1
|
Gospodaryov DV. Alternative NADH dehydrogenase: A complex I backup, a drug target, and a tool for mitochondrial gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149529. [PMID: 39615731 DOI: 10.1016/j.bbabio.2024.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Alternative NADH dehydrogenase, also known as type II NADH dehydrogenase (NDH-2), catalyzes the same redox reaction as mitochondrial respiratory chain complex I. Specifically, it oxidizes reduced nicotinamide adenine dinucleotide (NADH) while simultaneously reducing ubiquinone to ubiquinol. However, unlike complex I, this enzyme is non-proton pumping, comprises of a single subunit, and is resistant to rotenone. Initially identified in bacteria, fungi and plants, NDH-2 was subsequently discovered in protists and certain animal taxa including sea squirts. The gene coding for NDH-2 is also present in the genomes of some annelids, tardigrades, and crustaceans. For over two decades, NDH-2 has been investigated as a potential substitute for defective complex I. In model organisms, NDH-2 has been shown to ameliorate a broad spectrum of conditions associated with complex I malfunction, including symptoms of Parkinson's disease. Recently, lifespan extension has been observed in animals expressing NDH-2 in a heterologous manner. A variety of mechanisms have been put forward by which NDH-2 may extend lifespan. Such mechanisms include the activation of pro-longevity pathways through modulation of the NAD+/NADH ratio, decreasing production of reactive oxygen species (ROS) in mitochondria, or then through moderate increases in ROS production followed by activation of defense pathways (mitohormesis). This review gives an overview of the latest research on NDH-2, including the structural peculiarities of NDH-2, its inhibitors, its role in the pathogenicity of mycobacteria and apicomplexan parasites, and its function in bacteria, fungi, and animals.
Collapse
Affiliation(s)
- Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, 76018, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
2
|
Karki BR, Macmillan AC, Vicente-Muñoz S, Greis KD, Romick LE, Cunningham JT. Evolutionary origins and innovations sculpting the mammalian PRPS enzyme complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.01.616059. [PMID: 39411161 PMCID: PMC11476008 DOI: 10.1101/2024.10.01.616059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The phosphoribosyl pyrophosphate synthetase (PRPS) enzyme conducts a chokepoint reaction connecting central carbon metabolism and nucleotide production pathways, making it essential for life1,2. Here, we show that the presence of multiple PRPS-encoding genes is a hallmark trait of eukaryotes, and we trace the evolutionary origins and define the individual functions of each of the five mammalian PRPS homologs - three isozymes (one testis-restricted)3,4 and two non-enzymatic associated proteins (APs)5,6 - which we demonstrate operate together as a large molecular weight complex capable of attaining a heterogeneous array of functional multimeric configurations. Employing a repertoire of isogenic fibroblast clones in all viable individual or combinatorial assembly states, we define preferential interactions between subunits, and we show that cells lacking PRPS2, PRPSAP1, and PRPSAP2 render PRPS1 into aberrant homo-oligomeric assemblies with diminished metabolic flux and impaired proliferative capacity. We demonstrate how numerous evolutionary innovations in the duplicated genes have created specialized roles for individual complex members and identify translational control mechanisms that enable fine-tuned regulation of PRPS assembly and activity, which provide clues into the positive and negative selective pressures that facilitate metabolic flexibility and tissue specialization in advanced lifeforms. Collectively, our study demonstrates how evolution has transformed a single PRPS gene into a multimeric complex endowed with functional and regulatory features that govern cellular biochemistry.
Collapse
Affiliation(s)
- Bibek R. Karki
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Austin C. Macmillan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sara Vicente-Muñoz
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Kenneth D. Greis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lindsey E. Romick
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA
| | - J. Tom Cunningham
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
3
|
Da Costa RT, Urquiza P, Perez MM, Du Y, Khong ML, Zheng H, Guitart-Mampel M, Elustondo PA, Scoma ER, Hambardikar V, Ueberheide B, Tanner JA, Cohen A, Pavlov EV, Haynes CM, Solesio ME. Mitochondrial inorganic polyphosphate is required to maintain proteostasis within the organelle. Front Cell Dev Biol 2024; 12:1423208. [PMID: 39050895 PMCID: PMC11266304 DOI: 10.3389/fcell.2024.1423208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
The existing literature points towards the presence of robust mitochondrial mechanisms aimed at mitigating protein dyshomeostasis within the organelle. However, the precise molecular composition of these mechanisms remains unclear. Our data show that inorganic polyphosphate (polyP), a polymer well-conserved throughout evolution, is a component of these mechanisms. In mammals, mitochondria exhibit a significant abundance of polyP, and both our research and that of others have already highlighted its potent regulatory effect on bioenergetics. Given the intimate connection between energy metabolism and protein homeostasis, the involvement of polyP in proteostasis has also been demonstrated in several organisms. For example, polyP is a bacterial primordial chaperone, and its role in amyloidogenesis has already been established. Here, using mammalian models, our study reveals that the depletion of mitochondrial polyP leads to increased protein aggregation within the organelle, following stress exposure. Furthermore, mitochondrial polyP is able to bind to proteins, and these proteins differ under control and stress conditions. The depletion of mitochondrial polyP significantly affects the proteome under both control and stress conditions, while also exerting regulatory control over gene expression. Our findings suggest that mitochondrial polyP is a previously unrecognized, and potent component of mitochondrial proteostasis.
Collapse
Affiliation(s)
- Renata T. Da Costa
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Pedro Urquiza
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Matheus M. Perez
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - YunGuang Du
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Amherst, MA, United States
| | - Mei Li Khong
- School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, United States
| | - Mariona Guitart-Mampel
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Pia A. Elustondo
- Biological Mass Spectrometry Core Facility, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ernest R. Scoma
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Vedangi Hambardikar
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University-Grossman School of Medicine, New York City, NY, United States
| | - Julian A. Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong SAR, China
| | - Alejandro Cohen
- Biological Mass Spectrometry Core Facility, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Evgeny V. Pavlov
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York City, NY, United States
| | - Cole M. Haynes
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Amherst, MA, United States
| | - Maria E. Solesio
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| |
Collapse
|
4
|
Hernansanz-Agustín P, Enríquez JA. Alternative respiratory oxidases to study the animal electron transport chain. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148936. [PMID: 36395975 DOI: 10.1016/j.bbabio.2022.148936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022]
Abstract
Oxidative phosphorylation is a common process to most organisms in which the main function is to generate an electrochemical gradient across the inner mitochondrial membrane (IMM) and to make energy available to the cell. However, plants, many fungi and some animals maintain non-energy conserving oxidases which serve as a bypass to coupled respiration. Namely, the alternative NADH:ubiquinone oxidoreductase NDI1, present in the complex I (CI)-lacking Saccharomyces cerevisiae, and the alternative oxidase, ubiquinol:oxygen oxidoreductase AOX, present in many organisms across different kingdoms. In the last few years, these alternative oxidases have been used to dissect previously indivisible processes in bioenergetics and have helped to discover, understand, and corroborate important processes in mitochondria. Here, we review how the use of alternative oxidases have contributed to the knowledge in CI stability, bioenergetics, redox biology, and the implications of their use in current and future research.
Collapse
Affiliation(s)
- Pablo Hernansanz-Agustín
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain; Centro de Investigaciones Biomédicas en Red en Fragilidad y Envejecimiento saludable (CIBERFES), 28029 Madrid, Spain.
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain; Centro de Investigaciones Biomédicas en Red en Fragilidad y Envejecimiento saludable (CIBERFES), 28029 Madrid, Spain.
| |
Collapse
|
5
|
Soldatov VO, Kubekina MV, Skorkina MY, Belykh AE, Egorova TV, Korokin MV, Pokrovskiy MV, Deykin AV, Angelova PR. Current advances in gene therapy of mitochondrial diseases. J Transl Med 2022; 20:562. [PMID: 36471396 PMCID: PMC9724384 DOI: 10.1186/s12967-022-03685-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases (MD) are a heterogeneous group of multisystem disorders involving metabolic errors. MD are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystem dysfunction with different clinical courses. Most primary MD are autosomal recessive but maternal inheritance (from mtDNA), autosomal dominant, and X-linked inheritance is also known. Mitochondria are unique energy-generating cellular organelles designed to survive and contain their own unique genetic coding material, a circular mtDNA fragment of approximately 16,000 base pairs. The mitochondrial genetic system incorporates closely interacting bi-genomic factors encoded by the nuclear and mitochondrial genomes. Understanding the dynamics of mitochondrial genetics supporting mitochondrial biogenesis is especially important for the development of strategies for the treatment of rare and difficult-to-diagnose diseases. Gene therapy is one of the methods for correcting mitochondrial disorders.
Collapse
Affiliation(s)
- Vladislav O Soldatov
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia.
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia.
| | - Marina V Kubekina
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Yu Skorkina
- Department of Biochemistry, Belgorod State National Research University, Belgorod, Russia
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia
| | - Andrei E Belykh
- Dioscuri Centre for Metabolic Diseases, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tatiana V Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail V Korokin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Mikhail V Pokrovskiy
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Alexey V Deykin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
6
|
Chemical genomics with pyrvinium identifies C1orf115 as a regulator of drug efflux. Nat Chem Biol 2022; 18:1370-1379. [PMID: 35970996 DOI: 10.1038/s41589-022-01109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Pyrvinium is a quinoline-derived cyanine dye and an approved anti-helminthic drug reported to inhibit WNT signaling and have anti-proliferative effects in various cancer cell lines. To further understand the mechanism by which pyrvinium is cytotoxic, we conducted a pooled genome-wide CRISPR loss-of-function screen in the human HAP1 cell model. The top drug-gene sensitizer interactions implicated the malate-aspartate and glycerol-3-phosphate shuttles as mediators of cytotoxicity to mitochondrial complex I inhibition including pyrvinium. By contrast, perturbation of the poorly characterized gene C1orf115/RDD1 resulted in strong resistance to the cytotoxic effects of pyrvinium through dysregulation of the major drug efflux pump ABCB1/MDR1. Interestingly, C1orf115/RDD1 was found to physically associate with ABCB1/MDR1 through proximity-labeling experiments and perturbation of C1orf115 led to mis-localization of ABCB1/MDR1. Our results are consistent with a model whereby C1orf115 modulates drug efflux through regulation of the major drug exporter ABCB1/MDR1.
Collapse
|
7
|
Tumor growth of neurofibromin-deficient cells is driven by decreased respiration and hampered by NAD + and SIRT3. Cell Death Differ 2022; 29:1996-2008. [PMID: 35393510 PMCID: PMC9525706 DOI: 10.1038/s41418-022-00991-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 01/03/2023] Open
Abstract
Neurofibromin loss drives neoplastic growth and a rewiring of mitochondrial metabolism. Here we report that neurofibromin ablation dampens expression and activity of NADH dehydrogenase, the respiratory chain complex I, in an ERK-dependent fashion, decreasing both respiration and intracellular NAD+. Expression of the alternative NADH dehydrogenase NDI1 raises NAD+/NADH ratio, enhances the activity of the NAD+-dependent deacetylase SIRT3 and interferes with tumorigenicity in neurofibromin-deficient cells. The antineoplastic effect of NDI1 is mimicked by administration of NAD+ precursors or by rising expression of the NAD+ deacetylase SIRT3 and is synergistic with ablation of the mitochondrial chaperone TRAP1, which augments succinate dehydrogenase activity further contributing to block pro-neoplastic metabolic changes. These findings shed light on bioenergetic adaptations of tumors lacking neurofibromin, linking complex I inhibition to mitochondrial NAD+/NADH unbalance and SIRT3 inhibition, as well as to down-regulation of succinate dehydrogenase. This metabolic rewiring could unveil attractive therapeutic targets for neoplasms related to neurofibromin loss.
