1
|
Kiaie SH, Hatami Z, Nasr MS, Pazooki P, Hemmati S, Baradaran B, Valizadeh H. Pharmacological interaction and immune response of purinergic receptors in therapeutic modulation. Purinergic Signal 2024; 20:321-343. [PMID: 37843749 PMCID: PMC11303644 DOI: 10.1007/s11302-023-09966-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/10/2023] [Indexed: 10/17/2023] Open
Abstract
Nucleosides and purine nucleotides serve as transmitter and modulator agents that extend their functions beyond the cell. In this context, purinergic signaling plays a crucial role in regulating energy homeostasis and modulating metabolic alterations in tumor cells. Therefore, it is essential to consider the pharmacological targeting of purinergic receptors (PUR), which encompass the expression and inhibition of P1 receptors (metabotropic adenosine receptors) as well as P2 receptors (extracellular ATP/ADP) comprising P2X and P2Y receptors. Thus, the pharmacological interaction between inhibitors (such as RNA, monoclonal antibodies, and small molecules) and PUR represents a key aspect in facilitating the development of therapeutic interventions. Moreover, this review explores recent advancements in pharmacological inhibitors and the regulation of innate and adaptive immunity of PUR, specifically in relation to immunological and inflammatory responses. These responses encompass the release of pro-inflammatory cytokines (PIC), the production of reactive oxygen and nitrogen species (ROS and RNS), the regulation of T cells, and the activation of inflammasomes in all human leukocytes.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Hatami
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sadegh Nasr
- Department of Computer Science and Engineering Multi-Interprofessional Center for Health Informatics (MICHI), The University of Texas at Arlington, Arlington, TX, USA
| | - Pouya Pazooki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Hemmati
- Institute Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Valizadeh
- Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Schwarz FM, Müller V. Whole-cell biocatalysis for hydrogen storage and syngas conversion to formate using a thermophilic acetogen. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:32. [PMID: 32140177 PMCID: PMC7048051 DOI: 10.1186/s13068-020-1670-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/28/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND In times of global climate change, the conversion and capturing of inorganic CO2 have gained increased attention because of its great potential as sustainable feedstock in the production of biofuels and biochemicals. CO2 is not only the substrate for the production of value-added chemicals in CO2-based bioprocesses, it can also be directly hydrated to formic acid, a so-called liquid organic hydrogen carrier (LOHC), by chemical and biological catalysts. Recently, a new group of enzymes were discovered in the two acetogenic bacteria Acetobacterium woodii and Thermoanaerobacter kivui which catalyze the direct hydrogenation of CO2 to formic acid with exceptional high rates, the hydrogen-dependent CO2 reductases (HDCRs). Since these enzymes are promising biocatalysts for the capturing of CO2 and the storage of molecular hydrogen in form of formic acid, we designed a whole-cell approach for T. kivui to take advantage of using whole cells from a thermophilic organism as H2/CO2 storage platform. Additionally, T. kivui cells were used as microbial cell factories for the production of formic acid from syngas. RESULTS This study demonstrates the efficient whole-cell biocatalysis for the conversion of H2 + CO2 to formic acid in the presence of bicarbonate by T. kivui. Interestingly, the addition of KHCO3 not only stimulated formate formation dramatically but it also completely abolished unwanted side product formation (acetate) under these conditions and bicarbonate was shown to inhibit the membrane-bound ATP synthase. Cell suspensions reached specific formate production rates of 234 mmol gprotein -1 h-1 (152 mmol gCDW -1 h-1), the highest rates ever reported in closed-batch conditions. The volumetric formate production rate was 270 mmol L-1 h-1 at 4 mg mL-1. Additionally, this study is the first demonstration that syngas can be converted exclusively to formate using an acetogenic bacterium and high titers up to 130 mM of formate were reached. CONCLUSIONS The thermophilic acetogenic bacterium T. kivui is an efficient biocatalyst which makes this organism a promising candidate for future biotechnological applications in hydrogen storage, CO2 capturing and syngas conversion to formate.
