ADP [Perez-Hernandez, G., et al. (2002) Arch. Biochem. Biophys. 408, 177-183] were reanalyzed with the ternary model to determine the corresponding true binding parameters. Interactions of Tbeta with Mg.ATP, ATP, Mg.ADP, or ADP were enthalpically driven. Larger differences in thermodynamic properties were observed between Tbeta-Mg.ATP and Tbeta-ATP complexes than between Tbeta-Mg.ADP and Tbeta-ADP complexes or between Tbeta-Mg.ATP and Tbeta-Mg.ADP complexes. These binding data, in conjunction with those for the association of Mg(II) with free nucleotides, allowed for a determination of the energetic effects of the metal ion on the recognition of adenosine nucleotides by Tbeta [i.e., Tbeta.AT(D)P + Mg(II) right harpoon over left harpoon Tbeta.AT(D)P-Mg]. Because of a more favorable binding enthalpy, Mg(II) is recognized more avidly by the Tbeta.ATP complex, indicating better stereochemical complementarity than in the Tbeta.ADP complex. Furthermore, a structural-energetic analysis suggests that Tbeta adopts a more closed conformation when it is bound to Mg.ATP than to ATP or Mg.ADP, in agreement with recently published NMR data [Yagi, H., et al. (2009) J. Biol. Chem. 284, 2374-2382]. Using published binding data, a similar analysis of Mg(II) energetic effects was performed for the free energy change of F(1) catalytic sites, in the framework of bi- or tri-site binding models.
Collapse
Affiliation(s)
- Nancy O Pulido
- Instituto de Quimica, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico
| | | | | | | | | | | |
Collapse
|
45
|
Buchachenko AL, Kuznetsov DA, Breslavskaya NN. Ion-radical mechanism of enzymatic ATP synthesis: DFT calculations and experimental control. J Phys Chem B 2010; 114:2287-92. [PMID: 20095588 DOI: 10.1021/jp909992z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new, ion-radical mechanism of enzymatic ATP synthesis was recently discovered by using magnesium isotopes. It functions at a high concentration of MgCl(2) and includes electron transfer from the Mg(H(2)O)(m)(2+)(ADP(3-)) complex (m = 0-4) to the Mg(H(2)O)(n)(2+) complex as a primary reaction of ATP synthesis in catalytic sites of ATP synthase and kinases. Here, the structures and electron transfer reaction energies of magnesium complexes related to ATP synthesis are calculated in terms of DFT. ADP is modeled by pyrophosphate anions, protonated (HP(2)O(7)H(2-), HP(2)O(7)CH(3)(2-)) and deprotonated (HP(2)O(7)(3-), CH(3)P(2)O(7)(3-)). The reaction generates an ion-radical pair, composed of Mg(H(2)O)(n)(+) ion and pyrophosphate anion-radical coordinated to Mg(2+) ion. The addition of the latter to the substrate P=O bond results in ATP formation. Populations of the singlet and triplet states and singlet-triplet spin conversion in the pair are controlled by hyperfine coupling of unpaired electrons with magnetic (25)Mg and (31)P nuclei and by Zeeman interaction. Due to these two interactions, the yield of ATP is a function of nuclear magnetic moment and magnetic field; both of these effects were experimentally detected. Electron transfer reaction does not depend on m but strongly depends on n. It is exoergic and energy allowed at 0 < or = n << infinity for the deprotonated pyrophosphate anions and at 0 < or = n < 4 for the protonated ones; for other values of n, the reaction is energy deficient and forbidden. The boundary between exoergic and endoergic regimes corresponds to the trigger magnitude n* (n* = 4 for protonated anions and 6 < n* << infinity for deprotonated ones). These results explain why ATP synthesis occurs only in special devices, molecular enzymatic machines, but not in water (n = infinity). Biomedical consequences of the ion-radical enzymatic ATP synthesis are also discussed.
Collapse
Affiliation(s)
- Anatoly L Buchachenko
- N.N.Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119991 Moscow, Russian Federation.
| | | | | |
Collapse
|
46
|
|
47
|
Abstract
ATP hydrolysis is the driving force of many life processes, yet the exact nature of and contributions to the energetics of this reaction are far from being clear. In particular, it is unclear how much of the driving force of this reaction is due to the separation of the already dissociated ADP + P(i) moieties rather than to the chemical event. This fundamental issue is explored here by ab initio calculations that use different solvation models, and it is found that, while the calculations are sensitive to the theoretical approach used, it is quite likely that the dissociation of the charged fragments makes a significant contribution to the energetics of ATP hydrolysis.
Collapse
Affiliation(s)
- Shina C L Kamerlin
- Department of Chemistry (SGM 418), University of Southern California, 3620 McClintock Avenue, Los Angeles, California 90089, USA
| | | |
Collapse
|
48
|
Adachi K, Furuike S, Hossain MD, Itoh H, Kinosita K, Onoue Y, Shimo-Kon R. Chemo-Mechanical Coupling in the Rotary Molecular Motor F1-ATPase. SINGLE MOLECULE SPECTROSCOPY IN CHEMISTRY, PHYSICS AND BIOLOGY 2010. [DOI: 10.1007/978-3-642-02597-6_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
49
|
Romanovsky Y, Tikhonov AN. Molecular energy transducers of the living cell. Proton ATP synthase: a rotating molecular motor. ACTA ACUST UNITED AC 2010. [DOI: 10.3367/ufnr.0180.201009b.0931] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
50
|
Johnson KM, Swenson L, Opipari AW, Reuter R, Zarrabi N, Fierke CA, Börsch M, Glick GD. Mechanistic basis for differential inhibition of the F1Fo-ATPase by aurovertin. Biopolymers 2009; 91:830-40. [PMID: 19462418 DOI: 10.1002/bip.21262] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mitochondrial F(1)F(o)-ATPase performs the terminal step of oxidative phosphorylation. Small molecules that modulate this enzyme have been invaluable in helping decipher F(1)F(o)-ATPase structure, function, and mechanism. Aurovertin is an antibiotic that binds to the beta subunits in the F(1) domain and inhibits F(1)F(o)-ATPase-catalyzed ATP synthesis in preference to ATP hydrolysis. Despite extensive study and the existence of crystallographic data, the molecular basis of the differential inhibition and kinetic mechanism of inhibition of ATP synthesis by aurovertin has not been resolved. To address these questions, we conducted a series of experiments in both bovine heart mitochondria and E. coli membrane F(1)F(o)-ATPase. Aurovertin is a mixed, noncompetitive inhibitor of both ATP hydrolysis and synthesis with lower K(i) values for synthesis. At low substrate concentrations, inhibition is cooperative suggesting a stoichiometry of two aurovertin per F(1)F(o)-ATPase. Furthermore, aurovertin does not completely inhibit the ATP hydrolytic activity at saturating concentrations. Single-molecule experiments provide evidence that the residual rate of ATP hydrolysis seen in the presence of saturating concentrations of aurovertin results from a decrease in the binding change mechanism by hindering catalytic site interactions. The results from these studies should further the understanding of how the F(1)F(o)-ATPase catalyzes ATP synthesis and hydrolysis.
Collapse
Affiliation(s)
- Kathryn M Johnson
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | | | | | | | |
Collapse
|