Collapse
|
8
|
Di Magno L, Manni S, Di Pastena F, Coni S, Macone A, Cairoli S, Sambucci M, Infante P, Moretti M, Petroni M, Nicoletti C, Capalbo C, De Smaele E, Di Marcotullio L, Giannini G, Battistini L, Goffredo BM, Iorio E, Agostinelli E, Maroder M, Canettieri G. Phenformin Inhibits Hedgehog-Dependent Tumor Growth through a Complex I-Independent Redox/Corepressor Module. Cell Rep 2021; 30:1735-1752.e7. [PMID: 32049007 DOI: 10.1016/j.celrep.2020.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022] Open
Abstract
The antidiabetic drug phenformin displays potent anticancer activity in different tumors, but its mechanism of action remains elusive. Using Shh medulloblastoma as model, we show here that at clinically relevant concentrations, phenformin elicits a significant therapeutic effect through a redox-dependent but complex I-independent mechanism. Phenformin inhibits mitochondrial glycerophosphate dehydrogenase (mGPD), a component of the glycerophosphate shuttle, and causes elevations of intracellular NADH content. Inhibition of mGPD mimics phenformin action and promotes an association between corepressor CtBP2 and Gli1, thereby inhibiting Hh transcriptional output and tumor growth. Because ablation of CtBP2 abrogates the therapeutic effect of phenformin in mice, these data illustrate a biguanide-mediated redox/corepressor interplay, which may represent a relevant target for tumor therapy.
Collapse
Affiliation(s)
- Laura Di Magno
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Simona Manni
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Fiorella Di Pastena
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Sonia Coni
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Cairoli
- Division of Metabolism and Research Unit of metabolic Biochemistry, Children's Hospital and Research Institute Bambino Gesù IRCCS, 00146 Rome, Italy
| | - Manolo Sambucci
- IRCCS Santa Lucia Foundation, Neuroimmunology Unit, 00143 Rome, Italy
| | - Paola Infante
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Marta Moretti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Marialaura Petroni
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Carmine Nicoletti
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, 00161 Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Luca Battistini
- IRCCS Santa Lucia Foundation, Neuroimmunology Unit, 00143 Rome, Italy
| | - Bianca Maria Goffredo
- Division of Metabolism and Research Unit of metabolic Biochemistry, Children's Hospital and Research Institute Bambino Gesù IRCCS, 00146 Rome, Italy
| | - Egidio Iorio
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, 00185 Rome, Italy; International Polyamines Foundation-ONLUS, 00159 Rome, Italy
| | - Marella Maroder
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; International Polyamines Foundation-ONLUS, 00159 Rome, Italy.
| |
Collapse
|
9
|
Bottani E, Lamperti C, Prigione A, Tiranti V, Persico N, Brunetti D. Therapeutic Approaches to Treat Mitochondrial Diseases: "One-Size-Fits-All" and "Precision Medicine" Strategies. Pharmaceutics 2020; 12:E1083. [PMID: 33187380 PMCID: PMC7696526 DOI: 10.3390/pharmaceutics12111083] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Primary mitochondrial diseases (PMD) refer to a group of severe, often inherited genetic conditions due to mutations in the mitochondrial genome or in the nuclear genes encoding for proteins involved in oxidative phosphorylation (OXPHOS). The mutations hamper the last step of aerobic metabolism, affecting the primary source of cellular ATP synthesis. Mitochondrial diseases are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. The limited information of the natural history, the limitations of currently available preclinical models, coupled with the large variability of phenotypical presentations of PMD patients, have strongly penalized the development of effective therapies. However, new therapeutic strategies have been emerging, often with promising preclinical and clinical results. Here we review the state of the art on experimental treatments for mitochondrial diseases, presenting "one-size-fits-all" approaches and precision medicine strategies. Finally, we propose novel perspective therapeutic plans, either based on preclinical studies or currently used for other genetic or metabolic diseases that could be transferred to PMD.
Collapse
Affiliation(s)
- Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, 37134 Verona, Italy
| | - Costanza Lamperti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Clinic Düsseldorf (UKD), Heinrich Heine University (HHU), 40225 Dusseldorf, Germany;
| | - Valeria Tiranti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Nicola Persico
- Department of Clinical Science and Community Health, University of Milan, 20122 Milan, Italy;
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Brunetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
10
|
Chan K, Robert F, Oertlin C, Kapeller-Libermann D, Avizonis D, Gutierrez J, Handly-Santana A, Doubrovin M, Park J, Schoepfer C, Da Silva B, Yao M, Gorton F, Shi J, Thomas CJ, Brown LE, Porco JA, Pollak M, Larsson O, Pelletier J, Chio IIC. eIF4A supports an oncogenic translation program in pancreatic ductal adenocarcinoma. Nat Commun 2019; 10:5151. [PMID: 31723131 PMCID: PMC6853918 DOI: 10.1038/s41467-019-13086-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 10/18/2019] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with limited treatment options. Although metabolic reprogramming is a hallmark of many cancers, including PDA, previous attempts to target metabolic changes therapeutically have been stymied by drug toxicity and tumour cell plasticity. Here, we show that PDA cells engage an eIF4F-dependent translation program that supports redox and central carbon metabolism. Inhibition of the eIF4F subunit, eIF4A, using the synthetic rocaglate CR-1-31-B (CR-31) reduced the viability of PDA organoids relative to their normal counterparts. In vivo, CR-31 suppresses tumour growth and extends survival of genetically-engineered murine models of PDA. Surprisingly, inhibition of eIF4A also induces glutamine reductive carboxylation. As a consequence, combined targeting of eIF4A and glutaminase activity more effectively inhibits PDA cell growth both in vitro and in vivo. Overall, our work demonstrates the importance of eIF4A in translational control of pancreatic tumour metabolism and as a therapeutic target against PDA.
Collapse
Affiliation(s)
- Karina Chan
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Francis Robert
- Department of Biochemistry, Oncology and Goodman Cancer Centre, McGill University, Montreal, H3G 1Y6, QC, Canada
| | - Christian Oertlin
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Dana Kapeller-Libermann
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Daina Avizonis
- Department of Biochemistry, Oncology and Goodman Cancer Centre, McGill University, Montreal, H3G 1Y6, QC, Canada
| | - Johana Gutierrez
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Abram Handly-Santana
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Mikhail Doubrovin
- Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Julia Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Brandon Da Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- SUNY Downstate College of Medicine, SUNY Downstate Medical Center, Brooklyn, NY, 11203, USA
| | - Melissa Yao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Faith Gorton
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Junwei Shi
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Lauren E Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, 02215, USA
| | - John A Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, 02215, USA
| | - Michael Pollak
- Department of Medicine and Oncology, McGill University, Montreal, QC, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.
| | - Jerry Pelletier
- Department of Biochemistry, Oncology and Goodman Cancer Centre, McGill University, Montreal, H3G 1Y6, QC, Canada.
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
11
|
Arabidopsis thaliana alternative dehydrogenases: a potential therapy for mitochondrial complex I deficiency? Perspectives and pitfalls. Orphanet J Rare Dis 2019; 14:236. [PMID: 31665043 PMCID: PMC6821020 DOI: 10.1186/s13023-019-1185-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Complex I (CI or NADH:ubiquinone oxidoreductase) deficiency is the most frequent cause of mitochondrial respiratory chain defect. Successful attempts to rescue CI function by introducing an exogenous NADH dehydrogenase, such as the NDI1 from Saccharomyces cerevisiae (ScNDI1), have been reported although with drawbacks related to competition with CI. In contrast to ScNDI1, which is permanently active in yeast naturally devoid of CI, plant alternative NADH dehydrogenases (NDH-2) support the oxidation of NADH only when the CI is metabolically inactive and conceivably when the concentration of matrix NADH exceeds a certain threshold. We therefore explored the feasibility of CI rescue by NDH-2 from Arabidopsis thaliana (At) in human CI defective fibroblasts. RESULTS We showed that, other than ScNDI1, two different NDH-2 (AtNDA2 and AtNDB4) targeted to the mitochondria were able to rescue CI deficiency and decrease oxidative stress as indicated by a normalization of SOD activity in human CI-defective fibroblasts. We further demonstrated that when expressed in human control fibroblasts, AtNDA2 shows an affinity for NADH oxidation similar to that of CI, thus competing with CI for the oxidation of NADH as opposed to our initial hypothesis. This competition reduced the amount of ATP produced per oxygen atom reduced to water by half in control cells. CONCLUSIONS In conclusion, despite their promising potential to rescue CI defects, due to a possible competition with remaining CI activity, plant NDH-2 should be regarded with caution as potential therapeutic tools for human mitochondrial diseases.
Collapse
|
12
|
Differential Effects of Yeast NADH Dehydrogenase (Ndi1) Expression on Mitochondrial Function and Inclusion Formation in a Cell Culture Model of Sporadic Parkinson's Disease. Biomolecules 2019; 9:biom9040119. [PMID: 30934776 PMCID: PMC6523508 DOI: 10.3390/biom9040119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that exhibits aberrant protein aggregation and mitochondrial dysfunction. Ndi1, the yeast mitochondrial NADH dehydrogenase (complex I) enzyme, is a single subunit, internal matrix-facing protein. Previous studies have shown that Ndi1 expression leads to improved mitochondrial function in models of complex I-mediated mitochondrial dysfunction. The trans-mitochondrial cybrid cell model of PD was created by fusing mitochondrial DNA-depleted SH-SY5Y cells with platelets from a sporadic PD patient. PD cybrid cells reproduce the mitochondrial dysfunction observed in a patient's brain and periphery and form intracellular, cybrid Lewy bodies comparable to Lewy bodies in PD brain. To improve mitochondrial function and alter the formation of protein aggregates, Ndi1 was expressed in PD cybrid cells and parent SH-SY5Y cells. We observed a dramatic increase in mitochondrial respiration, increased mitochondrial gene expression, and increased PGC-1α gene expression in PD cybrid cells expressing Ndi1. Total cellular aggregated protein content was decreased but Ndi1 expression was insufficient to prevent cybrid Lewy body formation. Ndi1 expression leads to improved mitochondrial function and biogenesis signaling, both processes that could improve neuron survival during disease. However, other aspects of PD pathology such as cybrid Lewy body formation were not reduced. Consequently, resolution of mitochondrial dysfunction alone may not be sufficient to overcome other aspects of PD-related cellular pathology.