Collapse
Affiliation(s)
- Fabian M. Schwarz
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Chen Z, He L, Li L, Chen L. The P2X7 purinergic receptor: An emerging therapeutic target in cardiovascular diseases. Clin Chim Acta 2018; 479:196-207. [PMID: 29366837 DOI: 10.1016/j.cca.2018.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 10/24/2022]
Abstract
The P2X7 purinergic receptor, a calcium permeable cationic channel, is activated by extracellular ATP. Most studies show that P2X7 receptor plays an important role in the nervous system diseases, immune response, osteoporosis and cancer. Mounting evidence indicates that P2X7 receptor is also associated with cardiovascular disease. For example, the P2X7 receptor activated by ATP can attenuate myocardial ischemia-reperfusion injury. By contrast, inhibition of P2X7 receptor decreases arrhythmia after myocardial infarction, prolongs cardiac survival after a long term heart transplant, alleviates the dilated cardiomyopathy and the autoimmune myocarditis process. The P2X7 receptor also mitigates vascular diseases including atherosclerosis, hypertension, thrombosis and diabetic retinopathy. This review focuses on the latest research on the role and therapeutic potential of P2X7 receptor in cardiovascular diseases.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Lu He
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| |
Collapse
|
4
|
Lodeyro AF, Castelli MV, Roveri OA. ATP hydrolysis-driven H(+) translocation is stimulated by sulfate, a strong inhibitor of mitochondrial ATP synthesis. J Bioenerg Biomembr 2008; 40:269-79. [PMID: 18846414 DOI: 10.1007/s10863-008-9177-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 08/30/2008] [Indexed: 12/01/2022]
Abstract
Sulfate is a partial inhibitor at low and a non-essential activator at high [ATP] of the ATPase activity of F(1). Therefore, a catalytically-competent ternary F(1) x ATP x sulfate complex can be formed. In addition, the ANS fluorescence enhancement driven by ATP hydrolysis in submitochondrial particles is also stimulated by sulfate, clearly showing that the ATP hydrolysis in its presence is coupled to H(+) translocation. However, sulfate is a strong linear inhibitor of the mitochondrial ATP synthesis. The inhibition was competitive (K (i) = 0.46 mM) with respect to Pi and mixed (K (i) = 0.60 and K'(i) = 5.6 mM) towards ADP. Since it is likely that sulfate exerts its effects by binding at the Pi binding subdomain of the catalytic site, we suggest that the catalytic site involved in the H(+) translocation driven by ATP hydrolysis has a more open conformation than the half-closed one (beta(HC)), which is an intermediate in ATP synthesis. Accordingly, ATP hydrolysis is not necessarily the exact reversal of ATP synthesis.
Collapse
Affiliation(s)
- Anabella F Lodeyro
- Sección Biología Molecular, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-Universidad Nacional de Rosario, Rosario, Argentina.
| | | | | |
Collapse
|
5
|
Pitson SM, Moretti PAB, Zebol JR, Zareie R, Derian CK, Darrow AL, Qi J, D'Andrea RJ, Bagley CJ, Vadas MA, Wattenberg BW. The nucleotide-binding site of human sphingosine kinase 1. J Biol Chem 2002; 277:49545-53. [PMID: 12393916 DOI: 10.1074/jbc.m206687200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine kinase catalyzes the formation of sphingosine 1-phosphate, a lipid second messenger that has been implicated in a number of agonist-driven cellular responses including mitogenesis, anti-apoptosis, and expression of inflammatory molecules. Despite the importance of sphingosine kinase, very little is known regarding its structure or mechanism of catalysis. Moreover, sphingosine kinase does not contain recognizable catalytic or substrate-binding sites, based on sequence motifs found in other kinases. Here we have elucidated the nucleotide-binding site of human sphingosine kinase 1 (hSK1) through a combination of site-directed mutagenesis and affinity labeling with the ATP analogue, FSBA. We have shown that Gly(82) of hSK1 is involved in ATP binding since mutation of this residue to alanine resulted in an enzyme with an approximately 45-fold higher K(m)((ATP)). We have also shown that Lys(103) is important in catalysis since an alanine substitution of this residue ablates catalytic activity. Furthermore, we have shown that this residue is covalently modified by FSBA. Our data, combined with amino acid sequence comparison, suggest a motif of SGDGX(17-21)K is involved in nucleotide binding in the sphingosine kinases. This motif differs in primary sequence from all previously identified nucleotide-binding sites. It does, however, share some sequence and likely structural similarity with the highly conserved glycine-rich loop, which is known to be involved in anchoring and positioning the nucleotide in the catalytic site of many protein kinases.