Collapse
|
13
|
Alternative respiratory chain enzymes: Therapeutic potential and possible pitfalls. Biochim Biophys Acta Mol Basis Dis 2018; 1865:854-866. [PMID: 30342157 DOI: 10.1016/j.bbadis.2018.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/07/2023]
Abstract
The alternative respiratory chain (aRC), comprising the alternative NADH dehydrogenases (NDX) and quinone oxidases (AOX), is found in microbes, fungi and plants, where it buffers stresses arising from restrictions on electron flow in the oxidative phosphorylation system. The aRC enzymes are also found in species belonging to most metazoan phyla, including some chordates and arthropods species, although not in vertebrates or in Drosophila. We postulated that the aRC enzymes might be deployed to alleviate pathological stresses arising from mitochondrial dysfunction in a wide variety of disease states. However, before such therapies can be contemplated, it is essential to understand the effects of aRC enzymes on cell metabolism and organismal physiology. Here we report and discuss new findings that shed light on the functions of the aRC enzymes in animals, and the unexpected benefits and detriments that they confer on model organisms. In Ciona intestinalis, the aRC is induced by hypoxia and by sulfide, but is unresponsive to other environmental stressors. When expressed in Drosophila, AOX results in impaired survival under restricted nutrition, in addition to the previously reported male reproductive anomalies. In contrast, it confers cold resistance to developing and adult flies, and counteracts cell signaling defects that underlie developmental dysmorphologies. The aRC enzymes may also influence lifespan and stress resistance more generally, by eliciting or interfering with hormetic mechanisms. In sum, their judicious use may lead to major benefits in medicine, but this will require a thorough characterization of their properties and physiological effects.
Collapse
|
14
|
Scott AJ, Walker SA, Krank JJ, Wilkinson AS, Johnson KM, Lewis EM, Wilkinson JC. AIF promotes a JNK1-mediated cadherin switch independently of respiratory chain stabilization. J Biol Chem 2018; 293:14707-14722. [PMID: 30093403 DOI: 10.1074/jbc.ra118.004022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/26/2018] [Indexed: 12/18/2022] Open
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein occasionally involved in cell death that primarily regulates mitochondrial energy metabolism under normal cellular conditions. AIF catalyzes the oxidation of NADH in vitro, yet the significance of this redox activity in cells remains unclear. Here, we show that through its enzymatic activity AIF is a critical factor for oxidative stress-induced activation of the mitogen-activated protein kinases JNK1 (c-Jun N-terminal kinase), p38, and ERK (extracellular signal-regulated kinase). AIF-dependent JNK1 signaling culminates in the cadherin switch, and genetic reversal of this switch leads to apoptosis when AIF is suppressed. Notably, this widespread ability of AIF to promote JNK signaling can be uncoupled from its more limited role in respiratory chain stabilization. Thus, AIF is a transmitter of extra-mitochondrial signaling cues with important implications for human development and disease.
Collapse
Affiliation(s)
- Andrew J Scott
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Sierra A Walker
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Joshua J Krank
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Amanda S Wilkinson
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Kaitlyn M Johnson
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Eric M Lewis
- the Department of Chemistry, Mathematics and Physics, Clarion University of Pennsylvania, Clarion, Pennsylvania 16214
| | - John C Wilkinson
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| |
Collapse
|
15
|
Titov DV, Cracan V, Goodman RP, Peng J, Grabarek Z, Mootha VK. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science 2016; 352:231-5. [PMID: 27124460 DOI: 10.1126/science.aad4017] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/25/2016] [Indexed: 12/16/2022]
Abstract
A decline in electron transport chain (ETC) activity is associated with many human diseases. Although diminished mitochondrial adenosine triphosphate production is recognized as a source of pathology, the contribution of the associated reduction in the ratio of the amount of oxidized nicotinamide adenine dinucleotide (NAD(+)) to that of its reduced form (NADH) is less clear. We used a water-forming NADH oxidase from Lactobacillus brevis (LbNOX) as a genetic tool for inducing a compartment-specific increase of the NAD(+)/NADH ratio in human cells. We used LbNOX to demonstrate the dependence of key metabolic fluxes, gluconeogenesis, and signaling on the cytosolic or mitochondrial NAD(+)/NADH ratios. Expression of LbNOX in the cytosol or mitochondria ameliorated proliferative and metabolic defects caused by an impaired ETC. The results underscore the role of reductive stress in mitochondrial pathogenesis and demonstrate the utility of targeted LbNOX for direct, compartment-specific manipulation of redox state.
Collapse
Affiliation(s)
- Denis V Titov
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA. Department of Systems Biology, Harvard Medical School, Boston, MA, USA. Broad Institute, Cambridge, MA, USA
| | - Valentin Cracan
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA. Department of Systems Biology, Harvard Medical School, Boston, MA, USA. Broad Institute, Cambridge, MA, USA
| | - Russell P Goodman
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA. Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Jun Peng
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Zenon Grabarek
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA. Broad Institute, Cambridge, MA, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA. Department of Systems Biology, Harvard Medical School, Boston, MA, USA. Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
16
|
Milasta S, Dillon CP, Sturm OE, Verbist KC, Brewer TL, Quarato G, Brown SA, Frase S, Janke LJ, Perry SS, Thomas PG, Green DR. Apoptosis-Inducing-Factor-Dependent Mitochondrial Function Is Required for T Cell but Not B Cell Function. Immunity 2016; 44:88-102. [PMID: 26795252 PMCID: PMC4936487 DOI: 10.1016/j.immuni.2015.12.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022]
Abstract
The role of apoptosis inducing factor (AIF) in promoting cell death versus survival remains controversial. We report that the loss of AIF in fibroblasts led to mitochondrial electron transport chain defects and loss of proliferation that could be restored by ectopic expression of the yeast NADH dehydrogenase Ndi1. Aif-deficiency in T cells led to decreased peripheral T cell numbers and defective homeostatic proliferation, but thymic T cell development was unaffected. In contrast, Aif-deficient B cells developed and functioned normally. The difference in the dependency of T cells versus B cells on AIF for function and survival correlated with their metabolic requirements. Ectopic Ndi1 expression rescued homeostatic proliferation of Aif-deficient T cells. Despite its reported roles in cell death, fibroblasts, thymocytes and B cells lacking AIF underwent normal death. These studies suggest that the primary role of AIF relates to complex I function, with differential effects on T and B cells.
Collapse
Affiliation(s)
- Sandra Milasta
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Christopher P Dillon
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Oliver E Sturm
- Department of Biology, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA
| | - Katherine C Verbist
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taylor L Brewer
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Giovanni Quarato
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Scott A Brown
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sharon Frase
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Laura J Janke
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - S Scott Perry
- Department of Flow Cytometry, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
17
|
Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 2014; 508:108-12. [PMID: 24670634 PMCID: PMC4012432 DOI: 10.1038/nature13110] [Citation(s) in RCA: 545] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/29/2014] [Indexed: 12/13/2022]
Abstract
As the concentrations of highly consumed nutrients, particularly glucose, are generally lower in tumours than in normal tissues1,2, cancer cells must adapt their metabolism to the tumour microenvironment. A better understanding of these adaptations might reveal cancer cell liabilities that can be exploited for therapeutic benefit. Here, we developed a continuous flow culture apparatus (Nutrostat) for maintaining proliferating cells in low nutrient media for long periods of time and used it to undertake competitive proliferation assays on a pooled collection of barcoded cancer cell lines cultured in low glucose conditions. Sensitivity to low glucose varies amongst cell lines, and an RNAi screen pinpointed mitochondrial oxidative phosphorylation (OXPHOS) as the major pathway required for optimal proliferation in low glucose. We found that cell lines most sensitive to low glucose are defective in the upregulation of OXPHOS normally caused by glucose limitation as a result of either mtDNA mutations in Complex I genes or impaired glucose utilization. These defects predict sensitivity to biguanides, anti-diabetic drugs that inhibit OXPHOS3,4, when cancer cells are grown in low glucose or as tumour xenografts. Remarkably, the biguanide sensitivity of cancer cells with mtDNA mutations was reversed by ectopic expression of yeast NDI1, a ubiquinone oxidoreductase that allows bypass of Complex I function5. Thus, we conclude that mtDNA mutations and impaired glucose utilization are potential biomarkers for identifying tumours with increased sensitivity to OXPHOS inhibitors.
Collapse
|
18
|
Ellinghaus P, Heisler I, Unterschemmann K, Haerter M, Beck H, Greschat S, Ehrmann A, Summer H, Flamme I, Oehme F, Thierauch K, Michels M, Hess-Stumpp H, Ziegelbauer K. BAY 87-2243, a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by inhibition of mitochondrial complex I. Cancer Med 2013; 2:611-24. [PMID: 24403227 PMCID: PMC3892793 DOI: 10.1002/cam4.112] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/27/2013] [Accepted: 07/05/2013] [Indexed: 12/31/2022] Open
Abstract
The activation of the transcription factor hypoxia-inducible factor-1 (HIF-1) plays an essential role in tumor development, tumor progression, and resistance to chemo- and radiotherapy. In order to identify compounds targeting the HIF pathway, a small molecule library was screened using a luciferase-driven HIF-1 reporter cell line under hypoxia. The high-throughput screening led to the identification of a class of aminoalkyl-substituted compounds that inhibited hypoxia-induced HIF-1 target gene expression in human lung cancer cell lines at low nanomolar concentrations. Lead structure BAY 87-2243 was found to inhibit HIF-1α and HIF-2α protein accumulation under hypoxic conditions in non-small cell lung cancer (NSCLC) cell line H460 but had no effect on HIF-1α protein levels induced by the hypoxia mimetics desferrioxamine or cobalt chloride. BAY 87-2243 had no effect on HIF target gene expression levels in RCC4 cells lacking Von Hippel–Lindau (VHL) activity nor did the compound affect the activity of HIF prolyl hydroxylase-2. Antitumor activity of BAY 87-2243, suppression of HIF-1α protein levels, and reduction of HIF-1 target gene expression in vivo were demonstrated in a H460 xenograft model. BAY 87-2243 did not inhibit cell proliferation under standard conditions. However under glucose depletion, a condition favoring mitochondrial ATP generation as energy source, BAY 87-2243 inhibited cell proliferation in the nanomolar range. Further experiments revealed that BAY 87-2243 inhibits mitochondrial complex I activity but has no effect on complex III activity. Interference with mitochondrial function to reduce hypoxia-induced HIF-1 activity in tumors might be an interesting therapeutic approach to overcome chemo- and radiotherapy-resistance of hypoxic tumors.
Collapse
|
19
|
Cannino G, El-Khoury R, Pirinen M, Hutz B, Rustin P, Jacobs HT, Dufour E. Glucose modulates respiratory complex I activity in response to acute mitochondrial dysfunction. J Biol Chem 2012; 287:38729-40. [PMID: 23007390 DOI: 10.1074/jbc.m112.386060] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proper coordination between glycolysis and respiration is essential, yet the regulatory mechanisms involved in sensing respiratory chain defects and modifying mitochondrial functions accordingly are unclear. To investigate the nature of this regulation, we introduced respiratory bypass enzymes into cultured human (HEK293T) cells and studied mitochondrial responses to respiratory chain inhibition. In the absence of respiratory chain inhibitors, the expression of alternative respiratory enzymes did not detectably alter cell physiology or mitochondrial function. However, in permeabilized cells NDI1 (alternative NADH dehydrogenase) bypassed complex I inhibition, whereas alternative oxidase (AOX) bypassed complex III or IV inhibition. In contrast, in intact cells the effects of the AOX bypass were suppressed by growth on glucose, whereas those produced by NDI1 were unaffected. Moreover, NDI1 abolished the glucose suppression of AOX-driven respiration, implicating complex I as the target of this regulation. Rapid Complex I down-regulation was partly released upon prolonged respiratory inhibition, suggesting that it provides an "emergency shutdown" system to regulate metabolism in response to dysfunctions of the oxidative phosphorylation. This system was independent of HIF1, mitochondrial superoxide, or ATP synthase regulation. Our findings reveal a novel pathway for adaptation to mitochondrial dysfunction and could provide new opportunities for combatting diseases.
Collapse
Affiliation(s)
- Giuseppe Cannino
- Institute of Biomedical Technology and Centre for Laboratory Medicine, Tampere University Hospital, University of Tampere, 33014 Tampere, Finland
| | | | | | | | | | | | | |
Collapse
|
20
|
Lu X, Xiao L, Wang L, Ruden DM. Hsp90 inhibitors and drug resistance in cancer: the potential benefits of combination therapies of Hsp90 inhibitors and other anti-cancer drugs. Biochem Pharmacol 2012; 83:995-1004. [PMID: 22120678 PMCID: PMC3299878 DOI: 10.1016/j.bcp.2011.11.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/31/2011] [Accepted: 11/14/2011] [Indexed: 12/11/2022]
Abstract
Hsp90 is a chaperone protein that interacts with client proteins that are known to be in the cell cycle, signaling and chromatin-remodeling pathways. Hsp90 inhibitors act additively or synergistically with many other drugs in the treatment of both solid tumors and leukemias in murine tumor models and humans. Hsp90 inhibitors potentiate the actions of anti-cancer drugs that target Hsp90 client proteins, including trastuzumab (Herceptin™) which targets Her2/Erb2B, as Hsp90 inhibition elicits the drug effects in cancer cell lines that are otherwise resistant to the drug. A phase II study of the Hsp90 inhibitor 17-AAG and trastuzumab showed that this combination therapy has anticancer activity in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. In this review, we discuss the results of Hsp90 inhibitors in combination with trastuzumab and other cancer drugs. We also discuss recent results from yeast focused on the genetics of drug resistance when Hsp90 is inhibited and the implications that this might have in understanding the effects of genetic variation in treating cancer in humans.
Collapse
Affiliation(s)
- Xiangyi Lu
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
| | - Li Xiao
- University of Alabama at Birmingham, Department of Immunology and Rheumatology, Birmingham, AL 35294
| | - Luan Wang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| | - Douglas M. Ruden
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| |
Collapse
|
21
|
Marella M, Seo BB, Thomas BB, Matsuno-Yagi A, Yagi T. Successful amelioration of mitochondrial optic neuropathy using the yeast NDI1 gene in a rat animal model. PLoS One 2010; 5:e11472. [PMID: 20628600 PMCID: PMC2900204 DOI: 10.1371/journal.pone.0011472] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 06/15/2010] [Indexed: 01/31/2023] Open
Abstract
Background Leber's hereditary optic neuropathy (LHON) is a maternally inherited disorder with point mutations in mitochondrial DNA which result in loss of vision in young adults. The majority of mutations reported to date are within the genes encoding the subunits of the mitochondrial NADH-quinone oxidoreductase, complex I. Establishment of animal models of LHON should help elucidate mechanism of the disease and could be utilized for possible development of therapeutic strategies. Methodology/Principal Findings We established a rat model which involves injection of rotenone-loaded microspheres into the optic layer of the rat superior colliculus. The animals exhibited the most common features of LHON. Visual loss was observed within 2 weeks of rotenone administration with no apparent effect on retinal ganglion cells. Death of retinal ganglion cells occurred at a later stage. Using our rat model, we investigated the effect of the yeast alternative NADH dehydrogenase, Ndi1. We were able to achieve efficient expression of the Ndi1 protein in the mitochondria of all regions of retinal ganglion cells and axons by delivering the NDI1 gene into the optical layer of the superior colliculus. Remarkably, even after the vision of the rats was severely impaired, treatment of the animals with the NDI1 gene led to a complete restoration of the vision to the normal level. Control groups that received either empty vector or the GFP gene had no effects. Conclusions/Significance The present study reports successful manifestation of LHON-like symptoms in rats and demonstrates the potential of the NDI1 gene therapy on mitochondrial optic neuropathies. Our results indicate a window of opportunity for the gene therapy to be applied successfully after the onset of the disease symptoms.
Collapse
Affiliation(s)
- Mathieu Marella
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Byoung Boo Seo
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Biju B. Thomas
- Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Akemi Matsuno-Yagi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Takao Yagi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Murai M, Yamashita T, Senoh M, Mashimo Y, Kataoka M, Kosaka H, Matsuno-Yagi A, Yagi T, Miyoshi H. Characterization of the ubiquinone binding site in the alternative NADH-quinone oxidoreductase of Saccharomyces cerevisiae by photoaffinity labeling. Biochemistry 2010; 49:2973-80. [PMID: 20192260 DOI: 10.1021/bi100005j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Ndi1 enzyme found in the mitochondrial membrane of Saccharomyces cerevisiae is an NDH-2-type alternative NADH-quinone oxidoreductase. As Ndi1 is expected to be a possible remedy for complex I defects of mammalian mitochondria, a detailed biochemical characterization of the enzyme is needed. To identify the ubiquinone (UQ) binding site in Ndi1, we conducted photoaffinity labeling using a photoreactive biotinylated UQ mimic (compound 2) synthesized following a concept of the least possible modification of the substituents on the quinone ring. Cleavage with CNBr of Ndi1 cross-linked by 2 revealed the UQ ring of 2 to be specifically cross-linked to the Phe281-Met410 region (130 amino acids). Digestion of the CNBr fragment with V8 protease and lysylendopeptidase (Lys-C) gave approximately 8 and approximately 4 kDa peptides, respectively. The approximately 8 kDa V8 digest was identified as the Thr329-Glu399 region (71 amino acids) by an N-terminal sequence analysis. Although the approximately 4 kDa Lys-C digest could not be identified by N-terminal sequence analysis, the band was thought to cover the Gly374-Lys405 region (32 amino acids). Taken together, the binding site of the Q ring of 2 must be located in a common region of the V8 protease, and Lys-C digests Gly374-Glu399 (26 amino acids). Superimposition of the Ndi1 sequence onto a three-dimensional structural model of NDH-2 from Escherichia coli suggested that the C-terminal portion of this region is close to the isoalloxazine ring of FAD.
Collapse
Affiliation(s)
- Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Maas MFPM, Sellem CH, Krause F, Dencher NA, Sainsard-Chanet A. Molecular gene therapy: overexpression of the alternative NADH dehydrogenase NDI1 restores overall physiology in a fungal model of respiratory complex I deficiency. J Mol Biol 2010; 399:31-40. [PMID: 20398675 DOI: 10.1016/j.jmb.2010.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 04/06/2010] [Accepted: 04/07/2010] [Indexed: 02/04/2023]
Abstract
Defects in oxidative phosphorylation lie at the heart of a wide variety of degenerative disorders, cancer, and aging. Here, we show, using the fungal model Podospora anserina, that the overexpression of the native mitochondrial matrix-faced type II NADH dehydrogenase NDI1, paralogue of the human apoptosis inducing factor AIF1, can fully restore all physiological consequences of respiratory complex I deficiency. We disrupted the 19.3-kDa subunit of the complex I catalytic core, orthologue of the human PSST subunit, leading to a complete absence of the complex without affecting the assembly and/or stability of the rest of the respiratory chain. This disruption caused a several-fold life span extension at the expense of both male and female fertility. The effect was generally similar but markedly milder than that caused by defects in the complex III/IV-dependent pathway and not associated with a clear reduction in the steady-state level of mitochondrial reactive oxygen species. Whereas the native expression of NDI1 was sufficient to overcome lethality, only the artificial, constitutive overexpression of NDI1 could fully remedy this deficiency: The latter strikingly restored both life span and fertility to levels indistinguishable from wild type, thus demonstrating its unique potential in molecular gene therapy.
Collapse
Affiliation(s)
- Marc F P M Maas
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette Cedex, France.
| | | | | | | | | |
Collapse
|
24
|
Barber-Singh J, Seo BB, Nakamaru-Ogiso E, Lau YS, Matsuno-Yagi A, Yagi T. Neuroprotective effect of long-term NDI1 gene expression in a chronic mouse model of Parkinson disorder. Rejuvenation Res 2010; 12:259-67. [PMID: 19653878 DOI: 10.1089/rej.2009.0854] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previously, we showed that the internal rotenone-insensitive nicotinamide adenine dinucleotide (NADH)-quinone oxidoreductase (NDI1) gene from Saccharomyces cerevisiae (baker's yeast) can be successfully inserted into the mitochondria of mice and rats and the expressed enzyme was found to be fully functional. In this study, we investigated the ability of the Ndi1 enzyme to protect the dopaminergic neurons in a chronic mouse model of Parkinson disorder. After expression of the NDI1 gene in the unilateral substantia nigra of male C57BL/6 mice for 8 months, a chronic Parkinsonian model was created by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) with probenecid and evaluated using neurochemical and behavioral responses 1-4 weeks post-MPTP/probenecid injection. We showed that expression of Ndi1 was able to significantly prevent the loss of dopamine and tyrosine hydroxylase as well as the dopaminergic transporters in the striatum of the chronic Parkinsonian mice. Behavioral assessment based on a methamphetamine-induced rotation test and spontaneous swing test further supported neurological preservation in the NDI1-treated Parkinsonian mice. The data presented in this study demonstrate a protective effect of the NDI1 gene in dopaminergic neurons, suggesting its therapeutic potential for Parkinson-like disorders.
Collapse
Affiliation(s)
- Jennifer Barber-Singh
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
25
|
Marella M, Seo BB, Nakamaru-Ogiso E, Greenamyre JT, Matsuno-Yagi A, Yagi T. Protection by the NDI1 gene against neurodegeneration in a rotenone rat model of Parkinson's disease. PLoS One 2008; 3:e1433. [PMID: 18197244 PMCID: PMC2175531 DOI: 10.1371/journal.pone.0001433] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 12/13/2007] [Indexed: 12/21/2022] Open
Abstract
It is widely recognized that mitochondrial dysfunction, most notably defects in the NADH-quinone oxidoreductase (complex I), is closely related to the etiology of sporadic Parkinson's disease (PD). In fact, rotenone, a complex I inhibitor, has been used for establishing PD models both in vitro and in vivo. A rat model with chronic rotenone exposure seems to reproduce pathophysiological conditions of PD more closely than acute mouse models as manifested by neuronal cell death in the substantia nigra and Lewy body-like cytosolic aggregations. Using the rotenone rat model, we investigated the protective effects of alternative NADH dehydrogenase (Ndi1) which we previously demonstrated to act as a replacement for complex I both in vitro and in vivo. A single, unilateral injection of recombinant adeno-associated virus carrying the NDI1 gene into the vicinity of the substantia nigra resulted in expression of the Ndi1 protein in the entire substantia nigra of that side. It was clear that the introduction of the Ndi1 protein in the substantia nigra rendered resistance to the deleterious effects caused by rotenone exposure as assessed by the levels of tyrosine hydroxylase and dopamine. The presence of the Ndi1 protein also prevented cell death and oxidative damage to DNA in dopaminergic neurons observed in rotenone-treated rats. Unilateral protection also led to uni-directional rotation of the rotenone-exposed rats in the behavioral test. The present study shows, for the first time, the powerful neuroprotective effect offered by the Ndi1 enzyme in a rotenone rat model of PD.