Collapse
Affiliation(s)
- Stuart M Pitson
- Hanson Institute, Division of Human Immunology, Institute of Medical and Veterinary Science, Frome Road, Adelaide SA 5000, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lodeyro AF, Calcaterra NB, Roveri OA. Inhibition of steady-state mitochondrial ATP synthesis by bicarbonate, an activating anion of ATP hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1506:236-43. [PMID: 11779557 DOI: 10.1016/s0005-2728(01)00221-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bicarbonate, an activating anion of ATP hydrolysis, inhibited ATP synthesis coupled to succinate oxidation in beef heart submitochondrial particles but diminished the lag time and increased the steady-state velocity of the (32)Pi-ATP exchange reaction. The latter effects exclude the possibility that bicarbonate is inducing an intrinsic uncoupling between ATP hydrolysis and proton translocation at the level of F(1)F(o) ATPase. The inhibition of ATP synthesis was competitive with respect to ADP at low fixed [Pi], mixed at high [Pi] and non-competitive towards Pi at any fixed [ADP]. From these results we can conclude that (i) bicarbonate does not bind to a Pi site in the mitochondrial F(1); (ii) it competes with the binding of ADP to a low-affinity site, likely the low-affinity non-catalytic nucleotide binding site. It is postulated that bicarbonate stimulates ATP hydrolysis and inhibits ATP synthesis by modulating the relative affinities of the catalytic site for ATP and ADP.
Collapse
Affiliation(s)
- A F Lodeyro
- Departamento de Química Biológica, Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | | | | |
Collapse
|
7
|
Berden JA, Hartog AF. Analysis of the nucleotide binding sites of mitochondrial ATP synthase provides evidence for a two-site catalytic mechanism. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:234-51. [PMID: 10838040 DOI: 10.1016/s0005-2728(00)00076-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- J A Berden
- E.C. Slater Institute, BioCentrum, Plantage Muidergracht 12, 1018 TV, Amsterdam, The Netherlands.
| | | |
Collapse
|
8
|
One of the non-exchangeable nucleotides of the mitochondrial F1-ATPase is bound at a beta-subunit: evidence for a non-rotatory two-site catalytic mechanism. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1412:79-93. [PMID: 10393252 DOI: 10.1016/s0005-2728(99)00054-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In active MF1, one of the two non-exchangeable tightly bound adenine nucleotides is an ATP, while the other is an ADP. The respective sites are called the T-site and the D-site. The activity of the enzyme correlates linearly with the amount of bound ATP, ADP at the T-site being inhibitory. When MF1 is stored at room temperature in 50% glycerol and 100 mM Tris-HCl (pH 7.3) after slow passage through a Sephadex column, the tightly bound ATP is slowly dephosphorylated to ADP which is subsequently released, without effect on activity. When enzyme with about one residual ADP left (at the D-site) was incubated at pH 7.3, after dilution of the glycerol, with 400 &mgr;M [14C]ATP under varying conditions, the amount of tightly bound nucleotide triphosphate again correlated well with activity, the residual ADP being bound at the D-site. Optimal results were obtained when the incubation was performed in the presence of a regenerating system. Binding of 2-azido-ATP instead of ATP to the T-site as a triphosphate, as indicated by the specific activity of the enzyme, appeared to be optimal when the binding was performed at pH 6.4 in the absence of Mg2+ and with high concentrations of the nucleotide. Under such conditions, 3 mol 2-azido-AXP per mol F1 remained tightly bound after ammonium sulfate precipitation and column centrifugation, in addition to about one residual ADP at the D-site. After a 2-min period of turnover with ATP/Mg2+ as substrate two mol 2-azido-AXP were left on the enzyme, of which one was bound at a beta-site. These results show that one of the non-catalytic nucleotide binding sites that contain tightly bound nucleotides, is a beta-site, in conflict with the requirements for a rotatory tri-site mechanism for ATP hydrolysis. This beta-site can further be identified with the T-site. The validity of these conclusions for F1 from other sources and for catalysis by membrane-bound enzyme is discussed.