Collapse
Affiliation(s)
- Mathieu Marella
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Byoung Boo Seo
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Eiko Nakamaru-Ogiso
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - J. Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and the Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Akemi Matsuno-Yagi
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail: (AM); (TY)
| | - Takao Yagi
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail: (AM); (TY)
| |
Collapse
|
26
|
Escobar-Khondiker M, Höllerhage M, Muriel MP, Champy P, Bach A, Depienne C, Respondek G, Yamada ES, Lannuzel A, Yagi T, Hirsch EC, Oertel WH, Jacob R, Michel PP, Ruberg M, Höglinger GU. Annonacin, a natural mitochondrial complex I inhibitor, causes tau pathology in cultured neurons. J Neurosci 2007; 27:7827-37. [PMID: 17634376 PMCID: PMC6672878 DOI: 10.1523/jneurosci.1644-07.2007] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A neurodegenerative tauopathy endemic to the Caribbean island of Guadeloupe has been associated with the consumption of anonaceous plants that contain acetogenins, potent lipophilic inhibitors of complex I of the mitochondrial respiratory chain. To test the hypothesis that annonacin, a prototypical acetogenin, contributes to the etiology of the disease, we investigated whether annonacin affects the cellular distribution of the protein tau. In primary cultures of rat striatal neurons treated for 48 h with annonacin, there was a concentration-dependent decrease in ATP levels, a redistribution of tau from the axons to the cell body, and cell death. Annonacin induced the retrograde transport of mitochondria, some of which had tau attached to their outer membrane. Taxol, a drug that displaces tau from microtubules, prevented the somatic redistribution of both mitochondria and tau but not cell death. Antioxidants, which scavenged the reactive oxygen species produced by complex I inhibition, did not affect either the redistribution of tau or cell death. Both were prevented, however, by forced expression of the NDI1 nicotinamide adenine dinucleotide (NADH)-quinone-oxidoreductase of Saccharomyces cerevisiae, which can restore NADH oxidation in complex I-deficient mammalian cells and stimulation of energy production via anaerobic glycolysis. Consistently, other ATP-depleting neurotoxins (1-methyl-4-phenylpyridinium, 3-nitropropionic, and carbonyl cyanide m-chlorophenylhydrazone) reproduced the somatic redistribution of tau, whereas toxins that did not decrease ATP levels did not cause the redistribution of tau. Therefore, the annonacin-induced ATP depletion causes the retrograde transport of mitochondria to the cell soma and induces changes in the intracellular distribution of tau in a way that shares characteristics with some neurodegenerative diseases.
Collapse
Affiliation(s)
- Myriam Escobar-Khondiker
- Experimental Neurology, Philipps University, D-35033 Marburg, Germany
- INSERM, Unité 679, Experimental Neurology and Therapeutics, 75013 Paris, France
- Université Pierre et Marie Curie–Paris6, Faculté de Médecine, 75252 Paris, France
| | | | - Marie-Paule Muriel
- INSERM, Unité 679, Experimental Neurology and Therapeutics, 75013 Paris, France
- Université Pierre et Marie Curie–Paris6, Faculté de Médecine, 75252 Paris, France
| | - Pierre Champy
- Laboratoire de Pharmacognosie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8076 BioCIS, Faculté de Pharmacie Paris XI, 92296 Châtenay-Malabry, France
| | - Antoine Bach
- INSERM, Unité 679, Experimental Neurology and Therapeutics, 75013 Paris, France
- Université Pierre et Marie Curie–Paris6, Faculté de Médecine, 75252 Paris, France
| | - Christel Depienne
- INSERM, Unité 679, Experimental Neurology and Therapeutics, 75013 Paris, France
- Université Pierre et Marie Curie–Paris6, Faculté de Médecine, 75252 Paris, France
| | - Gesine Respondek
- Experimental Neurology, Philipps University, D-35033 Marburg, Germany
| | | | - Annie Lannuzel
- INSERM, Unité 679, Experimental Neurology and Therapeutics, 75013 Paris, France
- Université Pierre et Marie Curie–Paris6, Faculté de Médecine, 75252 Paris, France
- Department of Neurology, Centre Hospitalier Universitaire des Antilles et de la Guyane, Pointe-à-Pitre, 97159 Abymes, Guadeloupe, and
| | - Takao Yagi
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Etienne C. Hirsch
- INSERM, Unité 679, Experimental Neurology and Therapeutics, 75013 Paris, France
- Université Pierre et Marie Curie–Paris6, Faculté de Médecine, 75252 Paris, France
| | | | - Ralf Jacob
- Institute of Cytobiology, Philipps University, D-35037 Marburg, Germany
| | - Patrick P. Michel
- INSERM, Unité 679, Experimental Neurology and Therapeutics, 75013 Paris, France
- Université Pierre et Marie Curie–Paris6, Faculté de Médecine, 75252 Paris, France
| | - Merle Ruberg
- INSERM, Unité 679, Experimental Neurology and Therapeutics, 75013 Paris, France
- Université Pierre et Marie Curie–Paris6, Faculté de Médecine, 75252 Paris, France
| | | |
Collapse
|
27
|
DeCorby A, Gásková D, Sayles LC, Lemire BD. Expression of Ndi1p, an alternative NADH:ubiquinone oxidoreductase, increases mitochondrial membrane potential in a C. elegans model of mitochondrial disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1157-63. [PMID: 17706937 DOI: 10.1016/j.bbabio.2007.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/23/2007] [Accepted: 07/09/2007] [Indexed: 11/17/2022]
Abstract
The NADH:ubiquinone oxidoreductase or complex I of the mitochondrial respiratory chain is an intricate enzyme with a vital role in energy metabolism. Mutations affecting complex I can affect at least three processes; they can impair the oxidation of NADH, reduce the enzyme's ability to pump protons for the generation of a mitochondrial membrane potential and increase the production of damaging reactive oxygen species. We have previously developed a nematode model of complex I-associated mitochondrial dysfunction that features hallmark characteristics of mitochondrial disease, such as lactic acidosis and decreased respiration. We have expressed the Saccharomyces cerevisiae NDI1 gene, which encodes a single subunit NADH dehydrogenase, in a strain of Caenorhabditis elegans with an impaired complex I. Expression of Ndi1p produces marked improvements in animal fitness and reproduction, increases respiration rates and restores mitochondrial membrane potential to wild type levels. Ndi1p functionally integrates into the nematode respiratory chain and mitigates the deleterious effects of a complex I deficit. However, we have also shown that Ndi1p cannot substitute for the absence of complex I. Nevertheless, the yeast Ndi1p should be considered as a candidate for gene therapy in human diseases involving complex I.
Collapse
Affiliation(s)
- Adrienne DeCorby
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | |
Collapse
|
28
|
Kerscher S, Dröse S, Zickermann V, Brandt U. The three families of respiratory NADH dehydrogenases. Results Probl Cell Differ 2007; 45:185-222. [PMID: 17514372 DOI: 10.1007/400_2007_028] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Most reducing equivalents extracted from foodstuffs during oxidative metabolism are fed into the respiratory chains of aerobic bacteria and mitochondria by NADH:quinone oxidoreductases. Three families of enzymes can perform this task and differ remarkably in their complexity and role in energy conversion. Alternative or NDH-2-type NADH dehydrogenases are simple one subunit flavoenzymes that completely dissipate the redox energy of the NADH/quinone couple. Sodium-pumping NADH dehydrogenases (Nqr) that are only found in procaryotes contain several flavins and are integral membrane protein complexes composed of six different subunits. Proton-pumping NADH dehydrogenases (NDH-1 or complex I) are highly complicated membrane protein complexes, composed of up to 45 different subunits, that are found in bacteria and mitochondria. This review gives an overview of the origin, structural and functional properties and physiological significance of these three types of NADH dehydrogenase.
Collapse
Affiliation(s)
- Stefan Kerscher
- Molecular Bioenergetics Group, Centre of Excellence Macromolecular Complexes, Johann Wolfgang Goethe-Universität, 60590, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
29
|
Park JS, Li YF, Bai Y. Yeast NDI1 improves oxidative phosphorylation capacity and increases protection against oxidative stress and cell death in cells carrying a Leber's hereditary optic neuropathy mutation. Biochim Biophys Acta Mol Basis Dis 2007; 1772:533-42. [PMID: 17320357 PMCID: PMC1905846 DOI: 10.1016/j.bbadis.2007.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 12/21/2006] [Accepted: 01/16/2007] [Indexed: 12/26/2022]
Abstract
G11778A in the subunit ND4 gene of NADH dehydrogenase complex is the most common primary mutation found in Leber's hereditary optic neuropathy (LHON) patients. The NDI1 gene, which encodes the internal NADH-quinone oxidoreductase in Saccharomyces cerevisiae, was introduced into the nuclear genome of a mitochondrial defective human cell line, Le1.3.1, carrying the G11778A mutation. In transformant cell lines, LeNDI1-1 and -2, total and complex I-dependent respiration were fully restored and largely resistant to complex I inhibitor, rotenone, indicating a dominant role of NDI1 in the transfer of electrons in the host cells. Whereas the original mutant Le1.3.1 cell grows poorly in medium containing galactose, the transformants have a fully restored growth capacity in galactose medium, although the ATP production was not totally recovered. Furthermore, the increased oxidative stress in the cells carrying the G11778A mutation was alleviated in transformants, demonstrated by a decreased reactive oxygen species (ROS) level. Finally, transformants were also shown to be desensitized to induction to apoptosis and also exhibit greater resistance to paraquat-induced cell death. It is concluded that the yeast NDI1 enzyme can improve the oxidative phosphorylation capacity in cells carrying the G11778A mutation and protect the cells from oxidative stress and cell death.