Collapse
|
9
|
Enke DA, Kaldis P, Holmes JK, Solomon MJ. The CDK-activating kinase (Cak1p) from budding yeast has an unusual ATP-binding pocket. J Biol Chem 1999; 274:1949-56. [PMID: 9890950 DOI: 10.1074/jbc.274.4.1949] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cak1p is an essential protein kinase that phosphorylates and thereby activates the major cyclin-dependent kinase in budding yeast, Cdc28p. The sequence of Cak1p differs from other members of the protein kinase superfamily in several conserved regions. Cak1p lacks the highly conserved glycine loop motif (GXGXXG) that is found in the nucleotide binding fold of virtually all protein kinases and also lacks a number of conserved amino acids found at sites throughout the protein kinase core sequence. We have used kinetic and mutagenic analyses to investigate whether these sequence differences affect the nucleotide-binding properties of Cak1p. Although Cak1p differs dramatically from other protein kinases, it binds ATP with a reasonable affinity, with a KM of 4.8 microM. Mutations of the putative invariant lysine in Cak1p (Lys-31), homologous to a residue required for activity in virtually all protein kinases and that interacts with the ATP phosphates, moderately reduced the ability of Cak1p to bind ATP but did not dramatically affect the catalytic rate of the kinase. Similarly, Cak1p is insensitive to the ATP analog 5'-fluorosulfonylbenzoyladenosine, which inhibits most protein kinases through covalent modification of the invariant lysine. We found that Cak1p is tolerant of mutations within its glycine loop region. Remarkably, Cak1p remains functional even following truncation of its first 31 amino acids, including the glycine loop region and the invariant lysine. We conclude that the Cak1p nucleotide-binding pocket differs significantly from those of most other protein kinases and therefore might provide a specific target for an inhibitory drug.
Collapse
Affiliation(s)
- D A Enke
- Yale University School of Medicine, Department of Molecular Biophysics and Biochemistry, New Haven, Connecticut 06520-8024, USA
| | | | | | | |
Collapse
|
10
|
Kanuka H, Hisahara S, Sawamoto K, Shoji S, Okano H, Miura M. Proapoptotic activity of Caenorhabditis elegans CED-4 protein in Drosophila: implicated mechanisms for caspase activation. Proc Natl Acad Sci U S A 1999; 96:145-50. [PMID: 9874786 PMCID: PMC15107 DOI: 10.1073/pnas.96.1.145] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CED-4 protein plays an important role in the induction of programmed cell death in Caenorhabditis elegans through the activation of caspases. However, the precise mechanisms by which it activates caspases remain unknown. To investigate the conservation of CED-4 function in evolution, transgenic Drosophila lines that express CED-4 in the compound eye were generated. Ectopic expression of CED-4 in the eyes induced massive apoptotic cell death through caspase activation. An ATP-binding site (P-loop) mutation in CED-4 (K165R) causes a loss of function in its ability to activate Drosophila caspase, and an ATPase inhibitor blocks the CED-4-dependent caspase activity in Drosophila S2 cells. Immunoprecipitation analysis showed that both CED-4 and CED-4 (K165R) bind directly to Drosophila caspase drICE, and the overexpression of CED-4 (K165R) inhibits CED-4-, ecdysone-, or cycloheximide-dependent caspase activation in S2 cells. Furthermore, CED-4 (K165R) partially prevented cell death induced by CED-4 in Drosophila compound eyes. Thus, CED-4 function is evolutionarily conserved in Drosophila, and the molecular mechanisms by which CED-4 activates caspases might require ATP binding and direct interaction with the caspases.
Collapse
Affiliation(s)
- H Kanuka
- Department of Neuroanatomy, Biomedical Research Center, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
11
|
van der Zwet-de Graaff I, Hartog AF, Berden JA. Modification of membrane-bound F1 by p-fluorosulfonylbenzoyl-5'-adenosine: sites of binding and effect on activity. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1318:123-32. [PMID: 9030260 DOI: 10.1016/s0005-2728(96)00149-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bovine heart submitochondrial particles (smp) were incubated with p-fluorosulfonylbenzoyl-5'-adenosine (FSBA) in order to study the binding of this ligand and its effect on ATP synthesis and ATP hydrolysis in smp and to compare the results with those obtained with isolated F1. The binding was measured with the 14C-labeled compound. ATP hydrolysis was in all cases as much inhibited as succinate-driven ATP synthesis and ITP hydrolysis was more inhibited than ATP hydrolysis. The binding experiments show that modification of three nucleotide binding sites results in nearly complete inhibition of ATPase activity. In the presence of pyrophosphate up to 6 mol [14C]SBA/mol F1 can be bound. FSBA preferentially modifies amino acids of the alpha-subunits but also beta-subunits are modified. It is concluded that modification of both subunits results in inhibition of activity. The results are very well comparable with the results obtained with isolated F1, which indicates that our preparation of F1 is a good model for F1 in the intact system. Furthermore it is concluded that each alpha-subunit of F1 in smp, just like in the isolated form, contains two pockets where adenosine moieties can bind, one located above the P-loop, modifying alpha-Tyr-244 and alpha-Tyr-300 and the other one located below the P-loop where also the adenosine moiety of AD(T)P binds, modifying beta-Tyr-368.
Collapse
|