Collapse
Affiliation(s)
- Jeong Soon Park
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
30
|
Yamashita T, Nakamaru-Ogiso E, Miyoshi H, Matsuno-Yagi A, Yagi T. Roles of bound quinone in the single subunit NADH-quinone oxidoreductase (Ndi1) from Saccharomyces cerevisiae. J Biol Chem 2007; 282:6012-20. [PMID: 17200125 DOI: 10.1074/jbc.m610646200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the biochemical basis for the function of the rotenone-insensitive internal NADH-quinone (Q) oxidoreductase (Ndi1), we have overexpressed mature Ndi1 in Escherichia coli membranes. The Ndi1 purified from the membranes contained one FAD and showed enzymatic activities comparable with the original Ndi1 isolated from Saccharomyces cerevisiae. When extracted with Triton X-100, the isolated Ndi1 did not contain Q. The Q-bound form was easily reconstituted by incubation of the Q-free Ndi1 enzyme with ubiquinone-6. We compared the properties of Q-bound Ndi1 enzyme with those of Q-free Ndi1 enzyme, with higher activity found in the Q-bound enzyme. Although both are inhibited by low concentrations of AC0-11 (IC(50) = 0.2 microm), the inhibitory mode of AC0-11 on Q-bound Ndi1 was distinct from that of Q-free Ndi1. The bound Q was slowly released from Ndi1 by treatment with NADH or dithionite under anaerobic conditions. This release of Q was prevented when Ndi1 was kept in the reduced state by NADH. When Ndi1 was incorporated into bovine heart submitochondrial particles, the Q-bound form, but not the Q-free form, established the NADH-linked respiratory activity, which was insensitive to piericidin A but inhibited by KCN. Furthermore, Ndi1 produces H(2)O(2) as isolated regardless of the presence of bound Q, and this H(2)O(2) was eliminated when the Q-bound Ndi1, but not the Q-free Ndi1, was incorporated into submitochondrial particles. The data suggest that Ndi1 bears at least two distinct Q sites: one for bound Q and the other for catalytic Q.
Collapse
Affiliation(s)
- Tetsuo Yamashita
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
31
|
D'Souza GGM, Boddapati SV, Weissig V. Gene therapy of the other genome: the challenges of treating mitochondrial DNA defects. Pharm Res 2006; 24:228-38. [PMID: 17180727 DOI: 10.1007/s11095-006-9150-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 08/17/2006] [Indexed: 01/08/2023]
Abstract
Human mitochondrial DNA is a 16.5 kb circular DNA molecule located inside the mitochondrial matrix. Although accounting for only about 1% of total cellular DNA, defects in mitochondrial DNA have been found to have major effects on human health. A single mtDNA mutation may cause a bewildering variety of clinical symptoms mainly involving the neuromuscular system at any age of onset. Despite significant advances in the understanding of mitochondrial DNA defects at a molecular level, the clinical diagnosis of mtDNA diseases remains a significant challenge and effective therapies for such diseases are as yet unavailable. In contrast to gene therapy for chromosomal DNA defects, mitochondrial gene therapy is a field that is still in its infancy and attempts towards gene therapy of the mitochondrial genome are rare. In this review we outline what we believe are the unique challenges associated with the correction of mtDNA mutations and summarize current approaches to gene therapy for the "other genome".
Collapse
Affiliation(s)
- Gerard G M D'Souza
- Bouvé College of Health Sciences, Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 211 Mugar Building, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
32
|
Yagi T, Seo BB, Nakamaru-Ogiso E, Marella M, Barber-Singh J, Yamashita T, Kao MC, Matsuno-Yagi A. Can a Single Subunit Yeast NADH Dehydrogenase (Ndi1) Remedy Diseases Caused by Respiratory Complex I Defects? Rejuvenation Res 2006; 9:191-7. [PMID: 16706641 DOI: 10.1089/rej.2006.9.191] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The proton-translocating NADH-quinone oxidoreductase (complex I) is one of five enzyme complexes in the oxidative phosphorylation system in mammalian mitochondria. Complex I is composed of 46 different subunits, 7 of which are encoded by mitochondrial DNA. Defects of complex I are involved in many human mitochondrial diseases; therefore, the authors proposed to use the NDI1 gene encoding a single subunit NADH dehydrogenase of Saccharomyces cerevisiae for repair of respiratory activity. The yeast NDI1 gene was successfully introduced into 10 mammalian cell lines (two of which were complex I-deficient mutants). The expressed Ndi1 protein was correctly targeted to the matrix side of the inner mitochondrial membranes, was fully functional, and restored the NADH oxidase activity to the complex I-deficient cells. The NDI1-transduced cells were more resistant to complex I inhibitors and diminished production of reactive oxygen species. It was further shown that the Ndi1 protein can be functionally expressed in tissues such as skeletal muscles and brain of rodents. The Ndi1 expression scarcely induced an inflammatory response as assessed by hematoxylin and eosin (H&E) staining. The Ndi1 protein expressed in the substantia nigra (SN) elicited protective effects against neurodegeneration caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment. The Ndi1 protein has a great potential as a molecular remedy for complex I deficiencies.
Collapse
Affiliation(s)
- Takao Yagi
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Reseach Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Yagi T, Seo BB, Nakamaru-Ogiso E, Marella M, Barber-Singh J, Yamashita T, Matsuno-Yagi A. Possibility of transkingdom gene therapy for Complex I diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:708-14. [PMID: 16581014 DOI: 10.1016/j.bbabio.2006.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 01/28/2006] [Accepted: 01/31/2006] [Indexed: 12/21/2022]
Abstract
Defects of complex I are involved in many human mitochondrial diseases, and therefore we have proposed to use the NDI1 gene encoding a single subunit NADH dehydrogenase of Saccharomyces cerevisiae for repair of respiratory activity. The yeast NDI1 gene was successfully introduced into mammalian cell lines. The expressed NDI1 protein was correctly targeted to the matrix side of the inner mitochondrial membranes, was fully functional and restored the NADH oxidase activity to the complex I-deficient cells. The NDI1-transduced cells were more resistant to complex I inhibitors and diminished production of reactive oxygen species induced by rotenone. It was further shown that the NDI1 protein can be functionally expressed in tissues such as skeletal muscles and the brain of rodents, which scarcely induced an inflammatory response. The use of NDI1 as a potential molecular therapy for complex I-deficient diseases is briefly discussed, including the proposed animal model.
Collapse
Affiliation(s)
- Takao Yagi
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Seo BB, Nakamaru-Ogiso E, Flotte TR, Matsuno-Yagi A, Yagi T. In vivo complementation of complex I by the yeast Ndi1 enzyme. Possible application for treatment of Parkinson disease. J Biol Chem 2006; 281:14250-5. [PMID: 16543240 DOI: 10.1074/jbc.m600922200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent studies suggest that dysfunction of the NADH-quinone oxidoreductase (complex I) is associated with a number of human diseases, including neurodegenerative disorders such as Parkinson disease. We have shown previously that the single subunit rotenone-insensitive NADH-quinone oxidoreductase (Ndi1) of Saccharomyces cerevisiae mitochondria can restore NADH oxidation in complex I-deficient mammalian cells. The Ndi1 enzyme is insensitive to complex I inhibitors such as rotenone and 1-methyl-4-phenylpyridinium ion, known as a metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). To test the possible use of the NDI1 gene as a therapeutic agent in vivo, we chose a mouse model of Parkinson disease. The NDI1-recombinant adeno-associated virus particles (rAAV-NDI1) were injected unilaterally into the substantia nigra of mice. The animals were then subjected to treatment with MPTP. The degree of neurodegeneration in the nigrostriatal system was assessed immunohistochemically through the analysis of tyrosine hydroxylase and glial fibrillary acidic protein. It was evident that the substantia nigra neurons on the side used for injection of rAAV-NDI1 retained a high level of tyrosine hydroxylase-positive cells, and the ipsilateral striatum exhibited significantly less denervation than the contralateral striatum. Furthermore, striatal concentrations of dopamine and its metabolites in the hemisphere that received rAAV-NDI1 were substantially higher than those of the untreated hemisphere, reaching more than 50% of the normal levels. These results indicate that the expressed Ndi1 protein elicits resistance to MPTP-induced neuronal injury. The present study is the first successful demonstration of complementation of complex I by the Ndi1 enzyme in animals.
Collapse
Affiliation(s)
- Byoung Boo Seo
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
35
|
Deng JH, Li Y, Park JS, Wu J, Hu P, Lechleiter J, Bai Y. Nuclear suppression of mitochondrial defects in cells without the ND6 subunit. Mol Cell Biol 2006; 26:1077-86. [PMID: 16428459 PMCID: PMC1347011 DOI: 10.1128/mcb.26.3.1077-1086.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we characterized a mouse cell line, 4A, carrying a mitochondrial DNA mutation in the subunit for respiratory complex I, NADH dehydrogenase, in the ND6 gene. This mutation abolished the complex I assembly and disrupted the respiratory function of complex I. We now report here that a galactose-resistant clone, 4AR, was isolated from the cells carrying the ND6 mutation. 4AR still contained the homoplasmic mutation, and apparently there was no ND6 protein synthesis, whereas the assembly of other complex I subunits into complex I was recovered. Furthermore, the respiratory activity and mitochondrial membrane potential were fully recovered. To investigate the genetic origin of this compensation, the mitochondrial DNA (mtDNA) from 4AR was transferred to a new nuclear background. The transmitochondrial lines failed to grow in galactose medium. We further transferred mtDNA with a nonsense mutation at the ND5 gene to the 4AR nuclear background, and a suppression for mitochondrial deficiency was observed. Our results suggest that change(s) in the expression of a certain nucleus-encoded factor(s) can compensate for the absence of the ND6 or ND5 subunit.
Collapse
Affiliation(s)
- Jian-Hong Deng
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Youfen Li
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Jeong Soon Park
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Jun Wu
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Peiqing Hu
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - James Lechleiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Yidong Bai
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Corresponding author. Mailing address: Department of Cellular and Structural Biology, University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229. Phone: (210) 567-0561. Fax: (210) 567-3803. E-mail:
| |
Collapse
|
36
|
Grad LI, Sayles LC, Lemire BD. Introduction of an additional pathway for lactate oxidation in the treatment of lactic acidosis and mitochondrial dysfunction in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2005; 102:18367-72. [PMID: 16344465 PMCID: PMC1311736 DOI: 10.1073/pnas.0506939102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial dysfunction, with an estimated incidence of 1 in 5,000 births, is associated with a wide variety of multisystem degenerative diseases. Among the most prevalent forms of dysfunction are defects in the NADH:ubiquinone oxidoreductase (complex I). Caenorhabditis elegans strains with complex I mutations exhibit characteristic features of human mitochondrial disease including decreased rates of respiration and lactic acidosis. We hypothesized that introducing an additional pathway for the direct oxidation of lactate would be beneficial for energy metabolism. The yeast CYB2 gene encodes an L-lactate:cytochrome c oxidoreductase that oxidizes lactate, donates electrons directly into the mitochondrial respiratory chain, and supports lactate-dependent respiration. Cyb2p expression markedly increases lifespan, fertility, respiration rates, and ATP content in complex I-deficient animals. Our results indicate that metabolic imbalance leading to lactic acidosis and energy depletion are central mechanisms of pathogenesis in mitochondrial dysfunction and that introduction of an additional pathway for lactate oxidation should be considered as a treatment.
Collapse
Affiliation(s)
- Leslie I Grad
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | | | |
Collapse
|
37
|
Melo AMP, Bandeiras TM, Teixeira M. New insights into type II NAD(P)H:quinone oxidoreductases. Microbiol Mol Biol Rev 2005; 68:603-16. [PMID: 15590775 PMCID: PMC539002 DOI: 10.1128/mmbr.68.4.603-616.2004] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type II NAD(P)H:quinone oxidoreductases (NDH-2) catalyze the two-electron transfer from NAD(P)H to quinones, without any energy-transducing site. NDH-2 accomplish the turnover of NAD(P)H, regenerating the NAD(P)(+) pool, and may contribute to the generation of a membrane potential through complexes III and IV. These enzymes are usually constituted by a nontransmembrane polypeptide chain of approximately 50 kDa, containing a flavin moiety. There are a few compounds that can prevent their activity, but so far no general specific inhibitor has been assigned to these enzymes. However, they have the common feature of being resistant to the complex I classical inhibitors rotenone, capsaicin, and piericidin A. NDH-2 have particular relevance in yeasts like Saccharomyces cerevisiae and in several prokaryotes, whose respiratory chains are devoid of complex I, in which NDH-2 keep the balance and are the main entry point of electrons into the respiratory chains. Our knowledge of these proteins has expanded in the past decade, as a result of contributions at the biochemical level and the sequencing of the genomes from several organisms. The latter showed that most organisms contain genes that potentially encode NDH-2. An overview of this development is presented, with special emphasis on microbial enzymes and on the identification of three subfamilies of NDH-2.
Collapse
Affiliation(s)
- Ana M P Melo
- Instituto de Tecnologia Quimica e Biológica, Universidade Nova de Lisboa, Av. da República, Apartado 127, 2781-901 Oeiras, Portugal.
| | | | | |
Collapse
|
38
|
Bai Y, Hu P, Park JS, Deng JH, Song X, Chomyn A, Yagi T, Attardi G. Genetic and functional analysis of mitochondrial DNA-encoded complex I genes. Ann N Y Acad Sci 2004; 1011:272-83. [PMID: 15126303 DOI: 10.1007/978-3-662-41088-2_26] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mammalian mitochondrial NADH dehydrogenase (complex I) is a multimeric complex consisting of at least 45 subunits, 7 of which are encoded by mitochondrial DNA (mtDNA). The function of these subunits is largely unknown. We have established an efficient method to isolate and characterize cells carrying mutations in various mtDNA-encoded complex I genes. With this method, 15 mouse cell lines with deficiencies in complex I-dependent respiration were obtained, and two near-homoplasmic mutations in mouse ND5 and ND6 genes were isolated. Furthermore, by generating a series of cell lines with the same nuclear background but different content of an mtDNA nonsense mutation, we analyzed the genetic and functional thresholds in mouse mitochondria. We found that in wild-type cells, about 40% of ND5 mRNA is in excess of that required to support a normal rate of ND5 subunit synthesis. However, there is no indication of compensatory upsurge in either transcription or translation with the increase in the proportion of mutant ND5 genes. Interestingly, the highest ND5 protein synthesis rate was just sufficient to support the maximum complex I-dependent respiration rate, suggesting a tight regulation at the translational level. In another line of research, we showed that the mitochondrial NADH-quinone oxidoreductase of Saccharomyces cerevisiae (NDI1), although consisting of a single subunit, can completely restore respiratory NADH dehydrogenase activity in mutant human cells that lack the essential mtDNA-encoded subunit ND4. In particular, in these transfected cells, the yeast enzyme becomes integrated into the human respiratory chain and fully restores the capacity of the cells to grow in galactose medium.
Collapse
Affiliation(s)
- Yidong Bai
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
BAI YIDONG, HU PEIQING, PARK JEONGSOON, DENG JIANHONG, SONG XIUFENG, CHOMYN ANNE, YAGI TAKAO, ATTARDI GIUSEPPE. Genetic and Functional Analysis of Mitochondrial DNA-Encoded Complex I Genes. Ann N Y Acad Sci 2004. [DOI: 10.1196/annals.1293.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Wood PM, Hollomon DW. A critical evaluation of the role of alternative oxidase in the performance of strobilurin and related fungicides acting at the Qo site of complex III. PEST MANAGEMENT SCIENCE 2003; 59:499-511. [PMID: 12741518 DOI: 10.1002/ps.655] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mitochondrial respiration conserves energy by linking NADH oxidation and electron-coupled proton translocation with ATP synthesis, through a core pathway involving three large protein complexes. Strobilurin fungicides block electron flow through one of these complexes (III), and disrupt energy supply. Despite an essential need for ATP throughout fungal disease development, strobilurins are largely preventative; indeed some diseases are not controlled at all, and several pathogens have quickly developed resistance. Target-site variation is not the only cause of these performance difficulties. Alternative oxidase (AOX) is a strobilurin-insensitive terminal oxidase that allows electrons from ubiquinol to bypass Complex III. Its synthesis is constitutive in some fungi but in many others is induced by inhibition of the main pathway. AOX provides a strobilurin-insensitive pathway for oxidation of NADH. Protons are pumped as electrons flow through Complex I, but energy conservation is less efficient than for the full respiratory chain. Salicylhydroxamic acid (SHAM) is a characteristic inhibitor of AOX, and several studies have explored the potentiation of strobilurin activity by SHAM. We present a kinetic-based model which relates changes in the extent of potentiation during different phases of disease development to a changing importance of energy efficiency. The model provides a framework for understanding the varying efficacy of strobilurin fungicides. In many cases, AOX can limit strobilurin effectiveness once an infection is established, but is unable to interfere significantly with strobilurin action during germination. A less stringent demand for energy efficiency during early disease development could lead to insensitivity towards this class of fungicides. This is discussed in relation to Botrytis cinerea, which is often poorly controlled by strobilurins. Mutations with a similar effect may explain evidence implicating AOX in resistance development in normally well-controlled plant pathogens, such as Venturia inaequalis.
Collapse
Affiliation(s)
- Paul M Wood
- Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| | | |
Collapse
|
41
|
Seo BB, Nakamaru-Ogiso E, Flotte TR, Yagi T, Matsuno-Yagi A. A single-subunit NADH-quinone oxidoreductase renders resistance to mammalian nerve cells against complex I inhibition. Mol Ther 2002; 6:336-41. [PMID: 12231169 DOI: 10.1006/mthe.2002.0674] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Numerous studies suggest that dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I) is associated with neurodegenerative disorders, such as Parkinson's disease and Huntington's disease. Development of methods to correct complex I defects seems important. We have previously shown that the single-subunit NADH dehydrogenase of Saccharomyces cerevisiae (Ndi1P) can work as a replacement for complex I in mammalian cells. Using a recombinant adeno-associated virus vector carrying the NDI1 gene, we now demonstrated that the Ndi1 enzyme was successfully expressed in the dopaminergic cell lines rat PC12 and mouse MN9D. The cells expressing the Ndi1 protein were resistant to known inhibitors of complex I, such as rotenone and pyridaben. In addition, the NDI1-transduced cells were still capable of morphological maturation as examined by induction of neurite outgrowth. Also, it was possible to infect the cells after the maturation. The expressed Ndi1 protein was located both in cell bodies and in neurites and was functionally active. It is conceivable that the NDI1 gene will be a promising tool in the treatment of neurodegenerative conditions caused by complex I inhibition.
Collapse
Affiliation(s)
- Byoung Boo Seo
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
42
|
Kerscher SJ, Eschemann A, Okun PM, Brandt U. External alternative NADH:ubiquinone oxidoreductase redirected to the internal face of the mitochondrial inner membrane rescues complex I deficiency in Yarrowia lipolytica. J Cell Sci 2001; 114:3915-21. [PMID: 11719558 DOI: 10.1242/jcs.114.21.3915] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alternative NADH:ubiquinone oxidoreductases are single subunit enzymes capable of transferring electrons from NADH to ubiquinone without contributing to the proton gradient across the respiratory membrane. The obligately aerobic yeast Yarrowia lipolytica has only one such enzyme, encoded by the NDH2 gene and located on the external face of the mitochondrial inner membrane. In sharp contrast to ndh2 deletions, deficiencies in nuclear genes for central subunits of proton pumping NADH:ubiquinone oxidoreductases (complex I) are lethal. We have redirected NDH2 to the internal face of the mitochondrial inner membrane by N-terminally attaching the mitochondrial targeting sequence of NUAM, the largest subunit of complex I. Lethality of complex I mutations was rescued by the internal, but not the external version of alternative NADH:ubiquinone oxidoreductase. Internal NDH2 also permitted growth in the presence of complex I inhibitors such as 2-decyl-4-quinazolinyl amine (DQA). Functional expression of NDH2 on both sides of the mitochondrial inner membrane indicates that alternative NADH:ubiquinone oxidoreductase requires no additional components for catalytic activity. Our findings also demonstrate that shuttle mechanisms for the transfer of redox equivalents from the matrix to the cytosolic side of the mitochondrial inner membrane are insufficient in Y. lipolytica.
Collapse
Affiliation(s)
- S J Kerscher
- Universitätsklinikum Frankfurt, Institut für Biochemie I, D-60590 Frankfurt am Main, Federal Republic of Germany.
| | | | | | | |
Collapse
|
43
|
Bai Y, Hájek P, Chomyn A, Chan E, Seo BB, Matsuno-Yagi A, Yagi T, Attardi G. Lack of complex I activity in human cells carrying a mutation in MtDNA-encoded ND4 subunit is corrected by the Saccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene. J Biol Chem 2001; 276:38808-13. [PMID: 11479321 DOI: 10.1074/jbc.m106363200] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene for the single subunit, rotenone-insensitive, and flavone-sensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae (NDI1) can completely restore the NADH dehydrogenase activity in mutant human cells that lack the essential mitochondrial DNA (mtDNA)-encoded subunit ND4. In particular, the NDI1 gene was introduced into the nuclear genome of the human 143B.TK(-) cell line derivative C4T, which carries a homoplasmic frameshift mutation in the ND4 gene. Two transformants with a low or high level of expression of the exogenous gene were chosen for a detailed analysis. In these cells the corresponding protein is localized in mitochondria, its NADH-binding site faces the matrix compartment as in yeast mitochondria, and in perfect correlation with its abundance restores partially or fully NADH-dependent respiration that is rotenone-insensitive, flavone-sensitive, and antimycin A-sensitive. Thus the yeast enzyme has become coupled to the downstream portion of the human respiratory chain. Furthermore, the P:O ratio with malate/glutamate-dependent respiration in the transformants is approximately two-thirds of that of the wild-type 143B.TK(-) cells, as expected from the lack of proton pumping activity in the yeast enzyme. Finally, whereas the original mutant cell line C4T fails to grow in medium containing galactose instead of glucose, the high NDI1-expressing transformant has a fully restored capacity to grow in galactose medium. The present observations substantially expand the potential of the yeast NDI1 gene for the therapy of mitochondrial diseases involving complex I deficiency.
Collapse
Affiliation(s)
- Y Bai
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Videir A, Duarte M. On complex I and other NADH:ubiquinone reductases of Neurospora crassa mitochondria. J Bioenerg Biomembr 2001; 33:197-203. [PMID: 11695829 DOI: 10.1023/a:1010778802236] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mitochondrial complex I is the first component of the respiratory chain coupling electron transfer from NADH to ubiquinone to proton translocation across the inner membrane of the organelle. The enzyme from the fungus Neurospora crassa is similar to that of other organisms in terms of protein and prosthetic group composition, structure, and function. It contains a high number of polypeptide subunits of dual genetic origin. Most of its subunits were cloned, including those binding redox groups. Extensive gene disruption experiments were conducted, revealing many aspects of the structure, function, and biogenesis of complex I. Complex I is essential for the sexual phase of the life cycle of N. crassa, but not for the asexual stage. In addition to complex I, the fungal mitochondria contain at least three nonproton-pumping alternative NAD(P)H dehydrogenases feeding electrons to the respiratory chain from either matrix or cytosolic substrates.
Collapse
Affiliation(s)
- A Videir
- Instituto de Biologia Molecular e Celular, Porto, Portugal.
| | | |
Collapse
|
45
|
Yagi T, Seo BB, Di Bernardo S, Nakamaru-Ogiso E, Kao MC, Matsuno-Yagi A. NADH dehydrogenases: from basic science to biomedicine. J Bioenerg Biomembr 2001; 33:233-42. [PMID: 11695833 DOI: 10.1023/a:1010787004053] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This review article is concerned with two on-going research projects in our laboratory, both of which are related to the study of the NADH dehydrogenase enzyme complexes in the respiratory chain. The goal of the first project is to decipher the structure and mechanism of action of the proton-translocating NADH-quinone oxidoreductase (NDH-1) from two bacteria, Paracoccus denitrificans and Thermus thermophilus HB-8. These microorganisms are of particular interest because of the close resemblance of the former (P. denitrificans) to a mammalian mitochondria, and because of the thermostability of the enzymes of the latter (T. thermophilus). The NDH-1 enzyme complex of these and other bacteria is composed of 13 to 14 unlike subunits and has a relatively simple structure relative to the mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I), which is composed of at least 42 different subunits. Therefore, the bacterial NDH-I is believed to be a useful model for studying the mitochondrial complex I, which is understood to have the most intricate structure of all the membrane-associated enzyme complexes. Recently, the study of the NADH dehydrogenase complex has taken on new urgency as a result of reports that complex I defects are involved in many human mitochondrial diseases. Thus the goal of the second project is to develop possible gene therapies for mitochondrial diseases caused by complex I defects. This project involves attempting to repair complex I defects in the mammalian system using Saccharomyces cerevisiae NDI1 genes, which code for the internal, rotenone-insensitive NADH-quinone oxidoreductase. In this review, we will discuss our progress and the data generated by these two projects to date. In addition, background information and the significance of various approaches employed to pursue these research objectives will be described.
Collapse
Affiliation(s)
- T Yagi
- Department of Molecular, and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Velázquez I, Pardo JP. Kinetic characterization of the rotenone-insensitive internal NADH: ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. Arch Biochem Biophys 2001; 389:7-14. [PMID: 11370674 DOI: 10.1006/abbi.2001.2293] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Saccharomyces cerevisiae mitochondria contain an NADH:Q6 oxidoreductase (internal NADH dehydrogenase) encoded by NDI1 gene in chromosome XIII. This enzyme catalyzes the transfer of electrons from NADH to ubiquinone without the translocation of protons across the membrane. From a structural point of view, the mature enzyme has a single subunit of 53 kDa with FAD as the only prosthetic group. Due to the fact that S. cerevisiae cells lack complex I, the expression of this protein is essential for cell growth under respiratory conditions. The results reported in this work show that the internal NADH dehydrogenase follows a ping-pong mechanism, with a Km for NADH of 9.4 microM and a Km for oxidized 2,6-dichorophenolindophenol (DCPIP) of 6.2 microM. NAD+, one of the products of the reaction, did not inhibit the enzyme while the other product, reduced DCPIP, inhibited the enzyme with a Ki of 11.5 microM. Two dead-end inhibitors, AMP and flavone, were used to further characterize the kinetic mechanism of the enzyme. AMP was a linear competitive inhibitor of NADH (Ki = 5.5 mM) and a linear uncompetitive inhibitor of oxidized DCPIP (Ki = 11.5 mM), in agreement with the ping-pong mechanism. On the other hand, flavone was a partial inhibitor displaying a hyperbolic uncompetitive inhibition regarding NADH, and a hyperbolic noncompetitive inhibition with respect to oxidized DCPIP. The apparent intercept inhibition constant (Kii = 5.4 microM) and the slope inhibition constant (Kis = 7.1 microM) were obtained by non linear regression analysis. The results indicate that the ternary complex F-DCPIPox-flavone catalyzes the reduction of DCPIP, although with lower efficiency. The effect of pH on Vmax was studied. The Vmax profile shows two groups with pKa values of 5.3 and 7.2 involved in the catalytic process.
Collapse
Affiliation(s)
- I Velázquez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, DF, México
| | | |
Collapse
|
47
|
Joseph-Horne T, Hollomon DW, Wood PM. Fungal respiration: a fusion of standard and alternative components. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:179-95. [PMID: 11245784 DOI: 10.1016/s0005-2728(00)00251-6] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In animals, electron transfer from NADH to molecular oxygen proceeds via large respiratory complexes in a linear respiratory chain. In contrast, most fungi utilise branched respiratory chains. These consist of alternative NADH dehydrogenases, which catalyse rotenone insensitive oxidation of matrix NADH or enable cytoplasmic NADH to be used directly. Many also contain an alternative oxidase that probably accepts electrons directly from ubiquinol. A few fungi lack Complex I. Although the alternative components are non-energy conserving, their organisation within the fungal electron transfer chain ensures that the transfer of electrons from NADH to molecular oxygen is generally coupled to proton translocation through at least one site. The alternative oxidase enables respiration to continue in the presence of inhibitors for ubiquinol:cytochrome c oxidoreductase and cytochrome c oxidase. This may be particularly important for fungal pathogens, since host defence mechanisms often involve nitric oxide, which, whilst being a potent inhibitor of cytochrome c oxidase, has no inhibitory effect on alternative oxidase. Alternative NADH dehydrogenases may avoid the active oxygen production associated with Complex I. The expression and activity regulation of alternative components responds to factors ranging from oxidative stress to the stage of fungal development.
Collapse
Affiliation(s)
- T Joseph-Horne
- Department of Biochemistry, School of Biomedical Sciences, University of Bristol, UK.
| | | | | |
Collapse
|
48
|
Bakker BM, Overkamp KM, Kötter P, Luttik MA, Pronk JT. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 2001; 25:15-37. [PMID: 11152939 DOI: 10.1111/j.1574-6976.2001.tb00570.x] [Citation(s) in RCA: 354] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In Saccharomyces cerevisiae, reduction of NAD(+) to NADH occurs in dissimilatory as well as in assimilatory reactions. This review discusses mechanisms for reoxidation of NADH in this yeast, with special emphasis on the metabolic compartmentation that occurs as a consequence of the impermeability of the mitochondrial inner membrane for NADH and NAD(+). At least five mechanisms of NADH reoxidation exist in S. cerevisiae. These are: (1) alcoholic fermentation; (2) glycerol production; (3) respiration of cytosolic NADH via external mitochondrial NADH dehydrogenases; (4) respiration of cytosolic NADH via the glycerol-3-phosphate shuttle; and (5) oxidation of intramitochondrial NADH via a mitochondrial 'internal' NADH dehydrogenase. Furthermore, in vivo evidence indicates that NADH redox equivalents can be shuttled across the mitochondrial inner membrane by an ethanol-acetaldehyde shuttle. Several other redox-shuttle mechanisms might occur in S. cerevisiae, including a malate-oxaloacetate shuttle, a malate-aspartate shuttle and a malate-pyruvate shuttle. Although key enzymes and transporters for these shuttles are present, there is as yet no consistent evidence for their in vivo activity. Activity of several other shuttles, including the malate-citrate and fatty acid shuttles, can be ruled out based on the absence of key enzymes or transporters. Quantitative physiological analysis of defined mutants has been important in identifying several parallel pathways for reoxidation of cytosolic and intramitochondrial NADH. The major challenge that lies ahead is to elucidate the physiological function of parallel pathways for NADH oxidation in wild-type cells, both under steady-state and transient-state conditions. This requires the development of techniques for accurate measurement of intracellular metabolite concentrations in separate metabolic compartments.
Collapse
Affiliation(s)
- B M Bakker
- Kluyver Laboratory of Biotechnology, Delft University of Technology, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
Seo BB, Wang J, Flotte TR, Yagi T, Matsuno-Yagi A. Use of the NADH-quinone oxidoreductase (NDI1) gene of Saccharomyces cerevisiae as a possible cure for complex I defects in human cells. J Biol Chem 2000; 275:37774-8. [PMID: 10982813 DOI: 10.1074/jbc.m007033200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Ndi1 enzyme of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. We have shown previously that the NDI1 gene can be functionally expressed in Chinese hamster cells (Seo, B. B., Kitajima-Ihara, T., Chan, E. K., Scheffler, I. E., Matsuno-Yagi, A., and Yagi, T. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 9167-9171) and human embryonal kidney 293 (HEK 293) cells (Seo, B. B., Matsuno-Yagi, A., and Yagi, T. (1999) Biochim. Biochem. Acta 1412, 56-65) and that the Ndi1 protein is capable of compensating respiratory deficiencies caused by defects in the host NADH-quinone oxidoreductase (complex I). To extend the potential use of this enzyme to repair complex I deficiencies in vivo, we constructed a recombinant adeno-associated virus vector carrying the NDI1 gene (rAAV-NDI1). With rAAV-NDI1 as the gene delivery method, we were able to achieve high transduction efficiencies (nearly 100%) even in 143B cells that are difficult to transfect by lipofection or calcium phosphate precipitation methods. The NDI1 gene was successfully introduced into non-proliferating human cells using rAAV-NDI1. The expressed Ndi1 protein was shown to be functionally active just as seen for proliferating cells. Furthermore, when cells were cultured under the conditions where energy has to be provided by respiration, the NDI1-transduced cells were able to grow even in the presence of added complex I inhibitor such as rotenone and 1-methyl-4-phenylpyridinium ion. In contrast, control cells that did not receive the NDI1 gene failed to survive as anticipated. The Ndi1 protein has a great potential as a molecular remedy for complex I defects, and it is highly likely that the same strategy can be extended to correction of other mitochondrial disorders.
Collapse
Affiliation(s)
- B B Seo
- Division of Biochemistry, the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Mitochondrial DNA (mtDNA) mutations underlie many rare diseases and might also contribute to human ageing. Gene therapy is a tempting future possibility for intervening in mitochondriopathies. Expression of the 13 mtDNA-encoded proteins from nuclear transgenes (allotopic expression) might be the most effective gene-therapy strategy. Its only confirmed difficulty is the extreme hydrophobicity of these proteins, which prevents their import into mitochondria from the cytosol. Inteins (self-splicing 'protein introns') might offer a solution to this problem: their insertion into such transgenes could greatly reduce the encoded proteins' hydrophobicity, enabling import, with post-import excision restoring the natural amino acid sequence.
Collapse
Affiliation(s)
- A D de Grey
- Department of Genetics, University of Cambridge, Cambridge, UK CB2 3EH.
| |
Collapse
|